図面 (/)

技術 熱電変換モジュールの作製方法

出願人 国立研究開発法人産業技術総合研究所
発明者 村田正行山本淳
出願日 2015年10月15日 (5年2ヶ月経過) 出願番号 2015-203912
公開日 2017年4月20日 (3年8ヶ月経過) 公開番号 2017-076720
状態 特許登録済
技術分野 熱電素子
主要キーワード キャリア素子 材料表 格子点間距離 直列配列 各熱電変換素子 熱電変換素子モジュール 行光源 各電極パターン
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2017年4月20日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (5)

課題

N、P型を交互に並べる熱電変換モジュール発電効率がよい反面、モジュールの作製工程が複雑になる。同一型の熱電変換素子からなる熱電変換モジュールは作製が容易だが集積が問題となる。

解決手段

絶縁基板電極パターン貼付し、側面を絶縁体に覆われた同一型の熱電変換素子を電極パターン上に配列し、第1の斜め方向から金属蒸着し、次に対向する第2の斜め方向から金属蒸着して各熱電変換素子直列に接続した同一型の熱電変換素子からなる熱電変換モジュールを得た。

概要

背景

熱電変換とは、熱電材料中の温度差電圧の関係を利用して、熱エネルギー電気エネルギーを相互に直接変換する技術を言い、素子の両端に温度差をつけることで熱起電力が発生するゼーベック効果電流印加によって素子に温度差が生じるペルチェ効果原理を利用している。

熱電変換を発電素子冷却素子として利用する場合、極力無駄な熱流高温部から低温部に流れないような構造を取る必要がある為、電圧が反転しているN型P型を対にしてΠ型素子とする事で、N型とP型のどちらに流れる熱量も発電や冷却に寄与する事ができる。
さらに、このΠ型素子を複数個直列配列することで高い起電力や大きな温度差を得ることができるようになる。
このように、熱電変換モジュールはこのN、P型を交互に並べる構造である為、モジュールの作製工程が複雑になる(特許文献1)。

同一型の薄膜熱電変換素子電気的に直列接続するために金属蒸着により金属電極および接続部を積層して隣り合う熱電変換素子導通させる方法が開示されているが、熱電素子の側面が電極と導通しているため、素子に十分な温度差と電位差が得られない(特許文献2)。

また、第1電極と接続部を一体化させた部材を第2電極に備えた穴部受け入れて隣り合う同一型の熱電変換素子を電気的に直列接続する熱電変換モジュールが提案されているが、第1電極板が直接低温側まで接続されていることから、無駄な熱流によりモジュールの性能が低下する(特許文献3)。
また、素子の側面がガラスに覆われた状態で熱電変換素子を作り、高密度配列と電極接続信頼性を高くし、さらに材料表面が大気中に露出されないため素子表面の酸化による劣化を防ぐ熱電変換モジュールが提案されている(特許文献4)。

一般的なモジュールは、N,P型を電気的に導通させる電極として金属板を利用し、絶縁基板でそれらの素子を挟み込む構造をしている。
その結果、板状の金属をバルクの熱電材料に対して良好な熱,電気的接触を得るためには、数ミリメートル程度の大きさが必要であることから素子を高密度化することは難しく、モジュールの面積が小さい場合には高い起電力を得ることができない。
さらに、放熱側に取り付けられている絶縁基板のために放熱性が低く、実際にモジュールを使用する際には、さらに放熱性を高めるためのヒートシンク熱交換器が取り付けられるために、システムは複雑になる。

概要

N、P型を交互に並べる熱電変換モジュールは発電効率がよい反面、モジュールの作製工程が複雑になる。同一型の熱電変換素子からなる熱電変換モジュールは作製が容易だが集積が問題となる。絶縁基板に電極パターン貼付し、側面を絶縁体に覆われた同一型の熱電変換素子を電極パターン上に配列し、第1の斜め方向から金属蒸着し、次に対向する第2の斜め方向から金属蒸着して各熱電変換素子直列に接続した同一型の熱電変換素子からなる熱電変換モジュールを得た。

目的

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

その側面が絶縁体に覆われ上面と底面が上部電極と下部電極を構成する柱状の同一導電型半導体からなる熱電変換素子絶縁基板にその底面が接するように格子状に配列された熱電変換素子モジュール直列接続作製方法であって、主部と足からなる電極パターンを前記絶縁基板の所定の位置に配置し、前記電極パターンの主部に前記熱電変換素子の下部電極をその底面で接合し、前記絶縁基板の斜め上方から対向して2回金属を蒸着し、一の熱電変換素子の下部電極の当該電極パターンの足と次の熱電変換素子の上部電極を、当該足と前記次の熱電変換素子の側面とその間の絶縁基板を覆う前記蒸着した金属で接続し、前記全ての熱電変換素子を直列に接続したことを特徴とする熱電変換素子モジュールの直列接続作製方法。

請求項2

前記絶縁基板に配置された前記電極パターン電極パターンの所定の位置は、前記斜め上方から見た場合に、手前の前記熱電変換素子の側面と奥の前記熱電変換素子の側面が所定の厚さで重なり合っていることを特徴とする請求項1に記載の熱電変換素子モジュールの直列接続作製方法。

請求項3

前記金属の蒸着をPVD法で行ったことを特徴とする請求項2に記載の熱電変換素子モジュールの直列接続作製方法。

請求項4

前記PVD法は真空蒸着法であることを特徴とする請求項3に記載の熱電変換素子モジュールの直列接続作製方法。

請求項5

前記同一導電型はP型またはN型であることを特徴とする請求項1乃至請求項3のいずれか1項に記載の熱電変換素子モジュールの作製方法。

請求項6

その側面が絶縁体に覆われ上面と底面が上部電極と下部電極を構成する柱状の同一導電型の半導体からなる熱電変換素子を絶縁基板にその底面が接するように格子状に配列された熱電変換素子モジュールであって、主部と足からなる電極パターンが前記絶縁基板の所定の位置に配置され、前記電極パターンの主部に前記熱電変換素子の下部電極をその底面で接合され、一の熱電変換素子の下部電極の当該電極パターンの足と次の熱電変換素子の上部電極が、当該足と前記次の熱電変換素子の側面とその間の絶縁基板を覆う蒸着した金属で接続され、前記全ての熱電変換素子が直列に接続されていることを特徴とする熱電変換素子モジュール。

請求項7

前記同一導電型はP型またはN型であることを特徴とする請求項6に記載の熱電変換素子モジュール。

技術分野

0001

本発明は熱電変換素子直列に接続した熱電変換モジュール作製方法に関する。

背景技術

0002

熱電変換とは、熱電材料中の温度差電圧の関係を利用して、熱エネルギー電気エネルギーを相互に直接変換する技術を言い、素子の両端に温度差をつけることで熱起電力が発生するゼーベック効果電流印加によって素子に温度差が生じるペルチェ効果原理を利用している。

0003

熱電変換を発電素子冷却素子として利用する場合、極力無駄な熱流高温部から低温部に流れないような構造を取る必要がある為、電圧が反転しているN型P型を対にしてΠ型素子とする事で、N型とP型のどちらに流れる熱量も発電や冷却に寄与する事ができる。
さらに、このΠ型素子を複数個直列配列することで高い起電力や大きな温度差を得ることができるようになる。
このように、熱電変換モジュールはこのN、P型を交互に並べる構造である為、モジュールの作製工程が複雑になる(特許文献1)。

0004

同一型の薄膜熱電変換素子電気的に直列接続するために金属蒸着により金属電極および接続部を積層して隣り合う熱電変換素子を導通させる方法が開示されているが、熱電素子の側面が電極と導通しているため、素子に十分な温度差と電位差が得られない(特許文献2)。

0005

また、第1電極と接続部を一体化させた部材を第2電極に備えた穴部受け入れて隣り合う同一型の熱電変換素子を電気的に直列接続する熱電変換モジュールが提案されているが、第1電極板が直接低温側まで接続されていることから、無駄な熱流によりモジュールの性能が低下する(特許文献3)。
また、素子の側面がガラスに覆われた状態で熱電変換素子を作り、高密度配列と電極接続信頼性を高くし、さらに材料表面が大気中に露出されないため素子表面の酸化による劣化を防ぐ熱電変換モジュールが提案されている(特許文献4)。

0006

一般的なモジュールは、N,P型を電気的に導通させる電極として金属板を利用し、絶縁基板でそれらの素子を挟み込む構造をしている。
その結果、板状の金属をバルクの熱電材料に対して良好な熱,電気的接触を得るためには、数ミリメートル程度の大きさが必要であることから素子を高密度化することは難しく、モジュールの面積が小さい場合には高い起電力を得ることができない。
さらに、放熱側に取り付けられている絶縁基板のために放熱性が低く、実際にモジュールを使用する際には、さらに放熱性を高めるためのヒートシンク熱交換器が取り付けられるために、システムは複雑になる。

先行技術

0007

特開2013−207037号公報
特開昭63−102382号公報
特開2014−179539号公報
特表2013−542578号公報

発明が解決しようとする課題

0008

同一型の熱電変換素子を用いることにより作製が容易でかつ作製工程がシンプルな作製方法が課題となる。

課題を解決するための手段

0009

上記課題を解決するために本発明は次の手段を提供できる。
(1)
その側面が絶縁体に覆われ上面と底面が上部電極と下部電極を構成する柱状の同一導電型半導体からなる熱電変換素子を絶縁基板にその底面が接するように格子状に配列された熱電変換素子モジュールの直列接続作製方法であって、
主部と足からなる電極パターンを前記絶縁基板の所定の位置に配置し、
前記電極パターンの主部に前記熱電変換素子の下部電極をその底面で接合し、
前記絶縁基板の斜め上方から対向して2回金属を蒸着し、
一の熱電変換素子の下部電極の当該電極パターンの足と次の熱電変換素子の上部電極を、当該足と前記次の熱電変換素子の側面とその間の絶縁基板を覆う前記蒸着した金属で接続し、
前記全ての熱電変換素子を直列に接続したことを特徴とする熱電変換素子モジュールの直列接続作製方法。

0010

(2)
前記絶縁基板に配置された前記電極パターンの所定の位置は、前記斜め上方から見た場合に、手前の前記熱電変換素子の側面と奥の前記熱電変換素子の側面が所定の厚さで重なり合っていることを特徴とする(1)に記載の熱電変換素子モジュールの直列接続作製方法。

0011

(3)
前記金属の蒸着をPVD法で行ったことを特徴とする(2)に記載の熱電変換素子モジュールの直列接続作製方法。

0012

(4)
前記PVD法は真空蒸着法であることを特徴とする(3)に記載の熱電変換素子モジュールの直列接続作製方法。

0013

(5)
前記同一導電型はP型またはN型であることを特徴とする(1)乃至(3)のいずれかに記載の熱電変換素子モジュールの作製方法。

0014

(6)
その側面が絶縁体に覆われ上面と底面が上部電極と下部電極を構成する柱状の同一導電型の半導体からなる熱電変換素子を絶縁基板にその底面が接するように格子状に配列された熱電変換素子モジュールであって、
主部と足からなる電極パターンが前記絶縁基板の所定の位置に配置され、
前記電極パターンの主部に前記熱電変換素子の下部電極をその底面で接合され、
一の熱電変換素子の下部電極の当該電極パターンの足と次の熱電変換素子の上部電極が、当該足と前記次の熱電変換素子の側面とその間の絶縁基板を覆う蒸着した金属で接続され、
前記全ての熱電変換素子が直列に接続されていることを特徴とする熱電変換素子モジュール。

0015

(7)
前記同一導電型はP型またはN型であることを特徴とする(6)に記載の熱電変換素子モジュール。

発明の効果

0016

本願発明には次の効果が期待できる。
(1)N型素子とP型素子を交互に並べる構造に比べ、1キャリア素子のみで直列接続するユニレグ構造(1キャリア素子と金属を利用して直列接続を得る構造)である為、材料開発や製造プロセスを簡易化できる。

0017

(2) 従来は電極として金属板を利用しているが、蒸着によりすべての素子を導通させる事ができるため、素子の小型化に伴ったモジュールの高密度化が可能。
(3) その結果,単位面積当たりの起電力を向上させる事が可能。

0018

(4) 従来のユニレグ構造に比べると、薄膜で導通させることから、無駄な熱流を最小限に抑える事が可能。

0019

(5)熱電変換素子が絶縁体に覆われているため、素子表面の酸化を防ぐことが可能。
(6)素子自身放熱フィンの構造をとるため、熱電発電に求められる放熱性が、ヒートシンク等の放熱構造を取らなくても良好。

図面の簡単な説明

0020

図1は、右図が熱電変換モジュールの平面図、左図がA−A’およびB−B’で切断した断面図である。図1(a)は絶縁基板と、取り付けられた電極パターンを表し、図1(b)は絶縁体に覆われた熱電素子を絶縁基板上に配列した様子を表し、図1(c)は第1の斜め方向から金属蒸着した様子を表し、図1(d)は第2の斜め方向から金属蒸着した様子を表す。
図2は、第1素子列の右側2個の熱電変換素子と、第2素子列の右側2個の熱電変換素子の電極パターンを抜き出した図である。
図3は、斜め方向1から金属蒸着後の第2素子列6をY方向と−Y方向から見た熱電変換素子の側面の蒸着領域を示す図である。
図4は、斜め方向2から金属蒸着後の第2素子列6をY方向と−Y方向から見た熱電変換素子の側面の蒸着領域を示す図である。

0021

図1の工程図に基づいて本発明の実施形態を説明する。
図1に、X軸方向に3または4素子、Y軸方向に4素子を配列した熱電変換モジュール12を示した。
また、各熱電変換素子11の上面は上部電極14、底面は下部電極13として構成されている。

0022

(1)図1(a)に示したように、まず絶縁基板10の上にあらかじめ実現したい直列接続に対応し熱電変換素子を接続する配線の一部となる特定の電極パターンを作製する。
図では、矢印の方向に直列接続される電極パターン9が描かれている。
図2に示した各電極パターン21,22、23,24は配線であって熱電変換素子の底面と接する主部と所定の長さと方向を有する足(または髭)を有している。

0023

(2)図1(b)に示したように、電極パターンの主部に側面を絶縁体に覆われた円柱形状の熱電変換素子11の下部電極13を、導電性接着剤ろう付けで固定する。

0024

(3)図1(c)に示したように、斜め方向1から絶縁基板10の上に金属を蒸着すると各熱電変換素子11を斜め方向1から見て表になる側面と基板の部分3に金属が蒸着される。

0025

この結果、第2素子列の左から1番目の熱電変換素子11を例に取ると、その下部電極13と予め基板に作製した当該電極パターン24の足と基板の部分3に蒸着された金属と次に配置された左から2番目の熱電変換素子11の側面に蒸着された金属と当該熱電変換素子11の上部電極とが結合して導通し隣り合う2個の熱電変換素子の直列接続が実現される。

0026

このようにして、第2素子列6と第4素子列8がそれぞれ直列接続される。
この時、第1素子列5の各素子と第3素子列7の各素子は接続されておらず、また第1列と第2列、第2列と第3列、および、第3列と第4列の各間も接続されていない。

0027

(4)図1(d)に示したように、斜め方向2から絶縁基板10の上に金属を蒸着することで素子11の斜め方向2からみて表になる側面と基板の部分4に金属が蒸着される。

0028

この結果、第3素子列の右から1番目の熱電変換素子11を例に取ると、その下部電極13と予め基板に作製した電極パターン22の足と基板の部分4に蒸着された金属と次に配置された右から2番目の熱電変換素子11の側面に蒸着された金属と当該熱電変換素子11の上部電極とが結合して導通し隣り合う2個の熱電変換素子の直列接続が実現される。
このようにして、第1素子列と第3素子列がそれぞれ直列接続される。

0029

また、この斜め方向2からの金属蒸着により、第1列5と第2列6の右端、第2列6と第3列7の左端、第3列7と第4列8の右端に配置された熱電変換素子同士も同様にして導通し接続され、結果として全ての素子は直列接続される。

0030

熱電変換素子モジュール12の作製は、CG(コンピュータグラフィックス)を用いて行い、3次元空間に熱電変換素子モジュールをシミュレーションして作製した。
また、金属蒸着は実際の素子への蒸着ではなく、上述の3次元空間に配置された熱電変換素子に所定の角度で平行光源を当ててライティング処理を施して、その照射領域を金属蒸着領域とみなして解析を行った。

0031

CGシミュレーションで行った熱電変換素子モジュールの具体的なサイズは30×30×6(mm)、絶縁体基板のサイズは30×30×1(mm)、熱電変換素子11の形状は円柱形上で縦横高さは直径3(mm)で高さが3(mm)である。

0032

また、各素子は基板上の六角状格子点に配置され各列の格子点間距離は5(mm)隣り合う列の格子点間距離は4(mm)とし、無限遠光源から変換素子モジュールを覆う平行光を素子へ当てた場合の照射領域を蒸着領域と同一視した(以降、擬制蒸着領域と言う)。
また、素子の導通に関しては、隣り合う下部電極と上部電極が電極パターンの足と、基板10の部分3および4と熱電変換素子の側面とが連続する擬制蒸着領域で覆われて接続されている状態を導通とした。

0033

同一視できる理由は、本発明で利用し得る金属蒸着方法のひとつは高真空蒸着法であり、斜め方向1または斜め方向2から熱電変換素子に金属蒸着した場合、当該熱電変換素子側面の後側への回折・回り込みがない、または、あっても僅かであり、各方向から見て表側の熱電変換素子とその後側の熱電変換素子の重なりを調整する事により各方向から熱電変換素子の側面に蒸着した金属と,あらかじめ絶縁基板上に作製された電極パターンが短絡する事がないようにできるからである。
従って、回折・回り込みがない、または、あっても僅かな蒸着法であれば、いずれの方法であってもよい。
以下に、各工程の実施例の詳細を説明する。

0034

(1)
まず、絶縁基板10を用意し、その上に電極パターン9を配置する。

0035

図2において、電極パターン21のサイズは、円形の部分が直径2.4(mm)、髭の長さが1(mm),幅が0.35(mm),向きはx軸から反時計回りに210度となっている.電極パターン22からの24のサイズは電極パターン21と同じである.髭の角度は,電極パターン22が同じく210度,電極パターン23がX軸から反時計回りに90度,電極パターン24がX軸から反時計回りに30度となっている。
電極パターンは予め絶縁基板に配線として印刷しておいてよい。

0036

(2)
次に、準備した各電極パターンの上に熱電変換素子の下部電極を底面にして導電性接着剤やろう付けで固定する。

0037

(3)
次に、上で準備した熱電変換素子モジュールの斜め方向1から熱電変換素子に金属蒸着する。
本実施例では、斜め方向1は、図1(c)の絶縁基板のX軸に対して時計回りに30度、絶縁基板平面に対し鉛直方向45度下方であった。

0038

この時の斜め方向1から見て表側の熱電変換素子と後側の熱電変換素子の側面の重なりはおよそ0.5(mm)であった。
この方向と重なり具合は、熱電変換素子の直径と高さ、熱電変換素子の格子点間距離をパラメータとして適宜、決定すればよい。
図1(c)は、斜め方向1から金属蒸着後の熱電変換素子モジュールを上から見た図である。

0039

図3にこの金属蒸着で蒸着された第2素子列6をY方向と−Y方向から見た熱電変換素子の側面の領域を示す。

0040

(4)
さらに、上で準備した熱電変換素子モジュールの斜め方向1と下方に向けて対向する斜め方向2から熱電変換素子に金属蒸着する。
本実施例では、斜め方向2は、図1(c)に示す絶縁基板のX軸に対して反時計回りに150度、絶縁基板平面に対し鉛直方向45度下方であった。

0041

この時の斜め方向2から見て表側の熱電変換素子と後側の熱電変換素子の側面の重なりはおよそ0.5(mm)であった。

0042

図1(d)は、さらに斜め方向2から金属蒸着後の熱電変換素子モジュールを上から見た図である。
図4にこの金属蒸着で蒸着された電極パターン24からなる第2素子列6をY方向と−Y方向から見た熱電変換素子の側面の領域を示す。

実施例

0043

この図4(b)をみると、斜め方向1と斜め方向2の2度の熱電変換素子の側面への金属蒸着において,熱電変換素子の上部電極に連続する当該熱電変換素子の側面へ蒸着した金属と当該下部電極が結合するあらかじめ絶縁基板上に作製された当該電極パターン24の足とは、電極パターン24がX軸から反時計回りに30度オフセットしていることから、短絡が発生していないことがわかる。

0044

本発明は、
(1) 高密度・高起電力熱電変換モジュールの作製に利用でき、
(2)バルク材料から,マイクロスケール熱電モジュールに適用が可能であって、
(3)熱電変換素子のみに限らず,蒸着でその他素子の直列接続を実現可能である。

0045

1 第1の斜め方向
2 第2の斜め方向
3 第1の斜め方向から金属が蒸着される部分
4 第2の斜め方向から金属が蒸着される部分
5 第1素子列(3素子)
6 第2素子列(4素子)
7 第3素子列(3素子)
8 第4素子列(4素子)
9電極パターン
10絶縁基板
11熱電変換素子
12熱電変換素子モジュール
13 下部電極
14 上部電極
21 電極パターン1
22 電極パターン2
23 電極パターン3
24 電極パターン4

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

該当するデータがありません

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

該当するデータがありません

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ