図面 (/)

技術 異波長光選択装置及びそれを用いた内視鏡装置

出願人 株式会社オルタステクノロジー
発明者 吉田哲志
出願日 2015年10月14日 (4年5ヶ月経過) 出願番号 2015-202780
公開日 2017年4月20日 (2年11ヶ月経過) 公開番号 2017-074177
状態 未査定
技術分野 液晶1(応用、原理) 孔内観察装置 内視鏡
主要キーワード 動作モードテーブル 動作指示内容 中実部材 二次元撮像デバイス Bモード BEF 赤外線成分 撮像特性
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2017年4月20日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (12)

課題

装置の小型化及び振動騒音の絶無化ならびに耐久性の改善に寄与する。

解決手段

波長光選択装置(107)は、一の波長光を偏光するとともに該一の波長光よりも長波長の二の波長光を透過する二枚の偏光板(120、121)の間に一の液晶パネル(122)を挟み込んで構成された前段選択部(118)と、前記二の波長光を偏光するとともに前記一の波長光を透過する二枚の偏光板(123、124)の間に二の液晶パネル(125)を挟み込んで構成された後段選択部(119)と、を連続配置し、さらに、前記一の液晶パネルと前記二の液晶パネルのON・OFFの組み合わせを制御する制御手段(110)を備える。

概要

背景

体内患部撮影して画像化する内視鏡装置は平面的な画像しか撮影できず、患部の凹凸を見分けることができないことから、近年、患部の凹凸状態も観察することが可能な内視鏡装置が実用化されている(たとえば、下記の特許文献1)。

図11は、特許文献1に記載された内視鏡装置の概念構成図である。この図において、内視鏡装置1は、本体部2と、この本体部2の任意面に一端面3が取り付けられた柔軟かつ所定の長さを有する円筒状のガイド体4と、本体部2から出力される平面画像を表示する第一表示部5と、本体部2から出力される立体画像を表示する第二表示部6とを備える。

本体部2は、少なくとも可視領域の光と赤外領域の光とを含む光(以下、白色光P1)を発光する光源7と、白色光P1から異波長光、ここでは、可視領域の光(以下、可視光P2)と赤外領域の光(以下、赤外光P3)とを選択して取り出す回転フィルタ8と、この回転フィルタ8を回転駆動するモータ等の駆動源9と、平面画像と立体画像を生成出力する画像処理部10とを備える。

ガイド体4は、その軸心同軸状に配された光ファイバ等の柔軟性を有する中実円筒状の導光体11を内装しており、この導光体11の図中右側の一端面12に、回転フィルタ8から取り出された光(可視光P2と赤外光P3)が入射するようになっている。

導光体11の他端面13は、ガイド体4の他端面14から露出するようになっており、このガイド体4の他端面14には、可視光の画像(以下、可視画像)を撮影する第一撮像部15と、赤外光の画像(以下、赤外画像)を撮影する第二撮像部16とが設けられている。

本体部2の内部に設けられた画像処理部10は、これら二つの撮像部(第一撮像部15と第二撮像部16)からの撮影画像(可視画像と赤外画像)を取り込み、これらの画像から、第一表示部5と第二表示部6とに表示させるための画像(平面画像と立体画像)を生成して出力する。

概要

装置の小型化及び振動騒音の絶無化ならびに耐久性の改善に寄与する。 異波長光選択装置(107)は、一の波長光を偏光するとともに該一の波長光よりも長波長の二の波長光を透過する二枚の偏光板(120、121)の間に一の液晶パネル(122)を挟み込んで構成された前段選択部(118)と、前記二の波長光を偏光するとともに前記一の波長光を透過する二枚の偏光板(123、124)の間に二の液晶パネル(125)を挟み込んで構成された後段選択部(119)と、を連続配置し、さらに、前記一の液晶パネルと前記二の液晶パネルのON・OFFの組み合わせを制御する制御手段(110)を備える。

目的

本発明の目的は、装置の小型化及び振動や騒音の絶無化ならびに耐久性の改善に寄与する異波長光選択装置及びそれを用いた内視鏡装置を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

一の波長光偏光するとともに該一の波長光よりも長波長の二の波長光を透過する二枚の偏光板の間に一の液晶パネルを挟み込んで構成された前段選択部と、前記二の波長光を偏光するとともに前記一の波長光を透過する二枚の偏光板の間に二の液晶パネルを挟み込んで構成された後段選択部と、を連続配置し、さらに、前記一の液晶パネルと前記二の液晶パネルのON・OFFの組み合わせを制御する制御手段を備えたことを特徴とする異波長光選択装置

請求項2

前記一の波長光は可視領域の光であり、前記二の波長光は赤外領域の光であることを特徴とする請求項1に記載の異波長光選択装置。

請求項3

前記制御手段は、前記一の液晶パネルをONにし、前記二の液晶パネルをOFFにする一の動作モードと、前記一の液晶パネルをOFFにし、前記二の液晶パネルをONにする二の動作モードとを切り替えながら前記組み合わせを制御することを特徴とする請求項1または2に記載の異波長光選択装置。

請求項4

前記一の液晶パネル及び前記二の液晶パネルは90度TN液晶であり、かつ、前記一の液晶パネルのΔndは0.48μm近辺、前記二の液晶パネルのΔndは0.72μm近辺であることを特徴とする請求項1乃至3いずれかに記載の異波長光選択装置。

請求項5

前記一の液晶パネル及び前記二の液晶パネルはホモニアス液晶またはVA液晶であり、かつ、前記一の液晶パネルのΔndは0.28μm近辺、前記二の液晶パネルのΔndは0.42μm近辺であることを特徴とする請求項1乃至3いずれかに記載の異波長光選択装置。

請求項6

請求項1乃至5いずれかに記載の異波長光選択装置を用いたことを特徴とする内視鏡装置

技術分野

0001

本発明は、異波長光(たとえば、可視光赤外光)の選択を行う異波長光選択装置及びそれを用いた内視鏡装置に関する。

背景技術

0002

体内患部撮影して画像化する内視鏡装置は平面的な画像しか撮影できず、患部の凹凸を見分けることができないことから、近年、患部の凹凸状態も観察することが可能な内視鏡装置が実用化されている(たとえば、下記の特許文献1)。

0003

図11は、特許文献1に記載された内視鏡装置の概念構成図である。この図において、内視鏡装置1は、本体部2と、この本体部2の任意面に一端面3が取り付けられた柔軟かつ所定の長さを有する円筒状のガイド体4と、本体部2から出力される平面画像を表示する第一表示部5と、本体部2から出力される立体画像を表示する第二表示部6とを備える。

0004

本体部2は、少なくとも可視領域の光と赤外領域の光とを含む光(以下、白色光P1)を発光する光源7と、白色光P1から異波長光、ここでは、可視領域の光(以下、可視光P2)と赤外領域の光(以下、赤外光P3)とを選択して取り出す回転フィルタ8と、この回転フィルタ8を回転駆動するモータ等の駆動源9と、平面画像と立体画像を生成出力する画像処理部10とを備える。

0005

ガイド体4は、その軸心同軸状に配された光ファイバ等の柔軟性を有する中実円筒状の導光体11を内装しており、この導光体11の図中右側の一端面12に、回転フィルタ8から取り出された光(可視光P2と赤外光P3)が入射するようになっている。

0006

導光体11の他端面13は、ガイド体4の他端面14から露出するようになっており、このガイド体4の他端面14には、可視光の画像(以下、可視画像)を撮影する第一撮像部15と、赤外光の画像(以下、赤外画像)を撮影する第二撮像部16とが設けられている。

0007

本体部2の内部に設けられた画像処理部10は、これら二つの撮像部(第一撮像部15と第二撮像部16)からの撮影画像(可視画像と赤外画像)を取り込み、これらの画像から、第一表示部5と第二表示部6とに表示させるための画像(平面画像と立体画像)を生成して出力する。

先行技術

0008

特開平5−56918号公報

発明が解決しようとする課題

0009

しかしながら、特許文献1に記載された内視鏡装置は、異波長光(可視光P2と赤外光P3)の選択を機械的手段(モータ等の駆動源9で回転駆動される回転フィルタ8)を用いて行っているため、装置の大型化を免れないという問題、また振動騒音の問題、さらには回転部分の損耗などに伴う耐久性の問題がある。

0010

そこで、本発明の目的は、装置の小型化及び振動や騒音の絶無化ならびに耐久性の改善に寄与する異波長光選択装置及びそれを用いた内視鏡装置を提供することにある。

課題を解決するための手段

0011

本発明に係る異波長光選択装置は、一の波長光を偏光するとともに該一の波長光よりも長波長の二の波長光を透過する二枚の偏光板の間に一の液晶パネルを挟み込んで構成された前段選択部と、前記二の波長光を偏光するとともに前記一の波長光を透過する二枚の偏光板の間に二の液晶パネルを挟み込んで構成された後段選択部と、を連続配置し、さらに、前記一の液晶パネルと前記二の液晶パネルのON・OFFの組み合わせを制御する制御手段を備えたことを特徴とする。

発明の効果

0012

本発明によれば、機械的手段を用いずに異波長光の選択を行うことができるので、装置の小型化及び振動や騒音の絶無化ならびに耐久性の改善に寄与する異波長光選択装置及びそれを用いた内視鏡装置を提供することができる。

図面の簡単な説明

0013

実施形態に係る内視鏡装置の概念構成図である。
光選択部107の構成図である。
前段液晶パネル122と後段液晶パネル125の構成図である。
前段液晶パネル122と後段液晶パネル125の模式図である。
光選択部107の模式図である。
偏光板の透過及び反射特性図である。
光選択部107の4つの動作態様を示す図(1/2)である。
光選択部107の4つの動作態様を示す図(2/2)である。
内視鏡装置100の動作フローを示す図である。
動作モードテーブルを示す図である。
特許文献1に記載された内視鏡装置の概念構成図である。

実施例

0014

以下、本発明の実施形態を、内視鏡装置への適用を例にして、図面を参照しながら説明する。

0015

図1は、実施形態に係る内視鏡装置の概念構成図である。内視鏡装置100は、少なくとも、平面画像を表示するための第一表示部101と、立体画像を表示するための第二表示部102と、内視鏡装置100の各部を格納する本体部103と、ガイド体104とを備える。

0016

なお、この図では、独立した二つの表示部(第一表示部101と第二表示部102)を示しているが、この態様、つまり二台の表示装置を使用する態様に限らない。たとえば、一台の表示装置の表示画面を二つまたは複数の表示領域に分け、一の表示領域を第一表示部101とするとともに、二の表示領域を第二表示部102として使用する態様であってもよい。

0017

本体部103は、平面画像と立体画像を生成する画像処理部105と、撮像部106と、光選択部107と、可視光P2を発光する第一光源108と、赤外光P3を発光する第二光源109と、前記各部(画像処理部105や撮像部106及び光選択部107など)の動作を制御する制御部110とを備え、さらに不図示の電源部等を備える。

0018

なお、可視光P2は可視領域の光のことであり、たとえば、波長がおよそ400nm程度から700nm程度までの光のことをいう。また、赤外光P3は赤外領域の光のことであり、たとえば、波長がおよそ700nm程度から850nm程度までの光のことをいう。可視光P2と赤外光P3は波長の異なる光、つまり、異波長光であり、可視光P2は一の波長光に相当し、赤外光P3は一の波長光よりも長波長の二の波長光に相当する。

0019

第一光源108は、たとえば、LED(Light Emitting Diode)等の発光ダイオードであり、第二光源109は、たとえば、赤外発光ダイオードである。一般的にこれらの発光ダイオードは電場と磁場があらゆる方向に振動している光(非偏光という)を放射するので、可視光P2と赤外光P3は非偏光である。

0020

撮像部106は、少なくとも可視光から赤外光までの広範な光に対して撮像特性を有する、たとえば、CCD(Charge Coupled Device)イメージセンサやCMOS(Complementary Metal Oxide semiconductor)イメージセンサあるいはその他の方式の二次元撮像デバイスである。

0021

この撮像部106は、その撮像面106aに、可視光による像が結像しているときには画像処理部105に対して可視画像を出力する一方、赤外光による像が結像しているときには画像処理部105に対して赤外画像を出力する。なお、この図では省略しているが、撮像部106は、その撮像面106aに結像レンズ等の光学系を有している。

0022

ガイド体104は、本体部103の任意面に一端面111が取り付けられた柔軟性かつ所定の長さを有する円筒状の中実部材であり、このガイド体104の内部の一端面111から他端面112にかけて、少なくとも三本の導光体(以下、第一導光体113、第二導光体114及び第三導光体115)が内装されている。

0023

これら三本の導光体(第一導光体113、第二導光体114及び第三導光体115)はいずれも柔軟性があって、かつ低損失で光を端から端まで導くことができる、たとえば、光ファイバである。

0024

第一導光体113は第一光源108からの可視光P2をガイド体104の他端面112へと導き、また、第二導光体114は第二光源109からの赤外光P3をガイド体104の他端面112へと導く。さらに、第三導光体115は、ガイド体104の他端面112に近接して対向する不図示の観察対象物(体内の患部等)からの反射光P4(可視光P2と赤外光P3の反射光)を光選択部107の入射面116へと導く。

0025

光選択部107は「異波長光選択装置」に相当する。この光選択部107は、詳細は後述するが、要するに、制御部110からの制御に従い、第三導光体115によって導かれた反射光P4から異波長光(ここでは可視光と赤外光)を選択して取り出し、その選択された光(以下、選択光P5)を出射面117から撮像部106の撮像面106aに照射する。

0026

図2は、光選択部107の構成図である。この図に示すように、光選択部107は前段選択部118の後に後段選択部119を連続配置した二段構成になっている。

0027

前段選択部118は、二枚の偏光板(第一偏光板120と第二偏光板121)の間に一枚の液晶パネル(前段液晶パネル122)を挟み込み、また、後段選択部119も、二枚の偏光板(第一偏光板123と第二偏光板124)の間に一枚の液晶パネル(後段液晶パネル125)を挟み込んで構成されている。

0028

ここで、光選択部107の入射面116に近い方を“前”、光選択部107の出射面117に近い方を“後”とする。また、“前面”や“背面”という場合もこれら前後の定義にならうものとする。

0029

図3は、前段液晶パネル122と後段液晶パネル125の構成図である。以下、前段液晶パネル122を例にして説明するが、後段液晶パネル125についても同様である。

0030

前段液晶パネル122は、所定の間隔を空けて平行配置された二枚の配向膜(第一配向膜126と第二配向膜127)と、配向膜の四辺を取り囲む側壁128、129と、これらの配向膜と側壁との間の空間に封入された液晶130と、第一配向膜126の前面側に順次積層された第一透明電極131及び第一保護ガラス132と、第二配向膜127の背面側に順次積層された第二透明電極133及び第二保護ガラス134とを備える。

0031

第一配向膜126と第二配向膜127の液晶130に接する面にはそれぞれ所定方向スリット図4のスリット138、139参照)が形成されている。

0032

二枚の透明電極(第一透明電極131と第二透明電極133)のそれぞれからケーブル135、136が引き出されており、このケーブル135、136を介して、二枚の透明電極(第一透明電極131と第二透明電極133)に制御部110からの制御電圧印加することが可能になっている。以下、制御電圧を印加した状態を「ON」(またはON状態)、印加しない状態を「OFF」(またはOFF状態)という。

0033

液晶130は液体状の物質であって、かつ結晶のように分子の配列に規則性を有する特殊な物質であり、液晶分子の形は(単純化すると)微細略円筒状である。

0034

液晶分子の向きは、配向膜に接している部分では配向膜の表面状態で決まり、また、配向膜に接していない部分では隣接する液晶分子の向きで決まる。

0035

このことを、図3に当てはめてみると、図示の液晶130において、第一配向膜126と第二配向膜127に接する部分の液晶分子の向きは、それぞれ第一配向膜126と第二配向膜127の表面状態、つまり、第一配向膜126のスリットの向きと第二配向膜127のスリットの向きで決まり、また、他の液晶分子の向きは、隣接する液晶分子の向きで決まる。

0036

図4は、前段液晶パネル122と後段液晶パネル125の模式図である。以下、前段液晶パネル122を例にして説明するが、後段液晶パネル125についても同様である。

0037

(a)は「OFF」における液晶分子137の配列状態を示している。第一配向膜126のスリット138の向きと、第二配向膜127のスリット139の向きは90度ずれている。

0038

「OFF」の場合、第一配向膜126と第二配向膜127に接する部分の液晶分子137の向きはそれぞれ第一配向膜126のスリット138と第二配向膜127のスリット139の向きで決まり(スリット138、139の向きに従って90度ずれており)、また、第一配向膜126と第二配向膜127から離れた他の液晶分子137の向きは隣接する液晶分子137の向きの影響を受けるので、液晶130の厚み方向に並ぶ液晶分子137は、それぞれ方向を少しずつ変えながら最大90度の方向変化螺旋状に配列することになる。

0039

(b)は「ON」における液晶分子137の配列状態を示している。第一透明電極131と第二透明電極133の間に所要の制御電圧を印加すると、液晶分子137は制御電圧の電界の向きに沿って液晶130の厚み方向に立ち上がって垂直に配列する。

0040

図5は、光選択部107の模式図である。前段選択部118の二枚の偏光板(第一偏光板120と第二偏光板121)は、可視光に対して偏光の機能を発揮する反射型偏光子(非偏光から偏光を作り出すもの)である。ただし、赤外光に対しては単なる透明体として機能する。

0041

後段選択部119の二枚の偏光板(第一偏光板123と第二偏光板124)は、その逆に、赤外光に対して偏光の機能を発揮する反射型の偏光子である。ただし、可視光に対しては単なる透明体として機能する。

0042

図中の実線両端矢印線138〜141は偏光の透過軸を表し、破線両端矢印線142〜145は偏光の反射軸を表している。実線両端矢印線138〜141と破線両端矢印線142〜145の向きは互いに90度(透過軸と反射軸が90度)ずれている。

0043

前段液晶パネル122と後段液晶パネル125は、いずれも90度TN(Twisted Nematic)液晶を構成する。この90度TN液晶の「Δnd」(ただし、Δnは液晶の複屈折性、dは液晶の厚み)の値は、たとえば、前段液晶パネル122で「0.48μm付近」、後段液晶パネル125で「0.72μm付近」である。

0044

図6は、偏光板の透過及び反射特性図である。この図において、(a)は前段選択部118の二枚の偏光板(第一偏光板120と第二偏光板121)に、たとえば、住友スリエム株式会社の反射型偏光フィルム(DBEF:Dual Brightness Enhancement Film)を使用した場合の特性を示しており、実線は可視光p波(透過)、破線は可視光s波(反射)の特性線である。また、(b)は後段選択部119の二枚の偏光板(第一偏光板123と第二偏光板124)に、たとえば、ワイヤーグリッド偏光板を使用した場合の特性を示しており、実線は赤外光p波(透過)、破線は赤外光s波(反射)の特性線である。

0045

ここで、p波とs波は、偏光に関係する概念のひとつである。つまり、異なる物質間の境界面で光が反射するときの「入射面」と「電場または磁場の振動方向」によって定義される概念のことであり、光学では、s波(またはs偏光)とp波(またはp偏光)とに区別される。光が境界面に入射するときには、その光をs波成分とp波成分とに分けることができ、全体としての反射率は[(s波成分の割合×s波の反射率)+(p波成分の割合×p波の反射率)]で表される。p波の反射率はどの入射角でもs波よりも小さい。このようなs波とp波の概念は、入射面が存在するとき(したがって、光が異なる物質間の境界に入射するとき)にのみ定義される。

0046

(a)に示すように、前段選択部118の二枚の偏光板(第一偏光板120と第二偏光板121)は、可視光領域において、可視光p波の透過率が高く、可視光s波の透過率が低くなっている。また、(b)に示すように、後段選択部119の二枚の偏光板(第一偏光板123と第二偏光板124)は、赤外光領域において、赤外光p波の透過率が高く、赤外光s波の透過率が低くなっている。

0047

これらの特性により、前段選択部118の二枚の偏光板(第一偏光板120と第二偏光板121)は、通常の可視光に対して偏光の機能を発揮し、赤外光に対して偏光の機能を発揮しない(単なる透明体として機能する)。また、後段選択部119の二枚の偏光板(第一偏光板123と第二偏光板124)は、赤外光に対して偏光の機能を発揮し、可視光に対して偏光の機能を発揮しない(単なる透明体として機能する)。

0048

図7図8は、光選択部107の4つの動作態様を示す図である。
(1)第一の動作態様〔出射光なし:図7(a)〕
先に説明したとおり、前段選択部118の第一偏光板120と第二偏光板121は可視光を偏光し、赤外光をそのまま透過する。また、後段選択部119の第一偏光板123と第二偏光板124は、逆に、赤外光を偏光し、可視光をそのまま透過する。

0049

光選択部107には、第三導光体115によって導かれた、観察対象物(体内の患部等)からの反射光P4が入射しており、この反射光P4には、可視光P2の反射成分(以下、可視光成分P2´)と赤外光P3の反射成分(以下、赤外光成分P3´)とが含まれている。

0050

前段液晶パネル122と後段液晶パネル125をともに「OFF」にすると、これら前段液晶パネル122と後段液晶パネル125の液晶分子137がどちらも90度ずれた配向状態になる。

0051

この配向状態において、前段選択部118の第一偏光板120によって偏光された可視光成分P2´と第一偏光板120を素通りした赤外光成分P3´は、まず、前段液晶パネル122を通過するが、可視光成分P2´は前段選択部118の第一偏光板120によって偏光されたものであり、さらに前段液晶パネル122を通過する際に90度向きを変えられたものであるため、前段選択部118の第二偏光板121の反射軸143(図5参照)の方向と一致することとなり、結局のところ。可視光成分P2´のすべては前段選択部118の第二偏光板121によって反射されてしまい、前段選択部118を通過しない。

0052

一方、非偏光の赤外光成分P3´は、前段選択部118の第一偏光板120と前段液晶パネル122及び第二偏光板121を素通りする。そして、後段選択部119の第一偏光板123によって偏光されるとともに、さらに後段液晶パネル125によって90度向きを変えられるので、後段選択部119の第二偏光板124の反射軸145(図5参照)の方向と一致することとなり、赤外光成分P3´は後段選択部119の第二偏光板124によって反射されてしまい、後段選択部119を通過しない。

0053

したがって、前段液晶パネル122と後段液晶パネル125をともに「OFF」にすることにより、可視光成分P2´と赤外光成分P3´の両方を光選択部107から取り出さない(出射しない)ようにすることができる。

0054

(2)第二の動作態様〔可視光成分のみ出射:図7(b)〕
前段液晶パネル122を「ON」にし、後段液晶パネル125を「OFF」にすると、前段液晶パネル122の液晶分子137が立ち上がった配向状態になり、後段液晶パネル125の液晶分子137が90度ずれた配向状態になる。

0055

この配向状態において、前段選択部118の第一偏光板120によって偏光された可視光成分P2´と、第一偏光板120を素通りした非偏光の赤外光成分P3´は、ともに前段液晶パネル122を通過する。ただし、偏光である可視光成分P2´はその大きさをほぼ半減する。

0056

次いで、可視光成分P2´は、後段選択部119の第一偏光板123を素通りし、さらに後段液晶パネル125によって90度向きが変えられた後、後段選択部119の第二偏光板124を素通りする。

0057

一方、赤外光成分P3´は後段選択部119の第一偏光板123によって偏光され、さらに後段液晶パネル125によって90度向きを変えられるため、後段選択部119の第二偏光板124の反射軸145(図5参照)の方向と一致することとなる。このため、赤外線成分P3´は後段選択部119の第二偏光板124によって反射されてしまい、後段選択部119を通過しない。

0058

したがって、前段液晶パネル122を「ON」にし、後段液晶パネル125を「OFF」にすることにより、可視光成分P2´のみを選択光P5として光選択部107から選択的に取り出す(出射する)ことができる。

0059

(3)第三の動作態様〔赤外光成分のみ出射:図8(a)〕
前段液晶パネル122を「OFF」にし、後段液晶パネル125を「ON」にすると、前段液晶パネル122の液晶分子137が90度ずれた配向状態になり、後段液晶パネル125の液晶分子137が立ち上がった配向状態になる。

0060

この配向状態において、前段選択部118の第一偏光板120によって偏光された可視光成分P2´は、前段液晶パネル122によって90度向きを変えられるため、前段選択部118の第二偏光板121の反射軸143(図5参照)の方向と一致することとなる。このため、可視光成分P2´は前段選択部118の第二偏光板121によって反射されてしまい、前段選択部118を通過しない。

0061

一方、非偏光の赤外光成分P3´は、前段選択部118の第一偏光板120と前段液晶パネル122及び第二偏光板121を素通りした後、後段選択部119の第一偏光板123によって偏光されるが、後段液晶パネル125の液晶分子137が立ち上がっているため、この後段液晶パネル125も素通りし、さらに後段選択部119の第二偏光板124によって偏光され、大きさをほぼ半減して前段選択部118を通過する。

0062

したがって、前段液晶パネル122を「OFF」にし、後段液晶パネル125を「ON」にすることにより、赤外光成分P3´のみを選択光P5として光選択部107から選択的に取り出す(出射する)ことができる。

0063

(4)第四の動作態様〔可視光成分と赤外光成分の両方出射:図8(b)〕
前段液晶パネル122と後段液晶パネル125をともに「ON」にすると、前段液晶パネル122と後段液晶パネル125の液晶分子137がともに立ち上がった配向状態になる。

0064

この配向状態において、前段選択部118の第一偏光板120によって偏光された可視光成分P2´と、第一偏光板120を素通りした非偏光の赤外光成分P3´は、ともに前段液晶パネル122を通過する。ただし、偏光である可視光成分P2´はその大きさをほぼ半減する。

0065

次いで、可視光成分P2´は、後段選択部119の第一偏光板123を素通りし、さらに後段液晶パネル125によって90度向きを変えられた後、後段選択部119の第二偏光板124を素通りする。

0066

一方、非偏光の赤外光成分P3´は、前段選択部118の第一偏光板120と前段液晶パネル122及び第二偏光板121を素通りし、さらに、後段選択部119の第一偏光板123によって偏光されるが、後段液晶パネル125の液晶分子137が立ち上がっているため、この後段液晶パネル125も素通りし、さらに後段選択部119の第二偏光板124によって偏光され、大きさをほぼ半減して前段選択部118を通過する。

0067

したがって、前段液晶パネル122と後段液晶パネル125をともに「ON」にすることにより、可視光成分P2´と赤外光成分P3´の両方を選択光P5として光選択部107から取り出す(出射する)ことができる。

0068

実施形態の内視鏡装置100は、以上4つの動作態様のうち第二の動作態様(可視光成分のみ出射)と第三の動作態様(赤外光成分のみ出射)を使用する。

0069

図9は、内視鏡装置100の動作フローを示す図である。この動作フローは、制御部110をプログラム制御方式のコンピュータで構成する場合に、そのコンピュータで実行するソフトウェアプログラム)の形で組み込むことができる。すなわち、コンピュータは一般的にCPU(Central Processing Unit)や、このCPUで実行するソフトウェアを保持するための記憶デバイスなどのハードウェア要素で構成されるので、図示の動作フローをプログラミングしたソフトウェアを記憶デバイスに保持し、そのソフトウェアをCPUで実行することにより、内視鏡装置100の動作に必要な諸機能(特に異波長光の選択を制御する機能)を実現することができる。

0070

図示の動作フローは、まず、最初に第一光源108と第二光源109を点灯し(ステップS1)、次いで、可視画像の取り込みタイミングであるか赤外画像の取り込みタイミングであるかを判定する(ステップS2)。この取り込みタイミングは、撮像部106の画像フレーム出力周期に同期する。たとえば、奇数フレーム周期を可視画像の取り込みタイミングとし、偶数のフレーム周期を赤外画像の取り込みタイミングとしてもよい。

0071

図10は、動作モードテーブルを示す図である。この動作モードテーブル140は、制御部110の記憶デバイス(不図示)に保持されており、必要に応じて制御部110のコンピュータから参照できるようになっている。

0072

動作モードテーブル140には少なくとも「Aモード」と「Bモード」の二つの動作モードと、それらのモードごとの光選択部107の動作指示内容とが書き込まれている。Aモードは、選択光P5として可視光成分P2´のみを取り出すために、前段液晶パネル122を「ON」、後段液晶パネル125を「OFF」とするものである。Bモードは、選択光P5として赤外光成分P3´のみを取り出すために、前段液晶パネル122を「OFF」、後段液晶パネル125を「ON」とするものである。

0073

再び、図9戻り、可視画像の取り込みタイミングであると判定された場合は、光選択部107をAモードで動作させる(ステップS3)。

0074

前記のとおり、Aモードは、選択光P5として可視光成分P2´のみを取り出すモードであるので、このAモードで動作する光選択部107から撮像部106に対して可視光成分P2´が照射されることになり、撮像部106は可視光成分P2´の画像(つまり、可視画像)を出力する。
次いで、撮像部106からの画像(この場合は可視画像)を取り出し(ステップS4)、画像処理部105を制御して、その可視画像を平面画像として第一表示部101に出力(ステップS5)した後、再び、ステップS2に戻る。

0075

一方、赤外画像の取り込みタイミングであると判定された場合は、光選択部107をBモードで動作させる(ステップS6)。

0076

前記のとおり、Bモードは、選択光P5として赤外光成分P3´のみを取り出すモードであるので、このBモードで動作する光選択部107から撮像部106に対して赤外光成分P3´が照射されることになり、撮像部106は赤外光成分P3´の画像(つまり、赤外画像)を出力する。
次いで、撮像部106からの画像(この場合は赤外画像)を取り出し(ステップS7)、画像処理部105を制御して、その赤外画像から立体画像を生成し、その立体画像を第二表示部102に出力(ステップS8)した後、再び、ステップS2に戻る。

0077

以上のとおり、実施形態に係る内視鏡装置100に含まれる光選択部107は、異波長光(ここでは可視光と赤外光)の選択を行う「異波長光選択装置」に相当するものであり、異波長光の選択を行う点において、冒頭で説明した内視鏡装置1(図11参照)の回転フィルタ(モータ等の駆動源9で回転駆動される回転フィルタ8)に対応するものであるが、両者を対比すると、回転フィルタ等は機械的手段によって異波長光の選択を行っているのに対して、実施形態の光選択部107は機械的手段以外の手段(光学的手段)によって異波長光の選択を行うものであることから、以下の効果を奏することができる。

0078

すなわち、機械的な要素を含まない光選択部107(及びその光選択部107を含む内視鏡装置100)は、装置の小型化を図ることができ、加えて、振動や騒音をまったく発生せず、しかも、回転部分などがないため機械的な損耗を生じず、耐久性の改善を図ることができる。したがって、「装置の小型化及び振動や騒音の絶無化ならびに耐久性の改善に寄与する」という本願発明の目的を達成することができる。

0079

なお、以上の実施形態では前段液晶パネル122と後段液晶パネル125を90度TN液晶で構成したが、これに限定されない。前段液晶パネル122と後段液晶パネル125をホモニアス液晶(液晶分子がホモジニアス配向の液晶)やVA(Vertical Alignment)液晶で構成してもよい。ホモジニアス液晶やVA液晶で構成した場合の「Δnd」の値は、前段液晶パネル122で「0.28μm付近」、後段液晶パネル125で「0.42μm近辺」である。

0080

また、以上の実施形態では内視鏡装置への適用を例にしたが、これに限定されない。異波長光の選択を必要とする様々な機器やシステムに適用することができる。

0081

以下、本発明の特徴を付記する。
上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
付記1は、一の波長光を偏光するとともに該一の波長光よりも長波長の二の波長光を透過する二枚の偏光板の間に一の液晶パネルを挟み込んで構成された前段選択部と、
前記二の波長光を偏光するとともに前記一の波長光を透過する二枚の偏光板の間に二の液晶パネルを挟み込んで構成された後段選択部と、を連続配置し、
さらに、前記一の液晶パネルと前記二の液晶パネルのON・OFFの組み合わせを制御する制御手段を備えたことを特徴とする異波長光選択装置である。
(付記2)
付記2は、前記一の波長光は可視領域の光であり、前記二の波長光は赤外領域の光であることを特徴とする付記1に記載の異波長光選択装置である。
(付記3)
付記3は、前記制御手段は、前記一の液晶パネルをONにし、前記二の液晶パネルをOFFにする一の動作モードと、前記一の液晶パネルをOFFにし、前記二の液晶パネルをONにする二の動作モードとを切り替えながら前記組み合わせを制御することを特徴とする付記1または2に記載の異波長光選択装置である。
(付記4)
付記4は、前記一の液晶パネル及び前記二の液晶パネルは90度TN液晶であり、かつ、前記一の液晶パネルのΔndは0.48μm近辺、前記二の液晶パネルのΔndは0.72μm近辺であることを特徴とする付記1乃至3いずれかに記載の異波長光選択装置である。
(付記5)
付記5は、前記一の液晶パネル及び前記二の液晶パネルはホモジニアス液晶またはVA液晶であり、かつ、前記一の液晶パネルのΔndは0.28μm近辺、前記二の液晶パネルのΔndは0.42μm近辺であることを特徴とする付記1乃至3いずれかに記載の異波長光選択装置である。
(付記6)
付記6は、付記1乃至5いずれかに記載の異波長光選択装置を用いたことを特徴とする内視鏡装置である。

0082

107 光選択部(異波長光選択装置)
110 制御部(制御手段)
118前段選択部
119後段選択部
120 第一偏光板(偏光板)
121 第二偏光板(偏光板)
122 前段液晶パネル(一の液晶パネル)
123 第一偏光板(偏光板)
124 第二偏光板(偏光板)
125 後段液晶パネル(二の液晶パネル)

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ