図面 (/)

技術 枯草菌変異株及びそれを用いたジピコリン酸の製造方法

出願人 花王株式会社
発明者 劉生浩増田健太
出願日 2015年11月5日 (5年6ヶ月経過) 出願番号 2015-217661
公開日 2017年5月25日 (3年11ヶ月経過) 公開番号 2017-085929
状態 特許登録済
技術分野 突然変異または遺伝子工学 微生物、その培養処理 微生物による化合物の製造
主要キーワード クロマトデータ 例示的実施 n領域 導入手順 合成要求 電解酸化法 下流末端 B領域
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2017年5月25日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (4)

課題

ジピコリン酸を高生産することができる組換え微生物の提供。

解決手段

枯草菌変異株であって、prophage領域PBSX領域、spb領域、pks領域、skin領域、pps領域、ydcL−ydeK−ydhU領域、yisB−yitD領域、yunA−yurT領域、cgeE−ypmQ領域、yeeK−yesX領域、pdp−rocR領域、ycxB−sipU領域、SKIN−Pro7領域、sbo−ywhH領域、yybP−yyaJ領域及びyncM−fosB領域より選択される1以上の領域が欠失したゲノムを有し、枯草菌ジピコリン酸シンターゼ遺伝子発現強化されており、且つ、alsS遺伝子及びalsD遺伝子、及び、ackA遺伝子及びpta遺伝子より選択される少なくとも1つの遺伝子が欠失又は不活性化されている枯草菌変異株。

概要

背景

ジピコリン酸(2,6−ピリジンジカルボン酸DPA)は、天然物であり生分解性の高いキレート剤として知られており、産業用の用途として洗剤組成物や金属隠蔽剤酸化防止剤などとして利用できることが報告されている。

ジピコリン酸は、2,6−ルチジンから酸化反応によって合成されることが知られている。すなわち、ニッケル化合物の存在下で次亜ハロゲン酸塩酸化剤として用いる方法や、電解酸化法空気酸化法などにより合成できることが知られている。しかし、これらの方法では、反応の転化率選択率が不十分なため、原料である2,6−ルチジンや反応中間体である6−メチル2−ピリジンカルボン酸等のアルキルピリジン反応液中に残存し、これらが製品である2,6−ピリジンジカルボン酸(ジピコリン酸)中に不純物として混入してしまう。すなわち、従来のジピコリン酸合成法では、高純度のジピコリン酸を製造することは困難であった。

一方、微生物を使用するジピコリン酸の製造方法によれば、アルキルピリジンを含有することなくジピコリン酸を高純度に製造できると期待される。微生物を用いたジピコリン酸の製造方法としては、胞子を形成する微生物であるバシラス(Bacillus)属を用いた発酵法による製造方法(特許文献1及び2)及びカビを用いた製造方法(特許文献3)が知られている。

また、遺伝子工学的改変した微生物を用いたジピコリン酸の製造方法が知られている。特許文献4には、遺伝子組換えリジン生産菌を利用したジピコリン酸の製造方法が開示されている。特許文献5には、ジピコリン酸合成経路関与する遺伝子の発現パターンを改変したバシラス(Bacillus)属又はクロストリジウム(Clostridium)属微生物を利用したジピコリン酸の製造方法が開示されている。

特許文献6には、ゲノムの大領域を欠失させて得られた枯草菌変異株が、プロテアーゼ等の酵素生産性に優れていることが記載されている。しかし、この変異微生物は、酵素生産のために開発された株である。

概要

ジピコリン酸を高生産することができる組換え微生物の提供。枯草菌変異株であって、prophage領域PBSX領域、spb領域、pks領域、skin領域、pps領域、ydcL−ydeK−ydhU領域、yisB−yitD領域、yunA−yurT領域、cgeE−ypmQ領域、yeeK−yesX領域、pdp−rocR領域、ycxB−sipU領域、SKIN−Pro7領域、sbo−ywhH領域、yybP−yyaJ領域及びyncM−fosB領域より選択される1以上の領域が欠失したゲノムを有し、枯草菌ジピコリン酸シンターゼ遺伝子発現強化されており、且つ、alsS遺伝子及びalsD遺伝子、及び、ackA遺伝子及びpta遺伝子より選択される少なくとも1つの遺伝子が欠失又は不活性化されている枯草菌変異株。なし

目的

本発明は、上記枯草菌変異株を用いるジピコリン酸又はその塩の製造方法を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

枯草菌変異株であって、prophage6領域、prophage1領域、prophage4領域、PBSX領域、prophage5領域、prophage3領域、spb領域、pks領域、skin領域、pps領域、prophage2領域、ydcL−ydeK−ydhU領域、yisB−yitD領域、yunA−yurT領域、cgeE−ypmQ領域、yeeK−yesX領域、pdp−rocR領域、ycxB−sipU領域、SKIN−Pro7領域、sbo−ywhH領域、yybP−yyaJ領域及びyncM−fosB領域からなる群より選択される1以上の領域が欠失したゲノムを有し、枯草菌ジピコリン酸シンターゼ遺伝子又はこれに相当する遺伝子の発現強化されており、且つalsS遺伝子及びalsD遺伝子からなる群より選択される少なくとも1つの遺伝子が欠失又は不活性化され、且つackA遺伝子及びpta遺伝子からなる群より選択される少なくとも1つの遺伝子が欠失又は不活性化されている、枯草菌変異株。

請求項2

prophage6領域、prophage1領域、prophage4領域、PBSX領域、prophage5領域、prophage3領域、spb領域、pks領域、skin領域、pps領域、prophage2領域、ydcL−ydeK−ydhU領域、yisB−yitD領域、yunA−yurT領域、cgeE−ypmQ領域、yeeK−yesX領域、pdp−rocR領域、ycxB−sipU領域、SKIN−Pro7領域、sbo−ywhH領域、yybP−yyaJ領域及びyncM−fosB領域を欠失したゲノムを有する、請求項1記載の枯草菌変異株。

請求項3

前記alsS遺伝子及びalsD遺伝子が欠失又は不活性化され、且つ前記ackA遺伝子及びpta遺伝子が欠失又は不活性化されている、請求項1又は2記載の枯草菌変異株。

請求項4

前記枯草菌ジピコリン酸シンターゼ遺伝子又はこれに相当する遺伝子が、下記(i)及び(ii)に記載の遺伝子からなる群より選択される少なくとも1つである、請求項1〜3のいずれか1項記載の枯草菌変異株:(i)下記(a)〜(f)からなる群より選択される少なくとも1つの枯草菌ジピコリン酸シンターゼサブユニットA遺伝子又はこれに相当する遺伝子:(a)配列番号1に示すヌクレオチド配列からなるポリヌクレオチド;(b)配列番号1に示すヌクレオチド配列と80%以上の同一性を有するヌクレオチド配列からなり、且つ(ii)に記載の遺伝子がコードするタンパク質の存在下でジピコリン酸シンターゼ活性を発揮するタンパク質をコードするポリヌクレオチド;(c)配列番号1に示すヌクレオチド配列からなるポリヌクレオチドの相補鎖に対してストリンジェントな条件下でハイブリダイズし、且つ(ii)に記載の遺伝子がコードするタンパク質の存在下でジピコリン酸シンターゼ活性を発揮するタンパク質をコードするポリヌクレオチド;(d)配列番号2に示すアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;(e)配列番号2に示すアミノ酸配列において1又は数個アミノ酸が欠失、置換、付加又は挿入されたアミノ酸配列からなり、且つ(ii)に記載の遺伝子がコードするタンパク質の存在下でジピコリン酸シンターゼ活性を発揮するタンパク質をコードするポリヌクレオチド;(f)配列番号2に示すアミノ酸配列と80%以上の同一性を有するアミノ酸配列からなり、且つ(ii)に記載の遺伝子がコードするタンパク質の存在下でジピコリン酸シンターゼ活性を発揮するタンパク質をコードするポリヌクレオチド;(ii)下記(j)〜(o)からなる群より選択される少なくとも1つの枯草菌ジピコリン酸シンターゼ・サブユニットB遺伝子又はこれに相当する遺伝子:(j)配列番号3に示すヌクレオチド配列からなるポリヌクレオチド;(k)配列番号3に示すヌクレオチド配列と80%以上の同一性を有するヌクレオチド配列からなり、且つ(i)に記載の遺伝子がコードするタンパク質の存在下でジピコリン酸シンターゼ活性を発揮するタンパク質をコードするポリヌクレオチド;(l)配列番号3に示すヌクレオチド配列からなるポリヌクレオチドの相補鎖に対してストリンジェントな条件下でハイブリダイズし、且つ(i)に記載の遺伝子がコードするタンパク質の存在下でジピコリン酸シンターゼ活性を発揮するタンパク質をコードするポリヌクレオチド;(m)配列番号4に示すアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;(n)配列番号4に示すアミノ酸配列において1又は数個のアミノ酸が欠失、置換、付加又は挿入されたアミノ酸配列からなり、且つ(i)に記載の遺伝子がコードするタンパク質の存在下でジピコリン酸シンターゼ活性を発揮するタンパク質をコードするポリヌクレオチド;(o)配列番号4に示すアミノ酸配列と80%以上の同一性を有するアミノ酸配列からなり、且つ(i)に記載の遺伝子がコードするタンパク質の存在下でジピコリン酸シンターゼ活性を発揮するタンパク質をコードするポリヌクレオチド。

請求項5

前記枯草菌ジピコリン酸シンターゼ遺伝子又はこれに相当する遺伝子が、枯草菌spoVFA遺伝子及び枯草菌spoVFB遺伝子からなる群より選択される少なくとも1つである、請求項1〜4のいずれか1項記載の枯草菌変異株。

請求項6

枯草菌変異株の製造方法であって、prophage6領域、prophage1領域、prophage4領域、PBSX領域、prophage5領域、prophage3領域、spb領域、pks領域、skin領域、pps領域、prophage2領域、ydcL−ydeK−ydhU領域、yisB−yitD領域、yunA−yurT領域、cgeE−ypmQ領域、yeeK−yesX領域、pdp−rocR領域、ycxB−sipU領域、SKIN−Pro7領域、sbo−ywhH領域、yybP−yyaJ領域及びyncM−fosB領域からなる群より選択される1以上の領域が欠失したゲノムを有する枯草菌変異株において、枯草菌ジピコリン酸シンターゼ遺伝子又はこれに相当する遺伝子の発現を強化し、且つ、alsS遺伝子及びalsD遺伝子からなる群より選択される少なくとも1つの遺伝子を欠失又は不活性化し、且つackA遺伝子及びpta遺伝子からなる群より選択される少なくとも1つの遺伝子を欠失又は不活性化することを含む、方法。

請求項7

前記alsS遺伝子及びalsD遺伝子を欠失又は不活性化し、且つ前記ackA遺伝子及びpta遺伝子を欠失又は不活性化する、請求項6記載の方法。

請求項8

前記枯草菌ジピコリン酸シンターゼ遺伝子又はこれに相当する遺伝子が、下記(i)及び(ii)に記載の遺伝子からなる群より選択される少なくとも1つである、請求項6又は7記載の方法:(i)下記(a)〜(f)からなる群より選択される少なくとも1つの枯草菌ジピコリン酸シンターゼ・サブユニットA遺伝子又はこれに相当する遺伝子:(a)配列番号1に示すヌクレオチド配列からなるポリヌクレオチド;(b)配列番号1に示すヌクレオチド配列と80%以上の同一性を有するヌクレオチド配列からなり、且つ(ii)に記載の遺伝子がコードするタンパク質の存在下でジピコリン酸シンターゼ活性を発揮するタンパク質をコードするポリヌクレオチド;(c)配列番号1に示すヌクレオチド配列からなるポリヌクレオチドの相補鎖に対してストリンジェントな条件下でハイブリダイズし、且つ(ii)に記載の遺伝子がコードするタンパク質の存在下でジピコリン酸シンターゼ活性を発揮するタンパク質をコードするポリヌクレオチド;(d)配列番号2に示すアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;(e)配列番号2に示すアミノ酸配列において1又は数個のアミノ酸が欠失、置換、付加又は挿入されたアミノ酸配列からなり、且つ(ii)に記載の遺伝子がコードするタンパク質の存在下でジピコリン酸シンターゼ活性を発揮するタンパク質をコードするポリヌクレオチド;(f)配列番号2に示すアミノ酸配列と80%以上の同一性を有するアミノ酸配列からなり、且つ(ii)に記載の遺伝子がコードするタンパク質の存在下でジピコリン酸シンターゼ活性を発揮するタンパク質をコードするポリヌクレオチド;(ii)下記(j)〜(o)からなる群より選択される少なくとも1つの枯草菌ジピコリン酸シンターゼ・サブユニットB遺伝子又はこれに相当する遺伝子:(j)配列番号3に示すヌクレオチド配列からなるポリヌクレオチド;(k)配列番号3に示すヌクレオチド配列と80%以上の同一性を有するヌクレオチド配列からなり、且つ(i)に記載の遺伝子がコードするタンパク質の存在下でジピコリン酸シンターゼ活性を発揮するタンパク質をコードするポリヌクレオチド;(l)配列番号3に示すヌクレオチド配列からなるポリヌクレオチドの相補鎖に対してストリンジェントな条件下でハイブリダイズし、且つ(i)に記載の遺伝子がコードするタンパク質の存在下でジピコリン酸シンターゼ活性を発揮するタンパク質をコードするポリヌクレオチド;(m)配列番号4に示すアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;(n)配列番号4に示すアミノ酸配列において1又は数個のアミノ酸が欠失、置換、付加又は挿入されたアミノ酸配列からなり、且つ(i)に記載の遺伝子がコードするタンパク質の存在下でジピコリン酸シンターゼ活性を発揮するタンパク質をコードするポリヌクレオチド;(o)配列番号4に示すアミノ酸配列と80%以上の同一性を有するアミノ酸配列からなり、且つ(i)に記載の遺伝子がコードするタンパク質の存在下でジピコリン酸シンターゼ活性を発揮するタンパク質をコードするポリヌクレオチド。

請求項9

前記枯草菌ジピコリン酸シンターゼ遺伝子又はこれに相当する遺伝子が、枯草菌spoVFA遺伝子及び枯草菌spoVFB遺伝子からなる群より選択される少なくとも1つである、請求項6〜8のいずれか1項記載の方法。

請求項10

請求項1〜5のいずれか1項記載の枯草菌変異株を用いるジピコリン酸又はその塩の製造方法。

技術分野

0001

本発明は、ジピコリン酸生産能を有する枯草菌変異株、及び当該枯草菌変異株を用いたジピコリン酸又はその塩の製造方法に関する。

背景技術

0002

ジピコリン酸(2,6−ピリジンジカルボン酸DPA)は、天然物であり生分解性の高いキレート剤として知られており、産業用の用途として洗剤組成物や金属隠蔽剤酸化防止剤などとして利用できることが報告されている。

0003

ジピコリン酸は、2,6−ルチジンから酸化反応によって合成されることが知られている。すなわち、ニッケル化合物の存在下で次亜ハロゲン酸塩酸化剤として用いる方法や、電解酸化法空気酸化法などにより合成できることが知られている。しかし、これらの方法では、反応の転化率選択率が不十分なため、原料である2,6−ルチジンや反応中間体である6−メチル2−ピリジンカルボン酸等のアルキルピリジン反応液中に残存し、これらが製品である2,6−ピリジンジカルボン酸(ジピコリン酸)中に不純物として混入してしまう。すなわち、従来のジピコリン酸合成法では、高純度のジピコリン酸を製造することは困難であった。

0004

一方、微生物を使用するジピコリン酸の製造方法によれば、アルキルピリジンを含有することなくジピコリン酸を高純度に製造できると期待される。微生物を用いたジピコリン酸の製造方法としては、胞子を形成する微生物であるバシラス(Bacillus)属を用いた発酵法による製造方法(特許文献1及び2)及びカビを用いた製造方法(特許文献3)が知られている。

0005

また、遺伝子工学的改変した微生物を用いたジピコリン酸の製造方法が知られている。特許文献4には、遺伝子組換えリジン生産菌を利用したジピコリン酸の製造方法が開示されている。特許文献5には、ジピコリン酸合成経路関与する遺伝子の発現パターンを改変したバシラス(Bacillus)属又はクロストリジウム(Clostridium)属微生物を利用したジピコリン酸の製造方法が開示されている。

0006

特許文献6には、ゲノムの大領域を欠失させて得られた枯草菌変異株が、プロテアーゼ等の酵素生産性に優れていることが記載されている。しかし、この変異微生物は、酵素生産のために開発された株である。

先行技術

0007

特開2004−275075号公報
独国特許第2300056号公報
米国特許第3334021号公報
特開2002−371063号公報
特開2008−048732号公報
特開2007−130013号公報

発明が解決しようとする課題

0008

本発明は、ジピコリン酸(2,6−ピリジンジカルボン酸、以下の本明細書において、DPAとも称する)を高生産することができる枯草菌変異株、当該枯草菌変異株の製造方法、及び当該枯草菌変異株を用いたDPA又はその塩の製造方法に関する。

課題を解決するための手段

0009

本発明者らは、DPAを効率良く生産することができる微生物株の開発を進めた。その結果、ゲノムの大領域が欠失した枯草菌変異株において、枯草菌ジピコリン酸シンターゼ遺伝子又はこれに相当する遺伝子の発現強化することと、アセトイン合成に係る遺伝子と酢酸合成に係る遺伝子を共に欠失又は不活性化することにより、得られた枯草菌変異株が顕著に高いDPA生産能を有することを見出し、本発明を完成した。

0010

すなわち本発明は、一態様において、以下を提供する:
枯草菌変異株であって、
prophage6領域、prophage1領域、prophage4領域、PBSX領域、prophage5領域、prophage3領域、spb領域、pks領域、skin領域、pps領域、prophage2領域、ydcL−ydeK−ydhU領域、yisB−yitD領域、yunA−yurT領域、cgeE−ypmQ領域、yeeK−yesX領域、pdp−rocR領域、ycxB−sipU領域、SKIN−Pro7領域、sbo−ywhH領域、yybP−yyaJ領域及びyncM−fosB領域からなる群より選択される1以上の領域が欠失したゲノムを有し、
枯草菌ジピコリン酸シンターゼ遺伝子又はこれに相当する遺伝子の発現が強化されており、且つ
alsS遺伝子及びalsD遺伝子からなる群より選択される少なくとも1つの遺伝子が欠失又は不活性化され、且つackA遺伝子及びpta遺伝子からなる群より選択される少なくとも1つの遺伝子が欠失又は不活性化されている、枯草菌変異株。

0011

別の態様において、本発明は以下を提供する:
枯草菌変異株の製造方法であって、
prophage6領域、prophage1領域、prophage4領域、PBSX領域、prophage5領域、prophage3領域、spb領域、pks領域、skin領域、pps領域、prophage2領域、ydcL−ydeK−ydhU領域、yisB−yitD領域、yunA−yurT領域、cgeE−ypmQ領域、yeeK−yesX領域、pdp−rocR領域、ycxB−sipU領域、SKIN−Pro7領域、sbo−ywhH領域、yybP−yyaJ領域及びyncM−fosB領域からなる群より選択される1以上の領域が欠失したゲノムを有する枯草菌変異株において
枯草菌ジピコリン酸シンターゼ遺伝子又はこれに相当する遺伝子の発現を強化し、且つ、
alsS遺伝子及びalsD遺伝子からなる群より選択される少なくとも1つの遺伝子を欠失又は不活性化し、且つackA遺伝子及びpta遺伝子からなる群より選択される少なくとも1つの遺伝子を欠失又は不活性化する、ことを含む、方法。

0012

また別の態様において、本発明は、上記枯草菌変異株を用いるジピコリン酸又はその塩の製造方法を提供する。

発明の効果

0013

本発明の枯草菌変異株は高いDPA生産能を有する。本発明の枯草菌変異株を用いることによりDPA又はその塩を効率よく製造することが可能になる。

図面の簡単な説明

0014

枯草菌のゲノム上から所定の領域を欠失させる方法の一例を示す模式図。
枯草菌ゲノムから外来薬剤耐性遺伝子を除去する手順を示す模式図。
枯草菌変異株へのジピコリン酸シンターゼ遺伝子の導入手順及び導入位置に関する一実施形態を示す模式図。
mazF遺伝子融合カセットを使用したマーカーフリー欠失法にて枯草菌変異株から特定の遺伝子を欠失させる手順を示す模式図。

0015

本明細書に記載の枯草菌の各遺伝子及びゲノム領域名称は、JAFAN:Japan
Functional Analysis Network for Bacillus subtilis(BSORF DB)でインターネット公開([bacillus.genome.ad.jp/]、2006年1月18日更新)された枯草菌ゲノムデータに基づいて記載されている。

0016

本明細書において、アミノ酸配列及びヌクレオチド配列同一性はLipman−Pearson法(Lipman,DJ.,Pearson.WR.:Science,1985,227:1435−1441)によって計算される。具体的には、遺伝情報処理ソフトウェアGenetyx−Win Ver.11(ソフトウェア開発)のホモロジー解析(Search homology)プログラムを用いて、Unit size to compare(ktup)を2として解析を行うことにより算出される。

0017

本明細書において、別途定義されない限り、アミノ酸配列又はヌクレオチド配列におけるアミノ酸又はヌクレオチドの欠失、置換、付加又は挿入に関して使用される「1又は数個」の「数個」とは、例えば、対象となるアミノ酸配列又はヌクレオチド配列の総アミノ酸基数又は総ヌクレオチド数の20%以下の最大整数、好ましくは同じく10%以下の最大整数、より好ましくは同じく5%以下の最大整数、さらに好ましくは同じく4%以下の最大整数、さらに好ましくは同じく3%以下の最大整数、さらに好ましくは同じく2%以下の最大整数、さらにより好ましくは同じく1%以下の最大整数を意味する。また本明細書において、アミノ酸又はヌクレオチドの「付加」には、配列の一末端及び両末端への1又は数個のアミノ酸又はヌクレオチドの付加が含まれる。

0018

本明細書において、ハイブリダイゼーションに関する「ストリンジェントな条件」とは、配列同一性が約80%以上若しくは約90%以上のヌクレオチド配列を有する遺伝子の確認を可能にする条件である。「ストリンジェントな条件」としては、Molecular Cloning−A LABORATORYMANUAL THIRDEDITION(Joseph Sambrook,David W.Russell,Cold
Spring Harbor Laboratory Press,2001)記載の条件が挙げられる。ハイブリダイゼーションの当業者は、プローブのヌクレオチド配列や濃度、長さ等に応じて、ハイブリダイゼーション溶液塩濃度、温度等を調節することにより、ストリンジェントな条件を適切に作り出すことができる。一例を示せば、上記「ストリンジェントな条件」とは、ハイブリダイゼーション条件としては、5×SSC、70℃以上が好ましく、5×SSC、85℃以上がより好ましく、洗浄条件としては、1×SSC、60℃以上が好ましく、1×SSC、73℃以上がより好ましい。上記SSC及び温度条件の組み合わせは例示であり、当業者であれば、ハイブリダイゼーションのストリンジェンシーを決定する上記若しくは他の要素を適宜組み合わせることにより、適切なストリンジェンシーを実現することが可能である。

0019

本明細書において、遺伝子又は領域の上流及び下流とは、それぞれ、対象として捉えている遺伝子又は領域の5’側及び3’側に続く領域を示す。

0020

本明細書において、遺伝子の制御領域とは、下流の遺伝子の細胞内における発現を制御する機能を有し、好ましくは、下流遺伝子を構成的に発現又は高発現させる機能を有する領域である。本明細書において、遺伝子の制御領域とは、当該遺伝子におけるコーディング領域の上流に存在し、RNAポリメラーゼ相互作用して当該遺伝子の転写を制御する機能を有する領域と定義され得る。好ましくは、本明細書における遺伝子の制御領域とは、当該遺伝子におけるコーディング領域の上流200〜600ヌクレオチド程度の領域をいう。制御領域は、遺伝子の転写開始制御領域及び/又は翻訳開始制御領域を含む。転写開始制御領域は制御領域及び転写開始点を含む領域であり、翻訳開始制御領域は開始コドンと共にリボソーム結合部位を形成するShine−Dalgarno(SD)配列に相当する部位である(Shine,J.,Dalgarno,L.,Proc.Natl.Acad.Sci.USA.,1974,71:1342−1346)。

0021

本明細書において、目的遺伝子の発現強化とは、改変前に比較して目的遺伝子の発現量を増加させることである。目的遺伝子の発現量を増加させる手段としては、例えば、ゲノム上の目的遺伝子を、野生型に比較して該遺伝子の発現を強化できる制御領域(強発現制御領域)の制御下に配置すること、強発現制御領域の制御下に配置された目的遺伝子を細胞内のゲノム中若しくはプラスミド中に導入すること、又は複数の目的遺伝子を細胞内に発現可能に存在させる改変などが挙げられる。複数の目的遺伝子を細胞内に発現可能に存在させる改変としては、目的遺伝子が発現可能に存在する細胞内のゲノム中若しくはプラスミド中に、必要に応じて制御領域と共に、さらに目的遺伝子を導入すること、又は複数個の目的遺伝子を、必要に応じて制御領域と共に、細胞内のゲノム中若しくはプラスミド中に導入することによって、細胞内で発現する目的遺伝子の数の増加させる改変を挙げることができる。

0022

本明細書において、目的遺伝子を「制御領域の制御下に配置する」とは、制御領域による遺伝子の発現を制御する機能が目的遺伝子に作用するように、DNA上で制御領域と目的遺伝子とを配置することをいう。目的遺伝子を制御領域の制御下に配置する方法としては、当該制御領域の制御の及ぶ下流に当該目的遺伝子を連結する方法が挙げられる。

0023

(1.枯草菌変異株の製造)
(1−1.ゲノム欠失枯草菌変異株)
本発明の枯草菌変異株は、枯草菌野生株のゲノム上の大領域が欠失したゲノムを有し、枯草菌ジピコリン酸シンターゼ遺伝子又はこれに相当する遺伝子の発現が強化されており、且つalsS遺伝子及びalsD遺伝子からなる群より選択される少なくとも1つの遺伝子が欠失又は不活性化され、且つackA遺伝子及びpta遺伝子からなる群より選択される少なくとも1つの遺伝子が欠失又は不活性化されている、枯草菌変異株である。好ましくは、本発明の枯草菌変異株は、該ゲノムの大領域が欠失した枯草菌変異株に対して、枯草菌ジピコリン酸シンターゼ遺伝子又はこれに相当する遺伝子の発現を強化する改変と、alsS遺伝子及びalsD遺伝子より選択される少なくとも1つの遺伝子を欠失又は不活性化させる改変と、且つackA遺伝子及びpta遺伝子からなる群より選択される少なくとも1つの遺伝子が欠失又は不活性化させる改変とを加えることによって作製される。

0024

上記ゲノムの大領域が欠失した枯草菌変異株は、枯草菌野生株(Bacillus subtilis Marburg No.168;本明細書において以下、枯草菌168株又は単に168株、あるいは野生株と称する)のゲノムと比べて、そのゲノム中の大領域が欠失したゲノムを有する。すなわち、当該枯草菌変異株のゲノムにおいては、枯草菌野生株のゲノム中の、prophage6(yoaV−yobO)領域、prophage1(ybbU−ybdE)領域、prophage4(yjcM−yjdJ)領域、PBSX(ykdA−xlyA)領域、prophage5(ynxB−dut)領域、prophage3(ydiM−ydjC)領域、spb(yodU−ypqP)領域、pks(pksA−ymaC)領域、skin(spoIVCB−spoIIIC)領域、pps(ppsE−ppsA)領域、prophage2(ydcL−ydeJ)領域、ydcL−ydeK−ydhU領域、yisB−yitD領域、yunA−yurT領域、cgeE−ypmQ領域、yeeK−yesX領域、pdp−rocR領域、ycxB−sipU領域、SKIN−Pro7(spoIVCB−yraK)領域、sbo−ywhH領域、yybP−yyaJ領域及びyncM−fosB領域からなる群より選択される1以上の領域が欠失している。なお、領域とは特定の遺伝子に挟まれる遺伝子の領域をいい、領域が欠失しているとは特定の遺伝子に挟まれる領域の全てを欠失していることをいう。

0025

当該枯草菌変異株はとしては、好ましくは、枯草菌野生株のゲノム中の、prophage6(yoaV−yobO)領域、prophage1(ybbU−ybdE)領域、prophage4(yjcM−yjdJ)領域、PBSX(ykdA−xlyA)領域、prophage5(ynxB−dut)領域、prophage3(ydiM−ydjC)領域、spb(yodU−ypqP)領域、pks(pksA−ymaC)領域、skin(spoIVCB−spoIIIC)領域、pps(ppsE−ppsA)領域、prophage2(ydcL−ydeJ)領域、ydcL−ydeK−ydhU領域、yisB−yitD領域、yunA−yurT領域、cgeE−ypmQ領域、yeeK−yesX領域、pdp−rocR領域、ycxB−sipU領域、SKIN−Pro7(spoIVCB−yraK)領域、sbo−ywhH領域、yybP−yyaJ領域及びyncM−fosB領域の全てを欠失しているMGB874株(特開2007−130013号公報)や、枯草菌野生株のゲノム中の、prophage6(yoaV−yobO)領域、prophage1(ybbU−ybdE)領域、prophage4(yjcM−yjdJ)領域、PBSX(ykdA−xlyA)領域、prophage5(ynxB−dut)領域、prophage3(ydiM−ydjC)領域、spb(yodU−ypqP)領域、pks(pksA−ymaC)領域、skin(spoIVCB−spoIIIC)領域、pps(ppsE−ppsA)領域、prophage2(ydcL−ydeJ)領域、prophage7(yrkM−yraK)領域からなる群より選択される領域の全てを欠失しているOA105株が挙げられ、より好ましくはMGB874株である。

0026

上記枯草菌変異株は、例えば、168株等の任意の枯草菌株から上述のゲノム領域を欠失させることによって作製することができる。欠失させるべき目的のゲノム領域は、例えば、当該任意の枯草菌株のゲノムを、公開されている枯草菌168株のゲノムと対比することにより決定することができる。枯草菌168株の全ヌクレオチド配列及びゲノムの情報は、上述のBSORF DB、又はGenBank:AL009126.2([www.ncbi.nlm.nih.gov/nuccore/38680335])から入手することができる。当業者は、これらの情報源から得た枯草菌168株のゲノム情報に基づいて、欠失させるべき目的のゲノム領域を決定することができる。ここで、欠失させるべきゲノム領域は、公開されている枯草菌168株における上述のゲノム領域のヌクレオチド配列に対して、1又は数個(例えば、1〜100個、好ましくは1〜50個、より好ましくは1〜30個、さらに好ましくは1〜10個、さらにより好ましくは1〜5個)のヌクレオチドにおける天然又は人工的に引き起こされた欠失、置換、挿入、付加等の変異を含むヌクレオチド配列を有するゲノム領域であり得る。あるいは、欠失させるべきゲノム領域は、公開されている枯草菌168株における上述のゲノム領域に対して、ヌクレオチド配列において好ましくは80%以上同一、さらにより好ましくは90%以上同一、なお好ましくは95%以上同一なゲノム領域であり得る。

0027

あるいは、上記欠失させるべきゲノム領域は、表1に示す一対のオリゴヌクレオチドセットにより挟み込まれる領域として表すことができる。表1記載の領域を枯草菌ゲノム上から欠失させる方法としては、特に限定されないが、例えばSOE−PCR法(splicing by overlap extensionPCR:Gene,1989,77:61−68)等により調製された欠失用DNA断片を用いた2重交差法が挙げられる。当該方法により枯草菌野生株から所定のゲノム領域が欠失した変異株を作製する手順は、特開2007−130013号公報に詳述されているが、以下に概要を説明する。

0028

0029

SOE−PCR法による欠失用DNA断片の調製と当該欠失用DNA断片を用いた2重交差法による目的領域の欠失の手順の概要を図1に示す。初めに、SOE−PCR法により、欠失させるべき目的領域の上流に隣接する約0.1〜3kb領域に対応する断片(上流断片と称する)と、同じく下流に隣接する約0.1〜3kb領域に対応する断片(下流断片と称する)とを連結したDNA断片を調製する。好ましくは、目的領域の欠失を確認するために、当該上流断片と下流断片の間に薬剤耐性遺伝子などのマーカー遺伝子断片をさらに連結したDNA断片を調製する。

0030

まず、1回目のPCRによって、欠失させるべき領域の上流断片A及び下流断片B、並びに必要に応じてマーカー遺伝子断片(図1中では、クロラムフェニコール耐性遺伝子断片Cm)の3断片を調製する。上流断片及び下流断片のPCR増幅の際には、後に連結される断片の末端10〜30ヌクレオチドの配列を付加したプライマーを使用する。例えば、上流断片A、薬剤耐性マーカー遺伝子断片Cm、及び下流断片Bをこの順で連結させる場合、上流断片Aの下流末端に結合するプライマーの5’末端に、薬剤耐性マーカー遺伝子断片Cmの上流側10〜30ヌクレオチドに相当する配列を付加し(図1、プライマーDR1)、また下流断片Bの上流末端に結合するプライマーの5’末端に、薬剤耐性マーカー遺伝子断片Cmの下流側10〜30ヌクレオチドに相当する配列を付加する(図1、プライマーDF2)。このように設計したプライマーセットを用いて上流断片A及び下流断片BをPCRで増幅した場合、増幅された上流断片A’の下流側には薬剤耐性マーカー遺伝子断片Cmの上流側に相当する領域が付加されることとなり、増幅された下流断片B’の上流側には薬剤耐性マーカー遺伝子断片Cmの下流側に相当する領域が付加されることとなる。

0031

次に、1回目のPCRで調製した上流断片A’、薬剤耐性マーカー遺伝子断片Cm、及び下流断片B’を混合して鋳型とし、上流断片の上流側に結合するプライマー(図1、プライマーDF1)及び下流断片の下流側に結合するプライマー(図1、プライマーDR2)からなる1対のプライマーを用いて2回目のPCRを行う。この2回目のPCRにより、上流断片A、薬剤耐性マーカー遺伝子断片Cm、及び下流断片Bをこの順で結合した欠失用DNA断片Dを増幅することができる。

0032

上述の方法などによって得られる欠失用DNA断片を、通常の制限酵素DNAリガーゼを用いてプラスミドに挿入し、欠失導入用プラスミドを構築する。あるいは、上流断片及び下流断片を直接連結した欠失用DNA断片を調製した後、当該欠失用DNA断片を薬剤耐性マーカー遺伝子を含むプラスミドに挿入することで、上流断片及び下流断片に加えて薬剤耐性マーカー遺伝子断片を有する欠失導入用プラスミドを構築することができる。

0033

上記手順で構築された欠失導入用プラスミドを、コンピテントセル形質転換法等の通常の手法により、ゲノム領域を欠失させたい枯草菌に導入する。プラスミドの導入により、当該プラスミド上の上流断片及び下流断片と、枯草菌ゲノムのそれらに相同な領域との間で2重交差の相同組換えが生じ、欠失させるべき領域が薬剤耐性マーカー遺伝子に置き換えられた形質転換体が得られる(図1)。形質転換体の選択は、欠失用DNA断片中に存在する薬剤耐性遺伝子などのマーカー遺伝子の発現を指標に行えばよい。例えば、クロラムフェニコール耐性遺伝子断片で形質転換処理をした菌を、抗生物質(クロラムフェニコール等)を含む培地で培養し、生育したコロニー回収することで、目的の領域が欠失しクロラムフェニコール耐性遺伝子に置き換えられた形質転換体を取得することができる。さらに、形質転換体のゲノムDNAを抽出し、これを鋳型としてPCRを行うことで、目的の領域が欠失されていることを確認することができる。

0034

次に、得られた形質転換体から、ゲノムDNAに挿入された上記マーカー遺伝子を除去する。除去の手順としては、特に限定されないが、図2に示すような2段階相同組換え法を用いることができる(特開平2009−254350号公報)。当該方法では、初めに第1相同組換えのためのDNA断片(供与体DNA)を調製する。調製の方法としては、特に限定されないが、上述したSOE−PCR法等が挙げられる。供与体DNAとしては、例えば、除去すべきマーカー遺伝子領域(すなわち、欠失された領域)の上流に隣接する領域に対応する約0.1〜3kb断片(上流断片)及び同じく下流に隣接する領域に対応する約0.1〜3kb断片(下流断片)が結合した断片と、当該除去すべきマーカー遺伝子下流領域の断片とが連結したDNA断片を用いることができる。好適には、当該下流断片と除去すべき第1のマーカー遺伝子下流領域断片との間に、相同組換えの指標となる第2のマーカー遺伝子等が挿入されたDNA断片が用いられる(図2を参照)。

0035

次いで、調製された供与体DNAをコンピテントセル形質転換法等の通常の手法によって上記形質転換体に導入し、当該形質転換体ゲノム上の当該上流断片及び第1のマーカー遺伝子下流領域に相当する領域との間に相同組換えを起こさせる(第1相同組換え)。所望の相同組換えが生じた形質転換体は、供与体DNA中に挿入した第2のマーカー遺伝子の発現を指標に選択することができる。第1相同組換えが適切に生じた形質転換体のゲノムDNAでは、上流断片、下流断片、必要に応じて第2のマーカー遺伝子、第1のマーカー遺伝子下流領域、及び下流断片が順番に配置している(図2参照)。このような配置を有するゲノムDNAにおいては、上記2つの下流断片同士の間で自然誘発的に相同組換えが起こり得る(ゲノム内相同組換え)。このゲノム内相同組換えによって、当該2つの下流断片の間に位置していた領域が欠失することにより、第1のマーカー遺伝子が形質転換体ゲノムから除去される。

0036

ゲノム内相同組換えを起こした形質転換体を選択する手段としては、第1のマーカー遺伝子が薬剤耐性遺伝子の場合は、薬剤耐性を持たない菌を選択する方法が挙げられる。ペニシリン系抗生物質は、増殖細胞に対して殺菌的に作用するが非増殖細胞には作用しない。したがって、薬剤とペニシリン系抗生物質の存在下で菌を培養すれば、薬剤存在下で増殖しない薬剤非耐性菌を選択的に濃縮することができる(Methodsin Molecular Genetics,Cold Spring Harbor Labs,1970)。別の手段としては、致死遺伝子を導入する方法が挙げられる。例えば、上記第2のマーカーとしてchpA遺伝子等の致死遺伝子を菌に導入すれば、ゲノム内相同組換えが起こらなかった菌は当該致死遺伝子の作用で死滅するので、ゲノム内相同組換えを起こした形質転換体を選択することができる。選択された菌株からゲノムDNAを抽出し、これを鋳型としてPCRを行うことで、目的の領域が欠失されていることを確認することができる(特開2009−254350号公報)。

0037

以上のようにして、ゲノム上の所定の領域を欠失した枯草菌変異株を作製することができる。さらに、当該手順を繰り返すことにより、上述のゲノム領域が全て欠失した枯草菌変異株を作製することができる。

0038

(1−2.ジピコリン酸シンターゼ遺伝子発現強化)
次いで、上記所定の領域を欠失した枯草菌変異株において、枯草菌ジピコリン酸シンターゼ遺伝子又はこれに相当する遺伝子の発現を強化する。

0039

本明細書において、ジピコリン酸シンターゼ遺伝子とは、下記式(1)の化学反応を進行させる活性を有するジピコリン酸シンターゼをコードする遺伝子である。

0040

0041

ジピコリン酸シンターゼは、サブユニットAとサブユニットBから構成されており、それぞれのサブユニットをコードする遺伝子が存在する。枯草菌ジピコリン酸シンターゼ遺伝子としては、ジピコリン酸シンターゼ・サブユニットAをコードするspoVFAと、ジピコリン酸シンターゼ・サブユニットBをコードするspoVFBが挙げられる。枯草菌spoVFA遺伝子のヌクレオチド配列及び当該spoVFA遺伝子によりコードされるジピコリン酸シンターゼ・サブユニットAのアミノ酸配列をそれぞれ配列番号1及び2に示す。また、枯草菌spoVFB遺伝子のヌクレオチド配列及び当該spoVFB遺伝子によりコードされるジピコリン酸シンターゼ・サブユニットBのアミノ酸配列をそれぞれ配列番号3及び4に示す。

0042

枯草菌ジピコリン酸シンターゼ遺伝子に相当する遺伝子としては、枯草菌spoVFA遺伝子と少なくとも80%、好ましくは80%以上、より好ましくは90%以上、より好ましくは95%以上、より好ましくは96%以上、より好ましくは97%以上、より好ましくは98%以上、より好ましくは99%以上の同一性を有するヌクレオチド配列からなり、且つ枯草菌ジピコリン酸シンターゼ・サブユニットBとともに働いて上述したジピコリン酸合成反応触媒する活性(ジピコリン酸シンターゼ活性)を発揮するタンパク質をコードするポリヌクレオチドが挙げられる。

0043

あるいは、枯草菌ジピコリン酸シンターゼ遺伝子に相当する遺伝子としては、枯草菌spoVFB遺伝子と少なくとも80%、好ましくは80%以上、より好ましくは90%以上、より好ましくは95%以上、より好ましくは96%以上、より好ましくは97%以上、より好ましくは98%以上、より好ましくは99%以上の同一性を有するヌクレオチド配列からなり、且つ枯草菌ジピコリン酸シンターゼ・サブユニットAとともに働いて上述したジピコリン酸合成反応を触媒する活性(ジピコリン酸シンターゼ活性)を発揮するタンパク質をコードするポリヌクレオチドが挙げられる。

0044

さらに、枯草菌ジピコリン酸シンターゼ遺伝子に相当する遺伝子としては、枯草菌以外の微生物由来のジピコリン酸シンターゼ・サブユニットA又はBをコードする遺伝子が挙げられる。そのような遺伝子の例としては、Bacillus licheniformis由来のspoVFA(配列番号5)及びspoVFB(配列番号6)、Bacillus clausii由来のspoVFA(配列番号7)及びspoVFB(配列番号8)、Clostridium stercorarium由来のspoVFA(配列番号9)及びspoVFB(配列番号10)、ならびにBacillus amyloliquefaciens由来のspoVFA(配列番号11)及びspoVFB(配列番号12)等を挙げることができる。

0045

本発明の枯草菌変異株においては、上述した枯草菌ジピコリン酸シンターゼ遺伝子又はこれに相当する遺伝子のうちのいずれか1つ、又はいずれか2つ以上が発現強化されていればよい。好ましくは、上述した枯草菌ジピコリン酸シンターゼのサブユニットAをコードする遺伝子又はこれに相当する遺伝子と、上述した枯草菌ジピコリン酸シンターゼのサブユニットBをコードする遺伝子又はこれに相当する遺伝子とが組み合わせて発現強化されているとよい。より好ましくは、上述した枯草菌ジピコリン酸シンターゼのサブユニットAとサブユニットBをコードする遺伝子とが組み合わせて発現強化されているとよい。

0046

本発明の枯草菌変異株において発現強化される枯草菌ジピコリン酸シンターゼ遺伝子又はこれに相当する遺伝子の好ましい例としては、以下の(i)及び(ii)に記載の遺伝子からなる群より選択される少なくとも1つが挙げられる。
(i)下記(a)〜(f)からなる群より選択される少なくとも1つの枯草菌ジピコリン酸シンターゼ・サブユニットA遺伝子又はこれに相当する遺伝子:
(a)配列番号1に示すヌクレオチド配列からなるポリヌクレオチド;
(b)配列番号1に示すヌクレオチド配列と少なくとも80%、好ましくは80%以上、より好ましくは90%以上、より好ましくは95%以上、より好ましくは96%以上、より好ましくは97%以上、より好ましくは98%以上、より好ましくは99%以上の同一性を有するヌクレオチド配列からなり、且つ(ii)に記載の遺伝子がコードするタンパク質の存在下でジピコリン酸シンターゼ活性を発揮するタンパク質をコードするポリヌクレオチド;
(c)配列番号1に示すヌクレオチド配列からなるポリヌクレオチドの相補鎖に対してストリンジェントな条件下でハイブリダイズし、且つ(ii)に記載の遺伝子がコードするタンパク質の存在下でジピコリン酸シンターゼ活性を発揮するタンパク質をコードするポリヌクレオチド;
(d)配列番号2に示すアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(e)配列番号2に示すアミノ酸配列において1又は数個のアミノ酸が欠失、置換、付加又は挿入されたアミノ酸配列からなり、且つ(ii)に記載の遺伝子がコードするタンパク質の存在下でジピコリン酸シンターゼ活性を発揮するタンパク質をコードするポリヌクレオチドであって、数個とは59個、好ましくは44個、より好ましくは29個、より好ましくは14個、より好ましくは5個、より好ましくは2個である;及び、
(f)配列番号2に示すアミノ酸配列と少なくとも80%、好ましくは80%以上、より好ましくは85%、より好ましくは90%以上、より好ましくは95%以上、より好ましくは98%以上、より好ましくは99%以上の同一性を有するアミノ酸配列からなり、且つ(ii)に記載の遺伝子がコードするタンパク質の存在下でジピコリン酸シンターゼ活性を発揮するタンパク質をコードするポリヌクレオチド;
(ii)下記(j)〜(o)からなる群より選択される少なくとも1つの枯草菌ジピコリン酸シンターゼ・サブユニットB遺伝子又はこれに相当する遺伝子:
(j)配列番号3に示すヌクレオチド配列からなるポリヌクレオチド;
(k)配列番号3に示すヌクレオチド配列と少なくとも80%、好ましくは80%以上、より好ましくは90%以上、より好ましくは95%以上、より好ましくは96%以上、より好ましくは97%以上、より好ましくは98%以上、より好ましくは99%以上の同一性を有するヌクレオチド配列からなり、且つ(i)に記載の遺伝子がコードするタンパク質の存在下でジピコリン酸シンターゼ活性を発揮するタンパク質をコードするポリヌクレオチド;
(l)配列番号3に示すヌクレオチド配列からなるポリヌクレオチドの相補鎖に対してストリンジェントな条件下でハイブリダイズし、且つ(i)に記載の遺伝子がコードするタンパク質の存在下でジピコリン酸シンターゼ活性を発揮するタンパク質をコードするポリヌクレオチド;
(m)配列番号4に示すアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(n)配列番号4に示すアミノ酸配列において1又は数個のアミノ酸が欠失、置換、付加又は挿入されたアミノ酸配列からなり、且つ(i)に記載の遺伝子がコードするタンパク質の存在下でジピコリン酸シンターゼ活性を発揮するタンパク質をコードするポリヌクレオチドであって、数個とは40個、好ましくは30個、より好ましくは20個、より好ましくは10個、より好ましくは4個、より好ましくは2個である;及び、
(o)配列番号4に示すアミノ酸配列と少なくとも80%、好ましくは80%以上、より好ましくは85%、より好ましくは90%以上、より好ましくは95%以上、より好ましくは98%以上、より好ましくは99%以上の同一性を有するアミノ酸配列からなり、且つ(i)に記載の遺伝子がコードするタンパク質の存在下でジピコリン酸シンターゼ活性を発揮するタンパク質をコードするポリヌクレオチド。

0047

より好ましくは、本発明の枯草菌変異株においては、上記(i)及び(ii)に記載の遺伝子が組み合わせて発現強化される。さらに好ましくは、本発明の枯草菌変異株においては、上記(i)(a)の遺伝子と、上記(ii)(j)〜(o)の遺伝子からなる群より選択される少なくとも1つとの組み合わせ、又は上記(i)(a)〜(f)の遺伝子からなる群より選択される少なくとも1つと、上記(ii)(j)の遺伝子との組み合わせが発現強化される。なお好ましくは、本発明の枯草菌変異株においては、上記(i)(a)の遺伝子と上記(ii)(j)の遺伝子との組み合わせが発現強化される。

0048

本発明の枯草菌変異株において発現強化される枯草菌ジピコリン酸シンターゼ遺伝子又はこれに相当する遺伝子の別の好ましい例としては、上述した枯草菌のspoVFA遺伝子及びspoVFB遺伝子、Bacillus licheniformisのspoVFA遺伝子及びspoVFB遺伝子、Bacillus clausiiのspoVFA遺伝子及びspoVFB遺伝子、Clostridium stercorariumのspoVFA遺伝子及びspoVFB遺伝子、ならびにBacillus amyloliquefaciensのspoVFA遺伝子及びspoVFB遺伝子からなる群より選択される少なくとも1つが挙げられ、このうち、枯草菌spoVFA遺伝子及び枯草菌spoVFB遺伝子からなる群より選択される少なくとも1つがより好ましい。

0049

本発明の枯草菌変異株において発現強化される枯草菌ジピコリン酸シンターゼ遺伝子又はこれに相当する遺伝子のなお別の好ましい例としては、枯草菌のspoVFA遺伝子、Bacillus licheniformisのspoVFA遺伝子、Bacillus clausiiのspoVFA遺伝子、Clostridium stercorariumのspoVFA遺伝子、及びBacillus amyloliquefaciensのspoVFA遺伝子からなる群より選択される少なくとも1つと、枯草菌のspoVFB遺伝子、Bacillus licheniformisのspoVFB遺伝子、Bacillus clausiiのspoVFB遺伝子、Clostridium stercorariumのspoVFB遺伝子、及びBacillus amyloliquefaciensのspoVFB遺伝子からなる群より選択される少なくとも1つとの組み合わせが挙げられ、このうち、枯草菌spoVFA遺伝子と枯草菌spoVFB遺伝子との組み合わせがより好ましい。

0050

上記ジピコリン酸シンターゼ遺伝子又はこれに相当する遺伝子の発現を強化する手段としては、例えば、ゲノム上の当該目的遺伝子を、野生型に比較し該遺伝子の発現を強化できる制御領域(強発現制御領域)の制御下に配置すること、及び制御領域、好ましくは強発現制御領域の制御下に配置された当該目的遺伝子を、宿主が本来有するジピコリン酸シンターゼ遺伝子に加えて、細胞内のゲノム中若しくはプラスミド中に導入すること、などが挙げられる。

0051

例えば、本発明の枯草菌変異株は、上述のゲノム領域が1つ以上、好ましくは全て欠失した枯草菌変異株を宿主として、そのゲノム上の目的ジピコリン酸シンターゼ遺伝子の制御領域配列を強発現制御領域に置換することによって作製することができる。あるいは、本発明の枯草菌変異株は、強発現制御領域の制御下に配置された目的ジピコリン酸シンターゼ遺伝子又はこれに相当する遺伝子を当該宿主のゲノム中若しくはプラスミド中に導入することによって作製することができる。またあるいは、複数の目的ジピコリン酸シンターゼ遺伝子又はこれに相当する遺伝子を当該宿主中に作動可能に存在させる改変により、該目的遺伝子の発現を強化することもできる。

0052

ジピコリン酸シンターゼ遺伝子発現強化のための詳細な手順の例を以下に記載する。まず、制御領域及び上記ジピコリン酸シンターゼ遺伝子は、当該制御領域の制御下に当該遺伝子が発現されるように配置され、さらに宿主ゲノムとの相同領域と結合されたDNA断片として構築され得る。例えば、上流から、制御領域(例えば、後述するspoVG遺伝子制御領域)、ジピコリン酸シンターゼ・サブユニットA遺伝子、ジピコリン酸シンターゼ・サブユニットB遺伝子の順で配置した断片を作製し、さらにその断片に宿主ゲノムの一部との相同領域を結合してDNA断片を調製する。次いで、このDNA断片を上述した宿主に導入すれば、宿主ゲノム中に当該DNA断片が挿入されて、宿主を形質転換することができる。形質転換法としては、宿主となる枯草菌に応じて適切な、且つ一般的な方法を採用することができる。得られた形質転換体は、形質転換前の宿主と比べてジピコリン酸シンターゼ遺伝子を多数保有しているため、該遺伝子の発現量が増加する。

0053

本発明においてジピコリン酸シンターゼ遺伝子の発現強化に使用され得る制御領域の例としては、バシラス属細菌由来α−アミラーゼ遺伝子の制御領域、プロテアーゼ遺伝子の制御領域、リボソームタンパク質をコードする遺伝子(rplS遺伝子等)の制御領域、aprE遺伝子の制御領域、又はspoVG遺伝子の制御領域;Bacillus sp.KSM−S237株のセルラーゼ遺伝子の制御領域;Staphylococcus aureus由来のカナマイシン耐性遺伝子の制御領域、又はクロラムフェニコール耐性遺伝子の制御領域等(いずれも、特開2009−089708号公報を参照)が例示されるが、特に限定されない。目的遺伝子の野生型の制御領域に比較して、目的遺伝子の発現を強化することができる制御領域が好ましい。

0054

(1−3.alsS遺伝子又はalsD遺伝子の欠失又は不活性化、及びackA遺伝子、又はpta遺伝子の欠失又は不活性化)
本発明の枯草菌変異株においては、alsS遺伝子及びalsD遺伝子からなる群より選択される少なくとも1つの遺伝子が欠失又は不活性化されている。好ましい実施形態において、本発明の枯草菌変異株においては、alsS遺伝子及びalsD遺伝子が欠失又は不活性化されている。

0055

本明細書において、alsS遺伝子はアルファアセトラクテートシンターゼをコードする遺伝子であり、alsD遺伝子はアルファ−アセトラクテートデヒドロゲナーゼをコードする遺伝子である。アルファ−アセトラクテートシンターゼ(AlsS)及びアルファ−アセトラクテートデヒドロゲナーゼ(AlsD)は、共にアセトイン合成に係る遺伝子であり、下記式(2)で示されるアセトインの合成反応を担っている。

0056

0057

枯草菌において、alsS遺伝子とalsD遺伝子は、alsSD遺伝子群として1つのオペロンを形成している。本発明の枯草菌変異株において欠失又は不活性化され得る遺伝子のBSORF DBにおける登録番号及びコードするタンパク質を以下の表2に示す。当業者は、当該BSORF DBの情報に基づいて、親株における上記遺伝子を同定することができる。

0058

0059

本発明の枯草菌変異株においては、alsS遺伝子及びalsD遺伝子からなる群より選択される少なくとも1つの遺伝子が欠失又は不活性化に加えて、更にackA遺伝子及びpta遺伝子から選択される少なくとも1つの遺伝子が欠失又は不活性化されている。好ましい実施形態において、本発明の枯草菌変異株においては、ackA遺伝子及びpta遺伝子が欠失又は不活性化されている。
本明細書において、ackA遺伝子は酢酸キナーゼをコードする遺伝子であり、pta遺伝子はリン酸アセチルトランスフェラーゼをコードする遺伝子である(表3)。
酢酸キナーゼ(AckA)及びリン酸アセチルトランスフェラーゼ(Pta)は、いずれも酢酸合成に関与している酵素であり、AckAは、ADPアセチルリン酸から、ATPと酢酸を生成する反応、Ptaは、アセチルCoAリン酸からCoAとアセチルリン酸を生成する反応を担っている。

0060

0061

遺伝子を欠失又は不活性化させる手段としては、該遺伝子のヌクレオチド配列上の1つ以上のヌクレオチドに対する突然変異導入、又は該ヌクレオチド配列に対する別のヌクレオチド配列の置換若しくは挿入、あるいは該遺伝子の配列の一部若しくは全部の削除などが挙げられる。遺伝子の転写を阻害する変異を導入する手段としては、該遺伝子のプロモーター領域に対する突然変異導入や、別のヌクレオチド配列での置換若しくは挿入による、当該プロモーターの不活性化が挙げられる。上記突然変異導入や、ヌクレオチド配列の置換若しくは挿入のための具体的な手法としては、紫外線照射部位特異的変異導入、及び上記(1−1.ゲノム領域欠失枯草菌変異株)にて説明したSOE−PCR法や相同組換え法、などを挙げることができる。欠失又は不活性化させる遺伝子の枯草菌ゲノム上での位置やヌクレオチド配列は、上述したBSORF DBにて確認することができる。

0062

(2.枯草菌変異株を用いたDPA生産)
本発明のアセトイン合成遺伝子と酢酸合成に関与する遺伝子を共に欠失又は不活性化した枯草菌変異株は、後記実施例に示すように、極めて高いDPA生産能を有している。すなわち、アセトイン合成遺伝子と酢酸合成に関与する遺伝子をそれぞれ単独で欠失又は不活性化した枯草菌変異株は、何れもDPA生産能が向上するが、アセトイン合成遺伝子と酢酸合成に関与する遺伝子を同時に欠失又は不活性化した枯草菌変異株においては、そのDPA生産能は、相加効果を遥かに超えて相乗的に向上する(実施例2参照)。
したがって、上述した枯草菌変異株を培養することによって当該菌体外に効率よくDPAを生産することができ、本発明の別の態様は、上述した枯草菌変異株を用いるDPA又はその塩の製造方法に係るものである。

0063

本発明のDPA又はその塩の製造方法においては、先ず、上記本発明の枯草菌変異株を培養する。培養する方法に特に制限はなく、通常の微生物の培養方法を用いることができる。すなわち、使用する培地は、炭素源窒素源無機イオン及び必要に応じその他の有機成分を含む通常の培地である。炭素源としては、グルコースラクトースガラクトースフラクトースでんぷん及びセルロース加水分解物糖蜜等の糖類、グリセロールエタノールソルビトール等のアルコール類フマル酸クエン酸コハク酸等の有機酸を用いることができる。窒素源として硫酸アンモニウム塩化アンモニウムリン酸アンモニウム等の無機アンモニウム塩大豆加水分解物等の有機窒素アンモニアガスアンモニア水尿素グルタミン酸、リジン、グリシンアラニンメチオニンアスパラギン酸アルギニン等を用いることができる。有機微量栄養源として、ビタミン類、アミノ酸等の要求物質、又は、必要に応じて酵母エキスコーンスティープリカー等を含有させることが望ましい。これらの他に、必要に応じて、リン酸カリウム硫酸マグネシウム塩化カルシウム塩化ナトリウム銅イオン鉄イオンマンガンイオン等を添加することが望ましい。場合によっては、消泡剤等も添加される。

0064

培地のpHは、枯草菌が生育し得る範囲、好ましくは6.0〜8.0に調節すればよく、pHの調整は、無機又は有機の酸、アルカリ溶液、尿素、炭酸カルシウムアンモニア等を用いて行えばよい。培養は、15〜42℃、好ましくは28〜37℃で、6〜96時間、好ましくは2〜4日間行い、必要により通気攪拌を加えてもよい。

0065

以上のように、本発明の枯草菌変異株を培養することによって、培養上清中にDPAが生産される。あるいは、上記のように培養した微生物を、アスパラギン酸及び/又はピルビン酸を含む水溶液中に懸濁させることで、反応上清液中にDPAを産生させることも可能である。このとき、エネルギー源として上記培地に添加されるような物質を共存させることで、さらに効率よくDPAを産生させることが可能である。

0066

次いで、生産されたDPAを、培養物中から回収する。DPAの回収は、公知の方法に従って行うことができる。例えば、上記培養上清又は反応上清液からのDPAの単離は、公知の方法、例えばイオン交換樹脂による吸脱着、晶析による固液分離膜処理による不純物の除去等、又はそれらを組み合わせることで実施することができる。この方法により、容易にジピコリン酸の結晶又は沈殿を得ることができる。

0067

上記イオン交換樹脂処理などによって得られたDPAを含有する溶液に、目的に応じた量のアルカリを添加することで、DPAの塩を得ることができる。具体的な例としては、NaOHを添加することにより、ジピコリン酸ナトリウム塩を得ることができる。

0068

本発明の例示的実施形態として、さらに以下の組成物及び製造方法を本明細書に開示する。但し、本発明はこれらの実施形態に限定されない。

0069

<1>枯草菌変異株であって、
prophage6領域、prophage1領域、prophage4領域、PBSX領域、prophage5領域、prophage3領域、spb領域、pks領域、skin領域、pps領域、prophage2領域、ydcL−ydeK−ydhU領域、yisB−yitD領域、yunA−yurT領域、cgeE−ypmQ領域、yeeK−yesX領域、pdp−rocR領域、ycxB−sipU領域、SKIN−Pro7領域、sbo−ywhH領域、yybP−yyaJ領域及びyncM−fosB領域からなる群より選択される1以上の領域が欠失したゲノムを有し、
枯草菌ジピコリン酸シンターゼ遺伝子又はこれに相当する遺伝子の発現が強化されており、且つ、
alsS遺伝子及びalsD遺伝子からなる群より選択される少なくとも1つの遺伝子が欠失又は不活性化され、且つackA遺伝子及びpta遺伝子からなる群より選択される少なくとも1つの遺伝子が欠失又は不活性化されている、枯草菌変異株。

0070

<2>枯草菌変異株の製造方法であって、
prophage6領域、prophage1領域、prophage4領域、PBSX領域、prophage5領域、prophage3領域、spb領域、pks領域、skin領域、pps領域、prophage2領域、ydcL−ydeK−ydhU領域、yisB−yitD領域、yunA−yurT領域、cgeE−ypmQ領域、yeeK−yesX領域、pdp−rocR領域、ycxB−sipU領域、SKIN−Pro7領域、sbo−ywhH領域、yybP−yyaJ領域及びyncM−fosB領域からなる群より選択される1以上の領域が欠失したゲノムを有する枯草菌変異株において
枯草菌ジピコリン酸シンターゼ遺伝子又はこれに相当する遺伝子の発現を強化し、且つ、
alsS遺伝子及びalsD遺伝子からなる群より選択される少なくとも1つの遺伝子を欠失又は不活性化し、且つackA遺伝子及びpta遺伝子からなる群より選択される少なくとも1つの遺伝子が欠失又は不活性化する、ことを含む、方法。

0071

<3>上記<1>〜<2>のいずれか1において、好ましくは、上記枯草菌変異株は、prophage6領域、prophage1領域、prophage4領域、PBSX領域、prophage5領域、prophage3領域、spb領域、pks領域、skin領域、pps領域、prophage2領域、ydcL−ydeK−ydhU領域、yisB−yitD領域、yunA−yurT領域、cgeE−ypmQ領域、yeeK−yesX領域、pdp−rocR領域、ycxB−sipU領域、SKIN−Pro7領域、sbo−ywhH領域、yybP−yyaJ領域及びyncM−fosB領域が欠失したゲノムを有する。

0072

<4>上記<1>〜<3>のいずれか1において、好ましくは、上記各領域は、表1に記載の各オリゴヌクレオチドセットにより挟まれる領域である。

0073

<5>上記<1>〜<4>のいずれか1において、好ましくは、上記枯草菌ジピコリン酸シンターゼ遺伝子又はこれに相当する遺伝子は、下記(i)及び(ii)に記載の遺伝子からなる群より選択される少なくとも1つである:
(i)下記(a)〜(f)からなる群より選択される少なくとも1つの枯草菌ジピコリン酸シンターゼ・サブユニットA遺伝子又はこれに相当する遺伝子:
(a)配列番号1に示すヌクレオチド配列からなるポリヌクレオチド;
(b)配列番号1に示すヌクレオチド配列と80%以上、より好ましくは90%以上、より好ましくは95%以上、より好ましくは96%以上、より好ましくは97%以上、より好ましくは98%以上、より好ましくは99%以上の同一性を有するヌクレオチド配列からなり、且つ(ii)に記載の遺伝子がコードするタンパク質の存在下でジピコリン酸シンターゼ活性を発揮するタンパク質をコードするポリヌクレオチド;
(c)配列番号1に示すヌクレオチド配列からなるポリヌクレオチドの相補鎖に対してストリンジェントな条件下でハイブリダイズし、且つ(ii)に記載の遺伝子がコードするタンパク質の存在下でジピコリン酸シンターゼ活性を発揮するタンパク質をコードするポリヌクレオチド;
(d)配列番号2に示すアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(e)配列番号2に示すアミノ酸配列において1又は数個のアミノ酸が欠失、置換、付加又は挿入されたアミノ酸配列からなり、且つ(ii)に記載の遺伝子がコードするタンパク質の存在下でジピコリン酸シンターゼ活性を発揮するタンパク質をコードするポリヌクレオチドであって、数個とは59個、好ましくは44個、より好ましくは29個、より好ましくは14個、より好ましくは5個、より好ましくは2個である;
(f)配列番号2に示すアミノ酸配列と80%以上、より好ましくは90%以上、より好ましくは95%以上、より好ましくは96%以上、より好ましくは97%以上、より好ましくは98%以上、より好ましくは99%以上の同一性を有するアミノ酸配列からなり、且つ(ii)に記載の遺伝子がコードするタンパク質の存在下でジピコリン酸シンターゼ活性を発揮するタンパク質をコードするポリヌクレオチド;
(ii)下記(j)〜(o)からなる群より選択される少なくとも1つの枯草菌ジピコリン酸シンターゼ・サブユニットB遺伝子又はこれに相当する遺伝子:
(j)配列番号3に示すヌクレオチド配列からなるポリヌクレオチド;
(k)配列番号3に示すヌクレオチド配列と80%以上、より好ましくは90%以上、より好ましくは95%以上、より好ましくは96%以上、より好ましくは97%以上、より好ましくは98%以上、より好ましくは99%以上の同一性を有するヌクレオチド配列からなり、且つ(i)に記載の遺伝子がコードするタンパク質の存在下でジピコリン酸シンターゼ活性を発揮するタンパク質をコードするポリヌクレオチド;
(l)配列番号3に示すヌクレオチド配列からなるポリヌクレオチドの相補鎖に対してストリンジェントな条件下でハイブリダイズし、且つ(i)に記載の遺伝子がコードするタンパク質の存在下でジピコリン酸シンターゼ活性を発揮するタンパク質をコードするポリヌクレオチド;
(m)配列番号4に示すアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(n)配列番号4に示すアミノ酸配列において1又は数個のアミノ酸が欠失、置換、付加又は挿入されたアミノ酸配列からなり、且つ(i)に記載の遺伝子がコードするタンパク質の存在下でジピコリン酸シンターゼ活性を発揮するタンパク質をコードするポリヌクレオチドであって、数個とは40個、好ましくは30個、より好ましくは20個、より好ましくは10個、より好ましくは4個、より好ましくは2個である;
(o)配列番号4に示すアミノ酸配列と80%以上、より好ましくは90%以上、より好ましくは95%以上、より好ましくは96%以上、より好ましくは97%以上、より好ましくは98%以上、より好ましくは99%以上の同一性を有するアミノ酸配列からなり、且つ(i)に記載の遺伝子がコードするタンパク質の存在下でジピコリン酸シンターゼ活性を発揮するタンパク質をコードするポリヌクレオチド。

0074

<6>上記<5>において、好ましくは、上記枯草菌ジピコリン酸シンターゼ遺伝子又はこれに相当する遺伝子は、以下の遺伝子である:
上記(i)記載の遺伝子からなる群より選択される少なくとも1つと、上記(ii)記載の遺伝子からなる群より選択される少なくとも1つとの組み合わせ;
上記(i)(a)の遺伝子と、上記(ii)(j)〜(o)の遺伝子からなる群より選択される少なくとも1つとの組み合わせ;
上記(i)(a)〜(f)の遺伝子からなる群より選択される少なくとも1つと、上記(ii)(j)の遺伝子との組み合わせ;又は
上記(i)(a)の遺伝子と上記(ii)(j)の遺伝子との組み合わせ。

0075

<7>上記<1>〜<6>のいずれか1において、上記枯草菌ジピコリン酸シンターゼ遺伝子又はこれに相当する遺伝子は:
好ましくは、枯草菌のspoVFA遺伝子及びspoVFB遺伝子、Bacillus licheniformisのspoVFA遺伝子及びspoVFB遺伝子、Bacillus clausiiのspoVFA遺伝子及びspoVFB遺伝子、Clostridium stercorariumのspoVFA遺伝子及びspoVFB遺伝子、ならびにBacillus amyloliquefaciensのspoVFA遺伝子及びspoVFB遺伝子からなる群より選択される少なくとも1つである;
より好ましくは、枯草菌spoVFA遺伝子及び枯草菌spoVFB遺伝子からなる群より選択される少なくとも1つである。

0076

<8>上記<7>において、上記枯草菌ジピコリン酸シンターゼ遺伝子又はこれに相当する遺伝子は:
好ましくは、枯草菌のspoVFA遺伝子、Bacillus licheniformisのspoVFA遺伝子、Bacillus clausiiのspoVFA遺伝子、Clostridium stercorariumのspoVFA遺伝子、及びBacillus amyloliquefaciensのspoVFA遺伝子からなる群より選択される少なくとも1つと、枯草菌のspoVFB遺伝子、Bacillus licheniformisのspoVFB遺伝子、Bacillus clausiiのspoVFB遺伝子、Clostridium stercorariumのspoVFB遺伝子、及びBacillus amyloliquefaciensのspoVFB遺伝子からなる群より選択される少なくとも1つとの組み合わせである;
より好ましくは、枯草菌spoVFA遺伝子及び枯草菌spoVFB遺伝子との組み合わせである。

0077

<9>上記<1>〜<8>のいずれか1において、好ましくは、上記alsS遺伝子とalsD遺伝子とが欠失又は不活性化され、且つ上記ackA遺伝子及びpta遺伝子が欠失又は不活性化されている。

0078

<10>上記<1>〜<9>のいずれか1において、好ましくは、上記alsS遺伝子は配列番号89に示すヌクレオチド配列からなり、alsD遺伝子は配列番号90に示すヌクレオチド配列からなり、ackA遺伝子は配列番号91に示すヌクレオチド配列からなり、pta遺伝子は配列番号92に示すヌクレオチド配列からなる。

0079

<11>上記<1>〜<10>のいずれか1において、好ましくは、上記枯草菌ジピコリン酸シンターゼ遺伝子又はこれに相当する遺伝子の発現の強化が、以下からなる群より選択される制御領域の制御下に配置された当該遺伝子の、ゲノム中又はプラスミド中への導入である:
バシラス属細菌由来のα−アミラーゼ遺伝子の制御領域、プロテアーゼ遺伝子の制御領域、リボソームタンパク質をコードする遺伝子(rplS遺伝子等)の制御領域、aprE遺伝子の制御領域、又はspoVG遺伝子の制御領域;Bacillus sp.KSM−S237株のセルラーゼ遺伝子の制御領域;及び、Staphylococcus aureus由来のカナマイシン耐性遺伝子の制御領域又はクロラムフェニコール耐性遺伝子の制御領域。

0080

<12>上記<1>及び<3>〜<11>のいずれか1に記載の枯草菌変異株を用いるジピコリン酸又はその塩の製造方法。

0081

<13>上記<2>〜<11>のいずれか1に記載の方法で製造された枯草菌変異株を用いるジピコリン酸又はその塩の製造方法。

0082

<14>上記枯草菌変異株を培養することと、培養物中からジピコリン酸を回収することとを含む、<12>又は<13>記載の方法。

0083

以下、実施例を用いて本発明をより詳細に説明するが、本発明の技術的範囲は以下の実施例に限定されるものではない。

0084

(実施例1)菌株の構築
(1−1)トリプトファン要求性解除株の作製
枯草菌野生株ゲノムの大領域が欠失した枯草菌変異株(MGB874株;特開2007−130013号公報)におけるトリプトファン要求性を解除した。枯草菌変異株MGB874株の元株である枯草菌168株は、遺伝子型としてtrpC2を所持している。つまり168株はトリプトファン合成に関与するインドール−3−グリセロールリン酸シンターゼをコードするtrpC遺伝子変異のためトリプトファン合成要求性である。また、枯草菌ATCC6051T株はトリプトファン非要求性であることが知られている(Albertini,A.M.&Galizzi,A.Microbiology,1999,145(Pt12):3319−3320)。枯草菌168株とATCC6051T株のtrpC遺伝子を比較したところ、328番目から330番目のヌクレオチドATTが枯草菌168株では存在しないことがわかった。そこで、ATCC6051T株ゲノムを鋳型とし、表1記載のプライマーtrpC_F1(配列番号13)及びtrpC_R1(配列番号14)を用いてPCRを行い、PCR産物を構築した。このPCR産物を用いて枯草菌変異株MGB874株をコンピテント法で形質転換し、トリプトファン非添加のSMA寒天培地(0.2%硫酸アンモニウム、1.4%リン酸水素カリウム、0.6%リン酸2水素カリウム、0.1%クエン酸3ナトリウム-2水和物、0.5%グルコース、0.035%硫酸マグネシウム7水和物、1.5%寒天)に生育したコロニーを形質転換体として分離した。こうしてトリプトファン非要求性MGB874T株を得た。

0085

(1−2)ジピコリン酸シンターゼ遺伝子が発現強化された枯草菌変異株(MGB874T_PspoVG−spoVFAB株)の構築
上記(1−1)で構築したMGB874T株を宿主として、ジピコリン酸シンターゼ遺伝子が発現強化された枯草菌変異株(MGB874T_PspoVG−spoVFAB株)の構築を行った。枯草菌168株から抽出したゲノムDNAを鋳型とし、表1記載のプライマーspoVFA−F1(配列番号15)及びspoVFA−R1(配列番号16)を用いて、断片(A)をPCRにより増幅した。この断片(A)はspoVFA遺伝子(配列番号1)の開始コドンの上流に隣接する領域である。また、同ゲノムDNAを鋳型とし、表1記載のプライマーspoVFA−F2(配列番号17)及びspoVFA−R2(配列番号18)を用いて、断片(B)をPCRにより増幅した。この断片(B)は、spoVFA遺伝子の開始コドンから下流の領域である。さらに、同ゲノムDNAを鋳型とし、表1記載のプライマーspoVGpro−F(配列番号19)及びspoVGpro−R(配列番号20)を用いて、spoVG制御領域配列を含む断片(C)をPCRにより増幅した。さらに、プラスミドpDLT3(Morimoto,T.et al.,Microbiology,2002,Pt11:3539−3552)を鋳型とし、表1記載のプライマーCm−F(配列番号21)及びCm−R(配列番号22)を用いて、クロラムフェニコール耐性遺伝子とその制御領域を含む断片(D)をPCRにより増幅した。
次に、得られた断片(A)、断片(D)、断片(C)及び断片(B)をこの順となる様に表1記載のプライマーspoVFA−F1(配列番号15)及びspoVFA−R2(配列番号18)を用いてSOE−PCR法によって結合させ、約2.2kbのDNA断片を得た。得られたDNA断片を用いて、コンピテント法(J.Bacteriol.,1960,81:741−746)により枯草菌MGB874T株の形質転換を行い、クロラムフェニコールを含むLB寒天培地上に生育したコロニーを形質転換体として分離した(以下、分離した形質転換体をMGB874T_PspoVG−spoVFAB株と称する)。MGB874T_PspoVG−spoVFAB株は、ゲノム上に、生来のspoVFAB遺伝子と、導入したPspoVG制御下のspoVFAB遺伝子の両方を有する、spoVFAB遺伝子の発現が強化された枯草菌変異株である。
PCR及びそれに続くサンガー法(Proc.Natl.Acad.Sci.USA,1982,74:5463−5467)によるシークエンシングによって、構築したMGB874T_PspoVG−spoVFAB株のゲノム上のspoVFA制御領域とspoVFA遺伝子の間に、クロラムフェニコール耐性遺伝子及びspoVG遺伝子制御領域が挿入されていることを確認した。本実施例で得られた枯草菌変異株へのジピコリン酸シンターゼ遺伝子の導入手順及び導入位置を図3に示す。

0086

(1−3)alsS遺伝子及びalsD遺伝子が欠失された枯草菌変異株(MGB874T_PspoVG−spoVFAB_ΔalsSD株)の構築
上記(1−2)で構築したMGB874T_PspoVG−spoVFAB株を宿主として、alsSD遺伝子群が欠失された枯草菌変異株(MGB874T_PspoVG−spoVFAB_ΔalsSD株)の構築を行った。本変異株の作製は、IPTG制御領域と遊離mRNA切断リボヌクレアーゼであるmazF遺伝子を融合したカセットを使用するマーカーフリーの欠失法にて構築した(Morimoto,T. et al.,In Strain Engineering,pp345−358.Springer)。
始めに、枯草菌変異株MGB874T株から抽出したゲノムDNAを鋳型とし、表1記載のプライマーalsSD−DF1(配列番号23)及びalsSD−DR1(配列番号24)を用いて、alsSD遺伝子群の開始コドン上流に隣接する領域である断片(A)をPCRにより増幅した。また、同ゲノムDNAを鋳型とし、表1記載のプライマーalsSD−DF2(配列番号25)及びalsSD−DR2(配列番号26)を用いて、alsD遺伝子の停止コドン下流の領域である断片(B)をPCRにより増幅した。さらに、同ゲノムDNAを鋳型とし、表1記載のプライマーalsSD−IF(配列番号27)及びalsSD−IR(配列番号28)を用いて、alsSD遺伝子群ORF内と相同領域である断片(C)をPCRにより増幅した。さらに、枯草菌変異株TOM310(Morimoto,T. et al.,In Strain Engineering,pp345−358.Springer)を鋳型とし、表1記載のプライマーpAPNC−F(配列番号29)及びchpA−R(配列番号30)を用いて、スペクチノマイシン耐性遺伝子を含むmazFカセット断片(D) をPCRにより増幅した。
次に、得られた断片(A)、断片(B)、断片(D)及び断片(C)をこの順となる様に表1記載のプライマーalsSD−DF1(配列番号23)及びalsSD−IR(配列番号28)を用いてSOE−PCR法によって結合させ、最終DNA断片を得た。得られたDNA断片を用いて、コンピテント法(J.Bacteriol.,1960,81:741−746)により枯草菌MGB874T_PspoVG−spoVFAB株の形質転換を行い、IPTGを含まずスペクチノマイシンを含むLB寒天培地上に生育したコロニーを形質転換体として分離した。
最後に、mazF遺伝子カセットを除くため、IPTGを含むLB寒天培地上で培養し、生育したコロニーを選択した。得られた変異株は、断片(B)において細胞内相同組換えによりmazFカセットが除去された変異株となる(以下、MGB874T_PspoVG−spoVFAB_ΔalsSD株と称する)。MGB874T_PspoVG−spoVFAB_ΔalsSD株は、ゲノム上のalsS遺伝子開始コドンからalsD遺伝子停止コドン領域が欠失し、さらに薬剤選択マーカーが除去された変異を有する枯草菌変異株である。本実施例でのmazF遺伝子カセットを使用するマーカーフリーの欠失法にて構築したalsSD遺伝子群欠失方法図4に示した。
得られた形質転換体MGB874T_PspoVG−spoVFAB_ΔalsSD株のゲノムを用いたPCR及びそれに続くサンガー法(Proc.Natl.Acad.Sci.USA,1982,74:5463)によるシークエンシングによって、ゲノム上のalsSD遺伝子群の欠失が生じていることを確認した。

0087

(1−4)ackA遺伝子及びpta遺伝子が欠失された枯草菌変異株(MGB874T_PspoVG−spoVFAB_ΔackAΔpta株)の構築
上記(1−2)で構築したMGB874T_PspoVG−spoVFAB株を宿主として、上記(1−3)の手法と同様の手法を用いて、ackA遺伝子とpta遺伝子が両方欠失された変異株(MGB874T_PspoVG−spoVFAB_ΔackAΔpta株)の構築を行った。
まず、ackA遺伝子の欠失を行った。ackA遺伝子欠失の際、断片(A)増幅には表1記載のプライマーackA−DF1(配列番号31)及びackA−DR1(配列番号32)を、断片(B)増幅には表4記載のプライマーackA−DF2(配列番号33)及びackA−DR2(配列番号34)を、断片(C)増幅には表4記載のプライマーackA−IF(配列番号35)及びackA−IR(配列番号36)を、それぞれ使用した。
続いて、pta遺伝子の欠失を行った。pta遺伝子欠失の際、断片(A)増幅には表1記載のプライマーpta−DF1(配列番号37)及びpta−DR1(配列番号38)を、断片(B)増幅には表4記載のプライマーpta−DF2(配列番号39)及びpta−DR2(配列番号40)を、断片(C)増幅には表4記載のプライマーpta−IF(配列番号41)及びpta−IR(配列番号42)を、それぞれ使用した。
最終的にMGB874T_PspoVG−spoVFAB_ΔackAΔpta株を構築した。得られた形質転換体MGB874T_PspoVG−spoVFAB_ΔackAΔpta株のゲノムを用いたPCR及びそれに続くサンガー法によるシークエンシングによって、ゲノム上の変異導入を行った各遺伝子について欠失が生じていることを確認した。

0088

(1−5)alsS遺伝子及びalsD遺伝子、ackA遺伝子及びpta遺伝子が欠失された枯草菌変異株(MGB874T_PspoVG−spoVFAB_ΔalsSDΔackAΔpta株)の構築
上記(1−3)で構築したMGB874T_PspoVG−spoVFAB_ΔalsSD株を宿主として、上記(1−4)の手法と同様の手法を用いてMGB874T_PspoVG−spoVFAB_ΔalsSDΔackAΔpta株を構築した。得られた形質転換体MGB874T_PspoVG−spoVFAB_ΔalsSDΔackAΔpta株のゲノムを用いたPCR及びそれに続くサンガー法によるシークエンシングによって、ゲノム上の変異導入を行った各遺伝子について欠失が生じていることを確認した。

0089

0090

(実施例2)DPA生産性評価
実施例1で構築したMGB874T_PspoVG−spoVFAB株と、MGB874T_PspoVG−spoVFAB_ΔalsSD株、MGB874T_PspoVG−spoVFAB_ΔackAΔpta株及びMGB874T_PspoVG−spoVFAB_ΔalsSDΔackAΔpta株を、5mLの合成培地(5.0質量%グルコース、0.6質量%塩化アンモニウム、0.15質量%リン酸水素2カリウム、0.035質量%硫酸マグネシウム7水和物、0.005質量%硫酸マンガン5水和物、50mM MOPS(モノホリノプロパンスルホン酸緩衝剤(pH7.0)、その他微量金属)で30℃において一晩振盪培養を行い、得られた培養液を、合成培地(5.0質量%グルコース、0.6質量%塩化アンモニウム、0.15質量%リン酸水素2カリウム、0.035質量%硫酸マグネシウム7水和物、0.005質量%硫酸マンガン5水和物、50mM MOPS(モノホリノプロパンスルホン酸)緩衝剤(pH7.0)、その他微量金属、4.0質量%炭酸カルシウム)30mLに接種し、37℃、200rpmで2日間、振盪培養を行った。
培養終了後、下記に示す分析条件にてDPA生産量を測定し、MGB874T_PspoVG−spoVFAB株の生産量を100%とした場合の相対値を求めた。
アセトイン合成遺伝子であるalsS遺伝子及びalsD遺伝子を欠失した枯草菌変異株MGB874T_PspoVG−spoVFAB_ΔalsSD株、及び酢酸合成に関与する遺伝子であるackA遺伝子及びpta遺伝子を欠失した枯草菌変異株MGB874T_PspoVG−spoVFAB_ΔackAΔpta株は、アセトイン合成遺伝子及び酢酸合成に関与する遺伝子欠失前の株であるMGB874T_PspoVG−spoVFAB株と比較して、DPA生産量がそれぞれ142%と110%まで増加したが、アセトイン合成遺伝子と酢酸合成に関与する遺伝子を同時に欠失した枯草菌変異株MGB874T_PspoVG−spoVFAB_ΔalsSDΔackAΔpta株では、DPA生産量が更に184%まで増加し、高い相乗効果が確認された(表5)。

0091

実施例

0092

DPAの定量
培養終了後の培養液試料を、室温にて14,800rpmで30分間の遠心分離日立工機、himacCF15RX)に供し、得られた遠心分離後の試料上清中に含まれるDPAについて、HPLC法にて定量を行った。HPLC装置は、送液ポンプ島津、LC−9A)、オートサンプラー(日立計測機器、AS−2000)、カラムオーブン(島津、CTO−6A)、UV検出計(島津、SPD−10A)、脱ガス装置(GLサイエンス、DG660B)及びクロマトデータ解析装置(日立計測機器、D−2500)を接続したものを用いた。分析カラムは、High Performance Carbohydrate Column 60(Å)4μm 4.6×250mm HPLC Column(Aminopropylmethylsilyl bonded amorphous silica)(Waters)を使用した。溶離液としては、20mMEDTAを含む水を濃リン酸でpH3.4に合わせた水溶液とアセトニトリル溶液とを1:1に混合した溶液を用いた。測定条件は、検出波長を270nmとし、流速を1mL/分とした。HPLC分析に供するサンプルは、不溶物を除くため、MULTISCREEN MNHV45(MILLIPORE製、0.45μmデュポア膜)にてフィルターろ過により前処理した。濃度検定は、2,6−Pyridinedicarboxlic acid:DPA,99%(SIGMA−ALDRICH)を用いて作成した検量線に基づいて行った。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ