図面 (/)

技術 ポリプロピレン系樹脂組成物及びそれを用いた成形体

出願人 日本ポリプロ株式会社
発明者 壁谷正之今村五士藤沢貴之
出願日 2015年8月27日 (6年2ヶ月経過) 出願番号 2015-167635
公開日 2017年3月2日 (4年8ヶ月経過) 公開番号 2017-043707
状態 特許登録済
技術分野 付加系(共)重合体、後処理、化学変成 付加重合用遷移金属・有機金属複合触媒 高分子組成物
主要キーワード 低歪み領域 リン酸層 電装部材 難燃部材 ハロゲン化フタルイミド 本願規定 大型部材 データポイント数
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2017年3月2日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (0)

図面はありません

課題

1.0mmt以下の厚みに対して高い難燃性を保有し、シート成形においても変色が生じない為に外観及び成形性で良好な成形体を得ることが可能な難燃性を有するポリプロピレン系樹脂組成物及びそれを用いて成形された成形体を提供する。

解決手段

特定の長鎖分岐構造を有するポリプロピレン樹脂有機系難燃剤特定量配合することにより、燃焼時における自消性耐ドリップ性とを両立することが可能となり、薄肉製品において高い難燃性(UL94−VにおけるV0)と耐ドリップ性とを発現し、かつ、変色することなく外観が良好で、成形加工性特にシート成形に適した難燃性を有するポリプロピレン系樹脂組成物を得る。

概要

背景

難燃性評価基準には、樹脂自身が燃え難いという特性(所謂、自消性)の他、燃焼あるいは溶融状態の樹脂がドリップしないこと、又はドリップしても他の物に燃え広げ難いという特性(所謂、耐ドリップ性、又はドリップ防止性)が要求されており、近年、自消性と耐ドリップ性を両立したより高い難燃レベルが要求されている。
近年、自動車分野や鉄道車両内装分野、家電製品、住設分野においては難燃性と共に軽量化のニーズが高まっており、それに伴い樹脂の薄肉化が注目されている。特に家電部材及び住設部材においては製品の小型化が進むにつれ「UL規格(米国アンダーライタズラボラトリー規格)−94V」において製品厚みが1.0mmt以下で「V−0」という高度な難燃性能が要求されている。
このように、製品厚み1.0mmt以下の薄肉成形が可能でありかつ難燃性能が「V−0」と高い性能を満足する難燃材料が現在求められている。

特許文献1にはテトラフルオロエチレン樹脂PTFE)を熱可塑性樹脂に少量添加することにより、熱可塑性樹脂の燃焼時における滴下防止の効果(耐ドリップ性)を発現し、難燃性を改良した難燃性樹脂組成物が開示されている。しかしながら、PTFEは混練時のせん断応力を受けることによって凝集しやすいので、特許文献1に記載される技術ではPTFEの凝集による機械物性及び難燃性の低下が懸念され、機械物性に影響しない程度にまで凝集を抑制するには、PTFEの添加量を限りなく少量にする必要がある。その為、PTFEの添加量の減少に伴う難燃性の低下が避けられず、機械物性を低下させることなく難燃性を維持することは困難である。特許文献1以外にもPTFEを用いた技術がその後数多く開示されているが、それらの技術に於いても、同様の問題が懸念される。

特許文献2,3には長鎖分岐構造を有するポリプロピレン樹脂を用いることにより、熱可塑性樹脂の燃焼時における滴下防止の効果(耐ドリップ性)を発現し、高い難燃性能を付与した難燃性樹脂組成物が開示されている。しかしながら、これらに開示された技術は高い流動性を保持した難燃樹脂組成物であるので、射出成型部材には好適であるものの、薄肉化を目的としたシート成形をするという観点からは、より好適な難燃性樹脂組成物が求められている。

更に特許文献4,5には、長鎖分岐構造を有するポリプロピレン樹脂と繊維を用いることにより、高い難燃性を付与した難燃性樹脂組成物が開示されている。これらに開示された技術は繊維を含有しているので、厚さが1mm以下の製品に適用すると、製品の表面に繊維が浮き出て外観に影響を与えてしまう懸念が有り、このような影響について考慮することなく厚さが1mm以下の製品に適用可能な難燃性樹脂組成物も求められている。

概要

1.0mmt以下の厚みに対して高い難燃性を保有し、シート成形においても変色が生じない為に外観及び成形性で良好な成形体を得ることが可能な難燃性を有するポリプロピレン系樹脂組成物及びそれを用いて成形された成形体を提供する。 特定の長鎖分岐構造を有するポリプロピレン樹脂に有機系難燃剤特定量配合することにより、燃焼時における自消性と耐ドリップ性とを両立することが可能となり、薄肉製品において高い難燃性(UL94−VにおけるV0)と耐ドリップ性とを発現し、かつ、変色することなく外観が良好で、成形加工性特にシート成形に適した難燃性を有するポリプロピレン系樹脂組成物を得る。なし

目的

しかしながら、これらに開示された技術は高い流動性を保持した難燃樹脂組成物であるので、射出成型部材には好適であるものの、薄肉化を目的とした

効果

実績

技術文献被引用数
1件
牽制数
1件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

下記の条件(A−1)及び(A−2)を満足するポリプロピレン系樹脂(A)と、有機系難燃剤(B)とを含有し、かつ下記条件(ア)を満足することを特徴とするポリプロピレン系樹脂組成物。条件(A−1)ポリプロピレン系樹脂(A)が、下記の(X−i)〜(X−iv)の特性を有する長鎖分岐構造を有するポリプロピレン樹脂(X)を含有する。特性(X−i):メルトフローレートMFR)(230℃、2.16kg荷重)が0.1〜30.0g/10分であること。特性(X−ii):GPCによる分子量分布Mw/Mnが3.0〜10.0、且つMz/Mwが2.5〜10.0であること。特性(X−iii):溶融張力MT)(単位:g)は、log(MT)≧−0.9×log(MFR)+0.7またはMT≧15のいずれかを満たすこと。特性(X−iv):25℃パラキシレン可溶成分量(CXS)がポリプロピレン樹脂(X)全量に対して5.0重量%未満であること。条件(A−2)ポリプロピレン系樹脂(A)が、前記長鎖分岐構造を有するポリプロピレン樹脂(X)及び下記の(Y−i)〜(Y−ii)の特性を有するポリプロピレン樹脂(Y)からなる群から選ばれる少なくとも1種のポリプロピレン系樹脂を含有する。特性(Y−i):プロピレン単独重合体プロピレンα−オレフィンブロック共重合体及びプロピレン−α−オレフィンランダム共重合体からなる群から選ばれる少なくとも1種のポリプロピレン樹脂であり、前記長鎖分岐構造を有するポリプロピレン樹脂(X)に該当しない。特性(Y−ii):ポリプロピレン樹脂(Y)は、メルトフローレート(MFR)(230℃、2.16kg荷重)が0.1〜10g/10分である。条件(ア)各成分の含有量が、ポリプロピレン系樹脂(A)60〜99重量部及び有機系難燃剤(B)1〜40重量部の範囲にある(但し、ポリプロピレン系樹脂(A)と有機系難燃剤(B)との合計量を100重量部とする)。

請求項2

前記ポリプロピレン系樹脂(A)が、下記の条件(A−3)を満足する請求項1に記載のポリプロピレン系樹脂組成物。条件(A−3)ポリプロピレン系樹脂(A)が、長鎖分岐構造を有するポリプロピレン樹脂(X)及びポリプロピレン樹脂(Y)を含有し、その割合が、長鎖分岐構造を有するポリプロピレン樹脂(X)10〜99重量%とポリプロピレン樹脂(Y)1〜90重量%である(但し、長鎖分岐構造を有するポリプロピレン樹脂(X)とポリプロピレン樹脂(Y)との合計を100重量%とする)。

請求項3

前記有機系難燃剤(B)が、リン系難燃剤である請求項1又は2に記載のポリプロピレン系樹脂組成物。

請求項4

請求項1乃至3の何れか1項に記載のポリプロピレン系樹脂組成物を用いて成形された成形体

技術分野

0001

本発明は、難燃性を有するポリプロピレン系樹脂組成物に関し、さらに詳しくは、特定の長鎖分岐構造を有するポリプロピレン樹脂有機系難燃剤とを特定量配合し、好ましくは更に他のポリプロピレン樹脂を特定量配合してなる難燃性を有するポリプロピレン系樹脂組成物に関する。

背景技術

0002

難燃性の評価基準には、樹脂自身が燃え難いという特性(所謂、自消性)の他、燃焼あるいは溶融状態の樹脂がドリップしないこと、又はドリップしても他の物に燃え広げ難いという特性(所謂、耐ドリップ性、又はドリップ防止性)が要求されており、近年、自消性と耐ドリップ性を両立したより高い難燃レベルが要求されている。
近年、自動車分野や鉄道車両内装分野、家電製品、住設分野においては難燃性と共に軽量化のニーズが高まっており、それに伴い樹脂の薄肉化が注目されている。特に家電部材及び住設部材においては製品の小型化が進むにつれ「UL規格(米国アンダーライタズラボラトリー規格)−94V」において製品厚みが1.0mmt以下で「V−0」という高度な難燃性能が要求されている。
このように、製品厚み1.0mmt以下の薄肉成形が可能でありかつ難燃性能が「V−0」と高い性能を満足する難燃材料が現在求められている。

0003

特許文献1にはテトラフルオロエチレン樹脂PTFE)を熱可塑性樹脂に少量添加することにより、熱可塑性樹脂の燃焼時における滴下防止の効果(耐ドリップ性)を発現し、難燃性を改良した難燃性樹脂組成物が開示されている。しかしながら、PTFEは混練時のせん断応力を受けることによって凝集しやすいので、特許文献1に記載される技術ではPTFEの凝集による機械物性及び難燃性の低下が懸念され、機械物性に影響しない程度にまで凝集を抑制するには、PTFEの添加量を限りなく少量にする必要がある。その為、PTFEの添加量の減少に伴う難燃性の低下が避けられず、機械物性を低下させることなく難燃性を維持することは困難である。特許文献1以外にもPTFEを用いた技術がその後数多く開示されているが、それらの技術に於いても、同様の問題が懸念される。

0004

特許文献2,3には長鎖分岐構造を有するポリプロピレン樹脂を用いることにより、熱可塑性樹脂の燃焼時における滴下防止の効果(耐ドリップ性)を発現し、高い難燃性能を付与した難燃性樹脂組成物が開示されている。しかしながら、これらに開示された技術は高い流動性を保持した難燃樹脂組成物であるので、射出成型部材には好適であるものの、薄肉化を目的としたシート成形をするという観点からは、より好適な難燃性樹脂組成物が求められている。

0005

更に特許文献4,5には、長鎖分岐構造を有するポリプロピレン樹脂と繊維を用いることにより、高い難燃性を付与した難燃性樹脂組成物が開示されている。これらに開示された技術は繊維を含有しているので、厚さが1mm以下の製品に適用すると、製品の表面に繊維が浮き出て外観に影響を与えてしまう懸念が有り、このような影響について考慮することなく厚さが1mm以下の製品に適用可能な難燃性樹脂組成物も求められている。

先行技術

0006

特開2003−026935号公報
特開2009−275073号公報
特開2009−275074号公報
特開2014−205822号公報
特開2014−208802号公報

発明が解決しようとする課題

0007

本発明の課題は、従来の技術では困難であった、1.0mmt以下の厚みに対して高い難燃性を保有し、シート成形においても変色が生じない為に外観及び成形性で良好な成形体を得ることが可能な難燃性を有するポリプロピレン系樹脂組成物及びそれを用いて成形された成形体を提供することにある。

課題を解決するための手段

0008

本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、特定の長鎖分岐構造を有するポリプロピレン樹脂に有機系難燃剤を特定量配合することにより、燃焼時における自消性と耐ドリップ性とを両立することが可能となり、薄肉製品において高い難燃性(UL94−VにおけるV0)と耐ドリップ性とを発現し、かつ、変色することなく外観が良好で、成形加工性特にシート成形に適した難燃性を有するポリプロピレン系樹脂組成物が得られることを見出し、本発明を完成するに至った。

0009

すなわち、本発明の第1の発明によれば、下記の条件(A−1)及び(A−2)を満足するポリプロピレン系樹脂(A)と、有機系難燃剤(B)とを含有し、かつ下記条件(ア)を満足することを特徴とするポリプロピレン系樹脂組成物が提供される。
条件(A−1)
ポリプロピレン系樹脂(A)が、下記の(X−i)〜(X−iv)の特性を有する長鎖分岐構造を有するポリプロピレン樹脂(X)を含有する。
特性(X−i):メルトフローレートMFR)(230℃、2.16kg荷重)が0.1〜30.0g/10分であること。
特性(X−ii):GPCによる分子量分布Mw/Mnが3.0〜10.0、且つMz/Mwが2.5〜10.0であること。
特性(X−iii):溶融張力MT)(単位:g)は、
log(MT)≧−0.9×log(MFR)+0.7 または MT≧15
のいずれかを満たすこと。
特性(X−iv):25℃パラキシレン可溶成分量(CXS)がポリプロピレン樹脂(X)全量に対して5.0重量%未満であること。
条件(A−2)
ポリプロピレン系樹脂(A)が、前記長鎖分岐構造を有するポリプロピレン樹脂(X)及び下記の(Y−i)〜(Y−ii)の特性を有するポリプロピレン樹脂(Y)からなる群から選ばれる少なくとも1種のポリプロピレン系樹脂を含有する。
特性(Y−i):プロピレン単独重合体プロピレンα−オレフィンブロック共重合体及びプロピレン−α−オレフィンランダム共重合体からなる群から選ばれる少なくとも1種のポリプロピレン樹脂であり、前記長鎖分岐構造を有するポリプロピレン樹脂(X)に該当しない。
特性(Y−ii):ポリプロピレン樹脂(Y)は、メルトフローレート(MFR)(230℃、2.16kg荷重)が0.1〜10g/10分である。
条件(ア)
各成分の含有量が、ポリプロピレン系樹脂(A)60〜99重量部及び有機系難燃剤(B)1〜40重量部の範囲にある(但し、ポリプロピレン系樹脂(A)と有機系難燃剤(B)との合計量を100重量部とする)。

0010

また、本発明の第2の発明によれば、第1の発明において、前記ポリプロピレン系樹脂(A)が、下記の条件(A−3)を満足するポリプロピレン系樹脂組成物が提供される。
条件(A−3)
ポリプロピレン系樹脂(A)が、長鎖分岐構造を有するポリプロピレン樹脂(X)及びポリプロピレン樹脂(Y)を含有し、その割合が、長鎖分岐構造を有するポリプロピレン樹脂(X)10〜99重量%とポリプロピレン樹脂(Y)1〜90重量%である(但し、長鎖分岐構造を有するポリプロピレン樹脂(X)とポリプロピレン樹脂(Y)との合計を100重量%とする)。

0011

また、本発明の第3の発明によれば、第1又は第2の発明において、前記有機系難燃剤(B)が、リン系難燃剤であるポリプロピレン系樹脂組成物が提供される。

0012

また、本発明の第4の発明によれば、第1乃至第3の何れかの発明のポリプロピレン系樹脂組成物を用いて成形された成形体が提供される。

発明の効果

0013

本発明では、従来の技術では困難であった、1.0mmt以下の厚みに対して高い難燃性を保有し、シート成形においても変色しない為外観及び成形性で良好な成形体を得ることが可能な難燃樹脂組成物及びそれを用いて成形された成形体を得ることが可能となる。

0014

本発明は、特定の長鎖分岐構造を有するポリプロピレン樹脂(X)(以下、単に成分(X)ともいう。)を含有し、特定の条件を満足するポリプロピレン系樹脂(A)(以下、単に成分(A)ともいう。)60〜99重量部と、有機系難燃剤(B)(以下、単に成分(B)ともいう。)1〜40重量部(但し、成分(A)と成分(B)との合計量を100重量部とする)と、さらに、成分(A)が、好ましく用いられる成分として、ポリプロピレン樹脂(Y)(以下、単に成分(Y)ともいう。)を含有し、その割合が成分(X)10〜99重量%と成分(Y)1〜90重量%(但し、成分(X)と成分(Y)との合計量を100重量%とする)であるポリプロピレン系樹脂組成物及びそれを用いて成形された成形体に関する。
本発明のポリプロピレン系樹脂組成物及びそれを用いて成形された成形体は、従来のポリプロピレン系樹脂組成物及びそれを用いて成形された成形体の問題点を解消し、押出し成形、とりわけシート成形において良好な成形性を示す。さらに成形性に加えて、薄物部材において高い難燃性を有するため、自動車部品、住設部品電機部品容器包装部材、建築用部材大型部材等に好適に利用できる。

0015

以下、本発明のポリプロピレン系樹脂組成物及びそれを用いて成形された成形体について、各項目毎に詳細に説明する。

0016

I.ポリプロピレン系樹脂組成物の構成成分
1.ポリプロピレン系樹脂(A)(成分(A))
本発明に用いられるポリプロピレン系樹脂(A)は、特定の長鎖分岐構造を有するポリプロピレン樹脂(X)を含有し(条件(A−1))、更に特定のポリプロピレン樹脂(Y)との関係において条件(A−2)を満足している。好ましくは、長鎖分岐構造を有するポリプロピレン樹脂(X)(以下、成分(X)と略記することが有る)とポリプロピレン樹脂(Y)(以下、成分(Y)と略記することが有る)とを含有し、その割合が、長鎖分岐構造を有するポリプロピレン樹脂(X)10〜99重量%とポリプロピレン樹脂(Y)1〜90重量%である(但し、長鎖分岐構造を有するポリプロピレン樹脂(X)とポリプロピレン樹脂(Y)との合計を100重量%とする)(条件(A−3))。

0017

1)長鎖分岐構造を有するポリプロピレン樹脂(X)(成分(X))
本発明に用いられる長鎖分岐構造を有するポリプロピレン樹脂(X)は、以下の(X−i)〜(X−iv)の特性を有することを特徴とする。
特性(X−i):メルトフローレート(MFR)(230℃、2.16kg荷重)が0.1〜30.0g/10分であること。
特性(X−ii):GPCによる分子量分布Mw/Mnが3.0〜10.0、且つMz/Mwが2.5〜10.0であること。
特性(X−iii):溶融張力(MT)(単位:g)は、
log(MT)≧−0.9×log(MFR)+0.7 または MT≧15
のいずれかを満たすこと。
特性(X−iv):25℃パラキシレン可溶成分量(CXS)がポリプロピレン樹脂(X)全量に対して5.0重量%未満であること。
以下、本発明で規定する上記各特性要件、長鎖分岐構造を有するポリプロピレン樹脂(X)の製造方法などについて、具体的に述べる。

0018

1)−1.特性(X−i):メルトフローレート(MFR)
本発明に用いられる長鎖分岐構造を有するポリプロピレン樹脂(X)のメルトフローレート(以下、MFRと略記することが有る)は、0.1〜30.0g/10分の範囲であることが必要であり、好ましくは0.3〜25.0g/10分、さらに好ましくは0.5〜20.0g/10分である。成分(X)のMFRをこの様な範囲とすることによって、本発明のポリプロピレン系樹脂組成物が適切な流動性を保って良好な成形性を示すと共に、適切な溶融張力を有することとなるので、良好な耐ドリップ性を有し、高い難燃性を示すという効果が得られる。即ち、成分(X)のMFRがこの範囲を上回るものは、流動性過剰となり、シート成形に対して、例えば成形時の垂れ等により成形性や変色による外観不良等の問題が生じる場合が有る。一方、成分(X)のMFRがこの範囲を下回るものは、溶融粘度超過となり、製造時にせん断による発熱が生じることにより樹脂温度が上がってしまい樹脂の劣化を促進するおそれがある。それにより焼け等の外観不良や種々の機械物性の低下を生じ、ポリプロピレン系樹脂組成物が難燃部材としてそもそも適さないものとなるおそれがある。
なお、MFRは、JIS K7210:1999「プラスチック熱可塑性プラスチックメルトマスフローレイト(MFR)およびメルトボリュームフローレイト(MVR)の試験方法」のA法、条件M(230℃、2.16kg荷重)に準拠して測定したもので、単位はg/10分である。

0019

1)−2.特性(X−ii):GPCによる分子量分布
また、長鎖分岐構造を有するポリプロピレン樹脂(X)は、分子量分布が比較的広いことが必要であり、ゲルパーミエーションクロマトグラフィー(GPC)によって得られる分子量分布Mw/Mn(ここで、Mwは重量平均分子量、Mnは数平均分子量)が3.0以上10.0以下であることが必要である。長鎖分岐構造を有するポリプロピレン樹脂(X)の分子量分布Mw/Mnは、その好ましい範囲としては3.5〜8.0、更に好ましくは4.1〜6.0の範囲である。
さらに、分子量分布の広さをより顕著に表すパラメータとして、Mz/Mw(ここで、MzはZ平均分子量である)が2.5以上10.0以下であることが必要である。Mz/Mwの好ましい範囲は2.8〜8.0、更に好ましくは3.0〜6.0の範囲である。
分子量分布の広いものほど成形加工性が向上するが、Mw/MnおよびMz/Mwがこの範囲にあるものは、成形加工性に特に優れるものである。

0020

なお、Mn、Mw、Mzの定義は「高分子化学基礎」(高分子学会編、東京化学同人、1978)等に記載されており、GPCによる分子量分布曲線から計算可能であり、本明細書の実施例で用いたGPCの具体的な測定手法は、以下の通りである。
・装置:Waters社製GPC(ALC/GPC 150C)
検出器:FOXBORO社製MIRAN 1AIR検出器測定波長:3.42μm)
カラム:昭和電工社製AD806M/S(3本)
移動相溶媒オルトジクロロベンゼンODCB)
測定温度:140℃
流速:1.0ml/min
注入量:0.2ml
試料の調製:試料はODCB(0.5mg/mLのBHTを含む)を用いて1mg/mLの溶液を調製し、140℃で約1時間を要して溶解させる。
GPC測定で得られた保持容量から分子量への換算は、予め作成しておいた標準ポリスチレン(PS)による検量線を用いて行う。使用する標準ポリスチレンは、何れも東ソー(株)製の以下の銘柄である。
F380、F288、F128、F80、F40、F20、F10、F4、F1、A5000、A2500、A1000
各々が0.5mg/mLとなるようにODCB(0.5mg/mLのBHTを含む)に溶解した溶液を0.2mL注入して較正曲線を作成する。較正曲線は、最小二乗法近似して得られる三次式を用いる。
なお、分子量への換算に使用する粘度式[η]=K×Mαは、以下の数値を用いる。
PS:K=1.38×10−4、α=0.7
PP:K=1.03×10−4、α=0.78
なお、同等の装置や検出器、カラム等を使用しても、GPCによる分子量分布の測定は可能である。

0021

1)−3.特性(X−iii):溶融張力(MT)
さらに、長鎖分岐構造を有するポリプロピレン樹脂(X)は、溶融張力(以下、MTと略記することが有る)とMFRとの関係に於いて、以下の条件(1)を満たす必要がある。
・条件(1)
log(MT)≧−0.9×log(MFR)+0.7
又は
MT≧15
のいずれかを満たす。
本明細書の実施例では、MTは、(株)東洋精機製作所製キャピログラフを用いて、キャピラリー:直径2.0mm、長さ40mm、シリンダー径:9.55mm、シリンダー押出速度:20mm/分、引き取り速度:4.0m/分、温度:230℃の条件で測定したときの溶融張力を用い、単位はグラムである。また、同等の装置を用いて、測定することもできる。ただし、成分(X)のMTが極めて高い場合には、引き取り速度4.0m/分では、樹脂が破断してしまう場合があり、このような場合には、引き取り速度を下げ、引き取りのできる最高の速度における張力をMTとする。また、MFRの測定条件、単位は前述の通りである。

0022

この規定は、長鎖分岐構造を有するポリプロピレン樹脂(X)が燃焼試験時に充分な耐ドリップ性を発現するための指標であり、一般に、MTは、MFRと相関を有していることから、MFRとの関係式によって記述している。
このように、MTをMFRとの関係式で規定する手法は、当業者にとって通常の手法であって、例えば、特開2003−25425号公報には、高溶融張力を有するポリプロピレンの定義として、以下の関係式が提案されている。
log(MS)>−0.61×log(MFR)+0.82 (230℃)
(ここでMSは、MTと同義である。)
また、特開2003−64193号公報には、高溶融張力を有するポリプロピレンの定義として、以下の関係式が提案されている。
11.32×MFR−0.7854≦MT (230℃)
さらに、特開2003−94504号公報には、高溶融張力を有するポリプロピレンの定義として、以下の関係式が提案されている。
MT≧7.52×MFR−0.576
(MTは190℃、MFRは230℃で測定した値である。)

0023

長鎖分岐構造を有するポリプロピレン樹脂(X)が、上記条件(1)を満たせば、充分に溶融張力の高い樹脂といえる。即ち、上記条件(1)を満たした長鎖分岐構造を有するポリプロピレン樹脂(X)は耐ドリップ性に優れた樹脂であるということになるので、後述する有機系難燃剤(B)と組み合わせることにより、難燃材料として特に有用である。また、以下の条件(1)’を満たすことがより好ましく、条件(1)”を満たすことが更に好ましい。
・・条件(1)’
log(MT)≧−0.9×log(MFR)+0.9
又は
MT≧15
のいずれかを満たす。
・・条件(1)”
log(MT)≧−0.9×log(MFR)+1.1
又は
MT≧15
のいずれかを満たす。
MTの上限値については、これを特に設ける必要は無いが、MTが40gを超えるような場合には、上記測定手法では引き取り速度が著しく遅くなり、測定が困難となる。このような場合は、樹脂の延展性も悪化しているものと考えられるため、好ましくは40g以下、さらに好ましくは35g以下、より好ましくは30g以下である。

0024

1)−4.特性(X−iv):25℃パラキシレン可溶成分量(CXS)
本発明で用いられる長鎖分岐構造を有するポリプロピレン樹脂(X)は、立体規則性が高い方が、本発明のポリプロピレン系樹脂組成物およびそれを用いて成形された成形品となったときに、ベタツキブリードアウトの原因となる低結晶性成分が少なく良好な成形性を達成することができると共に、良好な機械物性、特に高い剛性を保つことができるので、好ましい。この低結晶性成分は、25℃キシレン可溶成分量(CXS)によって評価され、それが成分(X)全量に対して、5.0重量%未満であることが必要であり、好ましくは3.0重量%以下であり、より好ましくは1.0重量%以下あり、さらに好ましくは0.5重量%以下である。下限については、特に制限されないが、通常0.01重量%以上、好ましくは0.03重量%以上である。CXSをこの様な範囲とすることによって、前記の通り、本発明のポリプロピレン系樹脂組成物およびそれを用いて成形された成形品のベタツキやブリードアウトを抑えて成形性を良好にすることが可能となると同時に、得られる成形体の剛性を高くすることができる。
なお、CXSの測定法の詳細は、以下の通りである。
2gの試料を300mlのp−キシレン(0.5mg/mlのBHTを含む)に130℃で溶解させ溶液とした後、25℃で12時間放置する。その後、析出したポリマー濾別し、濾液からp−キシレンを蒸発させ、さらに100℃で12時間減圧乾燥室温キシレン可溶成分を回収する。この回収成分の重量の仕込み試料重量に対する割合[重量%]をCXSと定義する。

0025

本発明に用いられる長鎖分岐構造を有するポリプロピレン樹脂(X)の付加的な特徴として、以下の(X−v)の特性を有することが好ましく、さらに、(X−vi)の特性を有することがより好ましい。
なお、特性(X−iv)並びにこれから記載する(X−v)及び(X−vi)は、何れも立体規則性に関連する特性であり、特性(X−iv)に加えて、特性(X−v)及び(X−vi)の要件を同時に満たしていることが特に好ましい。

0026

1)−5.特性(X−v):13C−NMRによるプロピレン単位3連鎖のmm分率
本発明に用いられる長鎖分岐構造を有するポリプロピレン樹脂(X)は、立体規則性が高いことが好ましい。立体規則性の高さは、13C−NMRによって評価することができ、13C−NMRによって得られるプロピレン単位3連鎖のmm分率が95.0%以上の立体規則性を有するものが好ましい。
mm分率は、ポリマー鎖中、頭−尾結合からなる任意のプロピレン単位3連鎖中、各プロピレン単位中のメチル分岐の方向が同一であるプロピレン単位3連鎖の割合であり、上限は100%である。このmm分率は、ポリプロピレン分子鎖中のメチル基立体構造アイソタクチックに制御されていることを示す値であり、高いほど、高度に制御されていることを意味する。mm分率を以下に示す様な範囲とすることにより、本発明のポリプロピレン系樹脂組成物およびそれを用いて成形された成形品の剛性の指標である曲げ弾性率を高くし、本発明のポリプロピレン系難燃樹脂組成物を、一般的な工業製品に適用可能とすることができる。即ち、mm分率が以下に示す値より小さいと、本発明のポリプロピレン系樹脂組成物およびそれを成形してなる成形品の剛性の指標である曲げ弾性率が低下するなど、機械的物性が低下し、そもそも一般的な工業製品に適用できなくなる場合が有る。
従って、mm分率は、95.0%以上が好ましく、より好ましくは96.0%以上であり、さらに好ましくは97.0%以上であり、前記の通り上限は100%である。

0027

なお、13C−NMRによるプロピレン単位3連鎖のmm分率の測定法の詳細は、以下の通りである。
試料375mgをNMRサンプル管(10φ)中で重水素化1,1,2,2、−テトラクロロエタン2.5mlに完全に溶解させた後、125℃においてプロトン完全デカップリング法で測定する。ケミカルシフトは、重水素化1,1,2,2−テトラクロロエタンの3本のピークの中央のピークを74.2ppmに設定する。他の炭素ピークのケミカルシフトはこれを基準とする。
フリップ角:90度
パルス間隔:10秒
共鳴周波数:100MHz以上
積算回数:10,000回以上
観測域:−20ppmから179ppm
データポイント数:32768
mm分率の解析は、前記の条件により測定された13C−NMRスペクトルを用いて行う。
スペクトル帰属は、Macromolecules,8卷,687頁(1975年)やPolymer,30巻,1350頁(1989年)を参考にして行う。
なお、mm分率決定のより具体的な方法は、特開2009−275207号公報の段落[0053]〜[0065]に詳細に記載されており、本発明においても、この方法に従って行うものとする。

0028

1)−6.特性(X−vi):分岐指数g’
長鎖分岐構造を有するポリプロピレン樹脂(X)が分岐を有することの直接的な指標として、分岐指数g’を挙げることができる。g’は、長鎖分岐構造を有するポリマーの固有粘度[η]brと同じ分子量を有する線状ポリマーの固有粘度[η]linの比、すなわち、[η]br/[η]lin によって与えられ、長鎖分岐構造が存在すると、1よりも小さな値をとる。
定義は、例えば「Developments in Polymer Characterization−4」(J.V. Dawkins ed. Applied Science Publishers,1983)に、記載されており、当業者にとって公知の指標である。

0029

g’は、例えば、下記に記すような光散乱計と粘度計を検出器に備えたGPCを使用することによって、絶対分子量Mabsの関数として得ることができる。
本発明で使用する長鎖分岐構造を有するポリプロピレン樹脂(X)は、光散乱によって求めた絶対分子量Mabsが100万の時に、g’が0.30以上1.00未満であることが好ましく、より好ましくは0.55以上0.98以下、更に好ましくは0.75以上0.96以下、最も好ましくは0.78以上0.95以下である。
以下に詳細に記述するとおり、本発明で用いられる長鎖分岐構造を有するポリプロピレン樹脂(X)は、その重合機構から、分子構造としては櫛型鎖が生成すると考えられ、g’をこの様な範囲とすることにより溶融張力を適切な範囲とすることが可能となるので、難燃性の評価指標のひとつである耐ドリップ性を高くすることができると共に、良好な成形性を発現することが可能となる。即ち、g’が0.30未満であると、主鎖が少なく側鎖の割合が極めて多いこととなり、このような場合には、溶融張力が向上しなかったり、ゲルが生成するおそれがあるため、耐ドリップ性が低下すると共に、シートとして用いる際にゲルによる成形不良が生じたり、各種機械強度に影響を及ぼす可能性が有り、本発明が目的とする高い難燃性を有する難燃材料において好ましくない場合が有る。一方、1.00である場合には、これは分岐が存在しないことを意味し、溶融張力が不足する場合があり、耐ドリップ性が低下する場合があるので、本発明が目的とする高い難燃性を有する難燃材料に適さないと考えられる。

0030

なお、g’の下限値が上記の値であると好ましいのは、以下の理由による。
「Encyclopedia of Polymer Science and Engineering vol.2」(John Wiley & Sons 1985 p.485)によると、櫛型ポリマーのg’値は、以下の式で表されている。

0031

0032

ここで、gは、ポリマーの回転半径比で定義される分岐指数であり、εは分岐鎖の形状と溶媒によって決まる定数で、同文献のp.487のTable3によれば、良溶媒中の櫛型鎖では、おおよそ0.7〜1.0程度の値が報告されている。λは櫛型鎖における主鎖の割合、pは平均の分岐数である。この式によると、櫛型鎖であれば、分岐数が極めて大きくなる、すなわち、pが無限大極限で、g’=gε=λεとなり、λεの値以下にはならないことになり、一般に下限値が存在することになる。

0033

一方、電子線照射過酸化物変成の場合において生じると考えられる、従来公知のランダム分岐鎖の式は、同文献中の485ページ式(19)で与えられており、これによると、ランダム分岐鎖では、分岐点が多くなるにつれ、g’およびg値は、特に下限値が存在することなく、単調に減少する。つまり、本発明において、g’値に下限値があるということは、本発明に用いる長鎖分岐構造を有するポリプロピレン樹脂(X)は、櫛型鎖に近い構造を有しているということを意味しており、これにより、電子線照射や過酸化物変成によって生成されるランダム分岐鎖との区別が、より明確となる。
また、g’が上記の範囲にある櫛型鎖に近い構造を有する分岐状ポリマーにおいては、混練を繰り返した際の溶融張力の低下度合いが小さく、工業的に成形体を生産する工程で発生する、例えばシート、フィルム成形時に端部をカットすることで生じる端材であるとか、射出成形ランナー等の部材を、リサイクル材として再度成形に供する際に、物性や成形性の低下が小さくなることになり、好ましい。

0034

本明細書の実施例における、具体的なg’の算出方法は、以下の通りである。
示差屈折計RI)および粘度検出器(Viscometer)を装備したGPC装置として、Waters社のAlliance GPCV2000を用いる。また、光散乱検出器として、多角度レーザー光散乱検出器(MALLS)Wyatt Technoogy社のDAWN−Eを用いる。検出器は、MALLS、RI、Viscometerの順で接続する。移動相溶媒は、1,2,4−トリクロロベンゼン(BASFジャパン社製酸化防止剤Irganox1076を0.5mg/mLの濃度で添加)である。
流量は1mL/分で、カラムは、東ソー社GMHHR−H(S)HTを2本連結して用いる。カラム、試料注入部および各検出器の温度は、140℃である。試料濃度は1mg/mLとし、注入量(サンプルループ容量)は0.2175mLである。
MALLSから得られる絶対分子量(Mabs)、二乗平均慣性半径(Rg)およびViscometerから得られる極限粘度([η])を求めるにあたっては、MALLS付属データ処理ソフトASTRA(version4.73.04)を利用し、以下の文献を参考にして計算を行う。

0035

参考文献:
1.「Developments in Polymer Characterization−4」(J.V. Dawkins ed. Applied Science Publishers, 1983. Chapter1.)
2.Polymer, 45, 6495−6505(2004)
3.Macromolecules, 33, 2424−2436(2000)
4.Macromolecules, 33, 6945−6952(2000)
なお、種々の装置やカラム等は、他の同等のものを用いることも可能である。

0036

[分岐指数(g’)の算出]
分岐指数(g’)は、サンプルを上記Viscometerで測定して得られる極限粘度([η]br)と、別途、線状ポリマーを測定して得られる極限粘度([η]lin)との比([η]br/[η]lin)として算出する。
ポリマー分子に長鎖分岐構造が導入されると、同じ分子量の線状のポリマー分子と比較して慣性半径が小さくなる。慣性半径が小さくなると、極限粘度が小さくなることから、長鎖分岐構造が導入されるに従い同じ分子量の線状ポリマーの極限粘度([η]lin)に対する分岐ポリマーの極限粘度([η]br)の比([η]br/[η]lin)は、小さくなっていく。
したがって、分岐指数(g’=[η]br/[η]lin)が1より小さい値になる場合には、分岐が導入されていることを意味する。ここで、[η]linを得るための線状ポリマーとしては、市販のホモポリプロピレン(日本ポリプロ社製ノバテックPP(登録商標グレード名:FY6)を用いる。線状ポリマーの[η]linの対数は分子量の対数と線形の関係があることは、Mark−Houwink−Sakurada式として公知であるから、[η]linは、低分子量側や高分子量側に適宜外挿して数値を得ることができる。
本発明において、特性(X−iii)がlog(MT)≧−0.9×log(MFR)+0.7を満たし、かつMabsが100万において、g’<1を満たすポリプロピレン樹脂は、長鎖分岐構造を有するといえる。

0037

1)−7.長鎖分岐構造を有するポリプロピレン樹脂(X)の製造方法
長鎖分岐構造を有するポリプロピレン樹脂(X)は、上記した(X−i)〜(X−iv)の特性を満たす限り、特に製造方法を限定するものではないが、前述のように、高い立体規則性、低い低結晶性成分量、比較的広い分子量分布の範囲の全ての条件を満足し、好ましくは分岐指数g’の範囲、高い溶融張力等の条件を満足するための好ましい製造方法は、メタロセン触媒の組み合わせを利用したマクロマー共重合法を用いる方法である。このような方法の例としては、例えば、特開2009−57542号公報に開示される方法が挙げられる。
この手法は、マクロマー生成能力を有する特定の構造の触媒成分と、高分子量でマクロマー共重合能力を有する特定の構造の触媒成分とを組み合わせた触媒を用いて、長鎖分岐構造を有するポリプロピレンを製造する方法であり、これによれば、バルク重合気相重合といった工業的に有効な方法で、特に実用的な圧力温度条件下の単段重合で、しかも、分子量調整剤である水素を用いて、目的とする物性を有する長鎖分岐構造を有するポリプロピレン樹脂(X)の製造が可能である。

0038

また、従来は、立体規則性の低いポリプロピレン成分を使用して結晶性を落とすことによって、分岐生成効率を高めなければならなかったが、上記の方法では、充分に立体規則性の高いポリプロピレン成分を、側鎖に簡便な方法で、導入することが可能である。このような製造方法を採用することは、本発明に用いる長鎖分岐構造を有するポリプロピレン樹脂(X)として好ましく、高い立体規則性と低い低結晶性成分量に係る(X−iv)の特性を満足するのに好ましく、更に(X−v)の特性を満足するのにも好適である。
また、上記手法を用いれば、重合特性の大きく異なる二種の触媒を使用することで、分子量分布を広くでき、本発明に用いる長鎖分岐構造を有するポリプロピレン樹脂(X)に必要な(X−i)〜(X−iii)の特性を同時に満たすことが可能であり、好ましい。

0039

そこで、以下に、本発明に使用される長鎖分岐構造を有するポリプロピレン樹脂(X)の好ましい製造法について、詳細に記載する。
長鎖分岐構造を有するポリプロピレン樹脂(X)を製造する好ましい方法として、プロピレン重合触媒に下記の触媒成分(A)、(B)および(C)を用いるプロピレン系重合体の製造方法が挙げられる。
(A):下記一般式(a1)で表される化合物である成分[A−1]から少なくとも1種類、および下記一般式(a2)で表される化合物である成分[A−2]から少なくとも1種類を選んだ2種以上の周期表第4族の遷移金属化合物
成分[A−1]:一般式(a1)で表される化合物
成分[A−2]:一般式(a2)で表される化合物
(B):イオン交換性層状珪酸塩
(C):有機アルミニウム化合物

0040

以下、触媒成分(A)、(B)および(C)について、詳細に説明する。
(1)触媒成分(A)
(i)成分[A−1]:一般式(a1)で表される化合物

0041

0042

(一般式(a1)中、各々R11およびR12は、独立して、炭素数4〜16の窒素または酸素硫黄を含有する複素環基を示す。また、各々R13およびR14は、独立して、ハロゲンケイ素、酸素、硫黄、窒素、ホウ素、リン又はこれらから選択される複数のヘテロ元素を含有してもよい炭素数6〜16のアリール基、炭素数6〜16の窒素または酸素、硫黄を含有する複素環基を表す。さらに、X11およびY11は、それぞれ独立して、水素原子ハロゲン原子、炭素数1〜20の炭化水素基、炭素数1〜20のケイ素含有炭化水素基、炭素数1〜20のハロゲン化炭化水素基、炭素数1〜20の酸素含有炭化水素基アミノ基または炭素数1〜20の窒素含有炭化水素基を表し、Q11は、炭素数1〜20の二価の炭化水素基、炭素数1〜20の炭化水素基を有していてもよいシリレン基またはゲルミレン基を表す。)

0043

上記R11およびR12の炭素数4〜16の窒素または酸素、硫黄を含有する複素環基としては、好ましくは2−フリル基置換された2−フリル基、置換された2−チエニル基、置換された2−フルフリル基であり、さらに好ましくは、置換された2−フリル基である。
また、置換された2−フリル基、置換された2−チエニル基、置換された2−フルフリル基の置換基としては、メチル基、エチル基プロピル基等の炭素数1〜6のアルキル基フッ素原子塩素原子等のハロゲン原子、メトキシ基エトキシ基等の炭素数1〜6のアルコキシ基トリアルキルシリル基、が挙げられる。これらのうち、メチル基、トリメチルシリル基が好ましく、メチル基が特に好ましい。
さらに、R11およびR12として、特に好ましくは、2−(5−メチル)−フリル基である。また、R11およびR12は、互いに同一である場合が好ましい。
上記R13およびR14の炭素数6〜16の、ハロゲン、ケイ素、酸素、硫黄、窒素、ホウ素、リン、あるいは、これらから選択される複数のヘテロ元素を含有してもよいアリール基としては、炭素数6〜16になる範囲で、アリール環骨格上に、1つ以上の、炭素数1〜6の炭化水素基、炭素数1〜6の珪素含有炭化水素基、炭素数1〜6のハロゲン含有炭化水素基を置換基として有していてもよい。

0044

R13およびR14としては、好ましくは少なくとも1つが、フェニル基、4−メチルフェニル基、4−iプロピルフェニル基、4−tブチルフェニル基、4−トリメチルシリルフェニル基、2,3—ジメチルフェニル基、3,5—ジtブチルフェニル基、4−フェニル−フェニル基、クロロフェニル基、ナフチル基、又はフェナンスリル基であり、更に好ましくはフェニル基、4−iプロピルフェニル基、4−tブチルフェニル基、4−トリメチルシリルフェニル基、4−クロロフェニル基である。また、R13およびR14が互いに同一である場合が好ましい。

0045

一般式(a1)中、X11およびY11は、補助配位子であり、触媒成分(B)の助触媒と反応して、オレフィン重合能を有する活性メタロセンを生成させる。したがって、この目的が達成される限り、X11とY11は、配位子の種類が制限されるものではなく、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜20の炭化水素基、炭素数1〜20のケイ素含有炭化水素基、炭素数1〜20のハロゲン化炭化水素基、炭素数1〜20の酸素含有炭化水素基、アミノ基または炭素数1〜20の窒素含有炭化水素基、炭素数1〜20のアルコキシ基、炭素数1〜20のアルキルアミド基トリフルオロメタンスルホン酸基、炭素数1〜20のリン含有炭化水素基を示す。

0046

一般式(a1)中、Q11は、二つの五員環を結合する、炭素数1〜20の2価の炭化水素基、炭素数1〜20の炭化水素基を有していてもよいシリレン基またはゲルミレン基の何れかを示す。上述のシリレン基またはゲルミレン基上に2個の炭化水素基が存在する場合は、それらが互いに結合して環構造を形成していてもよい。
上記のQ11の具体例としては、メチレン、メチルメチレン、ジメチルメチレン、1,2−エチレン、等のアルキレン基ジフェニルメチレン等のアリールアルキレン基;シリレン基;メチルシリレンジメチルシリレンジエチルシリレン、ジ(n−プロピル)シリレン、ジ(i−プロピル)シリレン、ジ(シクロヘキシル)シリレン等のアルキルシリレン基、メチル(フェニル)シリレン等の(アルキル)(アリール)シリレン基;ジフェニルシリレン等のアリールシリレン基;テトラメチルジシリレン等のアルキルオリゴシリレン基;ゲルミレン基;上記の2価の炭素数1〜20の炭化水素基を有するシリレン基のケイ素をゲルマニウムに置換したアルキルゲルミレン基;(アルキル)(アリール)ゲルミレン基;アリールゲルミレン基などを挙げることが出来る。これらの中では、炭素数1〜20の炭化水素基を有するシリレン基、または、炭素数1〜20の炭化水素基を有するゲルミレン基が好ましく、アルキルシリレン基、アルキルゲルミレン基が特に好ましい。

0047

上記一般式(a1)で表される化合物のうち、好ましい化合物として、以下に具体的に例示する。
ジクロロ[1,1’−ジメチルシリレンビス{2−(2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(2−チエニル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジフェニルシリレンビス{2−(5−メチル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルゲルミレンビス{2−(5−メチル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルゲルミレンビス{2−(5−メチル−2−チエニル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−t−ブチル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−トリメチルシリル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−フェニル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(4,5−ジメチル−2−フリル)−4−フェニル−インデニル}]ハフニウムジクロライド、ジクロロ[1,1’−ジメチルシリレンビス{2−(2−ベンゾフリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−メチルフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−iプロピルフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−トリメチルシリルフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(2−フルフリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−クロロフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−フルオロフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−トリフルオロメチルフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−t−ブチルフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(2−フリル)−4−(1−ナフチル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(2−フリル)−4−(2−ナフチル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(2−フリル)−4−(2−フェナンスリル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(2−フリル)−4−(9−フェナンスリル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(1−ナフチル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(2−ナフチル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(2−フェナンスリル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(9−フェナンスリル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−t−ブチル−2−フリル)−4−(1−ナフチル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−t−ブチル−2−フリル)−4−(2−ナフチル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−t−ブチル−2−フリル)−4−(2−フェナンスリル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−t−ブチル−2−フリル)−4−(9−フェナンスリル)−インデニル}]ハフニウム、などを挙げることができる。

0048

これらのうち、更に好ましいのは、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−メチルフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−iプロピルフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−トリメチルシリルフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−クロロフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(2−ナフチル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−t−ブチルフェニル)−インデニル}]ハフニウム、である。
また、特に好ましいのは、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−iプロピルフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−トリメチルシリルフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−t−ブチルフェニル)−インデニル}]ハフニウム、である。

0049

(ii)成分[A−2]:一般式(a2)で表される化合物

0050

0051

(一般式(a2)中、各々R21およびR22は、独立して、炭素数1〜6の炭化水素基であり、R23およびR24は、それぞれ独立して、ハロゲン、ケイ素、酸素、硫黄、窒素、ホウ素、リン又はこれらから選択される複数のヘテロ元素を含有してもよい炭素数6〜16のアリール基である。X21およびY21は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜20の炭化水素基、炭素数1〜20のケイ素含有炭化水素基、炭素数1〜20のハロゲン化炭化水素基、炭素数1〜20の酸素含有炭化水素基、アミノ基または炭素数1〜20の窒素含有炭化水素基を表し、Q21は、炭素数1〜20の二価の炭化水素基、炭素数1〜20の炭化水素基を有していてもよいシリレン基またはゲルミレン基を表す。M21は、ジルコニウムまたはハフニウムである。)

0052

上記R21およびR22は、それぞれ独立して、炭素数1〜6の炭化水素基であり、好ましくはアルキル基であり、さらに好ましくは炭素数1〜4のアルキル基である。具体的な例としては、メチル、エチル、n−プロピル、i−プロピル、n−ブチル、i−ブチル、sec−ブチル、n−ペンチル、i−ペンチル、n−ヘキシル等が挙げられ、好ましくはメチル、エチル、n−プロピルである。
また、上記R23およびR24は、それぞれ独立して、炭素数6〜16の、好ましくは炭素数6〜12の、ハロゲン、ケイ素、あるいは、これらから選択される複数のヘテロ元素を含有してもよいアリール基である。好ましい例としてはフェニル、3−クロロフェニル、4−クロロフェニル、3−フルオロフェニル、4−フルオロフェニル、4−メチルフェニル、4−i−プロピルフェニル、4−t−ブチルフェニル、4−トリメチルシリルフェニル、4−(2−フルオロ−4−ビフェニリル)、4−(2−クロロ−4−ビフェニリル)、1−ナフチル、2−ナフチル、4−クロロ−2−ナフチル、3−メチル−4−トリメチルシリルフェニル、3,5−ジメチル−4−t−ブチルフェニル、3,5−ジメチル−4−トリメチルシリルフェニル、3,5−ジクロロ−4−トリメチルシリルフェニル等が挙げられる。

0053

また、上記X21およびY21は、補助配位子であり、触媒成分(B)の助触媒と反応してオレフィン重合能を有する活性なメタロセンを生成させる。したがって、この目的が達成される限り、X21およびY21は、配位子の種類が制限されるものではなく、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜20の炭化水素基、炭素数1〜20のケイ素含有炭化水素基、炭素数1〜20のハロゲン化炭化水素基、炭素数1〜20の酸素含有炭化水素基、アミノ基または炭素数1〜20の窒素含有炭化水素基、炭素数1〜20のアルコキシ基、炭素数1〜20のアルキルアミド基、トリフルオロメタンスルホン酸基、炭素数1〜20のリン含有炭化水素基を示す。

0054

また、上記Q21は、二つの共役五員環配位子架橋する結合性基であり、炭素数1〜20の2価の炭化水素基、炭素数1〜20の炭化水素基を有していてもよいシリレン基または炭素数1〜20の炭化水素基を有するゲルミレン基であり、好ましくは置換シリレン基あるいは置換ゲルミレン基である。

0055

ケイ素、ゲルマニウムに結合する置換基は、炭素数1〜12の炭化水素基が好ましく、二つの置換基が連結していてもよい。具体的な例としては、メチレン、ジメチルメチレン、エチレン−1,2−ジイル、ジメチルシリレン、ジエチルシリレン、ジフェニルシリレン、メチルフェニルシリレン、9−シラフルオレン−9,9−ジイル、ジメチルシリレン、ジエチルシリレン、ジフェニルシリレン、メチルフェニルシリレン、9−シラフルオレン−9,9−ジイル、ジメチルゲルミレン、ジエチルゲルミレン、ジフェニルゲルミレン、メチルフェニルゲルミレン等が挙げられる。

0056

さらに、上記M21は、ジルコニウムまたはハフニウムであり、好ましくはハフニウムである。
上記一般式(a2)で表されるメタロセン化合物の非限定的な例として、下記のものを挙げることができる。
ただし、以下は、煩雑な多数の例示を避けて代表的例示化合物のみ記載しており、本発明は、これら化合物に限定して解釈されるものではなく、種々の配位子や架橋結合基あるいは補助配位子を任意に使用しうることは自明である。また、中心金属がハフニウムの化合物を記載したが、ジルコニウムに代替した化合物も、本明細書に開示されたものとして取り扱われる。

0057

ジクロロ{1,1’−ジメチルシリレンビス(2−メチル−4−フェニル−4−ヒドロアズレニル)}ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−t−ブチルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(3−クロロ−4−t−ブチルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(3−メチル−4−t−ブチルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(3−クロロ−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(3−メチル−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(1−ナフチル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(2−ナフチル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロ−2−ナフチル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(2−フルオロ−4−ビフェニリル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(2−クロロ−4−ビフェニリル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(9−フェナントリル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−n−プロピル−4−(3−クロロ−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(3−クロロ−4−t−ブチルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(3−メチル−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルゲルミレンビス{2−メチル−4−(2−フルオロ−4−ビフェニリル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルゲルミレンビス{2−メチル−4−(4−t−ブチルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−(9−シラフルオレン−9,9−ジイル)ビス{2−エチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(4−クロロ−2−ナフチル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(2−フルオロ−4−ビフェニリル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−(9−シラフルオレン−9,9−ジイル)ビス{2−エチル−4−(3,5−ジクロロ−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、などが挙げられる。

0058

これらの中で好ましくは、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(3−クロロ−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(2−フルオロ−4−ビフェニリル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(4−クロロ−2−ナフチル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(3−メチル−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−(9−シラフルオレン−9,9−ジイル)ビス{2−エチル−4−(3,5−ジクロロ−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、である。

0059

また、特に好ましくは、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(2−フルオロ−4−ビフェニリル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(3−メチル−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−(9−シラフルオレン−9,9−ジイル)ビス{2−エチル−4−(3,5−ジクロロ−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、である。

0060

(2)触媒成分(B)
ポリプロピレン樹脂(X)を製造するのに好ましく使用される触媒成分(B)は、イオン交換性層状珪酸塩である。
(i)イオン交換性層状珪酸塩の種類
イオン交換性層状珪酸塩(以下、単に珪酸塩と略記することもある。)とは、イオン結合などによって構成される面が互いに結合力で平行に積み重なった結晶構造を有し、かつ、含有されるイオン交換可能である珪酸塩化合物をいう。大部分の珪酸塩は、天然には主に粘土鉱物の主成分として産出されるため、イオン交換性層状珪酸塩以外の夾雑物石英クリストバライト等)が含まれることが多いが、それらを含んでもよい。それら夾雑物の種類、量、粒子径、結晶性、分散状態によっては純粋な珪酸塩以上に好ましいことがあり、そのような複合体も、触媒成分(B)に含まれる。
本発明で使用する珪酸塩は、天然産のものに限らず、人工合成物であってもよく、また、それらを含んでもよい。

0061

珪酸塩の具体例としては、例えば、白水雄著「粘土鉱物学」書店(1995年)に記載されている次のような層状珪酸塩が挙げられる。
すなわち、モンモリロナイト、ザウコナイトバイデライトノントロナイトサポナイトヘクトライトスチーブンサイト等のスメクタイト族バーミキュライト等のバーミキュライト族、雲母イライトセリサイト、海緑石等の雲母族、アタパルジャイトセピオライトパリゴルスカイトベントナイトパイロフィライトタルク緑泥石群等である。
珪酸塩は、主成分の珪酸塩が2:1型構造を有する珪酸塩であることが好ましく、スメクタイト族であることが更に好ましく、モンモリロナイトが特に好ましい。層間カチオンの種類は、特に限定されないが、工業原料として比較的容易に且つ安価に入手し得る観点から、アルカリ金属あるいはアルカリ土類金属を層間カチオンの主成分とする珪酸塩が好ましい。

0062

(ii)イオン交換性層状珪酸塩の化学処理
本発明に係る触媒成分(B)のイオン交換性層状珪酸塩は、特に処理を行うことなくそのまま用いることができるが、化学処理を施すことが好ましい。ここでイオン交換性層状珪酸塩の化学処理とは、表面に付着している不純物を除去する表面処理粘土の構造に影響を与える処理のいずれをも用いることができ、具体的には、酸処理アルカリ処理塩類処理有機物処理等が挙げられる。

0063

<酸処理>:
酸処理は、表面の不純物を取り除くほか、結晶構造のAl、Fe、Mg、等の陽イオンの一部または全部を溶出させることができる。
酸処理で用いられる酸は、好ましくは塩酸硫酸硝酸リン酸酢酸シュウ酸から選択される。
処理に用いる塩類次項で説明する)および酸は、2種以上であってもよい。塩類および酸による処理条件は、特には制限されないが、通常、塩類および酸濃度は、0.1〜50重量%、処理温度は、室温〜沸点、処理時間は、5分〜24時間の条件を選択して、イオン交換性層状珪酸塩から成る群より選ばれた少なくとも一種の化合物を構成している物質の少なくとも一部を溶出する条件で行うことが好ましい。また、塩類および酸は、一般的には水溶液で用いられる。
なお、以下の酸類、塩類を組み合わせたものを処理剤として用いてもよい。また、これら酸類、塩類の組み合わせであってもよい。

0064

<塩類処理>:
塩類で処理される前の、イオン交換性層状珪酸塩の含有する交換可能な1族金属の陽イオンの40%以上、好ましくは60%以上を、下記に示す塩類より解離した陽イオンと、イオン交換することが好ましい。
このようなイオン交換を目的とした塩類処理で用いられる塩類は、第1〜14族原子から成る群より選ばれた少なくとも一種の原子を含む陽イオンと、ハロゲン原子、無機酸および有機酸から成る群より選ばれた少なくとも一種の陰イオンとから成る化合物であり、更に好ましくは、第2〜14族原子から成る群より選ばれた少なくとも一種の原子を含む陽イオンとCl、Br、I、F、PO4、SO4、NO3、CO3、C2O4、ClO4、OOCCH3、CH3COCHCOCH3、OCl2、O(NO3)2、O(ClO4)2、O(SO4)、OH、O2Cl2、OCl3、OOCH、OOCCH2CH3、C2H4O4およびC5H5O7から成る群から選ばれる少なくとも一種の陰イオンとから成る化合物である。

0065

このような塩類の具体例としては、LiF、LiCl、LiBr、LiI、Li2SO4、Li(CH3COO)、LiCO3、Li(C6H5O7)、LiCHO2、LiC2O4、LiClO4、Li3PO4、CaCl2、CaSO4、CaC2O4、Ca(NO3)2、Ca3(C6H5O7)2、MgCl2、MgBr2、MgSO4、Mg(PO4)2、Mg(ClO4)2、MgC2O4、Mg(NO3)2、Mg(OOCCH3)2、MgC4H4O4等が挙げられる。

0066

また、Ti(OOCCH3)4、Ti(CO3)2、Ti(NO3)4、Ti(SO4)2、TiF4、TiCl4、Zr(OOCCH3)4、Zr(CO3)2、Zr(NO3)4、Zr(SO4)2、ZrF4、ZrCl4、ZrOCl2、ZrO(NO3)2、ZrO(ClO4)2、ZrO(SO4)、HF(OOCCH3)4、HF(CO3)2、HF(NO3)4、HF(SO4)2、HFOCl2、HFF4、HFCl4、V(CH3COCHCOCH3)3、VOSO4、VOCl3、VCl3、VCl4、VBr3等が挙げられる。

0067

また、Cr(CH3COCHCOCH3)3、Cr(OOCCH3)2OH、Cr(NO3)3、Cr(ClO4)3、CrPO4、Cr2(SO4)3、CrO2Cl2、CrF3、CrCl3、CrBr3、CrI3、Mn(OOCCH3)2、Mn(CH3COCHCOCH3)2、MnCO3、Mn(NO3)2、MnO、Mn(ClO4)2、MnF2、MnCl2、Fe(OOCCH3)2、Fe(CH3COCHCOCH3)3、FeCO3、Fe(NO3)3、Fe(ClO4)3、FePO4、FeSO4、Fe2(SO4)3、FeF3、FeCl3、FeC6H5O7等が挙げられる。

0068

また、Co(OOCCH3)2、Co(CH3COCHCOCH3)3、CoCO3、Co(NO3)2、CoC2O4、Co(ClO4)2、Co3(PO4)2、CoSO4、CoF2、CoCl2、NiCO3、Ni(NO3)2、NiC2O4、Ni(ClO4)2、NiSO4、NiCl2、NiBr2等が挙げられる。
さらに、Zn(OOCCH3)2、Zn(CH3COCHCOCH3)2、ZnCO3、Zn(NO3)2、Zn(ClO4)2、Zn3(PO4)2、ZnSO4、ZnF2、ZnCl2、AlF3、AlCl3、AlBr3、AlI3、Al2(SO4)3、Al2(C2O4)3、Al(CH3COCHCOCH3)3、Al(NO3)3、AlPO4、GeCl4、GeBr4、GeI4等が挙げられる。

0069

<アルカリ処理>:
酸、塩処理の他に、必要に応じて下記のアルカリ処理や有機物処理を行ってもよい。アルカリ処理で用いられる処理剤としては、LiOH、NaOH、KOH、Mg(OH)2、Ca(OH)2、Sr(OH)2、Ba(OH)2などが例示される。

0070

<有機物処理>:
また、有機物処理に用いられる有機処理剤の例としては、トリメチルアンモニウムトリエチルアンモニウム、N,N−ジメチルアニリニウム、トリフェニルホスホニウム、等が挙げられる。
また、有機物処理剤を構成する陰イオンとしては、塩類処理剤を構成する陰イオンとして例示した陰イオン以外にも、例えばヘキサフルオロフォスフェートテトラフルオロボレートテトラフェニルボレートなどが例示されるが、これらに限定されるものではない。

0071

また、これらの処理剤は、単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。これらの組み合わせは、処理開始時に添加する処理剤について、組み合わせて用いてもよいし、処理の途中で添加する処理剤について、組み合わせて用いてもよい。また化学処理は、同一または異なる処理剤を用いて複数回行うことも可能である。
これらイオン交換性層状珪酸塩には、通常、吸着水および層間水が含まれる。本発明においては、これらの吸着水および層間水を除去して触媒成分(B)として使用するのが好ましい。

0072

イオン交換性層状珪酸塩の吸着水および層間水の加熱処理方法は、特に制限されないが、層間水が残存しないように、また、構造破壊を生じないよう条件を選ぶことが必要である。加熱時間は0.5時間以上、好ましくは1時間以上である。その際、除去した後の触媒成分(B)の水分含有率が、温度200℃、圧力1mmHgの条件下で2時間脱水した場合の水分含有率を0重量%とした時、3重量%以下、好ましくは1重量%以下、であることが好ましい。

0073

以上のように、本発明において、触媒成分(B)として、特に好ましいものは、塩類処理および/または酸処理を行って得られた、水分含有率が3重量%以下の、イオン交換性層状珪酸塩である。

0074

イオン交換性層状珪酸塩は、触媒形成または触媒として使用する前に、後述する有機アルミニウム化合物の触媒成分(C)で処理を行うことが可能で、好ましい。イオン交換性層状珪酸塩1gに対する触媒成分(C)の使用量に制限は無いが、通常20mmol以下、好ましくは0.5mmol以上、10mmol以下で行う。処理温度や時間の制限は無く、処理温度は、通常0℃以上、70℃以下、処理時間は10分以上、3時間以下で行う。処理後に洗浄することも可能で、好ましい。溶媒は後述する予備重合スラリー重合で使用する溶媒と同様の炭化水素溶媒を使用する。

0075

また、触媒成分(B)は、平均粒径が5μm以上の球状粒子を用いるのが好ましい。粒子の形状が球状であれば、天然物あるいは市販品をそのまま使用してもよいし、造粒分粒分別等により、粒子の形状および粒径を制御したものを用いてもよい。
ここで用いられる造粒法は、例えば攪拌造粒法噴霧造粒法が挙げられるが、市販品を利用することもできる。
また、造粒の際に、有機物、無機溶媒、無機塩、各種バインダ−を用いてもよい。
上記のようにして得られた球状粒子は、重合工程での破砕微粉の生成を抑制するためには0.2MPa以上、特に好ましくは0.5MPa以上の圧縮破壊強度を有することが望ましい。このような粒子強度の場合には、特に予備重合を行う場合に、粒子性状改良効果が有効に発揮される。

0076

(3)触媒成分(C)
触媒成分(C)は、有機アルミニウム化合物である。触媒成分(C)として用いられる有機アルミニウム化合物は、一般式:(AlR31qZ3−q)p で示される化合物が好適である。
本発明では、この式で表される化合物を単独で、複数種混合してあるいは併用して使用することができることは言うまでもない。この式中、R31は、炭素数1〜20の炭化水素基を示し、Zは、ハロゲン、水素、アルコキシ基、アミノ基を示す。qは1〜3の、pは1〜2の整数を各々表す。R31としては、アルキル基が好ましく、またZは、それがハロゲンの場合には塩素が、アルコキシ基の場合には炭素数1〜8のアルコキシ基が、アミノ基の場合には炭素数1〜8のアミノ基が、好ましい。

0077

有機アルミニウム化合物の具体例としては、トリメチルアルミニウムトリエチルアルミニウムトリノルマルプロピルアルミニウム、トリノルマルブチルアルミニウムトリイソブチルアルミニウム、トリノルマルヘキシルアルミニウム、トリノルマルオクチルアルミニウム、トリノルマルデシルアルミニウム、ジエチルアルミニウムクロライドジエチルアルミニウムセスキクロライドジエチルアルミニウムヒドリドジエチルアルミニウムエトキシド、ジエチルアルミニウムジメチルアミドジイソブチルアルミニウムヒドリド、ジイソブチルアルミニウムクロライド等が挙げられる。
これらのうち、好ましくは、p=1、q=3のトリアルキルアルミニウムおよびアルキルアルミニウムヒドリドである。さらに好ましくは、R31が炭素数1〜8であるトリアルキルアルミニウムである。

0078

(4)触媒の形成・予備重合について
触媒は、上記の各触媒成分(A)〜(C)を(予備重合槽内で、同時にもしくは連続的に、あるいは一度にもしくは複数回にわたって、接触させることによって形成させることができる。
各成分の接触は、脂肪族炭化水素あるいは芳香族炭化水素溶媒中で行うのが普通である。接触温度は、特に限定されないが、−20℃から150℃の間で行うのが好ましい。接触順序としては、合目的的な任意の組み合わせが可能であるが、特に好ましいものを各成分について示せば、次の通りである。
触媒成分(C)を使用する場合、触媒成分(A)と触媒成分(B)を接触させる前に、触媒成分(A)と、あるいは触媒成分(B)と、または触媒成分(A)および触媒成分(B)の両方に触媒成分(C)を接触させること、または、触媒成分(A)と触媒成分(B)を接触させるのと同時に触媒成分(C)を接触させること、または、触媒成分(A)と触媒成分(B)を接触させた後に触媒成分(C)を接触させることが可能であるが、好ましくは、触媒成分(A)と触媒成分(B)を接触させる前に、触媒成分(C)といずれかに接触させる方法である。
また、各成分を接触させた後、脂肪族炭化水素あるいは芳香族炭化水素溶媒にて洗浄することが可能である。

0079

使用する触媒成分(A)、(B)および(C)の使用量は任意である。例えば、触媒成分(B)に対する触媒成分(A)の使用量は、触媒成分(B)1gに対し、好ましくは0.1μmol〜1,000μmol、特に好ましくは0.5μmol〜500μmolの範囲である。また触媒成分(A)に対する触媒成分(C)の量は、遷移金属モル比で、好ましくは0.01〜5×106、特に好ましくは0.1〜1×104、の範囲内が好ましい。

0080

本発明で使用する前記成分[A−1](一般式(a1)で表される化合物)と前記成分[A−2](一般式(a1)で表される化合物)の割合は、プロピレン系重合体の前記特性を満たす範囲において任意であるが、各成分[A−1]と[A−2]の合計量に対する[A−1]の遷移金属のモル比で、好ましくは0.30以上、0.99以下である。
この割合を変化させることで、溶融物性と触媒活性バランスを調整することが可能である。つまり、成分[A−1]からは、低分子量の末端ビニルマクロマーを生成し、成分[A−2]からは、一部マクロマーを共重合した高分子量体を生成する。したがって、成分[A−1]の割合を変化させることで、生成する重合体の平均分子量、分子量分布、分子量分布の高分子量側への偏り、非常に高い分子量成分、分岐(量、長さ、分布)を制御することができ、そのことにより、歪硬化度、溶融張力、溶融延展性といった溶融物性を制御することができる。
より高い歪硬化のプロピレン系重合体を製造するために、0.30以上が必要であり、好ましくは0.40以上であり、更に好ましくは0.5以上である。また、上限に関しては0.99以下であり、高い触媒活性で効率的にポリプロピレン樹脂(X)を得るためには、好ましくは0.95以下であり、更に好ましくは0.90以下の範囲である。
また、上記範囲で成分[A−1]を使用することにより、水素量に対する、平均分子量と触媒活性のバランスを調整することが可能である。

0081

本発明に係る触媒は、これにオレフィンを接触させて少量重合されることからなる予備重合処理に付される。予備重合処理を行うことにより、本重合を行った際に、ゲルの生成を防止できる。その理由としては、本重合を行った際の重合体粒子間で長鎖分岐が均一に分布させることができるためと、考えられ、また、そのことにより溶融物性を向上することができる。

0082

予備重合時に使用するオレフィンは、特に限定はないが、プロピレン、エチレン、1−ブテン1−ヘキセン1−オクテン、4−メチル−1−ペンテン、3−メチル−1−ブテン、ビニルシクロアルカンスチレン等を例示することができる。オレフィンのフィード方法は、オレフィンを反応槽に定速的にあるいは定圧状態になるように維持するフィード方法やその組み合わせ、段階的な変化をさせる等、任意の方法が可能である。
予備重合温度、時間は、特に限定されないが、各々−20℃〜100℃、5分〜24時間の範囲であることが好ましい。また、予備重合量は、予備重合ポリマー量が触媒成分(B)に対し、好ましくは0.01〜100、さらに好ましくは0.1〜50である。また、予備重合時に触媒成分(C)を添加、又は追加することもできる。また、予備重合終了後に洗浄することも可能である。

0083

また、上記の各成分の接触の際もしくは接触の後に、ポリエチレン、ポリプロピレン等の重合体、シリカチタニア等の無機酸化物固体共存させる等の方法も可能である。

0084

(5)触媒の使用/プロピレン重合について
重合様式は、前記触媒成分(A)、触媒成分(B)および触媒成分(C)を含むオレフィン重合用触媒モノマーが効率よく接触するならば、あらゆる様式を採用しうる。
具体的には、不活性溶媒を用いるスラリー法、不活性溶媒を実質的に用いずプロピレンを溶媒として用いる、所謂バルク法、溶液重合法あるいは実質的に液体溶媒を用いず各モノマーをガス状に保つ気相法などが採用できる。また、連続重合、回分式重合を行う方法も適用される。また、単段重合以外に、2段以上の多段重合することも可能である。
スラリー重合の場合は、重合溶媒として、ヘキサンヘプタンペンタンシクロヘキサンベンゼントルエン等の飽和脂肪族又は芳香族炭化水素の単独又は混合物が用いられる。

0085

また、重合温度は、0℃以上150℃以下である。特に、バルク重合を用いる場合には、40℃以上が好ましく、更に好ましくは50℃以上である。また上限は80℃以下が好ましく、更に好ましくは75℃以下である。
さらに、気相重合を用いる場合には、40℃以上が好ましく、更に好ましくは50℃以上である。また上限は100℃以下が好ましく、更に好ましくは90℃以下である。
重合圧力は、1.0MPa以上5.0MPa以下であることが好ましい。特に、バルク重合を用いる場合には、1.5MPa以上が好ましく、更に好ましくは2.0MPa以上である。また上限は4.0MPa以下が好ましく、更に好ましくは3.5MPa以下である。

0086

さらに、気相重合を用いる場合には、1.5MPa以上が好ましく、更に好ましくは1.7MPa以上である。また、上限は2.5MPa以下が好ましく、更に好ましくは2.3MPa以下である。
さらに、分子量調節剤として、また活性向上効果のために、補助的に水素をプロピレンに対してモル比で1.0×10−6以上、1.0×10−2以下の範囲で用いることができる。

0087

また、使用する水素の量を変化させることで、生成する重合体の平均分子量の他に、分子量分布、分子量分布の高分子量側への偏り、非常に高い分子量成分、分岐(量、長さ、分布)を制御することができ、そのことにより、MFR、歪硬化度、溶融張力MT、溶融延展性といった、長鎖分岐構造を有するポリプロピレンを特徴付ける溶融物性を制御することができる。
そこで水素は、プロピレンに対するモル比で、1.0×10−6以上で用いるのがよく、好ましくは1.0×10−5以上であり、さらに好ましくは1.0×10−4以上用いるのがよい。また上限に関しては、1.0×10−2以下で用いるのがよく、好ましくは0.9×10−2以下であり、更に好ましくは0.8×10−2以下である。

0088

また、プロピレンモノマー以外に、用途に応じて、プロピレンを除く炭素数2〜20のα−オレフィンコモノマー、例えば、エチレンおよび/又は1−ブテンをコモノマーとして使用する共重合をおこなってもよい。
そこで、本発明に用いるポリプロピレン樹脂(X)として、触媒活性と溶融物性のバランスのよいものを得るためには、エチレンおよび/又は1−ブテンを、プロピレンに対して15モル%以下で使用することが好ましく、より好ましくは10.0モル%以下であり、更に好ましくは7.0モル%以下である。

0089

ここで例示した触媒、重合法を用いてプロピレンを重合すると、触媒成分[A−1]由来活性種から、β−メチル脱離と一般に呼ばれる特殊な連鎖移動反応により、ポリマー片末端が主としてプロペニル構造を示し、所謂マクロマーが生成する。このマクロマーは、より高分子量を生成することができ、より共重合性がよい触媒成分[A−2]由来の活性種に取り込まれ、マクロマー共重合が進行すると考えられる。したがって、生成する長鎖分岐構造を有するポリプロピレン樹脂の分岐構造としては、櫛型鎖が主であると、考えられる。

0090

1)−8.長鎖分岐構造を有するポリプロピレン樹脂(X)のその他の特性
上記の代表的な手法にて製造される、本発明で用いられる長鎖分岐構造を有するポリプロピレン樹脂(X)の更なる付加的特徴として、歪み速度0.1s−1での伸長粘度の測定における歪硬化度(λmax(0.1))が6.0以上であることが挙げられる。
歪硬化度(λmax(0.1))は、溶融時粘度を表す指標であり、この値が大きいと、溶融張力が向上する効果がある。その結果、燃焼試験を行ったときに、高い耐ドリップ性を発現することができる。この歪硬化度は、6.0以上であると、耐ドリップ性を発現できるので好ましく、更に好ましくは8.0以上である。一方、この歪硬化度が高すぎると、成形性に悪影響を及ぼす場合があるので、30以下が好ましく、20以下が更に好ましい。歪硬化度をこの様な範囲とすると、高い耐ドリップ性を保ち、高い難燃性を達成すると共に、良好な成形性を保つことが可能となるので好ましい。

0091

λmax(0.1)の算出方法の詳細を、以下に記す。
・λmax(0.1)の算出方法
温度180℃、歪み速度=0.1s−1の場合の伸長粘度を、横軸に時間t(秒)、縦軸に伸長粘度ηE(Pa・秒)を両対数グラフプロットする。その両対数グラフ上で歪み硬化を起こす直前の粘度を直線で近似する。
具体的には、まず伸張粘度を時間に対してプロットした際の各々の時刻での傾きを求めるが、それに当っては伸張粘度の測定データは離散的であることを考慮し、種々の平均法を利用する。たとえば隣接データの傾きをそれぞれ求め、周囲数点の移動平均をとる方法等が挙げられる。
伸張粘度は、低歪み量の領域では、単純増加関数となり、次第に一定値漸近し、歪み硬化がなければ、充分な時間経過後にトルートン粘度に一致するが、歪み硬化のある場合には、一般的に歪み量(=歪み速度×時間)1程度から、伸張粘度が時間と共に増大を始める。すなわち、上記傾きは、低歪み領域では時間と共に減少傾向があるが、歪み量1程度から逆に増加傾向となり、伸張粘度を時間に対してプロットした際の曲線上に、変曲点が存在する。そこで歪み量が0.1〜2.5程度の範囲で、上記で求めた各々の時刻の傾きが最小値をとる点を求めて、その点で接線を引き、直線を歪み量が4.0となるまで外挿する。歪み量4.0となるまでの伸長粘度ηEの最大値(ηmax)を求め、また、その時間までの上記近似直線上の粘度をηlinとする。ηmax/ηlinを、λmax(0.1)と定義する。本明細書の実施例で具体的に使用した装置等は、後述の実施例項に記載の通りである。また、同等の他の装置を用いても、同様の結果を得ることができる。

0092

本発明に用いる長鎖分岐構造を有するポリプロピレン樹脂(X)は、上に述べたように高い立体規則性を有することが好ましく、それにより成形体の剛性等の機械物性を高くし、工業製品として利用可能なものを製造することができる。長鎖分岐構造を有するポリプロピレン樹脂(X)は、ホモポリプロピレン(プロピレン単独重合体)であるか、または上に述べた種々の特性を満足する限り、少量のエチレンや1−ブテン、1−ヘキセン等の炭素数が2から8程度のα−オレフィンその他のコモノマーとのプロピレン−α−オレフィンランダム共重合体であってもよい。長鎖分岐構造を有するポリプロピレン樹脂(X)がホモポリプロピレンである場合には、結晶性が高く、融点が高くなるが、長鎖分岐構造を有するポリプロピレン樹脂(X)がプロピレン−α−オレフィンランダム共重合体である場合にも、融点が高いことが好ましい。
より具体的には、示差走査熱量測定DSC:Differential Scanning Calorimeter)によって得られた融点が145℃以上であることが好ましく、150℃以上がより好ましい。また、長鎖分岐構造を有するポリプロピレン樹脂(X)の融点の上限は、通常170℃である。融点をこの様な範囲とすることにより、本発明のポリプロピレン系難燃樹脂組成物から、変色の無い、外観が良好な成形体を得ることができる。
なお、融点は、示差走査熱量測定(DSC)によって求められ、一旦200℃まで温度を上げて熱履歴消去した後、10℃/分の降温速度で40℃まで温度を降下させ、再び昇温速度10℃/分にて測定した際の、吸熱ピークトップの温度とする。本明細書の実施例で具体的に使用した装置等は、後述の実施例項に記載の通りである。また、同等の他の装置を用いても、同様の結果を得ることができる。

0093

2).ポリプロピレン樹脂(Y)
以下に、本発明に用いられるポリプロピレン樹脂(Y)の詳細について説明する。
2)−1.特性(Y−i):ポリプロピレン樹脂(Y)について
本発明に用いられるポリプロピレン樹脂(Y)は、プロピレン単独重合体、プロピレン−α−オレフィンブロック共重合体及びプロピレン−α−オレフィンランダム共重合体からなる群から選ばれる少なくとも1種のポリプロピレン樹脂であり、前記長鎖分岐構造を有するポリプロピレン樹脂(X)に該当しないものである。(以下、本明細書においては、プロピレン−α−オレフィンブロック共重合体とプロピレン−α−オレフィンランダムランダム共重合体を単に「プロピレン−α−オレフィン共重合体」と称することがある。)
好ましく用いられるプロピレン−α−オレフィン共重合体は、プロピレンとプロピレンを除く炭素数2〜8のα−オレフィンをコモノマーとする共重合体、プロピレン含量が70〜99重量%(すなわちコモノマー含量が0.01〜30重量%)であり、更に好ましくはプロピレン含量が90重量%以上のプロピレンとα−オレフィンとのランダム共重合体またはブロック共重合体である。また、α−オレフィンの異なるランダム共重合体またはブロック共重合体の混合物であってもよい。

0094

また、プロピレンと共重合させるプロピレンを除く炭素数2〜8のα−オレフィンであるコモノマーは、1種用いてもよいし、また、2種以上を組み合わせて用いてもよい。
プロピレン−α−オレフィン共重合体としては、具体的に、プロピレン−エチレン共重合体、プロピレン−ブテン−1共重合体、プロピレン−ペンテン−1共重合体、プロピレン−ヘキセン−1共重合体、プロピレン−オクテン−1共重合体のような二元共重合体、プロピレン−エチレン−ブテン−1共重合体、プロピレン−エチレン−ヘキセン−1共重合体のような三元共重合体などが挙げられ、プロピレン−エチレンランダム共重合体、プロピレン−エチレン−ブテン−1ランダム共重合体などが好ましい。プロピレン−α−オレフィン共重合体におけるα−オレフィン単量体の含有量は、通常は、0.01〜30重量%程度、好ましくは1〜30重量%、より好ましくは1〜10重量%程度含むことができる。

0095

プロピレンを除く炭素数2〜8のα−オレフィンとしては、例えば、エチレン、1−ブテン、2−メチル−1−プロペン、1−ペンテン、2−メチル−1−ブテン、3−メチル−1−ブテン、1−ヘキセン、2−エチル−1−ブテン、2,3−ジメチル−1−ブテン、2−メチル−1−ペンテン、3−メチル−1−ペンテン、4−メチル−1−ペンテン、3,3−ジメチル−1−ブテン、1−ヘプテン、メチル−1−ヘキセン、ジメチル−1−ペンテン、エチル−1−ペンテン、トリメチル−1−ブテン、1−オクテン等を挙げることができる。

0096

また、成形性の観点から、ポリプロピレン樹脂(Y)は、融点が100〜170℃であることが好ましく、160〜165℃であることがより好ましい。ポリプロピレン系樹脂の融点は、主として、原料として用いられるプロピレンとプロピレン以外のα−オレフィンの種類、共重合比率、MFR等により、適宜制御することができる。なお、本明細書でいう「融点」とは、示差走査熱量計(DSC)により、測定された融解ピーク温度であり、長鎖分岐構造を有するポリプロピレン樹脂(X)の項で述べた方法と同様の方法によって測定することができる。

0097

2)−2.特性(Y−ii):ポリプロピレン樹脂(Y)のメルトフローレートについて
本発明に用いられるポリプロピレン樹脂(Y)は、JIS K7210に準拠したメルトフローレート(MFR)[測定温度230℃、荷重2.16kg(21.18N)]について、0.1〜10g/10分である。0.3〜8.0g/10分であるのが好ましく、0.5〜7.0g/10分がより好ましい。MFRをこのような範囲とすることにより、本発明のポリプロピレン系樹脂組成物およびそれを成形してなる成形品において、良好な成形性を保つと共に、高い耐ドリップ性を発現させ、高い難燃性を達成することが可能となる。即ち、MFRが0.1g/10分を下回ると、本発明のポリプロピレン系樹脂組成物を成形する時の負荷が増大し、成形性が悪化すると共に、成形体の変色等を生じ外観が悪化するおそれがあり、逆に、10g/10分を上回ると、適切な耐ドリップ性を発現できず難燃性が悪化するおそれがある。

0098

また、前記ポリプロピレン樹脂(Y)は、その結晶化度を示すアイソタクチックペンタッド分率mmmm分率)が96%以上のものが、本発明おいて好ましく用いられ、更に好ましくは、アイソタクチックペンタッド分率97%以上である。アイソタクチックペンタッド分率が96%以上であることにより、本発明のポリプロピレン系難燃樹脂組成物は、剛性や耐熱性などが高く、工業製品として利用可能なものとすることができる。ポリプロピレン樹脂(Y)の結晶化度の制御は、原料の共重合比率や、使用する触媒によって分子量分布を制御することにより調整することができる。
なお、上記アイソタクチックペンタッド分率は、13C−NMR(核磁気共鳴法)を用いて測定される値であり、同位体炭素による核磁気共鳴スペクトル(13C−NMR)を使用して測定されるポリプロピレン分子鎖中のペンタッド単位でのアイソタクチック分率である。すなわち、アイソタクチックペンタッド分率は、プロピレンモノマー単位が5個連続してアイソタクチック結合したプロピレン単位の分率である。具体的には、13C−NMRスペクトルのメチル炭素領域の全吸収ピーク中のmmmmピークの強度分率をアイソタクチックペンタッド分率とする。測定においては、例えば、日本電子社製FT−NMRの270MHzの装置が用いられる。

0099

本発明に用いられるポリプロピレン樹脂(Y)を得るために用いられる触媒は、特に限定されるものではなく、公知の触媒が使用可能である。例えば、チタン化合物有機アルミニウムを組み合わせた、いわゆるチーグラーナッタ触媒(例えば、ポリプロピレンハンドブック(1998年5月15日初版第1刷発行)等に記載)、あるいは、メタロセン触媒(例えば、特開平5−295022号公報等に記載)が使用できる。

0100

本発明に用いられるポリプロピレン樹脂(Y)を得るために用いられる重合プロセスは、特に限定されるものではなく、公知の重合プロセスが使用可能である。例えば、スラリー重合法バルク重合法気相重合法等が使用できる。また、バッチ重合法や連続重合法のいずれも用いることができ、所望により、二段及び三段等の複数段の連続重合法を用いてもよい。また、2種以上のプロピレン系重合体を機械的に溶融混練することによっても、製造することができる。
また、ポリプロピレン樹脂(Y)として使用可能なポリプロピレン樹脂は、種々の製品が多くの会社から市販されており、例えば日本ポリプロ社製のノバテックシリーズ等を挙げることができる。これら市販の製品から所望の物性を有する製品を購入し、使用することも可能である。

0101

3).配合
条件(A−1)
ポリプロピレン系樹脂(A)は長鎖分岐構造を有するポリプロピレン樹脂(X)を含有することを必須とする。長鎖分岐構造を有するポリプロピレン樹脂(X)を本発明のポリプロピレン系樹脂組成物およびそれを成形してなる成形品において必須成分として使用することにより、適切な流動性を保って良好な成形性を示すと共に、更に適切な溶融張力を有することとなるので良好な耐ドリップ性を有し、高い難燃性を示すという効果が得られる。

0102

条件(A−2)
更にポリプロピレン系樹脂(A)は、前記長鎖分岐構造を有するポリプロピレン樹脂(X)及びポリプロピレン樹脂(Y)からなる群から選ばれる少なくとも1種のポリプロピレン系樹脂を含有することを特徴とする。特に、本発明のポリプロピレン系樹脂組成物およびそれを成形してなる成形品において、長鎖分岐構造を有するポリプロピレン樹脂(X)が有する特性を更に高めたり、新たに別の特徴を付与しようとする場合には、ポリプロピレン樹脂(Y)の使用が効果的である。

0103

条件(A−3)
本発明において、長鎖分岐構造を有するポリプロピレン樹脂(X)とポリプロピレン樹脂(Y)との合計100重量%に対して、通常は長鎖分岐構造を有するポリプロピレン樹脂(X)10〜99重量%とポリプロピレン樹脂(Y)1〜90重量%であり、長鎖分岐構造を有するポリプロピレン樹脂(X)12〜90重量%とポリプロピレン樹脂(Y)10〜88重量%であるのが好ましい。長鎖分岐構造を有するポリプロピレン樹脂(X)は15〜80重量%が更に好ましく、20〜75重量%がより好ましく、中でも30〜70重量%が一層好ましい。一方、ポリプロピレン樹脂(Y)は20〜85重量%が更に好ましく、25〜80重量%がより好ましく、中でも30〜70重量%が一層好ましい。長鎖分岐構造を有するポリプロピレン樹脂(X)とポリプロピレン樹脂(Y)との配合量をこの様な範囲とすることにより、良好な成形加工性を保つことが可能となり、更に高い耐ドリップ性を保つことによって高い難燃性を発現することができるので、更に高いレベル難燃性材料を提供することが可能となる。

0104

3.有機系難燃剤(B)
本発明に用いられる有機系難燃剤(B)としては、一般的にポリオレフィン用の難燃剤として用いられる有機系難燃剤であれば、ハロゲン系、リン系、グアニジン系、メラミンシアヌル酸誘導体などの種々の有機系難燃剤をいずれも用いることができる。
ハロゲン系難燃剤としては、例えば、ハロゲン化ジフェニル化合物ハロゲン化ビスフェノール系化合物、ハロゲン化ビスフェノール−ビス(アルキルエーテル)系化合物、ハロゲン化フタルイミド系化合物などの有機ハロゲン芳香族化合物等を挙げることができ、ハロゲン化ビスフェノール−ビス(アルキルエーテル)系化合物が用いられることが多い。

0105

上記ハロゲン化ジフェニル化合物としては、例えば、ハロゲン化ジフェニルエーテル系化合物、ハロゲン化ジフェニルケトン系化合物、ハロゲン化ジフェニルアルカン系化合物等が挙げられ、なかでもデカブロモジフェニルエタン等のハロゲン化ジフェニルアルカン化合物が用いられることが多い。

0106

上記ハロゲン化ビスフェノール系化合物としては、例えば、ハロゲン化ビスフェニルアルカン類、ハロゲン化ビスフェニルエーテル類、ハロゲン化ビスフェニルチオエーテル類、ハロゲン化ビスフェニルスルフォン類等が挙げられ、なかでもビス(3,5−ジブロモ−4−ヒドロキシフェニル)スルフォン等のハロゲン化ビスフェニルチオエーテル類が用いられることが多い。

0107

上記ハロゲン化ビスフェノールビス(アルキルエーテル)系化合物としては、例えば、(3,5−ジブロモ−4−2,3−ジブロモプロポキシフェニル)−(3−ブロモ−4−2,3−ジブロモプロポキシフェニル)メタン、1−(3,5−ジブロモ−4−2,3−ジブロモプロポキシフェニル)−2−(3−ブロモ−4−2,3−ジブロモプロポキシフェニル)エタン、1−(3,5−ジブロモ−4−2,3−ジブロモプロポキシフェニル)−3−(3−ブロモ−4−2,3−ジブロモプロポキシフェニル)プロパン、2,2−ビス(3,5−ジブロモ−4−2,3−ジブロモプロポキシフェニル)プロパン、(3,5−ジクロロ−4−2,3−ジブロモプロポキシフェニル)−(3−クロロ−4−2,3−ジブロモプロポキシフェニル)メタン、1−(3,5−ジクロロ−4−2,3−ジブロモプロポキシフェニル)−2−(3−クロロ−4−2,3−ジブロモプロポキシフェニル)エタン、1−(3,5−ジクロロ−4−2,3−ジブロモプロポキシフェニル)−3−(3−クロロ−4−2,3−ジブロモプロポキシフェニル)プロパン、ビス(3,5−ジブロモ−4−2,3−ジブロモプロポキシフェニル)メタン、1,2−ビス(3,5−ジブロモ−4−2,3−ジブロモプロポキシフェニル)エタン、1,3−ビス(3,5−ジブロモ−4−2,3−ジブロモプロポキシフェニル)プロパン、ビス(3,5−ジクロロ−4−2,3−ジブロモプロポキシフェニル)メタン、1,2−ビス(3,5−ジクロロ−4−2,3−ジブロモプロポキシフェニル)エタン、1,3−ビス(3,5−ジクロロ−4−2,3−ジブロモプロポキシフェニル)プロパン、2−ビス(3,5−ジクロロ−4−2,3−ジブロモプロポキシフェニル)プロパン、(3,5−ジブロモ−4−2,3−ジブロモプロポキシフェニル)−(3−ブロモ−4−2,3−ジブロモプロポキシフェニル)ケトン、(3,5−ジクロロ−4−2,3−ジブロモプロポキシフェニル)−(3−クロロ−4−2,3−ジブロモプロポキシフェニル)ケトン、ビス(3,5−ジブロモ−4−2,3−ジブロモプロポキシフェニル)ケトン、ビス(3,5−ジクロロ−4−2,3−ジブロモプロポキシフェニル)ケトン、(3,5−ジブロモ−4−2,3−ジブロモプロポキシフェニル)−(3−ブロモ−4−2,3−ジブロモプロポキシフェニル)エーテル、(3,5−ジクロロ−4−2,3−ジブロモプロポキシフェニル)−(3−クロロ−4−2,3−ジブロモプロポキシフェニル)エーテル、ビス(3,5−ジブロモ−4−2,3−ジブロモプロポキシフェニル)エーテル、ビス(3,5−ジクロロ−4−2,3−ジブロモプロポキシフェニル)エーテル、(3,5−ジブロモ−4−2,3−ジブロモプロポキシフェニル)−(3−ブロモ−4−2,3−ジブロモプロポキシフェニル)チオエーテル、(3,5−ジクロロ−4−2,3−ジブロモプロポキシフェニル)−(3−クロロ−4−2,3−ジブロモプロポキシフェニル)チオエーテル、ビス(3,5−ジブロモ−4−2,3−ジブロモプロポキシフェニル)チオエーテル、ビス(3,5−ジクロロ−4−2,3−ジブロモプロポキシフェニル)チオエーテル、(3,5−ジブロモ−4−2,3−ジブロモプロポキシフェニル)−(3−ブロモ−4−2,3−ジブロモプロポキシフェニル)スルフォン、(3,5−ジクロロ−4−2,3−ジブロモプロポキシフェニル)−(3−クロロ−4−2,3−ジブロモプロポキシフェニル)スルフォン、ビス(3,5−ジブロモ−4−2,3−ジブロモプロポキシフェニル)スルフォン、ビス(3,5−ジクロロ−4−2,3−ジブロモプロポキシフェニル)スルフォンが挙げられ、なかでも臭素化ビスフェノールA(臭素化脂肪族エーテル)、臭素化ビスフェノールS(臭素化脂肪族エーテル)、塩素化ビスフェノールA(塩素化脂肪族エーテル)、塩素化ビスフェノールS(塩素化脂肪族エーテル)、とりわけエーテル化テトラブロモビスフェノールA、エーテル化テトラブロモビスフェノールSが用いられることが多い。

0108

エーテル化テトラブロモビスフェノールAとして、テトラブロモビスフェノールA−ビス(2,3−ジブロモプロピルエーテル)、2,2−ビス(3,5−ジブロモ−4−2,3−ジブロモプロポキシフェニル)プロパンが例示される。エーテル化テトラブロモビスフェノールSとして、ビス(3,5−ジブロモ−4−2,3−ジブロモプロポキシフェニル)スルフォンが例示される。

0109

これらのハロゲン系難燃剤は、単独で使用してもよく、2種以上併用してもよい。例えば、ハロゲン化ジフェニル化合物とハロゲン化ビスフェノール系化合物を併用してもよい。
また、ハロゲン系難燃剤と共に、リン系難燃剤などのハロゲン系難燃剤に該当しない他の有機系難燃剤を使用することもできる。
これらのハロゲン系難燃剤の中でも、臭素系難燃剤は、難燃効果が高いので、用いられることが多い。

0110

一方、近年はハロゲン系難燃剤の環境負荷への問題や、本発明のポリプロピレン系樹脂組成物およびそれを成形してなる成形品に対する分散や難燃性の発現効果が高いことから、有機リン酸エステル化合物リン酸塩化合物及びこれらの混合物からなるリン系難燃剤が好ましく用いられ、特にリン酸塩化合物が好ましく用いられる。
具体的には、トリフェニルホスフェートトリクレジルホスフェート、ビスフェノール−A−ビスジフェニルホスフェートレゾルシノール−ビスジフェニルホスフェート等の有機リン酸エステル化合物、ポリリン酸アンモニウム塩ポリリン酸メラミン塩、ポリリン酸ピペラジン塩オルトリン酸ピペラジン塩、ピロリン酸メラミン塩、ピロリン酸ピペラジン塩、ポリリン酸メラミン塩、オルトリン酸メラミン塩、リン酸カルシウムリン酸マグネシウム等のリン酸塩化合物、またはこれらの混合物などが挙げられる。

0111

上記リン酸塩化合物の例示において、メラミン、ピペラジンの代わりに、N,N,N’,N’−テトラメチルジアミノメタン、エチレンジジアミン、N,N’−ジメチルエチレンジアミン、N,N’−ジエチルエチレンジアミン、N,N−ジメチルエチレンジアミン、N,N−ジエチルエチレンジアミン、N,N,N’,N’−テトラメチルエチレンジアミン、N,N,N’,N’−ジエチルエチレンジアミン、1,2−プロパンジアミン、1,3−プロパンジアミン、テトラメチレンジアミンペンタメチレンジアミンヘキサメチレンジアミン、1,7−ジアミノへプタン、1,8−ジアミノオクタン、1,9ージアミノノナン、1,10−ジアミノデカン、trans−2,5−ジメチルピペラジン、1,4−ビス(2−アミノエチル)ピペラジン、1,4−ビス(3−アミノプロピル)ピペラジン、アセトグアナミンベンゾグアナミンアクリルグアナミン、2,4−ジアミノ−6−ノニル−1,3,5−トリアジン、2,4−ジアミノ−6−ハイドロキシ−1,3,5−トリアジン、2−アミノ−4,6−ジハイドロキシ−1,3,5−トリアジン、2,4−ジアミノ−6−メトキシ−1,3,5−トリアジン、2,4−ジアミノ−6−エトキシ−1,3,5−トリアジン、2,4−ジアミノ−6−プロポキシ−1,3,5−トリアジン、2,4−ジアミノ−6−イソプロポキシ−1,3,5−トリアジン、2,4−ジアミノ−6−メルカプト−1,3,5−トリアジン、2−アミノ−4,6−ジメルカプト−1,3,5−トリアジン、アンメリンベンズグアナミン、アセトグアナミン、フタジグアナミン、メラミンシアヌレート、ピロリン酸メラミン、ブチレンジグアナミン、ノルボルネンジグアナミン、メチレンジグアナミン、エチレンジメラミン、トリメチレンジメラミン、テトラメチレンジメラミン、ヘキサメチレンジメラミン、1,3−ヘキシレンメランミン等を置き換えた化合物も同様に使用できる。市販品としては、旭電化社製・アデカスタブFP2000、FP2100、FP2200やポリリン酸アンモニウム等が挙げられる。

0112

4.各成分の配合量
本発明において、各成分の含有量は、ポリプロピレン系樹脂(A)60〜99重量部、有機系難燃剤(B)1〜40重量部の範囲にあり、かつポリプロピレン系樹脂(A)と有機系難燃剤(B)との合計量が100重量部であることを必須とする(条件(ア))。各成分の配合量をこの様な範囲とすることにより、本発明のポリプロピレン系樹脂組成物およびそれを成形してなる成形品において、従来の技術では困難であった、1.0mmt以下の厚みに対して高い難燃性を保有するばかりでなく、シート成形においても変色が無い良好な成形外観及び成形性を付与することが可能となる。

0113

ポリプロピレン系樹脂(A)は好ましくは65〜99重量部、更に好ましくは70〜98重量部、特に好ましくは75〜97重量%である。

0114

有機難燃剤(B)は好ましくは1〜35重量部、更に好ましくは2〜30重量部、特に好ましくは3〜25重量部である。有機系難燃剤(B)の配合量をこの様な範囲とすることによる効果は前述の通りであり、即ち、有機系難燃剤(B)の配合量が本願規定の範囲を下まわると、充分な難燃性が得られず、一方、本願規定の範囲を上まわると、成形性の悪化及び経済的に不利となる場合がある。
なお、ポリプロピレン系樹脂(A)と有機系難燃剤(B)の各成分の配合量は、ポリプロピレン系樹脂(A)と有機系難燃剤(B)との合計量が100重量部となるように、各成分の本願規定の範囲から選択することができる。

0115

5.任意添加成分(C)
本発明においては、ポリプロピレン系樹脂(A)、有機系難燃剤(B)の他に必要に応じ、本発明の効果を著しく損なわない範囲で、例えば、発明効果を一層向上させたり、他の効果を付与するなどのため、通常用いられる任意添加成分(C)を配合することができる。
具体的には、過酸化物などの分子量降下剤顔料などの着色剤フェノール系、リン系、イオウ系などの酸化防止剤、ヒンダードアミン系などの光安定剤ベンゾトリアゾール系などの紫外線吸収剤ソルビトール系などの造核剤非イオン系などの帯電防止剤有機金属塩系などの分散剤窒素化合物などの金属不活性化剤チアゾール系などの抗菌防黴剤可塑剤中和剤滑剤エラストマーゴム成分)、金属酸化物等の難燃助剤、ポリプロピレン系樹脂(A)以外のポリオレフィン系樹脂ポリアミド樹脂ポリエステル樹脂などの熱可塑性樹脂、タルクやガラス繊維炭素繊維などのフィラー、有機系難燃剤(B)以外の水和金属化合物などの難燃剤などを挙げることができる。特に有機系難燃剤(B)としてハロゲン系難燃剤を用いる場合は、任意添加成分(C)として、三酸化アンチモンに代表される金属酸化物等の難燃助剤を用いるのが、良好な難燃性を発現させるためには好ましい。

0116

これらの任意添加成分は、2種以上を併用してもよく、本発明のポリプロピレン系樹脂組成物に添加してもよいし、前記成分、ポリプロピレン系樹脂(A)、有機系難燃剤(B)の各成分に混合、添加されていてもよく、夫々の成分においても2種以上併用することもできる。本発明において、任意添加成分(C)の配合量は特に限定されないが、通常、ポリプロピレン系樹脂(A)、有機系難燃剤(C)との合計量100重量部に対して、0〜10重量部程度である。

0117

(1)種類
分子量降下剤として、例えば、各種の有機過酸化物や、分解(酸化)促進剤と称されるものなどが使用でき、有機過酸化物が好適である。
具体例として、有機過酸化物としては、ベンゾイルパーオキサイド、t−ブチルパーベンゾエート、t−ブチルパーアセテート、t−ブチルパーオキシイソプロピルカーボネート、2,5−ジ−メチル−2,5−ジ−(ベンゾイルパーオキシ)ヘキサン、2,5−ジ−メチル−2,5−ジ−(ベンゾイルパーオキシ)ヘキシン−3、t−ブチル−ジ−パーアジペート、t−ブチルパーオキシ−3,5,5−トリメチルヘキサノエート、メチル−エチルケトンパーオキサイドシクロヘキサノンパーオキサイド、ジ−t−ブチルパーオキサイド、ジキュミルパーオキサイド、2,5−ジ−メチル−2,5−ジ−(t−ブチルパーオキシ)ヘキサン、2,5−ジ−メチル−2,5−ジ−(t−ブチルパーオキシ)ヘキシン−3、1,3−ビス−(t−ブチルパーオキシイソプロピル)ベンゼン、t−ブチルキュミルパーオキサイド、1,1−ビス−(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス−(t−ブチルパーオキシ)シクロヘキサン、2,2−ビス−t−ブチルパーオキシブタン、p−メンタンハイドロパーオキサイド、ジ−イソプロピルベンゼンハイドロパーオキサイドキュメンハイドロパーオキサイド、t−ブチルハイドロパーオキサイド、p−サイメンハイドロパーオキサイド、1,1,3,3−テトラメチルブチルハイドロパーオキサイド及び2,5−ジ−メチル−2,5−ジ−(ハイドロパーオキシ)ヘキサンのグループから選ばれる1種または2種以上からなるものを挙げることができる。なお、これらに限定されるものではない。

0118

着色剤として、例えば無機系や有機系の顔料などは、本発明のポリプロピレン系樹脂組成物およびそれを成形してなる成形品の、着色外観耐傷付性、見映え、風合い、商品価値耐候性耐久性などの付与、向上などに有効である。
具体例として、無機系顔料としては、ファーネスカーボンケッチェンカーボンなどのカーボンブラック酸化チタン酸化鉄ベンガラなど);クロム酸黄鉛など);モリブデン酸硫化セレン化物フェロシアン化物などが挙げられ、有機系顔料としては、難溶性アゾレーキ;可溶性アゾレーキ;不溶性アゾキレート縮合性アゾキレート;その他のアゾキレートなどのアゾ系顔料フタロシアニンブルーフタロシアニングリーンなどのフタロシアニン系顔料アントラキノンペリノン;ペリレンチオインジゴなどのスレ系顔料染料レーキ;キナクリドン系;ジオキサジン系;イソインドリノン系などが挙げられる。また、メタリック調パール調にするには、アルミフレークパール顔料を含有させることができる。また、染料を含有させることもできる。

0119

光安定剤や紫外線吸収剤として、例えばヒンダードアミン化合物、ベンゾトリアゾール系、ベンゾフェノン系やサリシレート系などは、本発明のポリプロピレン系樹脂組成物およびそれを成形してなる成形品の耐候性や耐久性などの付与、向上に有効である。
具体例としては、ヒンダードアミン化合物として、コハク酸ジメチルと1−(2−ヒドロキシエチル)−4−ヒドロキシ−2,2,6,6−テトラメチルピペリジンとの縮合物ポリ〔〔6−(1,1,3,3−テトラメチルブチル)イミノ−1,3,5−トリアジン−2,4−ジイル〕〔(2,2,6,6−テトラメチル−4−ピペリジル)イミノ〕ヘキサメチレン〔(2,2,6,6−テトラメチル−4−ピペリジル)イミノ〕〕;テトラキス(2,2,6,6−テトラメチル−4−ピペリジル)1,2,3,4−ブタンテトラカルボキシレート;テトラキス(1,2,2,6,6−ペンタメチル−4−ピペリジル)1,2,3,4−ブタンテトラカルボキシレート;ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート;ビス−2,2,6,6−テトラメチル−4−ピペリジルセバケートなどが挙げられ、ベンゾトリアゾール系としては、2−(2’−ヒドロキシ−3’,5’−ジ−t−ブチルフェニル)−5−クロロベンゾトリアゾール;2−(2’−ヒドロキシ−3’−t−ブチル−5’−メチルフェニル)−5−クロロベンゾトリアゾールなどが挙げられ、ベンゾフェノン系としては、2−ヒドロキシ−4−メトキシベンゾフェノン;2−ヒドロキシ−4−n−オクトキシベンゾフェノンなどが挙げられ、サリシレート系としては、4−t−ブチルフェニルサリシレート;2,4−ジ−t−ブチルフェニル3’,5’−ジ−t−ブチル−4’−ヒドロキシベンゾエートなどが挙げられる。
ここで、前記光安定剤と紫外線吸収剤とを併用する方法は、耐候性、耐久性などの向上効果が大きく好ましい。

0120

酸化防止剤として、例えば、フェノール系、リン系やイオウ系の酸化防止剤などは、本発明のポリプロピレン系樹脂組成物およびそれを成形してなる成形品の、耐熱定性、加工安定性、耐熱老化性などの付与、向上などに有効である。
帯電防止剤として、例えば、非イオン系やカチオン系などの帯電防止剤は、本発明のポリプロピレン系樹脂組成物およびそれを成形してなる成形品の帯電防止性の付与、向上に有効である。

0121

金属酸化物(難燃助剤)としては、酸化亜鉛、酸化鉄、酸化アルミ酸化モリブデン等が挙げられる。より好ましい金属酸化物としては、酸化亜鉛、酸化鉄であり、平均粒径が30μm以下、好ましくは10μm以下、更に好ましくは1μm以下のものが好適である。金属酸化物の平均粒子径が30μmより大きい場合には、ポリオレフィン樹脂(A)に対する分散性が悪くなり、高度な難燃性を得ることができなくなる。金属酸化物を使用する場合の配合量は、ポリプロピレン系樹脂(A)、有機系難燃剤(B)100重量部に対して、0.05〜10重量部が好ましく、さらに好ましくは0.1〜8重量部である。0.05重量部未満では、十分な添加による相乗難燃効果が得られず、一方、10重量部を超えて添加すると、経済性に不利となるので好ましくない。

0122

II.ポリプロピレン系樹脂組成物の製造方法、成形体の製造方法及び用途
1.ポリプロピレン系樹脂組成物の製造方法
本発明のポリプロピレン系樹脂組成物は、ポリプロピレン系樹脂(A)、有機系難燃剤(B)と、必要に応じ任意添加成分(C)を加え、前記配合割合で、従来公知の方法で配合し、溶融混練する混練工程を経ることにより製造することができる。
混合は、通常、タンブラー、Vブレンダーリボンブレンダーなどの混合機器を用いて行い、溶融混練は、通常、一軸押出機二軸押出機バンバリーミキサーロールミキサー、ブラベンダープラストグラフニーダー撹拌造粒器などの混練機器を用いて(半)溶融混練し造粒する。

0123

2.成形体の製造方法及び用途
本発明の成形体は、本発明のポリプロピレン系樹脂組成物を原料としている。本発明の成形体は、前記方法で製造されたポリプロピレン系樹脂組成物を、例えば、射出成形(ガス射出成形二色射出成形コアバック射出成形、サンドイッチ射出成形も含む)、射出圧縮成形プレスインジェクション)、押出成形、シート成形及び中空成形などの周知の成形方法にて成形することによって得ることができる。この内、押出成形またはシート成形にて得ることが好ましく、特に本発明のポリプロピレン系樹脂組成物を用いてシート成形された成形体が、本発明のポリプロピレン系樹脂組成物の特性をより良好に生かすという観点から好ましい。

0124

本発明のポリプロピレン系樹脂組成物は、従来知られている難燃ポリオレフィン樹脂より優れた難燃性と耐ドリップ性を示し、製品厚み1.0mmtにおいてUL94−V0規格を満足するのみならず、成形性、製品加工性に優れている。
その作用の発現機構は、明確ではないが、本発明者らは、次のように考察している。
すなわち、本発明のポリプロピレン系樹脂組成物およびそれを成形してなる成形品は
プロピレン系重合体(X)が長鎖分岐型であるために、その溶融張力を顕著に向上させることとなり、耐ドリップ性の効果を発現する。
また、難燃剤として、有機系難燃剤を使用しているため、特にリン系難燃剤、中でもリン酸塩系難燃剤は、燃焼時に、ポリメタリン酸へと熱分解し、生成したリン酸層による保護層の形成と、ポリメタリン酸による脱水作用の結果、生成する炭素被膜の形成による酸素の遮断によって難燃効果を発揮する。

0125

本発明のポリプロピレン系樹脂組成物全体のメルトフローレート(MFR)は、通常0.05〜20g/10分、好ましくは0.1〜15g/10分、更に好ましくは0.5〜13g/10分、特に好ましくは1〜7g/10分の範囲である。本発明のポリプロピレン系樹脂組成物全体のメルトフローレート(MFR)をこのような範囲とすることにより、本発明のポリプロピレン系樹脂組成物は良好な成形性を保つこととなり、特にシート成形を用いた場合にこの特性が好ましく発揮される。なお、このMFRは、JIS K6921−2の「プラスチック−ポリプロピレン(PP)成形用及び押出用材料−第2部:試験片作り方及び性質の求め方」に準拠して、試験条件:230℃、荷重2.16kgにおいて測定した値である。

0126

本発明のポリプロピレン系樹脂組成物が変色し難いということは、その成形体が成形時の焼け特性が良好であることを意味している。本発明のポリプロピレン系樹脂組成物は、長鎖分岐を有するポリプロピレン樹脂(X)と有機系難燃剤(B)を必須成分として含有しているが、これらの焼け特性が低下することなく、特に有機系難燃剤(B)として、リン系難燃剤を用いた場合に、変色し難い(焼け特性が低下しない)という特徴を有している。本明細書における変色(焼け特性)の評価手法は、各試料をシート成形し、得られたシートの変色を観察して評価しており、後述する実施例項に示されている通りである。

0127

さらに、本発明のポリプロピレン系樹脂組成物およびそれを成形してなる成形品は優れた機械物性及び耐候性、成形性に加えて、極めて高い難燃性を有するため、自動車部品、住設部品、電機部品、容器包装部材、建築用部材、大型部材等に好適に利用できる。

0128

以下、本発明を実施例によって具体的に説明するが、本発明は、これらの実施例によって限定されるものではない。なお、実施例および比較例において、ポリプロピレン系樹脂組成物またはその構成成分についての諸物性は、下記の評価方法に従って測定、評価した。

0129

1.評価方法
1)難燃性
1−1)燃焼試験
射出成形機[東社製IS100]にてUL94−V規格に従い難燃性評価用試験片を成形し評価した。(厚み0.6mmt又は1.5mmt)なお判定がUL94−V2以上の難燃規格を満たさない場合、「NG」と示した。

0130

1−2)滴下性(ドリップ性
射出成形機[東芝社製IS100]にてUL94−V規格に従い難燃性評価用試験片を成形し評価した。(厚み0.6mmt又は1.5mmt)なお、燃焼試験時の滴下物の影響を観察し、下記の基準で評価した。
◎:滴下物なし。
○:滴下物あり、但し、綿を着火させない。
△:綿を着火する塊状滴下物あり。
×:試験片が全て滴下し試験片が残らない。

0131

2)メルトフローレート(MFR):
JIS K6921−2の「プラスチック−ポリプロピレン(PP)成形用及び押出用材料−第2部:試験片の作り方及び性質の求め方」に準拠して、メルトフローレート(試験条件:230℃、荷重2.16kg)を測定した。単位はg/10分である。

0132

3)GPCによる分子量分布(Mw/Mn及びMz/Mw)の測定
本発明で用いたGPCの具体的な測定手法は、以下の通りである。
・装置:Waters社製GPC(ALC/GPC 150C)
・検出器:FOXBORO社製MIRAN 1AIR検出器(測定波長:3.42μm)
・カラム:昭和電工社製AD806M/S(3本)
・移動相溶媒:オルトジクロロベンゼン(ODCB)
・測定温度:140℃
・流速:1.0ml/min
・注入量:0.2ml
・試料の調製:試料はODCB(0.5mg/mLのBHTを含む)を用いて1mg/mLの溶液を調製し、140℃で約1時間を要して溶解させた。
GPC測定で得られた保持容量から分子量への換算は、予め作成しておいた標準ポリスチレン(PS)による検量線を用いて行った。使用した標準ポリスチレンは、何れも東ソー(株)製の以下の銘柄である。
F380、F288、F128、F80、F40、F20、F10、F4、F1、A5000、A2500、A1000
各々が0.5mg/mLとなるようにODCB(0.5mg/mLのBHTを含む)に溶解した溶液を0.2mL注入して較正曲線を作成した。較正曲線は、最小二乗法で近似して得られる三次式を用いた。
なお、分子量への換算に使用する粘度式[η]=K×Mαは、以下の数値を用いる。
PS:K=1.38×10−4、α=0.7
PP:K=1.03×10−4、α=0.78

0133

4)溶融張力(MT)
東洋精機製作所製キャピログラフを用いて、以下の条件で測定した。
・キャピラリー:直径2.0mm、長さ40mm
・シリンダー径:9.55mm
・シリンダー押出速度:20mm/分
・引き取り速度:4.0m/分
・温度:230℃
MTが極めて高い場合には、引き取り速度4.0m/分では樹脂が破断してしまう場合があり、このような場合には、引取り速度を下げ、引き取りのできる最高の速度における張力をMTとした。単位はグラムである。

0134

5)パラキシレン可溶成分量(CXS)
2gの試料を300mlのp−キシレン(0.5mg/mlのBHTを含む)に130℃で溶解させ溶液とした後、25℃で12時間放置した。その後、析出したポリマーを濾別し、濾液からp−キシレンを蒸発させ、さらに100℃で12時間減圧乾燥し、室温キシレン可溶成分を回収した。この回収成分の重量の、仕込み試料重量に対する割合[重量%]をCXSとした。

0135

6)mm分率
13C−NMRによるプロピレン単位3連鎖のmm分率の測定法の詳細は、以下の通りである。
試料375mgをNMRサンプル管(10φ)中で重水素化1,1,2,2、−テトラクロロエタン2.5mlに完全に溶解させた後、125℃においてプロトン完全デカップリング法で測定した。ケミカルシフトは、重水素化1,1,2,2−テトラクロロエタンの3本のピークの中央のピークを74.2ppmに設定した。他の炭素ピークのケミカルシフトはこれを基準とした。
フリップ角:90度
パルス間隔:10秒
共鳴周波数:100MHz以上
積算回数:10,000回以上
観測域:−20ppmから179ppm
データポイント数:32768
mm分率の解析は、前記の条件により測定された13C−NMRスペクトルを用いて行った。
スペクトルの帰属は、Macromolecules,8卷,687頁(1975年)やPolymer,30巻,1350頁(1989年)を参考にして行い、mm分率の決定は、特開2009−275207号公報の段落[0053]〜[0065]に記載された方法に従って行った。

0136

7)分岐指数g’
分岐指数(g’)は、前記記載の方法に従い、長鎖分岐構造を有するポリプロピレン樹脂(X)のサンプルを下記Viscometerで測定して得られる極限粘度([η]br)と、別途、線状ポリマー(日本ポリプロ社製ノバテックPP(登録商標)グレード名:FY6)を測定して得られる極限粘度([η]lin)との比([η]br/[η]lin)として算出した。
なお、示差屈折計(RI)および粘度検出器(Viscometer)を装備したGPC装置として、Waters社のAlliance GPCV2000を用い、光散乱検出器として、多角度レーザー光散乱検出器(MALLS)Wyatt Technoogy社のDAWN−Eを用いた。検出器は、MALLS、RI、Viscometerの順で接続し、移動相溶媒は、1,2,4−トリクロロベンゼン(BASFジャパン社製酸化防止剤Irganox1076を0.5mg/mLの濃度で添加)を用いた。
流量は1mL/分で、カラムは、東ソー社GMHHR−H(S)HTを2本連結して用い、カラム、試料注入部および各検出器の温度は、140℃とした。試料濃度は1mg/mLとし、注入量(サンプルループ容量)は0.2175mLとした。

0137

8)伸長粘度の測定における歪硬化度(λmax(0.1))
伸張粘度の測定は以下の条件で行った。
・装置:Rheometorics社製Ares
冶具ティーエーインスツルメント社製Extentional Viscosity Fixture
・測定温度:180℃
・歪み速度:0.1/sec
・試験片の作成:プレス成形(MASADA SEISAKUSYO製、AH−200、加熱温度:180℃、冷却温度:25℃)により18mm×10mm、厚さ0.7mm、のシートを作成し、測定用試料片とした。
9)融点
示差操作熱量計(DSC、セイコーインスツルメンツ社製DSC6200型)を用い、サンプル5.0mgにて、一旦200℃まで温度を上げて熱履歴を消去した後、10℃/分の降温速度で40℃まで温度を降下させ、再び昇温速度10℃/分にて測定した際の、吸熱ピークトップの温度を融点とした。

0138

10)シート成形性及び外観
ポリプロピレン系樹脂組成物をスクリュウ口径40mmの押出機投入し、樹脂温度220℃にてT型ダイスより押出し、表面温度が80℃の鏡面仕上げの金属製キャストロ−ルにて挟み、冷却固化させながら1.5m/minの速度で連続的に引き取り、幅520mm、厚さ1.0mmのポリプロピレン樹脂シート熱成形用シート)を得た。
また、上記操作に於いて、冷却固化させながら引き取り速度を2.5m/minとした他は同様の操作を行い、幅520mm、厚さ0.6mmのポリプロピレン樹脂シート(熱成形用シート)を得た。
更に、上記操作に於いて樹脂温度を230℃としてT型ダイスより押出し、冷却固化させながら引き取り速度を5.0m/minとした他は同様の操作を行い、幅520mm、厚さ0.3mmのポリプロピレン樹脂シート(熱成形用シート)を得た。これら3種類の熱成形用シートの外観について観察し、下記の基準で評価した。
○:3種類のシート全てに破れがなく成形性が良好で、かつしわや変色など見られず外観が良好。
×:3種類のシート何れかが、破れにより成形性が不良であるか、又はしわや変色などにより外観が不良。

0139

11)熱成形性
シート成形性の評価で得られた3種類のシートを用いて、真空圧熱成形機FSK(株式会社浅野研究所製)で、圧空圧力0.4MPaにて、縦が160mm、横が210mm、深さが35mmのトレー状熱成形体を各5個ずつ真空圧空成形し、以下の基準に基づき評価を行った。
○:5つの熱成形体全てに偏肉が生じていない
×:少なくとも1つの熱成形体に偏肉が生じるか、または破断箇所が認められる。

0140

2.材料
(1)ポリプロピレン系樹脂(A)
(1−1)長鎖分岐構造を有するポリプロピレン樹脂(X)
(X−1):下記の製造例1で製造した長鎖分岐構造を有するポリプロピレン樹脂(X−1)を用いた。

0141

[製造例1]
<触媒成分(A)の合成例1>
rac−ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−i−プロピルフェニル)インデニル}]ハフニウムの合成:(成分[A−1](錯体1)の合成):
(i)4−(4−i−プロピルフェニル)インデンの合成
500mlのガラス製反応容器に、4−i−プロピルフェニルボロン酸15g(91mmol)、ジメトキシエタンDME)200mlを加え、炭酸セシウム90g(0.28mol)と水100mlの溶液を加え、4−ブロモインデン13g(67mmol)、テトラキストリフェニルホスフィノパラジウム5g(4mmol)を順に加え、80℃で6時間加熱した。
放冷後、反応液蒸留水500ml中に注ぎ、分液ロートに移しジイソプロピルエーテルで抽出した。エーテル層飽和食塩水で洗浄し、硫酸ナトリウムで乾燥した。硫酸ナトリウムを濾過し、溶媒を減圧留去して、シリカゲルカラムで精製し、4−(4−i−プロピルフェニル)インデンの無色液体15.4g(収率99%)を得た。

0142

(ii)2−ブロモ−4−(4−i−プロピルフェニル)インデンの合成
500mlのガラス製反応容器に4−(4−i−プロピルフェニル)インデン 15.4g(67mmol)、蒸留水7.2ml、DMSO 200mlを加え、ここにN−ブロモスクシンイミド17g(93mmol)を徐々に加えた。そのまま室温で2時間撹拌し、反応液を氷水500ml中に注ぎ入れ、トルエン100mlで3回抽出した。トルエン層を飽和食塩水で洗浄し、p−トルエンスルホン酸2g(11mmol)を加え、水分を除去しながら3時間加熱還流した。反応液を放冷後、飽和食塩水で洗浄し、硫酸ナトリウムで乾燥した。硫酸ナトリウムを濾過し、溶媒を減圧留去して、シリカゲルカラムで精製し、2−ブロモ−4−(4−i−プロピルフェニル)インデンの黄色液体19.8g(収率96%)を得た。

0143

(iii)2−(5−メチル−2−フリル)−4−(4−i−プロピルフェニル)インデンの合成
500mlのガラス製反応容器に、2−メチルフラン6.7g(82m1mol)、DME 100mlを加え、ドライアイスメタノール浴で−70℃まで冷却した。ここに1.59mol/Lのn−ブチルリチウムn−ヘキサン溶液51ml(81mmol)を滴下し、そのまま3時間撹拌した。−70℃に冷却し、そこにトリイソプロピルボレート20ml(87mmol)とDME50mlの溶液を滴下した。滴下後、徐々に室温に戻しながら一夜撹拌した。
反応液に蒸留水50mlを加え加水分解した後、炭酸カリウム223gと水100mlの溶液、2−ブロモ−4−(4−i−プロピルフェニル)インデン 19.8gg(63mmol)を順に加え、80℃で加熱し、低沸分を除去しながら3時間反応させた。
放冷後、反応液を蒸留水300ml中に注ぎ、分液ロートに移しジイソプロピルエーテルで3回抽出した、エーテル層を飽和食塩水で洗浄し、硫酸ナトリウムで乾燥した。硫酸ナトリウムを濾過し、溶媒を減圧留去して、シリカゲルカラムで精製し、2−(5−メチル−2−フリル)−4−(4−i−プロピルフェニル)インデンの無色液体19.6g(収率99%)を得た。

0144

(iv)ジメチルビス(2−(5−メチル−2−フリル)−4−(4−i−プロピルフェニル)インデニル)シランの合成
500mlのガラス製反応容器に、2−(5−メチル−2−フリル)−4−(4−i−プロピルフェニル)インデン9.1g(29mmol)、THF200mlを加え、ドライアイス−メタノール浴で−70℃まで冷却した。ここに1.66mol/Lのn−ブチルリチウム−ヘキサン溶液17ml(28mmol)を滴下し、そのまま3時間撹拌した。−70℃に冷却し、1−メチルイミダゾール0.1ml(2mmol)、ジメチルジクロロシラン1.8g(14mmol)を順に加え、徐々に室温に戻しながら一夜撹拌した。
反応液に蒸留水を加え、分液ロートに移し食塩水中性になるまで洗浄し、硫酸ナトリウムを加え反応液を乾燥させた。硫酸ナトリウムを濾過し、溶媒を減圧留去して、シリカゲルカラムで精製し、ジメチルビス(2−(5−メチル−2−フリル)−4−(4−i−プロピルフェニル)インデニル)シランの淡黄色固体8.6g(収率88%)を得た。

0145

(v)ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−i−プロピルフェニル)インデニル}]ハフニウムの合成
500mlのガラス製反応容器に、ジメチルビス(2−(5−メチル−2−フリル)−4−(4−i−プロピルフェニル)インデニル)シラン8.6g(13mmol)、ジエチルエーテル300mlを加え、ドライアイス−メタノール浴で−70℃まで冷却した。ここに1.66mol/Lのn−ブチルリチウム−n−ヘキサン溶液15ml(25mmol)を滴下し、3時間撹拌した。反応液の溶媒を減圧で留去し、トルエン400ml、ジエチルエーテル40mlを加え、ドライアイス−メタノール浴で−70℃まで冷却した。そこに、四塩化ハフニウム4.0g(13mmol)を加えた。その後、徐々に室温に戻しながら一夜撹拌した。
溶媒を減圧留去し、ジクロロメタン−ヘキサンで再結晶を行い、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−i−プロピルフェニル)インデニル}]ハフニウムのラセミ体黄色結晶として7.6g(収率65%)得た。
得られたラセミ体についての1H−NMRによる同定値を以下に記す。
1H−NMR(C6D6)同定結果
ラセミ体:δ0.95(s,6H),δ1.10(d,12H),δ2.08(s,6H),δ2.67(m,2H),δ5.80(d,2H),δ6.37(d,2H),δ6.74(dd,2H),δ7.07(d,2H),δ7.13(d,4H),δ7.28(s,2H),δ7.30(d,2H),δ7.83(d,4H)。

0146

<触媒成分(A)の合成例2>
rac−ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウムの合成:(成分[A−1](錯体2)の合成):
rac−ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウムの合成は、特開平11—240909号公報の実施例1に記載の方法と同様にして、実施した。

0147

<触媒合成例1>
(i)イオン交換性層状珪酸塩の化学処理
セパラブルフラスコ中で蒸留水2,264gに96%硫酸(668g)を加えその後、層状珪酸塩としてモンモリロナイト(水沢化学社製ベンクレイSL:平均粒径19μm)4Lを加えた。このスラリーを90℃で210分加熱した。この反応スラリーを蒸留水4,000g加えた後にろ過したところ、ケーキ状固体810gを得た。
次に、セパラブルフラスコ中に、硫酸リチウム432g、蒸留水1,924gを加え硫酸リチウム水溶液としたところへ、上記ケーキ上固体を全量投入した。このスラリーを室温で120分反応させた。このスラリーに蒸留水4L加えた後にろ過し、更に蒸留水でpH5〜6まで洗浄し、ろ過を行ったところ、ケーキ状固体760gを得た。
得られた固体を窒素気流下100℃で一昼夜予備乾燥後、53μm以上の粗大粒子を除去し、更に200℃、2時間、減圧乾燥することにより、化学処理スメクタイト220gを得た。
この化学処理スメクタイトの組成は、Al:6.45重量%、Si:38.30重量%、Mg:0.98重量%、Fe:1.88重量%、Li:0.16重量%であり、Al/Si=0.175[mol/mol]であった。

0148

(ii)触媒調製及び予備重合
3つ口フラスコ容積1L)中に、上で得られた化学処理スメクタイト20gを入れ、ヘプタン(132mL)を加えてスラリーとし、これにトリイソブチルアルミニウム(25mmol:濃度143mg/mLのヘプタン溶液を68.0mL)を加えて1時間攪拌後、ヘプタンで残液率が1/100になるまで洗浄し、全容量を100mLとなるようにヘプタンを加えた。
また、別のフラスコ(容積200mL)中で、前記触媒成分(A)の合成例1で作製したrac−ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−i−プロピルフェニル)インデニル}]ハフニウム(210μmol)をトルエン(42mL)に溶解し(溶液1)、更に、別のフラスコ(容積200mL)中で、前記触媒成分(A)の合成例2で作製したrac−ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウム(90μmol)をトルエン(18mL)に溶解した(溶液2)。
先ほどの化学処理スメクタイトが入った1Lフラスコにトリイソブチルアルミニウム(0.84mmol:濃度143mg/mLのヘプタン溶液を1.2mL)を加えた後、上記溶液1を加えて20分間室温で撹拌した。その後更にトリイソブチルアルミニウム(0.36mmol:濃度143mg/mLのヘプタン溶液を0.50mL)を加えた後、上記溶液2を加えて、1時間室温で攪拌した。
その後、ヘプタンを338mL追加し、このスラリーを、1Lオートクレーブに導入した。
オートクレーブの内部温度を40℃にしたのち、プロピレンを10g/時の速度でフィードし、4時間40℃を保ちつつ予備重合を行った。その後、プロピレンフィードを止めて、1時間残重合を行った。得られた触媒スラリー上澄みをデカンテーションで除去した後、残った部分に、トリイソブチルアルミニウム(6mmol:濃度143mg/mLのヘプタン溶液を17.0mL)を加えて5分攪拌した。
この固体を1時間減圧乾燥することにより、乾燥予備重合触媒52.8gを得た。予備重合倍率(予備重合ポリマー量を固体触媒量で除した値)は1.64であった。
以下、このものを「予備重合触媒1」という。

0149

<重合>
内容積200リットルの攪拌式オートクレーブ内をプロピレンで十分に置換した後、十分に脱水した液化プロピレン40kgを導入した。これに水素4.4リットル(標準状態体積として)、トリイソブチルアルミニウム・n−ヘプタン溶液470ml(0.12mol)を加えた後、内温を70℃まで昇温した。次いで、予備重合触媒1を2.4g(予備重合ポリマーを除いた重量で)、アルゴン圧入して重合を開始させ、内部温度を70℃に維持した。2時間経過後に、エタノールを100ml圧入し、未反応のプロピレンをパージし、オートクレーブ内を窒素置換することにより重合を停止した。
得られたポリマーを90℃窒素気流下で1時間乾燥し、16.5kgの重合体(以下、「XX」という)を得た。
触媒活性は、6880(g−XX/g−cat)であった。MFRは1.0g/10分であった。

0150

[X−1の製造]
製造例1で製造した長鎖分岐構造を有するポリプロピレン樹脂(XX)100重量部に対し、フェノ−ル系酸化防止剤であるテトラキス[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネ−ト]メタン(商品名:IRGANOX1010、BASFジャパン株式会社製)0.125重量部、フォスファイト系酸化防止剤であるトリス(2,4−ジ−t−ブチルフェニル)フォスファイト(商品名:IRGAFOS 168、BASFジャパン株式会社製)0.125重量部を配合し、高速攪拌混合機ヘンシェルミキサ−、商品名)を用い室温下で3分間混合した後、二軸押出機にて溶融混練して、長鎖分岐構造を有するポリプロピレン樹脂(X−1)のペレットを得た。
これらのペレット(X−1)について、融点、MFR、パラキシレン可溶成分量(CXS)、13C−NMR、GPC(Mw/Mn及びMz/Mw)、分岐指数(mm)、溶融張力(MT)、伸長粘度の測定における歪硬化度(λmax(0.1))の評価を行った。評価結果を表1に示した。

0151

0152

(1−2)ポリプロピレン樹脂(Y)
1.ポリプロピレン系樹脂(Y)
Y−1:日本ポリプロ社製、ノバッテクPP FY6(ポリプロピレン単独重合体、MFR2.5g/10分、アイソタクチックペンタッド分率(mmmm分率)0.98)
Y−2:日本ポリプロ社製、ノバッテクPP EA9(ポリポロピレン単独重合体で、MFR0.5g/10分、アイソタクチックペンタッド分率(mmmm分率)0.98)
Y−3:日本ポリプロ社製、ノバッテクPP MA4U(ポリプロピレン単独重合体で、MFR5g/10分、アイソタクチックペンタッド分率(mmmm分率)0.98)
Y−4:日本ポリプロ社製、ノバッテクPP MA04A(ポリプロピレン単独重合体で、MFR40g/10分、アイソタクチックペンタッド分率(mmmm分率)0.98)

0153

(2)有機系難燃剤(B)
B−1:アルマール社製、SAYTEX8010[エチレンビスペンタブロモフェニル] (ハロゲン系難燃剤)
B−2:丸菱油化工業社製、ノンネン52ビス[3、5−ジブロモ-4-(2,3-ジブロモプロポキシ)フェニル]スルホン] (ハロゲン系難燃剤)
B−3:ADEKA社製、FP2200 (リン含有難燃剤
(3)その他の添加剤(C)
C−1:難燃助剤(鈴裕化学社社製、AT3[三酸化アンチモン])

0154

3.実施例1〜9及び比較例1〜4
ポリプロピレン系樹脂(A)、有機系難燃剤(B)及びその他の添加剤(C)を表2に示す割合で攪拌式混合機スーパーフローター)を用い室温下で5分間混合した。その後、二軸押出機で溶融混練して押し出し、冷水槽を通した後にストランドカッターにてストランドをカットしてペレットを得、物性評価を行った。結果を表2に示す。
ここで、表2に示した各成分の組成割合は、全て重量部で示した。また、長期分岐構造を有するポリプロピレン樹脂(X)とポリプロピレン樹脂(Y)との割合(但し、長鎖分岐構造を有するポリプロピレン樹脂(X)とポリプロピレン樹脂(Y)との合計を100重量%とする)は、長鎖分岐構造を有するポリプロピレン樹脂(X)とポリプロピレン樹脂(Y)の欄に於いて、カッコ内に記載した。

0155

実施例

0156

4.実施例及び比較例の評価結果の考察
実施例1〜9と比較例1〜4との比較から、長鎖分岐構造を有するポリプロピレン樹脂(X)を含有することにより滴下性が向上し、試験片の厚みが0.6mmtと薄い試験でも、燃焼時に炭化層発泡層が形成され高い難燃性を示すことがわかる。また、長鎖分岐構造を有するポリプロピレン樹脂(X)を含有することにより、熱成形時に偏肉が生じることが無く良好な成形体を形成することが可能であることがわかる。比較例4と実施例7から、本発明のポリプロピレン系樹脂組成物のMFRが10g/10分を超える場合、長鎖分岐構造を有するポリプロピレン樹脂(X)を含有しているにもかかわらず、シート成形が困難となることがわかる。本発明のポリプロピレン系樹脂組成物は、長鎖分岐構造を有するポリプロピレン樹脂(X)と有機系難燃剤(B)とを所定量含有することにより、良好な難燃性を示すシートを製造することが可能である事がわかる。

0157

本発明のポリプロピレン系樹脂組成物は、溶融時の粘度特性を向上させることによりシート成形に適した樹脂組成物である。また、得られたシートを用いて熱成形した際、偏肉などによる破れ等の無い良好な成形体を得ることが出来る。また、本発明のポリプロピレン系樹脂組成物を用いて成形された成形体は、1.0mmt以下の厚みに対しても極めて高い難燃性を示す。上記特性に加え従来の製品と比較して薄肉の成形体を得ることが可能であることから様々な製品の軽量化が可能となる。例えば、EV車電池ケース電装部材コネクタなどの自動車部材化粧台換気扇便座便蓋等の住宅設備機器部材炊飯ジャー掃除機洗濯機冷蔵庫扇風機エアコン等の家電部品等の用途に、好適に用いることができる。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ