図面 (/)

技術 打音検査装置

出願人 日立オートモティブシステムズ株式会社
発明者 玉置研二川邊俊一高橋寿一松江博文
出願日 2016年7月7日 (4年5ヶ月経過) 出願番号 2016-134994
公開日 2017年3月2日 (3年9ヶ月経過) 公開番号 2017-044687
状態 特許登録済
技術分野 超音波による材料の調査、分析
主要キーワード 寸法区分 最大ピーク周波数 製品品種 近接ピーク オフライン検査 検査対象製品 品種番号 材料欠陥
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2017年3月2日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題

基準となる健全品の特徴パラメータ値からどれだけ乖離していたら検査対象品欠陥品であると判定するかを決めるための判定しきい値を予め設定する作業が必要であり、この設定に多大な手間がかかっていた。

解決手段

打音データから製品欠陥有無を判定する打音検査装置であって、複数の健全品の打音データ群から各々の打音振幅波形輪郭線、あるいは打音周波数スペクトルの輪郭線を抽出し、振幅波形輪郭線群あるいは周波数スペクトル輪郭線群から健全品ばらつき範囲を予め自動設定し、検査対象製品の打音振幅波形輪郭線あるいは打音周波数スペクトル輪郭線が健全品ばらつき範囲内に時間軸全域あるいは周波数軸全域で収まっているか否かを判定する。

概要

背景

鋳造品などをハンマー打撃し、打撃によって得られる音響信号を基に、鋳造品などを打音検査することが行われている。打音検査を行う場合、打音データから予め定めた特徴パラメータの値を抽出して、予め測定しておいた基準となる健全品の特徴パラメータ値と比較することにより、合否判定を行っている。特徴パラメータの一例としては、打音波形振幅収束時間や、打音周波数スペクトル最大ピーク周波数が知られている(特許文献1参照)。

概要

基準となる健全品の特徴パラメータ値からどれだけ乖離していたら検査対象品欠陥品であると判定するかを決めるための判定しきい値を予め設定する作業が必要であり、この設定に多大な手間がかかっていた。打音データから製品欠陥有無を判定する打音検査装置であって、複数の健全品の打音データ群から各々の打音振幅波形輪郭線、あるいは打音周波数スペクトルの輪郭線を抽出し、振幅波形輪郭線群あるいは周波数スペクトル輪郭線群から健全品ばらつき範囲を予め自動設定し、検査対象製品の打音振幅波形輪郭線あるいは打音周波数スペクトル輪郭線が健全品ばらつき範囲内に時間軸全域あるいは周波数軸全域で収まっているか否かを判定する。

目的

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

複数の健全品の打音データに基づいて、健全品として許容されるばらつき許容幅を設定するばらつき許容幅設定部と、検査対象品の打音データが前記ばらつき許容幅の範囲内に収まっているか否かを判定することで、前記検査対象品が健全品であるか否かを判定する判定部と、を備える打音検査装置

請求項2

複数の健全品の打音データに基づいて、健全品として許容されるばらつき許容幅を設定するばらつき許容幅設定部と、検査対象品の打音データが前記ばらつき許容幅の範囲内に収まっているか否かを判定することで、前記検査対象品が健全品であるか否かを判定する判定部と、を備え、前記判定部は、前記検査対象品の前記打音データである振幅波形データから前記検査対象品が材料欠陥であるか構造欠陥であるかを判定する打音検査装置。

請求項3

請求項1または請求項2に記載の打音検査装置において、前記ばらつき許容幅設定部は、複数の健全品の打音データに基づいて、健全品として許容されるばらつき許容幅を打音変動因子別に設定し、前記判定部は、検査対象品の打音データが前記ばらつき許容幅の範囲内に収まっているか否かを前記打音変動因子別に判定することで、前記検査対象品が健全品であるか否かを判定する打音検査装置。

請求項4

請求項3に記載の打音検査装置において、前記打音変動因子は、前記検査対象品の予め定めた形状寸法区分であり、前記ばらつき許容幅設定部は、前記健全品として許容されるばらつき許容幅を前記形状寸法区分別に設定し、前記判定部は、前記検査対象品の打音データが前記ばらつき許容幅の範囲内に収まっているか否かを前記形状寸法区分別に判定する打音検査装置。

請求項5

請求項3に記載の打音検査装置において、前記打音変動因子は、前記検査対象品の製造経路区分であり、前記ばらつき許容幅設定部は、前記健全品として許容されるばらつき許容幅を前記製造経路区分別に設定し、前記判定部は、前記検査対象品の打音データが前記ばらつき許容幅の範囲内に収まっているか否かを前記製造経路区分別に判定する打音検査装置。

請求項6

請求項1から請求項5までのいずれか一項に記載の打音検査装置において、前記打音データは、時系列の振幅波形データである打音検査装置。

請求項7

請求項6に記載の打音検査装置において、前記ばらつき許容幅設定部は、前記複数の健全品で収集された振幅波形データからそれぞれの輪郭線を抽出し、抽出された輪郭線の上限と下限の範囲を前記ばらつき許容幅とする打音検査装置。

請求項8

請求項7に記載の打音検査装置において、前記判定部は、前記検査対象品の振幅波形データの輪郭線が前記ばらつき許容幅の範囲内に収まっていない場合に前記検査対象品を材料欠陥と判定する打音検査装置。

請求項9

請求項6から請求項8までのいずれか1項に記載の打音検査装置において、前記ばらつき許容幅設定部は、前記複数の健全品で収集された振幅波形データからそれぞれの周波数スペクトルを抽出し、抽出された周波数スペクトルの輪郭線から前記ばらつき許容幅を設定する打音検査装置。

請求項10

請求項9に記載の打音検査装置において、前記判定部は、前記検査対象品の周波数スペクトルの輪郭線が前記ばらつき許容幅の範囲内に収まっていない場合に前記検査対象品を構造欠陥と判定する打音検査装置。

技術分野

0001

本発明は、打音検査装置に関する。

背景技術

0002

鋳造品などをハンマー打撃し、打撃によって得られる音響信号を基に、鋳造品などを打音検査することが行われている。打音検査を行う場合、打音データから予め定めた特徴パラメータの値を抽出して、予め測定しておいた基準となる健全品の特徴パラメータ値と比較することにより、合否判定を行っている。特徴パラメータの一例としては、打音波形振幅収束時間や、打音周波数スペクトル最大ピーク周波数が知られている(特許文献1参照)。

先行技術

0003

特開2010−261816号公報

発明が解決しようとする課題

0004

上述した、特許文献1に記載の方法を用いた場合、基準となる健全品の特徴パラメータ値からどれだけ乖離していたら検査対象品欠陥品であると判定するかを決めるための判定しきい値を予め設定する作業が必要であった。この判定しきい値は、検査対象品の品種ごとに異なる特徴パラメータ値のばらつき範囲を考慮して適切に設定しなければならないため、設定に多大な手間がかかっていた。

課題を解決するための手段

0005

本発明の第1の態様による打音検査装置は、複数の健全品の打音データに基づいて、健全品として許容されるばらつき許容幅を設定するばらつき許容幅設定部と、検査対象品の打音データが前記ばらつき許容幅の範囲内に収まっているか否かを判定することで、前記検査対象品が健全品であるか否かを判定する判定部と、を備える。
本発明の第2の態様による打音検査装置は、複数の健全品の打音データに基づいて、健全品として許容されるばらつき許容幅を設定するばらつき許容幅設定部と、検査対象品の打音データが前記ばらつき許容幅の範囲内に収まっているか否かを判定することで、前記検査対象品が健全品であるか否かを判定する判定部と、を備え、前記判定部は、前記検査対象品の前記打音データである振幅波形データから前記検査対象品が材料欠陥であるか構造欠陥であるかを判定する。

発明の効果

0006

本発明によれば、打音検査用の判定しきい値を予め設定する作業が簡単になる。

図面の簡単な説明

0007

打音検査装置のシステム構成図である。
健全品ばらつき範囲の生成画面を示す図である。
健全品ばらつき範囲を生成するフローチャートである。
健全品打音データ群のメタデータテーブルを示す図である。
健全品打音データ群の振幅波形チャートを示す図である。
輪郭線抽出の手順を示す図である。
輪郭線の上限値および下限値を抽出する手順を示す図である。
欠陥有無判定画面を示す図である。
欠陥有無判定の処理手順を示すフローチャートである。
履歴データのメタデータテーブルを示す図である。
打音の生データテーブルを示す図である。
第2の実施形態における打音検査装置のシステム構成図である。
第2の実施形態における健全品ばらつき範囲の生成画面を示す図である。
第2の実施形態における健全品ばらつき範囲を生成するフローチャートである。
周波数スペクトルとその輪郭線を示す図である。
輪郭線抽出の手順を示す図である。
輪郭線の上限曲線を抽出する手順を示す図である。
第2の実施形態における欠陥有無判定画面を示す図である。
第2の実施形態における欠陥有無判定の処理手順を示すフローチャートである。
第3の実施形態における健全品ばらつき範囲の生成画面を示す図である。
第3の実施形態における欠陥有無判定画面を示す図である。

実施例

0008

(第1の実施形態)
図1は、本実施形態における打音検査装置のシステム構成図である。本実施形態では、打音検査装置を計算機システムによって実現する例で示す。

0009

図1に示すように、打音検査装置1は、打音検査用計算機100、打撃制御信号出力器200、A/D変換器300から構成される。打音検査用計算機100は、演算処理装置101、表示装置102、記憶装置103を備える。記憶装置103は、履歴データ記憶部103a、健全品ばらつき範囲記憶部103bを備える。

0010

打音検査装置1は、金属製品2を打撃装置3で打撃した際の打音データ(音圧時間変化)を、マイク4を用いて収集し、A/D変換器300でデジタル値に変換して取得する。更に、形状寸法測定器8から金属製品2の形状寸法データを取得する。形状寸法測定器8は、例えば、投影方式レーザ走査方式、あるいは画像方式などにより、金属製品2の角度などの形状や大きさなどの寸法を必要な測定精度で測定する。本実施形態では、打音変動因子として形状寸法データを例に説明する。また、打音検査装置1は、外部の製造実行システム(MES: Manufacturing Execution System)5から金属製品2の品種データネットワーク7を経由して収集する。

0011

金属製品2の打音検査を行うのに先立って、最初に打音検査装置1は、健全品であることが予め確認された複数の金属製品2の打音データ群を用いて、健全品の打音データのばらつき範囲を表す「健全品ばらつき範囲」を生成し、健全品ばらつき範囲記憶部103bに品種データおよび形状寸法データと関連付けて記憶する。この健全品ばらつき範囲の生成に打音データが用いられる金属製品2は、打音検査装置1による打音検査以外の他の方法(オフライン検査人手による官能検査等)により健全品であることが予め確認されている。なお、健全品ばらつき範囲の生成方法については、後で詳しく説明する。

0012

金属製品2の打音検査を行う際には、打音検査装置1は、検査対象の金属製品2の属する品種データおよび形状寸法データと紐付いた健全品ばらつき範囲を健全品ばらつき範囲記憶部103bから抽出する。そして、検査対象の金属製品2に対して得られた打音データの輪郭線が健全品ばらつき範囲を逸脱しているか否かを判定することで、その金属製品2の欠陥有無を判定する。打音検査装置1は、品質管理システムQCS: Quality Control System)6に判定結果を送信し、必要に応じて表示装置102に判定結果を表示する。

0013

打音検査装置1は、様々な金属製品2に対する打音検査によって得られた打音データ、品種データ、形状寸法データ、および判定データを互いに関連付けて履歴データ記憶部103aに記憶する。また、打音検査装置1は、過去の打音検査で得られたこれらのデータを必要に応じて履歴データ記憶部103aから抽出し、その中で健全品であると判定された複数の金属製品2の打音データ群を用いて、健全品ばらつき範囲を生成し直すことができる。この新たに生成した健全品ばらつき範囲を用いて、打音検査装置1は、それまで健全品ばらつき範囲記憶部103bに記憶された健全品ばらつき範囲を更新する。

0014

‐健全品ばらつき範囲の生成画面-
図2は、表示装置102に表示する健全品ばらつき範囲の生成画面の一例を示す図である。なお、表示装置102はその表面にタッチパネルを備えており、演算処理装置101に対する入力装置としての機能も有している。図2に示すように、健全品ばらつき範囲の生成画面は、品種指定ボックス191A、ファイル指定ボックス192A、形状寸法区分指定ボックス199A、健全品ばらつき範囲生成ボタン193、振幅波形の健全品ばらつき範囲表示欄196Aから構成される。

0015

‐健全品ばらつき範囲の生成の処理手順‐
図3は、打音検査装置1による健全品ばらつき範囲を生成する処理手順を示すフローチャートである。このフローチャートで示す処理は打音検査用計算機100の演算処理装置101によって実行される処理を示すものである。

0016

表示装置102に表示された図2の生成画面において健全品ばらつき範囲生成ボタン193が指定されると、図3に示す処理が開始される。この時に、製造実行システム5から取得した健全品である金属製品2の品種データに基づいて、品種番号(P-a)を品種指定ボックス191Aに表示する。品種指定ボックス191Aに品種番号を入力することにより、品種を指定するようにしてもよい。更に、形状寸法区分指定ボックス199Aに、当該品種番号における形状寸法区分を指定する。形状寸法区分は、同一品種であっても、寸法公差内で形状寸法にばらつきがあるが、金属製品2を形成する角度や金属製品2の大きさのばらつきの範囲を複数に区分したものである。

0017

打音検査装置1は、ステップS11で、履歴データ記憶部103aから、指定された品種(P-a)および形状寸法区分と同一品種で同一形状寸法区分の健全品の打音データ群を取得する。取得された健全品の打音データ群のメタデータテーブルを図4に、その振幅波形チャートを図5に示す。これらは取得された健全品の打音データ群の一例である。図4のメタデータテーブルは、健全品の打音データ群に含まれる各打音データに関するメタデータを表している。

0018

図4のメタデータテーブルにおいて、第1列の「打音データID」は各打音データのID番号を表し、第2列の「品種番号」は各打音データに対応する金属製品2の品種番号を表し、第3列の「形状寸法区分」は金属製品2の形状寸法の区分を表し、第4列の「判定結果」は各打音データに対応する金属製品2の欠陥有無の判定結果を表している。ステップS11では、健全品の打音データ群として、図4のメタデータテーブルの第4列に示すように、健全品かつ同一形状寸法区分、すなわち欠陥なしと判定された同じ寸法区分(D2)の金属製品2の打音データ(Data-1、Data-4、Data-5)に絞り込まれて取得される。なお、最初に健全品ばらつき範囲を生成するために用いる健全品の打音データ群には、前述のように、打音検査装置1による打音検査以外の他の方法を用いて健全品であることが判定されている複数の金属製品2の各打音データが採用される。そのため、このときの健全品の打音データ群のメタデータでの、「判定結果」には、当該他の方法によって成された欠陥有無の判定結果が格納されている。

0019

図5に示す振幅波形チャートにおいて、第1列の「打音データID」は図4と同様に各打音データのID番号を表し、第2列の「打音生データ」は各打音データの生データを表している。本実施形態では、図5に示すように、横軸時刻(打撃後の経過時間)、縦軸を打音(音圧)とした時系列の振幅波形データ201A、204A、205Aを、各打音データの生データとして取得する。また、第3列の「輪郭線抽出」は、振幅波形データ201A、204A、205Aに対して、後述のステップS12の処理でそれぞれ計算される輪郭線201B、204B、205Bを表している。

0020

次に、ステップS12で、打音検査装置1は、各打音データ(振幅波形データ)の輪郭線の計算を行う。ステップS13で、全打音データの輪郭線計算が終了したかどうかを判定し、終了していなければ、ステップS12の処理に戻る。この処理を繰り返すことで、図5の第2列の「打音生データ」における振幅波形データ201A、204A、205Aから第3列に示す輪郭線201B、204B、205Bをそれぞれ計算する。

0021

ステップS13で、全打音データの輪郭線計算を終了したと判定した後、打音検査装置1は、ステップS14の処理に進む。ステップS14では、全ての輪郭線を合わせた輪郭線群上下限を抽出する。この輪郭線群の上下限の抽出の手順を図6および図7を用いて説明する。図6は、輪郭線201B、204B、205Bを重ね書きしたチャートである。ステップS14では、図6の横軸である時間軸走査しながら、これらの輪郭線の各時刻での上限値および下限値を逐次に抽出することにより、図7に示す上限曲線205Cおよび下限曲線204Cを抽出することができる。

0022

なお、図6図7の例では輪郭線群の各輪郭線201B、204B、205Bがお互いに交差しないため、輪郭線の上限曲線205Cおよび下限曲線204Cとして、輪郭線205B、204Cがそのままでそれぞれ抽出されている。しかし、これに限らず、輪郭線群に含まれる複数の輪郭線がお互いに交差しても、上記に説明した手順で上限曲線および下限曲線を抽出することができる。

0023

また、本実施形態では輪郭線群から直接に上限曲線および下限曲線を抽出しているが、健全品の履歴データが大量(例えば50以上)に蓄積された段階では、輪郭線群の各時刻の値に対応する点群から統計処理によって逐次に上限値および下限値を定めることにより、輪郭線群の上限曲線および下限曲線を決定しても良い。統計処理の一例を(式1)に示す。

0024

ここで、Lupper(t)は上限曲線、Llower(t)は下限曲線、xi(t)はi番目の輪郭線、tは時刻、αは点群標準偏差係数、Nは輪郭線の数である。点群の標準偏差に係数を掛けることにより上限値および下限値を定めている。また、日次、週次あるいは月次などの予め決めたサイクルで上限曲線および下限曲線を抽出するようにして、健全品ばらつき範囲を学習しても良い。

0025

次のステップS15で、打音検査装置1は、ステップS14で生成した上限曲線および下限曲線を健全品ばらつき範囲記憶部103bに記憶する。このとき、表示装置102に表示された図2の生成画面においてファイル指定ボックス192Aに入力されたファイル名(例えばCriteria_P-a_D2.csv)で、健全品ばらつき範囲の仕様を規定する上限曲線および下限曲線の情報が、健全品ばらつき範囲記憶部103bに記録される。この際に、形状寸法測定器8から取得した形状寸法に基づく形状寸法区分を品種と関連付けて記憶する。もしくは、形状寸法測定器8が設置されていない場合は、形状寸法区分指定ボックス199Aで指定された形状寸法区分を品種と関連付けて記憶する。

0026

また、ステップS15で打音検査装置1は、表示装置102の図2に示す生成画面の振幅波形の健全品ばらつき範囲表示欄196Aに、ステップS14で生成した上限曲線および下限曲線のチャートを表示する。その後、図3のフローチャートで示す健全品ばらつき範囲の生成処理を終了する。なお、健全品ばらつき範囲を規定する上限曲線および下限曲線のデータテーブルは図示しないが、後述の図10、11に示す打音データテーブルと同様とし、品種番号(P-a)および形状寸法区分(D2)と紐付けて記憶する。このようにして、複数の健全品の打音データに基づいて、健全品として許容されるばらつき許容幅、すなわち振幅波形データから抽出された輪郭線の上限曲線と下限曲線による健全品ばらつき範囲を設定する。

0027

‐欠陥有無判定の画面−
図8は、打音検査装置1が表示装置102に表示する欠陥有無判定画面の一例を示す図である。図8に示すように、欠陥有無判定画面は、品種指定ボックス191B、ファイル指定ボックス192B、形状寸法区分指定ボックス199B、欠陥有無判定ボタン194、判定結果表示ボックス195、振幅波形の健全品ばらつき範囲からの逸脱判定結果表示欄196Bから構成される。

0028

‐欠陥有無判定の処理手順‐
図9は、打音検査装置1による欠陥有無判定の処理手順を示すフローチャートである。このフローチャートで示す処理は打音検査用計算機100の演算処理装置101によって実行される処理を示すものである。

0029

表示装置102の図8に示す画面より欠陥有無判定ボタン194が指定されると、図9に示す処理が開始される。この時に、製造実行システム5から取得した検査対象品である金属製品2の品種データおよび形状寸法区分に基づいて、品種番号(P-a)を品種指定ボックス191Bに、形状寸法区分(例えばD2)を形状寸法区分指定ボックス199Bに表示する。また、それと共に、表示した品種番号(P-a)および形状寸法区分(D2)に適合する健全品ばらつき範囲の仕様を規定するファイルのファイル名(例えばCriteria_P-a_D2.csv)を、健全品ばらつき範囲記憶部103bから検索してファイル指定ボックス192Bに表示する。ファイル指定ボックス192Bにファイル名を入力することにより、健全品ばらつき範囲の仕様を規定するファイルを指定するようにしてもよい。

0030

図9のステップS21で、打音検査装置1は、打撃制御信号出力器200を用いて、打撃装置3に打撃制御信号(打撃命令)を出力する。これにより、打撃装置3は検査対象の金属製品2を打撃する。

0031

次のステップS22で、打音検査装置1は、打撃装置3の打撃とタイミングを揃えて、マイク4より測定した音圧データをA/D変換器300によりA/D変換することで、打音データの収集を開始する。ステップS23で、予め定めた所定の時間区間が経過したかどうかを打音検査用計算機100内のタイマーで判定する。なお、所定の時間区間に収集した打音データは打音検査用計算機100内のRAMに一時的に記憶されている。

0032

ステップS23で、所定の時間区間が経過した場合はA/D変換を終了して、ステップS24へ進む。ステップS24では、収集した打音データを履歴データ記憶部103aに記憶する。その際に、製造実行システム5から収集した金属製品2の品種番号と、形状寸法測定器8から取得した形状寸法に基づく形状寸法区分とを打音データと関連付けて記憶する。もしくは、形状寸法測定器8が設置されていない場合は、形状寸法区分指定ボックス199Bで指定された形状寸法区分を記憶する。図10および図11に、履歴データ記憶部103aのデータテーブルの例を示す。

0033

図10は履歴データ記憶部103aに記憶されている各打音データに関するメタデータを表すメタデータテーブルである。図4と同様に、図10のメタデータテーブルにおいて、第1列の「打音データID」は各打音データのID番号を表し、第2列の「品種番号」は各打音データに対応する金属製品2の品種番号を表し、第3列の「形状寸法区分」は金属製品2の形状寸法の区分を表し、第4列の「判定結果」は各打音データに対応する金属製品2の欠陥有無の判定結果を表している。これらのメタデータは、各打音データを測定する毎に記録される。

0034

図11は履歴データ記憶部103aに記憶されている各打音データの内容を表す生データテーブルである。図11の生データテーブルにおいて、第1列の「打音データID」は各打音データのID番号を表し、第2列以降の「時刻1」〜「時刻N」は各時刻における打音の音圧レベルを表している。これらのデータは、各打音データを測定する毎に記録される。図10に示すメタデータと図11に示す打音生データは、それぞれの「打音データID」が表すID番号によって紐付けられる。

0035

次にステップS25で、打音検査装置1は、ステップS24で履歴データ記憶部103aに記憶した検査対象の金属製品2の打音データから、その打音データが表す振幅波形データの輪郭線を計算する。つづいて、ステップS26で、打音検査装置1は、ファイル指定ボックス192Bに表示されたファイル名のファイルを健全品ばらつき範囲記憶部103bから検索して取得する。ファイルには、健全品ばらつき範囲の仕様を規定する上限曲線および下限曲線の情報が、品種と形状寸法区分に関連付けて記憶されているので、このファイルを読み込むことで、打音検査装置1は、検査対象の金属製品2に対応する振幅波形データの健全品ばらつき範囲を規定する上限曲線および下限曲線を決定することができる。

0036

ステップS27で、打音検査装置1は、ステップS25で計算した検査対象の金属製品2の打音データとしての振幅波形データの輪郭線が、健全品ばらつき範囲を規定する上限曲線の上側に逸脱(超過逸脱)しているか、あるいは下限曲線の下側に逸脱(不足逸脱)しているかを判定する。どちらかに逸脱している場合は、検査対象の金属製品2が欠陥品であると判断してステップS28に進み、ステップS28で、欠陥有りのフラグ設定を行う。一方、どちらにも逸脱していない場合は、検査対象の金属製品2が健全品であると判断してステップS29に進み、ステップS29で、欠陥無し(健全品)のフラグ設定を行う。このように、検査対象品の打音データである振幅波形データが健全品ばらつき範囲としてのばらつき許容幅の範囲内に収まっている場合に、検査対象の金属製品2を健全品と判定する。

0037

最後に、ステップS30で、打音検査装置1は、品質管理システム6に判定結果を送付すると共に、表示装置102の図8に示す判定画面の判定結果表示ボックス195に判定結果を表示する。また、振幅波形の健全品ばらつき範囲からの逸脱判定結果表示欄196Bに判定結果のチャートを表示する。図8表示欄196Bには、上限曲線205Cおよび下限曲線204Cと共に、下限曲線204Cを下側に不足逸脱した振幅波形データの輪郭線206を、検査対象の金属製品2が欠陥品である場合の一例として示す。品質管理システム6に送付した判定結果は図10のメタデータテーブルにおいて第4列の「判定結果」に反映され、履歴データ記憶部103aに格納される。

0038

‐第1の実施形態の効果‐
以上に説明したように、本実施形態の打音検査装置1によれば、健全製品の打音データ群から自動的に打音による振幅波形データの健全品ばらつき範囲を計算して、その範囲から検査対象製品の振幅波形データの逸脱を判定することによって打音検査を行う。そのため、以下の効果を得ることができる。

0039

すなわち、本実施形態の打音検査装置1では、打音検査用の判定しきい値を人手で製品品種毎に設定する必要がないため、人手工数あるいは人件費コストを削減することができる。また、欠陥製品を予め準備して、健全製品の打音データと欠陥製品の打音データを比較することにより判定しきい値を設定する作業が必要ないため、欠陥製品の管理コスト、あるいは模擬欠陥製品の製造コストが不要になる。また、予め想定した欠陥製品による判定しきい値設定を行わないため、健全品ばらつき範囲を逸脱するあらゆる欠陥製品を検出することが可能になる。
更に、金属製品の材料上の欠陥は打音の音圧の強弱を左右するため、本実施形態の打音検査装置1では、打撃から減衰するまでの時間軸上の振幅波形の逸脱からこうした材料欠陥を検出することができる。
更に、金属製品の同一品種内であっても寸法公差内で形状寸法がばらつくが、打音変動因子別として形状寸法区分別に打音検査を行っているので、打音判定の検出精度が向上する。

0040

第1の実施形態では、検査対象の金属製品2に対して、品種データを形状寸法データで区分して、打音データの輪郭線が健全品ばらつき範囲を逸脱しているか否かを判定することで、その金属製品2の欠陥有無を判定した。しかし、検査対象の金属製品2に対して、品種データを形状寸法データで区分して、以下の第2の実施形態で説明するように、打音データの周波数スペクトルを用いて欠陥の有無を判定してもよい。

0041

第1の実施形態では、検査対象の金属製品2に対して、品種データを形状寸法データで区分して、打音データが健全品ばらつき範囲を逸脱しているか否かを判定することで、その金属製品2の欠陥有無を判定した。しかし、検査対象の金属製品2に対して、品種データを形状寸法データで区分することなく、その金属製品2の欠陥有無を判定してもよい。このような判定は、金属製品2の形状寸法が均一の場合や、打音データが形状寸法に依存しない場合等に適用することができる。

0042

(第2の実施形態)
図12は、本実施形態における打音検査装置のシステム構成図である。本実施形態では、打音検査装置を計算機システムによって実現する例で示す。第2の実施形態では、打音データの周波数スペクトルの全域を対象にして欠陥の有無を判定する例で説明する。更に、本実施形態では、打音変動因子として製造経路データを例に説明する。
本実施形態では、第1の実施形態として図1に示したシステム構成図の形状寸法測定器8に替えて、番号リーダー9を備えている。その他の構成は、図1と同様であるのでその説明を省略する。

0043

打音検査用計算機100は、金属製品2に貼付された番号2Nを番号リーダー9により読み取り、番号2Nを取得する。番号2Nは、金属製品2の個体を識別する個体番号、あるいは金属製品2の個体群を識別する個体群番号であり、金属製品2の製造経路毎に固有の製造経路識別番号に紐付けられている。打音検査用計算機100は、製造実行システム5に記録された製造トレーサビリティ情報を用いて、取得した番号2Nに対応する製造経路識別番号を引き当てることができる。あるいは、番号2Nに製造経路識別番号を含めて、番号リーダー9により製造経路識別番号を直接読み取っても良い。番号リーダー9は、番号2Nの刻印方式に応じて、例えばバーコードリーダー、あるいは画像認識装置などである。

0044

製造経路識別番号とは、複数ある製造ライン同一製品を製造する場合に製造ラインを識別する番号、あるいは1つの製造ラインで複数の製造装置を用いて同一製品を製造する場合に製造装置を識別する番号、あるいは1つの製造装置で複数の型などの治具を用いて同一製品を製造する場合に治具を識別する番号、あるいはそれらの組合せを識別する番号である。

0045

同一製品の同一品種であっても、上記の製造経路の違いによって、金属製品2の形状寸法に寸法公差内でばらつきが生じることがある。本実施形態では、このばらつきの範囲を複数に区分した製造経路区分を用いて打音データによる欠陥有無判定を行う。

0046

‐健全品ばらつき範囲の生成画面−
図13は、図12に示した打音検査装置1が表示装置102に表示する健全品ばらつき範囲の生成画面の一例を示す図である。第1の実施形態で説明した図2の画面と異なる構成要素は、振幅波形の健全品ばらつき範囲表示欄196Aに替えて周波数スペクトルの健全品ばらつき範囲表示欄197Aを設けている。更に、形状寸法区分指定ボックス199Aに替えて製造経路区分指定ボックス200Aを設けている。

0047

‐健全品ばらつき範囲の生成の処理手順‐
図14は、打音検査装置1による健全品ばらつき範囲を生成する処理手順を示すフローチャートである。このフローチャートで示す処理は打音検査用計算機100の演算処理装置101によって実行される処理を示すものである。

0048

表示装置102に表示された図13に示す生成画面において健全品ばらつき範囲生成ボタン193が指定されると、図14に示す処理が開始される。この時に、製造実行システム5から取得した健全品である金属製品2の品種データに基づいて、品種番号(P-a)を品種指定ボックス191Aに表示する。品種指定ボックス191Aに品種番号を入力することにより、品種を指定するようにしてもよい。更に、製造経路区分指定ボックス200Aに、当該品種番号における製造経路区分(例えばR3)を表示あるいは指定する。

0049

打音検査装置1は、ステップS41で、履歴データ記憶部103aから、指定された品種(P-a)および製造経路区分(R3)と同一品種で同一製造経路区分の健全品の打音データ群を取得する。そして、ステップS42で、各打音データの周波数スペクトルの計算を行う。例えば図5の第2列に示す打音生データとしての振幅波形データ201Aから図15の第2列に示す周波数スペクトル211Aを計算する。

0050

図15の周波数スペクトル211Aにおいて、横軸は周波数(kHz)であり、縦軸はスペクトル強度(dB)である。つづいて、ステップS43で、ステップS42で計算した周波数スペクトルの輪郭線の計算を行う。例えば図15の第3列に示すように、周波数スペクトル211Aに対して輪郭線211Bを計算する。ステップS44で、全打音データの周波数スペクトルの輪郭線計算が終了したかどうかを判別する。終了していなければ、ステップS42、S43の処理に戻る。この処理を繰り返すことで、図5の打音生データとしての振幅波形データ204A、205Aから図15の周波数スペクトル214A、215Aをそれぞれ計算し、各スペクトルの輪郭線214B、215Bを計算する。

0051

ステップS44において全打音データに対する周波数スペクトルの輪郭線計算を終了したと判別された後、打音検査装置1は、ステップS45で、全ての周波数スペクトルの輪郭線を合わせた輪郭線群の上限を抽出する。この周波数スペクトルの輪郭線群の上限の抽出の手順を図16および図17を用いて説明する。図16は、周波数スペクトルの輪郭線211B、214B、215Bを重ね書きしたチャートである。ステップS45では、図16の横軸である周波数軸を走査しながら、これらの周波数スペクトルの輪郭線の各周波数での上限値を逐次に抽出することにより、図17に示す上限曲線216Cを抽出することができる。こうして抽出された周波数スペクトルの輪郭線群の上限曲線216Cは、各近接ピークを渡る台形矩形を組み合わせた形状となる。

0052

なお、本実施形態では周波数スペクトルの輪郭線群の下限曲線は省略しているが、下限曲線を求めることもできる。また、本実施形態では周波数スペクトルの輪郭線群から直接に上限曲線を抽出しているが、第1の実施形態と同様に、健全品の履歴データが大量(例えば50以上)に蓄積された段階では、周波数スペクトルの輪郭線群の各周波数の値に対応する点群から統計処理によって逐次に上限値を定めることにより、周波数スペクトルの輪郭線群の上限曲線を決定しても良い。

0053

最後に、ステップS46で、打音検査装置1は、ステップS45で生成した周波数スペクトルの上限曲線を健全品ばらつき範囲記憶部103bに記憶する。このとき、表示装置102に表示された図13の生成画面においてファイル指定ボックス192Aに入力されたファイル名(例えばCriteria_P-a_R3.csv)で、健全品ばらつき範囲の仕様を規定する上限曲線の情報が、健全品ばらつき範囲記憶部103bに記録される。この際に、番号リーダー9から取得した番号2Nに基づく製造経路区分を打音データIDと関連付けて記憶する。もしくは、番号リーダー9が設置されていない場合は、製造経路区分指定ボックス200Aで指定された製造経路区分を打音データIDと関連付けて記憶する。

0054

また、ステップS46で打音検査装置1は、更に、表示装置102の図13に示す生成画面の周波数スペクトルの健全品ばらつき範囲表示欄197Aに、ステップS45で生成した上限曲線のチャートを表示する。その後、図14の健全品ばらつき範囲の生成処理を終了する。このようにして、複数の健全品の打音データに基づいて、健全品として許容されるばらつき許容幅、すなわち周波数スペクトルから抽出された輪郭線の上限曲線による健全品ばらつき範囲を設定する。

0055

‐欠陥有無判定の画面−
図18は、打音検査装置1が表示装置102に表示する欠陥有無判定画面の一例を示す図である。第1の実施形態で説明した図8の画面と異なる構成要素は、振幅波形の健全品ばらつき範囲からの逸脱判定結果表示欄196Bの替わりに周波数スペクトルの健全品ばらつき範囲からの逸脱判定結果表示欄197Bを設けている。また、形状寸法区分指定ボックス199Bの替わりに製造経路区分指定ボックス200Bを設けている。

0056

‐欠陥有無判定の処理手順‐
図19は、打音検査装置1による欠陥有無判定の処理手順を示すフローチャートである。このフローチャートで示す処理は打音検査用計算機100の演算処理装置101によって実行される処理を示すものである。

0057

図18に示す表示装置102の画面の欠陥有無判定ボタン194が指定されると、図19に示す処理が開始される。この時に、製造実行システム5から取得した検査対象品である金属製品2の品種データおよび製造経路区分に基づいて、品種番号(P-a)を品種指定ボックス191Bに、製造経路区分(R3)を製造経路区分指定ボックス200Bに表示する。また、それと共に、表示した品種番号(P-a)および製造経路区分(R3)に適合する健全品ばらつき範囲の仕様を規定するファイルのファイル名(例えばCriteria_P-a_R3.csv)を、健全品ばらつき範囲記憶部103bから検索してファイル指定ボックス192Bに表示する。ファイル指定ボックス192Bにファイル名を入力することにより、健全品ばらつき範囲の仕様を規定するファイルを指定するようにしてもよい。

0058

図19に示すステップS21〜S24の処理は、図9に示すステップS21〜S24と同様であり詳細は省略するが、打音データが取得され、図10および図11に示すように、履歴データが履歴データ記憶部103aに記憶される。その際に、製造実行システム5から収集した金属製品2の品種番号と、番号リーダー9から取得した番号2Nに基づく製造経路区分とを打音データと関連付けて記憶する。もしくは、番号リーダー9が設置されていない場合は、製造経路区分指定ボックス200Bで指定された製造経路区分を記憶する。

0059

次に、ステップS51で、打音検査装置1は、ステップS24で履歴データ記憶部103aに記憶した検査対象の金属製品2の打音データから、その打音データが表す振幅波形データの周波数スペクトルを計算する。そして、ステップS52で、その周波数スペクトルの輪郭線を計算する。

0060

つづいて、ステップS53で、打音検査装置1は、ファイル指定ボックス192Bに表示されたファイル名のファイルを健全品ばらつき範囲記憶部103bから取得し、これを読み込むことで、検査対象の金属製品2に対応する周波数スペクトルの健全品ばらつき範囲を規定する上限曲線を読み込む。ファイルには、健全品ばらつき範囲の仕様を規定する情報が、品種と製造経路区分に関連付けて記憶されているので、このファイルを読み込むことで、打音検査装置1は、検査対象の金属製品2に対応する周波数スペクトルの健全品ばらつき範囲を規定する上限および下限を決定することができる。

0061

そして、ステップS54で、打音検査装置1は、ステップS52で計算した検査対象の金属製品2の打音データとしての周波数スペクトルの輪郭線が、健全品ばらつき範囲を規定する上限曲線の上側に超過逸脱しているかを判定する。逸脱している場合はステップS55で、欠陥有りのフラグ設定を行い、逸脱していない場合はステップS56で、欠陥無し(健全品)のフラグ設定を行う。このように、検査対象品の打音データが健全品ばらつき範囲として表されるばらつき許容幅の範囲内に収まっている場合に、検査対象の金属製品2を健全品と判定する。

0062

最後に、ステップS56で、打音検査装置1は、品質管理システム6に判定結果を送付すると共に、表示装置102の図18に示す判定画面の判定結果表示ボックス195に判定結果を表示する。また、周波数スペクトルの健全品ばらつき範囲からの逸脱判定結果表示欄197Bに判定結果のチャートを表示する。図18の表示欄197Bには、上限曲線216Cと共に、上限曲線216Cを逸脱した周波数スペクトルの輪郭線217Cを、検査対象の金属製品2が欠陥品である場合の一例として示す。

0063

‐第2の実施形態の効果‐
以上説明したように、本実施形態の打音検査装置1によれば、健全製品の打音データ群から自動的に打音の周波数スペクトルの健全品ばらつき範囲を計算して、その範囲から検査対象製品の打音データによる周波数スペクトルの逸脱を判定することによって打音検査を行う。そのため、以下の効果を得ることができる。

0064

すなわち、本実施形態の打音検査装置1では、周波数スペクトル上に存在する多数の周波数ピークの中から欠陥検査のために着目する周波数ピークを人手で決定し、その周波数ピークに対する打音検査用の判定しきい値を人手で製品品種毎に設定する必要がないため、人手工数あるいは人件費コストを削減することができる。複雑形状の金属製品の周波数ピークは主要なものだけで数十に及ぶことがあり、その周波数は製品品種毎に異なる。また、欠陥製品を予め準備して、健全製品の打音データの周波数スペクトルと欠陥製品の打音データの周波数スペクトルを比較することにより周波数ピークを決定し、その判定しきい値を設定する作業が必要ないため、欠陥製品の管理コスト、あるいは模擬欠陥製品の製造コストが不要になる。また、予め想定した欠陥製品による周波数ピーク決定および判定しきい値設定を行わないため、周波数スペクトルの健全品ばらつき範囲を逸脱するあらゆる欠陥製品を検出することを可能にする。

0065

更に、金属製品の構造上の欠陥は打音の周波数を左右するため、本実施形態の打音検査装置1では、周波数スペクトルの全域での周波数軸上のピーク周波数の移動による逸脱からこうした構造欠陥を検出することができる。
更に、同一製品の同一品種であっても、寸法公差内で金属製品の製造経路によって形状寸法にばらつきがあるが、打音変動因子別として製造経路区分別に打音検査を行っているので、打音判定の検出精度が向上する。

0066

第2の実施形態では、検査対象の金属製品2に対して、品種データを製造経路データで区分して、打音データの周波数スペクトルを用いて欠陥の有無を判定した。しかし、検査対象の金属製品2に対して、品種データを製造経路データで区分して、上述の第1の実施形態で説明したように、打音データの輪郭線が健全品ばらつき範囲を逸脱しているか否かを判定することで、その金属製品2の欠陥有無を判定してもよい。

0067

第2の実施形態では、検査対象の金属製品2に対して、品種データを製造経路データで区分して、打音データが健全品ばらつき範囲を逸脱しているか否かを判定することで、その金属製品2の欠陥有無を判定した。しかし、検査対象の金属製品2に対して、品種データを製造経路データで区分することなく、その金属製品2の欠陥有無を判定してもよい。このような判定は、金属製品2の製造経路データが均一の場合や、打音データが製造経路に依存しない場合等に適用することができる。

0068

(第3の実施形態)
第3の実施形態における打音検査装置のシステム構成図は図1と同様であり、その説明を省略する。第3の実施形態では、打音データの打撃から減衰するまでの振幅波形と、周波数スペクトルの全域の両方を対象にして欠陥の有無を判定する。打音変動因子は形状寸法の例で説明するが、製造経路の場合も同様である。
健全品ばらつき範囲の生成の処理手順、欠陥有無判定の処理手順は第1の実施形態及び第2の実施形態で示したフローチャートの複合あるいは並列処理であるのでその説明を省略する。

0069

打音検査装置1は、第1の実施形態及び第2の実施形態で説明したように、打音データの振幅波形と周波数スペクトルの両方に対して健全品ばらつき範囲を生成する。そして、図20に示すように、表示装置102の生成画面において、振幅波形の健全品ばらつき範囲表示欄196Aおよび周波数スペクトルの健全品ばらつき範囲表示欄197Aの両方に、それぞれのチャートを表示する。

0070

打音検査装置1は、第1の実施形態及び第2の実施形態で説明したように、振幅波形の健全品ばらつき範囲からの逸脱と、周波数スペクトルの健全品ばらつき範囲からの逸脱を両方共に判定する。そして、図21に示すように、表示装置102の欠陥有無判定画面において、振幅波形の健全品ばらつき範囲からの逸脱判定結果表示欄196Bおよび周波数スペクトルの健全品ばらつき範囲からの逸脱判定結果表示欄197Bに、それぞれの判定結果のチャートを表示する。

0071

‐第3の実施形態の効果‐
以上説明したように、本実施形態の打音検査装置1によれば、健全製品の打音データ群から自動的に打音による振幅波形データの健全品ばらつき範囲とその周波数スペクトルの健全品ばらつき範囲を両方共に計算して、その範囲からの検査対象製品の打音データによる振幅波形および周波数スペクトルの逸脱を判定することによって打音検査を行う。そのため、以下の効果を得ることができる。

0072

すなわち、本実施形態の打音検査装置1では、振幅波形と周波数スペクトルのどちらで逸脱を検出したか、あるいは両方共に逸脱を検出したかを調べることによって、欠陥の種類を自動的に検出することを可能にする。例えば、金属製品の材料の欠陥は打音の音圧の強弱を左右するため、打撃から減衰するまでの時間軸上の振幅波形の逸脱から材料欠陥を検出することができる。一方、金属製品の構造の欠陥は打音の周波数を左右するため、周波数スペクトルの全域での周波数軸上のピーク周波数の移動による逸脱から構造欠陥を検出することができる。また、振幅波形と周波数スペクトルの詳細な検出情報(振幅波形逸脱の時間帯逸脱方向、周波数スペクトル逸脱のピーク周波数値など)と詳細な欠陥種類(材料欠陥のレベル、構造欠陥の部位など)を照合して学習することにより、詳細な欠陥種類を検出することができる。

0073

第3の実施形態では、打音変動因子は形状寸法の例で説明したが、検査対象の金属製品2に対して、品種データを形状寸法データや製造経路データで区分することなく、その金属製品2の欠陥有無を判定してもよい。このような判定は、金属製品2の形状寸法が均一の場合、製造経路データが均一の場合、打音データが形状寸法や製造経路に依存しない場合等に適用することができる。

0074

なお、検査対象品は単一素材の金属製品に限定されるものではなく、打撃によって音を発生する素材で形成された様々な製品や部品が含まれる。例えば、金属とセラミックスなどの他の素材との複合材人造石コンクリート)などであってもよい。

0075

以上説明した実施形態によれば、次の作用効果が得られる。
(1)打音検査装置1が備える演算処理装置101は、複数の健全品の打音データに基づいて、健全品として許容されるばらつき許容幅を表す健全品ばらつき範囲を設定し(ステップS14、S15、ステップS45、S46)、検査対象品の打音データがばらつき許容幅の範囲内に収まっているか否かを判定することで、検査対象品が健全品であるか否かを判定する(ステップS27、ステップS54)。これにより、打音検査用の判定しきい値を予め設定する作業が簡単になる。

0076

(2)打音データは時系列の振幅波形データであり、第1の実施形態では、演算処理装置101は、複数の健全品で収集された振幅波形データからそれぞれの輪郭線を抽出し(ステップS12)、抽出された輪郭線の上限と下限の範囲をばらつき許容幅とする(ステップS14、S15)。また、第2の実施形態では、演算処理装置101は、複数の健全品で収集された振幅波形データからそれぞれの周波数スペクトルを抽出し(ステップS42)、抽出された周波数スペクトルの輪郭線からばらつき許容幅を設定する(ステップS45、46)。また、第3の実施形態では、これらを組み合わせてばらつき許容幅を設定する。このようにしたので、ばらつき許容幅を適切に設定することができる。

0077

(3)第1の実施形態では、演算処理装置101は、検査対象品の振幅波形データの輪郭線がばらつき許容幅の範囲内に収まっていない場合に検査対象品を材料欠陥と判定することができる(ステップS27、S28)。また、第2の実施形態では、演算処理装置101は、検査対象品の周波数スペクトルの輪郭線がばらつき許容幅の範囲内に収まっていない場合に検査対象品を構造欠陥と判定することができる(ステップS54、S55)。また、第3の実施形態では、これらを組み合わせて検査対象品の欠陥の種類を判定することができる。これにより、検査対象品が健全品ではなく欠陥ありと判定された場合に、その欠陥の種類についても判定することが可能になる。

0078

(4)第1の実施形態では、製品の形状寸法を測定する手段を設けることによって寸法区分別に健全品ばらつき範囲を設定し、打音変動因子である形状寸法区分別に検査対象品の打音データがばらつき許容幅の範囲内に収まっているか否かを判定することで、検査精度を向上することが可能になる。

0079

(5)第2の実施形態では、製品の個体番号を読み取る手段を設けることによって製造経路区分別に健全品ばらつき範囲を設定し、打音変動因子である製造経路区分別に検査対象品の打音データがばらつき許容幅の範囲内に収まっているか否かを判定することで、検査精度を向上することが可能になる。

0080

本発明は、上記の実施形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。

0081

1打音検査装置
2金属製品
3打撃装置
4マイク
5製造実行システム(MES)
6品質管理システム(QCS)
7ネットワーク
形状測定器
9 番号リーダー
100打音検査用計算機
101演算処理装置
102表示装置
103 記憶装置

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 株式会社ナベルの「 検査装置」が 公開されました。( 2020/10/29)

    【課題】従来の検査装置と異なる新しい原理で検査対象を検査する検査装置を提供する。【解決手段】検査装置10は、打撃体1と、応力発光体2と、検出部31と、入射抑制部8とを備える。入射抑制部8は、検出部31... 詳細

  • 大成建設株式会社の「 配管の肉厚を計測するための計測装置および配管摩耗監視システム」が 公開されました。( 2020/10/29)

    【課題】配管の肉厚の計測作業を効率良く実施可能な技術を提供すること。【解決手段】円筒形状の配管に固定して、配管の肉厚を計測する計測装置であって、超音波探触子10、位置保持具20、および磁石30から構成... 詳細

  • 三菱日立パワーシステムズ株式会社の「 フィンチューブの検査装置および方法」が 公開されました。( 2020/10/29)

    【課題】フィンチューブの検査装置および方法において、フィンチューブの検査作業の効率化を図ると共に検査精度の向上を図る。【解決手段】フィンチューブ31における長手方向の端部に設けられて超音波を発信する発... 詳細

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ