図面 (/)

技術 無線通信システム及びアンテナ素子配置方法

出願人 日本電信電話株式会社株式会社NTTドコモ
発明者 太田厚白戸裕史黒崎聰丸田一輝新井拓人岩國辰彦飯塚正孝須山聡小原辰徳奥村幸彦
出願日 2015年8月7日 (3年11ヶ月経過) 出願番号 2015-157806
公開日 2017年2月16日 (2年5ヶ月経過) 公開番号 2017-038191
状態 特許登録済
技術分野 時分割方式以外の多重化通信方式 無線伝送方式一般(ダイバーシチ方式等) 交流方式デジタル伝送
主要キーワード まえがき 換算装置 試験局 中継部分 機能配分 許容発熱量 シャノンの定理 架線柱
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2017年2月16日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題

見通し環境が支配的な環境でMIMOによって伝送容量を増大させることが可能となる無線通信システム及びアンテナ素子配置方法を提供する。

解決手段

無線通信システムでは、第1の無線局装置は、複数の単一アンテナ素子又は複数のアンテナ素子で構成され、且つ、グループごとに指向性形成が可能な複数のグループにより形成される第1のアンテナ群とを有する。第2の無線局装置は、1次元的なリニアアレー又は2次元的な格子アレー構成をとる第2のアンテナ素子群を有する。複数の第1のアンテナ群を構成する各アンテナは、アンテナの間隔が、第1の無線局装置と第2の無線局装置との距離Lと、無線通信信号波波長λと、第2のアンテナ素子群を構成する格子の縦方向又は横方向のいずれかのアンテナ素子の数Nと、第2のアンテナ素子群を構成するアンテナ素子同士の間隔dとに基づいて算出された値の整数倍になる様に配置される。

概要

背景

まえがき
現在、スマートフォン爆発的な普及に伴って、利便性の高いマイクロ波帯周波数資源枯渇している。対策として、第3世代の携帯電話から第4世代の携帯電話への移行や、新しい周波数帯割り当てが行われている。しかし、サービスの提供を望む事業者が多いことから、各事業者に割り当てられる周波数資源は限られている。

携帯電話のサービスにおいては、複数のアンテナ素子を利用したマルチアンテナ・システムによる周波数利用効率の向上を目指す検討が進められている。既に普及している無線標準規格IEEE(The Institute of Electrical and Electronics Engineers, Inc.)802.11nでは、送信と受信との双方に複数のアンテナ素子を用いるMIMO(Multiple Input Multiple Output)伝送技術を用いて空間多重伝送を行う。これにより、IEEE802.11nでは、伝送容量を高めて周波数利用効率を向上させている。なお、MIMOという用語は、一般には送信局及び受信局共に複数アンテナ素子を備えることを想定して使われる。受信側が単数アンテナ素子の場合には、MIMOではなく、MISO(Multiple Input Single Output)という用語が使われる。ただし、以下では、これらを全て包含する意味でMIMOという用語を用いる。

また、最近の通信技術としては、OFDM(Orthogonal Frequency Division Multiplexing)変調方式やSC−FDE(Single Carrier Frequency Domain Equalization)方式の様に、複数の周波数成分(サブキャリア)に分割して周波数軸上で信号処理を行う方式が一般的である。以下では、特にOFDMやSC−FDEの区別をせず、それらに共通する一般的な方式を前提として「サブキャリア」という用語を用いて説明する。

MIMO伝送技術においては、送信局と受信局との間の伝送路情報を知ることで、より効率的な伝送を行うことが可能となる。最も単純な例としては、受信側で複数のアンテナの場合を示したが、送信側にN本のアンテナ素子を備え、受信側に1本のアンテナ素子のみを備える場合、N本のアンテナ素子から送信される信号が受信側のアンテナ素子において同位相合成される様に送信側で指向性制御を行う。これにより、回線利得を高めることができる。具体的には、第kサブキャリアにおける送信局の第jアンテナ素子から受信局のアンテナ素子までの間のチャネル情報をhj(k)としたときに、そのアンテナ素子に対して下記の式(1)の送信ウエイトwj(k)を算出し、これを送信信号乗算したものを各アンテナ素子から送信する(等利得合成)。なお、本明細書におけるチャネル情報とは実運用上の回路構成や信号処理及び制御の手順を考慮し、厳密には、送信系及び受信系のRF(Radio Frequency)回路内のアンプフィルタ等の複素位相の回転及び振幅変動情報などを含むものとする。

送信側の第1アンテナ素子から第Nアンテナ素子それぞれに対応するチャネル情報を成分とするベクトル(h1(k),…,hj(k),…,hN(k))をチャネルベクトルh(k)と称する。また、送信側の第1アンテナ素子から第Nアンテナ素子に対応する送信ウエイトを成分とするベクトル(w1(k),…,wj(k),…,wN(k))T(Tは転置を表す。)を送信ウエイトベクトルw(k)と称する。なお、厳密には、ダウンリンクにおけるチャネルベクトル→h(k)(「h(k)」の前の記号「→」は、hの上に付与されてベクトルを表すための記号である)は行ベクトル、送信ウエイトベクトル→w(k)は列ベクトルとして表記されるべきである。しかし、以下では、簡単のために、記号「→」を省略すると共に行ベクトルと列ベクトルとを区別せずに表記する。また、以降の説明では受信信号Rx、送信信号Tx及びノイズnに関する表記も同様に「→」を付与してベクトルであることを明示すべきであるが、他に紛らわしい表記がないので「→」を省略して説明する。受信信号Rxは、送信信号Tx及びノイズnに対して下記の式(2)で与えられる。

式(1)を式(2)に代入すると、チャネルベクトルh(k)の各成分hj(k)の絶対値を全アンテナ成分に亘って加算した値がチャネル利得として得られる。各アンテナ素子からの送信電力を1本アンテナで送信する場合と同じままとするならば、N本アンテナ素子であれば、受信信号の振幅は1本のアンテナ素子で送信した場合のN倍になるものと期待される。受信信号電力は、振幅の2乗に比例するからN2倍にまで改善される。この値が複数のアンテナ素子をアレーアンテナとして利用した場合の利得である。厳密には、アレーアンテナそのものの利得としては、(総送信電力一定のもとでの評価した結果である)受信電力N倍と解釈されるのが一般的であるが、以下の説明では実運用環境を想定し、1素子当たりの送信電力一定の場合を基準として説明を行う。

一般的には、シャノンの定理により、SNR(Signal-Noise Ratio)の改善量に対する伝送容量の増加は、低SNR領域ほど大きく、高SNR領域ほど小さいことが知られている。そのため、回線利得の改善によって伝送容量の向上を目指すより、受信側にも複数のアンテナ素子を備え、空間多重によって伝送容量の向上を目指すことが多い。空間多重によって伝送容量の増加を目指すのがMIMO伝送技術である。

図1にMIMO伝送概要を示す。ここではある周波数に着目した説明として、サブキャリアないし周波数を表す添え字「k」は省略している。図1において、符号11は送信局、符号12は受信局を表す。この例では送信局11、受信局12共に2本のアンテナ素子を備えており、送信局11の送信アンテナ#1と受信局12の受信アンテナ#1との間のチャネル情報(振幅、複素位相の回転量を表す情報)をh11、送信局11の送信アンテナ#1と受信局12の受信アンテナ#2との間のチャネル情報(振幅、複素位相の回転量を表す情報)をh21、送信局11の送信アンテナ#2と受信局12の受信アンテナ#1との間のチャネル情報(振幅、複素位相の回転量を表す情報)をh12、送信局11の送信アンテナ#2と受信局12の受信アンテナ#2との間のチャネル情報(振幅、複素位相の回転量を表す情報)をh22として表せば、送信局11の2本の送信アンテナから送信される信号t1、t2と、受信局12の2本の受信アンテナで受信される信号r1、r2との間には、雑音信号n1、n2を用いて以下の式(3)で表される。

基本的にMIMO伝送では、受信側の受信信号とチャネル行列を基に、送信側の信号を推定する。式(3)の雑音項が十分に小さければ、両辺にチャネル行列の逆行列を乗算することで、受信信号から送信信号を推定することができる。送信側で所定の送信ウエイト行列を乗算し、更に受信側でも所定の受信ウエイトを乗算することで伝送特性を改善でき、より効率的な伝送が可能になる。例えば複数の送信側のアンテナ素子と受信側のアンテナ素子との間のチャネル情報が既知の場合には、そのチャネル行列を特異値分解SVD:Singular Value Decomposition)し、固有モードでの伝送を行うことで伝送容量を最大化する。

具体的には、下記の式(4)の様に、チャネル行列Hをユニタリー行列UとV及び特異値λを対角成分に持つ対角行列Dに分解する。

この際、送信ウエイト行列としてユニタリー行列Vを用いれば、受信信号ベクトルRxは、送信信号ベクトルTx、ノイズベクトルnに対して、下記の式(5)で与えられる。

受信側では、ユニタリー行列Uのエルミート共役行列UHを乗算することで、下記の式(6)を得る。

式(6)において、対角行列Dの非対角成分はゼロであるから、送信信号のクロスタームは既にキャンセルされ、信号分離された状態となる。また、ノイズベクトルは受信ウエイト行列UHを乗算され、座標軸が回転されて表されるノイズベクトルn’に変換されているが、ベクトルの統計的特徴は元のノイズベクトルと等価なままである。図2に、固有モード伝送概念図を示す。図2(a)は基本のMIMOチャネルを、図2(b)は送受信ウエイト行列の乗算を行った状況、図2(c)は固有モード伝送で形成される仮想的な伝送路をそれぞれ示している。送信局11と受信局12との各送受信アンテナの間のチャネル行列Hは、式(4)で示した通り、特異値分解により特異値λを各対角成分に持つ行列Dと、二つのユニタリー行列U、VHの積で表される。ここで図2(b)及び式(5)で示す様に送信側で送信ウエイト行列V、受信側で受信ウエイト行列UHを用いると、式(4)のユニタリー行列の部分に乗算されて単位行列となり、結果的に式(6)に示す様に非対角成分がゼロで対角成分のみが非ゼロの行列Dで表すことが可能になる。これはあたかも、図2(c)に示す様に、特異値λ1、λ2・・・で表される仮想的なチャネルの伝送路がパラレルに張られた状況に相当する。このとき、各特異値λの絶対値の2乗値が個別の信号系列の回線利得に相当する。各特異値λは、信号系統ごとに異なる値となる。この固有モードの特異値に合わせて伝送モードを最適化することによって、伝送容量を最大化することができる。伝送モードは、変調多値数誤り訂正符号化率などの組み合わせで定まる信号伝送の具体的なモードである。

ここで、MIMOチャネルのチャネル行列の各成分が独立で無相関であれば、各特異値の絶対値はそれぞれが比較的大きな値となる。例えば反射波が多数存在し、見通し波の受信電力が相対的に低い場合には、上述の様に各特異値は比較的大きな値を持つことになる。一方で、送受信アンテナが見通し環境にあり、反射波があまり存在しない様な場合には、第1特異値の絶対値だけが極端に大きく、第2特異値以降の特異値の絶対値は極端に小さくなる傾向がある。このため、一般的にはMIMO伝送はマルチパス環境に適していると言われ、見通し波が支配的な場合にはあまり適さないと言われている。

上記は、1台の基地局装置と1台の端末局装置とを想定したシングルユーザMIMO伝送技術に関する説明である。同様の説明は、1台の基地局装置と複数台の端末局装置との間において同時に同一周波数軸上で通信を行うマルチユーザMIMOにも拡張可能である。マルチユーザMIMOにおいては、一般に、各端末局装置は空間多重する合計の信号系統数よりも少ない本数のアンテナ素子で通信を行う。そのため、ダウンリンクにおいては、送信側で事前ユーザ間干渉抑圧するための指向性制御を行う。具体的な式は若干異なるが、基本的には上記の固有モード伝送と同様に、チャネル行列を把握した上でそれに合わせた送信ウエイトを用いる。

また、上記の説明では、ダウンリンクを中心に説明を行ったが、アップリンクにおいても同様に事前にチャネル情報を把握した上で、そのチャネル情報を利用した通信を行うことができる。例えば、最初に説明したアレーアンテナとしての処理においては、式(1)にて与えられる同位相合成のウエイトを受信ウエイトとして用いる他、最大比合成のウエイトとして、下記の式(7)で与えられるものを用いることも可能である。

式(7)の定数Cは適宜定められる係数である。ベクトルの各成分の中でhj(k)の絶対値が大きいものは大きな重みで足し合わされ、また、小さな信号は小さな重みで足し合わされる様にCが決定される。これにより、SNRの大きな信号を重視し、SNRの小さな信号の雑音が過度に影響を与えない様に調整が図られる。

なお、送信ウエイトの算出のためにはダウンリンクのチャネル情報が必要になるが、これは様々な形のチャネルフィードバックにより実現可能である。最も単純な例では、ダウンリンクで基地局装置が送信したトレーニング信号を端末局装置が受信し、その受信結果をアップリンクの制御情報に収容して通知することが可能である。一般に、この様なループバックを行うチャネル推定方法を、エクスプリシット・フィードバックと呼ぶ。この他には、例えば基地局装置の装置内部でのアップリンクのチャネル情報とダウンリンクのチャネル情報との換算に必要となるキャリブレーション係数を事前に取得しておき、アップリンクでチャネル推定を行った後、このキャリブレーション係数を乗算することでダウンリンクのチャネル情報を推定することも可能である。この方法はインプリシット・フィードバックと呼ばれる。アンテナ数が膨大となる大規模アンテナの場合には、インプリシット・フィードバックが一般的には有利とされている。ただし、本発明においてはチャネルフィードバックの方法は特に限定せず、一般的なチャネル推定方法が利用可能であるとしている。

[将来モバイルネットワークの方向性
前述の通り、スマートフォンの爆発的な普及に伴って、更なる伝送容量の増大が求められている。現在の無線通信の研究においては、第4世代の携帯電話に続く第5世代の携帯電話のための技術検討が進められており、ここでは第4世代の更に10倍以上の伝送容量を実現することが求められている。ここでは単に、一つの基地局装置とその配下の無線システムの伝送容量の増大のみではなく、単位面積当たりの伝送容量の増大も合わせて求められている。具体的には、新宿、谷、銀座大手など、人が多く集まる場所では単に無線システムの伝送容量増大だけでは対処できず、一つの基地局装置のカバーするエリア面積縮小し(以降、「スモールセル」と呼ぶ)、より狭い面積で同等の伝送容量を実現し、そのスモールセルを多数設定することでスモールセルの数に比例する伝送容量を実現する。ただし、このスモールセルは人が集まり更なる伝送容量が必要となる場所に設置することが求められるため、広大なエリア面積を持つマクロセルの様に置局設計が十分にできない。元々、周波数資源が枯渇する中でスモールセルを導入するため、複数の周波数チャネルが利用可能であるならば、それは周波数繰り返し(周波数リユース)としてその資源活用するのではなく、同一場所にて複数の周波数チャネルを利用することでトータルの伝送容量を増やすことが好ましい。したがって、同一周波数チャネルであっても、置局設計なしに比較的近距離でスモールセルの繰り返し設置ができる技術が求められる。

更に、マイクロ波帯の周波数資源が枯渇する中で、10Gbit/s以上の伝送容量を実現するためには周波数帯域幅をある程度確保する必要があり、そのためにはより高い周波数帯の活用が期待される。しかし、回線設計的には周波数が10倍になると自由空間伝搬損失は20dB増加するため、同一の送信電力であれば伝搬到達距離は見通し環境においては1/10に縮小されてしまう。更には送信側のハイパワーアンプ大出力化に関しても、周波数が高くなるほど困難になり、1アンテナ辺りの送信電力を限定的としながらも、回線設計的に十分に10Gbit/s以上の伝送容量を実現できる技術が求められる。

この様な観点から、現在、大規模MIMO(Massive MIMO)伝送技術が注目を集めている。MassiveMIMO伝送技術では、基地局装置側のアンテナ本数を最大でも数本程度であった従来のMIMO伝送よりも少なくとも一桁以上増加させ、数十本〜数百本の多数のアンテナ素子を用いることで、宛先とする端末局装置への回線利得向上と、宛先以外の端末局装置への与被干渉を低減する。Massive MIMOの実現方法適用方法については様々なバリエーションがあり、所謂スモールセルに関しては、宛先以外の端末局装置への与被干渉の低減を「セル間干渉の抑圧」に活用している。またMassive MIMO伝送技術としては、当然ながら従来技術と同様に、大規模なMIMO行列を単純に単一の端末局装置で利用するシングルユーザMIMOとしての利用の他、複数の端末局装置で同時通信を行うマルチユーザMIMOとしての利用もある。ここでマルチユーザMIMOとしての利用においては、スモールセルの場合とは異なり同一エリア内の端末局装置間の「ユーザ間干渉の抑圧」に非常に冗長な数のアンテナ素子数を活用することも可能である。以下では、これらの大規模アンテナに関する技術の一例として、大規模アンテナシステム(例えば、非特許文献1から非特許文献4参照)について簡単に説明する。

[大規模アンテナシステムの概要]
図3は、大規模アンテナシステムの概要を示す図である。図3においては、基地局装置1、無線局装置2、見通し波3、構造物による安定反射波4、地上付近多重反射波5〜6、構造物7が示されている。図3の大規模アンテナシステムにおいては、基地局装置1は、多数(例えば100本以上)のアンテナ素子を備え、ビルの屋上や高い鉄塔の上など高所に設置される。無線局装置2も同様に、ビルの屋上、家屋屋根の上、電信柱や鉄塔の上など高所に設置される。そのため、基地局装置1と無線局装置2との間は概ね見通し環境にあり、その間には見通し波3のパスや大型の安定的な構造物7による安定反射波4のパスなどに加え、地上付近での車や人などの移動体などによる多重反射波5、6のパスが混在する。なお、指向性アンテナを用いる場合などは特に、地上付近の多重反射波5、6は、見通し波3及び安定反射波4などに比べて受信レベルが低くなる。

図4は、見通し環境及び見通し外環境におけるインパルス応答を表す図である。図4(a)は見通し外環境でのインパルス応答を、図4(b)は見通し環境でのインパルス応答をそれぞれ示している。図4(a)及び(b)において、横軸遅延時間を表し、縦軸は各遅延波の受信レベルを表す。図4(a)に示した見通し外環境の場合、見通し区間直接波成分は存在せず、様々な経路の多重反射波が数多く成分として存在し、各振幅及び複素位相は時間と共にランダム激しく変動する。

これに対し、図3に示した大規模アンテナシステムの様な見通し環境を想定する場合、見通し波3、構造物7による安定反射波4の安定パスはレベルが高い。見通し波3、構造物7による安定反射波4よりも一般的に遅延量が大きい時変動パスの多重反射波は、多重反射経路長に伴う減衰により、図4(b)に示す様に相対的にレベルが小さくなる。この様なチャネル情報を複数回取得して平均化すると、安定パスの成分は振幅及び複素位相ともに毎回安定して同様の値が得られる。しかし、時変動パスの成分は複素空間上でランダムに合成され平均化されて平均値0に近づく。そのため、平均化により安定成分のみを効果的に抽出することが可能になる。なお、絶対的なチャネル情報はシンボルタイミングに依存し、このシンボルタイミングが異なるとチャネル情報の平均化を適切に行うことができない。この様な問題を解決するために、非特許文献2では基準となるアンテナ素子の複素位相を基準とした相対チャネル情報(ないしは、各チャネル情報を基準アンテナのチャネル情報で除算したものと考えても良い)を活用する技術が紹介されている。この様な平均化が伴わない場合には相対チャネル情報を用いず、絶対的なチャネル情報を用いて議論することが可能であるが、その様な場合でも送受信ウエイトの算出においては相対チャネル情報を用いても何ら問題は生じない。以降の説明では平均化処理を行うことも含めて包括的に扱うために、チャネル情報は基本的に基準アンテナの複素位相を基準とした相対チャネル情報として扱うこととする。

この様にして得られる時変動のない安定パスのチャネル情報を基に、基地局装置1(図3参照)は送受信ウエイトを算出する。基地局装置1は、算出した送受信ウエイトを用いて多数のアンテナ素子で同位相合成を行うための指向性制御を行う。上記の送受信ウエイトを用いることで、基地局装置1は、指向性制御のターゲットとする通信相手の無線局装置への指向性利得をアンテナ本数Nの2乗倍に比例して高めることができる。

また、宛先以外の無線局装置への与干渉の指向性利得はN倍に留まるため、相対的に希望信号干渉信号との間には単純計算でN倍のギャップが生じる。結果的にSIR(Signal to Interference Ratio)の期待値は10Log10(N)[dB]となる。この期待値は、Nが100の場合には20dBとなる。更に相関の小さな無線局装置を選択的に空間多重する場合には、更なるSIR特性の改善が期待され、より高い空間多重が実現できる。

非特許文献3及び非特許文献4には、上記の送受信ウエイトでは抑圧しきれない干渉を更に抑圧するための技術や、チャネル情報の相関(チャネル相関)のより低い無線局装置の組み合わせを選択する技術が紹介されている。超高次の空間多重を実現するためには、チャネル情報の相関の小さな無線局装置を組み合わせることが重要である。基地局装置の多数のアンテナ素子と第j無線局装置のアンテナ素子との間の第kサブキャリアに関するチャネル情報を成分とするチャネルベクトルhj(k)(「hj(k)」はベクトルであり、本来は記号「→」をhの上に付与してベクトルであることを明示すべきであるが省略する。以下、同様に説明の上では省略する。)と、別の第i無線局装置におけるチャネルベクトルhi(k)との間のチャネル相関は以下の式(8)で与えられる。

見通し環境を想定するシステムでは、見通し波のみで構成される仮想的なチャネルモデルを想定し、無線局装置側の各アンテナと基地局装置の間のチャネルベクトルhi(k)の相関が小さい場合には空間多重には適し、逆に相関が大きい場合には空間多重には適さない状況となる。

[スモールセルにおける大規模MIMOについて]
上述の式(8)の説明においては、無線局装置側が1本アンテナであることを想定し、異なる無線局装置であれば空間的な広がりによりチャネルベクトルの相関は一般的には低くなることが想定されていた。これに対し、第5世代の携帯電話においてはユーザ当たりのスループット向上を目的として、無線局装置側にも多数のアンテナを実装し、同様に基地局装置側にも多数のアンテナを実装する。最近の研究報告の中では基地局装置側のアンテナ素子数を256素子、無線局装置側のアンテナ素子数を16素子として、256×16のサイズの大規模MIMOによる大容量化の検討がなされている。ここではユーザが携帯する無線局装置はサイズ的にも携帯可能な小規模なものであることが想定される。更に、例えば基地局装置も隣接するスモールセル間の相互干渉を低減すること、更には人が集中する場所への設置などを考えると、既存のビルの壁面(例えば地上高20m程度)に設置し、各アンテナ素子に指向性を与え、上方から下方を見下ろす形で限定的なエリア照射する形態が予想される。この場合、ビルの壁面などに大型のアンテナを設置することは安全性や設置の容易性などの観点から好ましくない。ミリ波準ミリ波などの高い周波数帯の利用の場合、波長が短くなるのに伴いアンテナ素子の小型化やアンテナの指向性形成が容易になり、基地局装置であっても非常に狭い領域に多数のアンテナを多数詰め込んだ小型アンテナ・セットを利用することが期待される。

この場合、例えば単一無線局装置内の複数のアンテナのうちの第j及び第iアンテナの間のチャネル相関を上記の式(8)により求めるならば、ユーザ側の無線局装置のアンテナ間隔が非常に短く、且つ基地局装置と無線局装置間の見通しが確保できている条件下では、アンテナ素子間でのチャネル相関が非常に大きなMIMOチャネルと見ることができる。上述の様に基地局装置がビルの壁面などの高所に下方を見下ろす形で設置され、ユーザはスマートフォン等を手に持ち利用する場合には、基地局装置と無線局装置の各アンテナ素子間は概ね見通し環境となることが期待され、この様な状況は一般的な使用環境であると予想される。

この場合、MIMO行列を特異値分解した場合、第1特異値の絶対値は見通し波成分を利用して非常に高い値になるが、第2特異値以降の高次の特異値は、第1特異値に比較して相対的に非常に小さくなる傾向になる。つまり、MIMOチャネルを活用した空間多重伝送としては、第1特異値に対応する第1のパスに関しては非常に回線利得に余裕がある状況であるが、第2特異値以上の高次のパスに関しては、相対的に効率は良くない状況と言える。

この問題を回避するためには、例えば基地局装置のアンテナを小規模な筐体集約せず、空間的な広がりを確保することが理想的である。例えば、基地局装置アンテナを10m程度の直線状に均等配置するリニアアレー状に組めば、仮に見通し波が支配的である場合であっても基地局装置のアンテナの空間的な広がりにより、MIMOチャネルとしては第2特異値以上の高次の特異値の絶対値を大きくし、容量の増加に寄与すると期待することができる。しかし、この様な大規模な構造物にすることはアンテナ設置の構造上も好ましくない。例えば基地局装置側のアンテナ素子数を256素子とする場合、約4cm間隔で256個のアンテナを個別にビルの壁面に設置するのは設置工事の負担を増大させる。一方で、既にリニアアレーに組んだ構造物をビル壁面に設置する際には、その構造物が大型化するために、ビルの壁面に設置するのは安全対策上厳しいものがある。更に全てのアンテナ素子で協調的に伝送するためには、一つの基地局装置の筐体から無線周波数の信号をケーブルで10m程度の空間的な広がりを持つアンテナ素子に分配する必要があり、特に高い周波数帯での信号伝送のケーブル損失は無視できない。例えば無線周波数として20GHzを想定すれば、10mで10dB以上のケーブル損失となり、折角、アンテナ素子数の増大で稼いだ回線利得を損なうことになりかねない。

この様な理由のため、見通し波が支配的な大規模MIMOの運用において、少なくとも無線局装置側のアンテナを小型化することが求められる場合には、シングルユーザMIMOによる空間多重伝送で大容量化を図ることは困難となる。

[無線エントランスの場合]
以上の状況はスモールセル環境を中心に説明を行ったが、見通し波が支配的であるという同様の条件であれば無線エントランス回線においても同様の課題は残される。例えば、ビルの壁面に第5世代の携帯電話のスモールセル用基地局装置を設置する場合、そこには大容量のエントランス回線が必要になる。一般に、基地局装置へのエントランス回線は光ファイバを用いて提供するのが一般的であるが、しかし既設のビルの壁面への光ファイバの敷設は容易ではない。例えば、屋上ないしは地上などの何処かまで光ファイバを引き、更にビルの壁面に沿ってケーブルを設置する場合、既に建築済みのビルの外観を損ねることになりかねず、ビル・オーナー同意を得にくい。ビル屋内からビルの壁面に光ファイバを提供するためにビル壁面に穴を貫通させる工事に関しては、更にビル・オーナーの同意を得にくい場合も想定される。この場合、例えばスモールセル用基地局装置を設置するビルに対面するビルの屋上まで光ファイバを引き、ビルの屋上からビル壁面のスモールセル用基地局装置に無線回線でエントランス回線を提供することも考えられる。

この場合の課題は、先ほどと同様にビル壁面の基地局装置は十分に小型化することが想定されるため、やはり見通し環境ではMIMOチャネルの第2特異値以上の高次のパスは空間多重伝送への寄与が限定的と想定され第1特異値を積極的に活用することが安定した伝送のために有効であると考えられる。

列車等の移動体への無線エントランス]
次に、第5世代の携帯電話の利用形態を考慮した中で、もう一つの大きな課題について説明する。先ほども説明した様に、非常に狭いエリアに多数のユーザが存在する場合、それらの多数のユーザに対して大容量の無線回線を提供できる様にすることは重要である。スモールセルとはその名の通り比較的小さなサービスエリアを構成しているので、ここで大容量の無線回線を提供する対象はせいぜい歩行速度程度の低速で移動するユーザである。したがって、大多数のユーザでスモールセルを移り変わる(ないしはスモールセルとマクロセル間の)ハンドオーバなどは想定しておらず、その切り替わりの制御情報のやり取りの負荷はそれほど問題とはならない。しかし、例えば列車などで移動するユーザを想定すると、各ユーザがハンドオーバするタイミングは概ね一致しており、ネットワーク側に対して瞬時の大量処理が要求される。この信号処理の負荷、及び大量の制御信号が発生することによる伝送容量の圧迫などは非効率であり、通常は列車内の各ユーザは列車内で一旦トラヒックを集約し、この集約されたトラヒックを束ねて列車から見て外部のネットワークに対するエントランス回線を無線回線にて確保することが好ましい。これにより、無用な膨大な量のハンドオーバによる負荷、及び膨大な制御情報量による伝送容量の圧迫を回避する。この考え方は、第5世代の携帯電話のサービスエリアであるセルが列車と共に移動するという意味で、ムービングセルという概念で捉えられている。

先ほどのビル壁面の第5世代の携帯電話のスモールセル用基地局装置へのエントランス回線は、無理をすれば光ファイバにより提供することも不可能ではなかったが、この列車によるムービングセル(以降、「列車ムービングセル」と呼ぶ)を想定すると、エントランス回線は光ファイバを用いることは不可能であり、この列車ムービングセルへの無線エントランスの効率的な構築方法確立することは極めて第5世代の携帯電話において重要となる。

ここで、例えば都市部の列車を例に取り、必要な回線容量見積もってみる。例えば山手線などでは11両編成で、1車両あたり100人程度の乗客乗車している状況が想定される。通勤時間帯などであればスマートフォンなどを携帯するビジネスマンや大学生が大半を占め、その半数程度の全車両で550人ものユーザは無線通信でのインターネットアクセスを試みていると想定される。第5世代の時代において、コンテンツの大容量化により1ユーザが平均で10Mbit/sの通信をしていたとすれば、5.5Gbit/s程度の容量が必要とされる。時間的な変動を考慮し、その倍程度の回線容量を確保するとすれば、列車ムービングセルの無線エントランスとしては10Gbit/s程度の容量が要求される。

これだけの大容量回線を提供するためには、当然ながらミリ波や準ミリ波などの高い周波数帯での回線提供が必要となると共に、上述のスモールセルの場合と異なり、100km/h以上の高速移動を想定した移動体への広帯域大容量伝送が余儀なくされる。上述の様に頻繁なハンドオーバを回避するためには、列車ムービングセルの無線エントランスにおいては、数百メートル程度の区間は同一の基地局装置でサービス提供できることが好ましく、高周波数帯で自由空間伝搬損失が大きいことを考慮すれば、やはり大規模MIMOによる回線利得の確保が必要になる。

ここで、先ほどの説明の様に10Gbit/s程度の伝送容量を実現する場合、例えば周波数利用効率として3bit/Hz・s程度の効率を想定すると、空間多重なしでは3〜4GHz程度の帯域幅を必要とする。例えば、70〜80GHzのeバンド帯などを利用する場合、1チャネルで3〜4GHzもの帯域幅を占有する場合には、1チャネルしか確保することができない。しかし一方で、平行して走る複数の路線ごとに周波数チャネルによる棲み分けを行うことを考えれば、1チャネルの帯域幅を1GHz程度に抑え、複数チャネルによる運用が必要になる。この場合、足りない分の容量は空間多重で確保する必要があり、上述の例では4多重程度の空間多重が必要となる。

先ほど説明した様に、列車ムービングセルでも大規模MIMOの適用が必須であるが、その場合には大規模MIMOによる利得拡大のためには指向性形成のために必要となるチャネル情報を高精度で把握している必要がある。しかし、高周波数帯では波長が短く、無線局装置の移動に対してチャネルの時変動は相対的に大きく見える。更に、対向する列車同士ですれ違う場合、通常の直線移動に伴うチャネルの変動以上に外部環境が激しく変動し、反射波成分は激しく乱れることになる。基地局装置側から列車に向けて送信する際には、指向性形成のためにチャネル情報は必須であるが、チャネル情報にある程度の推定精度の高さを求めるならば、非常に頻繁にチャネル情報を相互に交換する必要に迫られる。しかし、伝送容量の大容量化を目指しているにもかかわらず、チャネル情報フィードバックという制御情報のためのオーバヘッドが大きくなることは本末転倒であり、チャネル情報のフィードバックに伴う伝送容量の低下を避け、チャネルの時変動が大きい環境でも安定的に大容量の空間多重が実現できることが求められている。

[MIMO伝送の装置構成例]
(全体の回路構成)
図5は、マルチユーザMIMOシステムにおける基地局装置80の構成の一例を示す概略ブロック図である。ここではマルチユーザMIMOシステムとして説明を行うが、空間多重する対象が異なる端末局装置の代わりに、同一無線局内の複数のアンテナ素子で複数の信号系列を行うと理解すれば、基本的に装置構成はシングルユーザMIMOシステムと同一である。

図5に示す様に、基地局装置80は、送信部81、受信部85、インタフェース回路87、MAC(Medium Access Control)層処理回路88、及び通信制御回路820を備えている。MAC層処理回路88はスケジューリング処理回路881を有している。

基地局装置80は、インタフェース回路87を介して、外部機器ないしはネットワークとのデータの入出力を行う。インタフェース回路87は、入力されるデータのうち、無線回線上で転送すべきデータを検出し、検出したデータをMAC層処理回路88に出力する。MAC層処理回路88は、基地局装置80全体の動作の管理制御を行う通信制御回路820の指示に従い、MAC層に関する処理を行う。ここで、MAC層に関する処理には、インタフェース回路87で入出力されるデータと、無線回線上で送受信されるデータの変換、MAC層のヘッダ情報の付与などが含まれる。この処理の中で、スケジューリング処理回路881は、マルチユーザMIMO伝送において同時に空間多重を行う端末局装置の組み合わせを含む各種スケジューリング処理を行う。スケジューリング処理回路881は、スケジューリング結果を通信制御回路820に出力する。マルチユーザMIMOでは、複数の端末局装置宛に一度に信号を送信するため、複数系統の信号系列がMAC層処理回路88から送信部81に出力される。

(送信部81の回路構成)
図6は、マルチユーザMIMOシステムにおける基地局装置80における送信部81の構成の一例を示す概略ブロック図である。図6に示す様に、送信部81は、送信信号処理回路811−1〜811−NSDM(NSDMは2以上の整数)と、加算合成回路812−1〜812−NBS−Ant(NBS−Antは2以上の整数)と、IFFT(Inverse Fast Fourier Transform:逆高速フーリエ変換)&GI(Guard Interval:ガードインターバル)付与回路813−1〜813−NBS−Antと、D/A(デジタルアナログ変換器814−1〜814−NBS−Antと、ローカル発振器815と、ミキサ816−1〜816−NBS−Antと、フィルタ817−1〜817−NBS−Antと、ハイパワーアンプ(HPA)818−1〜818−NBS−Antと、アンテナ素子819−1〜819−NBS−Antと、送信ウエイト処理部830とを備えている。送信信号処理回路811−1〜811−NSDMと、送信ウエイト処理部830とは、図5において示した通信制御回路820に接続されている。

送信ウエイト処理部830は、チャネル情報取得回路831と、チャネル情報記憶回路832と、マルチユーザMIMO(MU−MIMO)送信ウエイト算出回路833とを備えている。ここで、図6における送信信号処理回路811−1〜811−NSDMの添え字のNSDMは、同時に空間多重を行う多重数を表す。また、加算合成回路812−1〜812−NBS−Antからアンテナ素子819−1〜819−NBS−Antまでの回路の添え字のNBS−Antは、基地局装置80が備えるアンテナ素子数を表す。NBS−Antは、例えば、100である。

マルチユーザMIMOでは、複数の端末局装置宛に一度に信号を送信するため、複数系統の信号系列がMAC層処理回路88から送信部81に入力され、入力された複数系統の信号系列が送信信号処理回路811−1〜811−NSDMに入力される。送信信号処理回路811−1〜811−NSDMは、宛先の端末局装置それぞれに送信すべきデータ(データ入力#1〜#NSDM)がMAC層処理回路88から入力されると、無線回線で送信する無線パケットを生成して変調処理を行う。ここで、例えばOFDM変調方式を用いるのであれば、各信号系列の信号はサブキャリアごとに変調処理が行われる。更に、変調処理がなされたベースバンド信号にサブキャリアごとに送信ウエイトを乗算する。各アンテナ素子819−1〜819−NBS−Antに対応した送信ウエイトが乗算された信号は、必要に応じて残りの信号処理が施され、ベースバンドにおける送信信号のサンプリングデータとして加算合成回路812−1〜812−NBS−Antに入力される。

加算合成回路812−1〜812−NBS−Antに入力された信号は、サブキャリアごとに合成される。合成された信号は、IFFT&GI付与回路813−1〜813−NBS−Antにて周波数軸上の信号から時間軸上の信号に変換され、更にガードインターバルの挿入やOFDMシンボル間(SC−FDE(Single-Carrier Frequency Domain Equalization)であればブロック伝送のブロック間)の波形整形等の処理が行われ、アンテナ素子819−1〜819−NBS−Antごとに、D/A変換器814−1〜814−NBS−Antでデジタル・サンプリング・データからベースバンドのアナログ信号に変換される。更に、各アナログ信号は、ローカル発振器815から入力される局部発振信号と、ミキサ816−1〜816−NBS−Antで乗算され、無線周波数の信号にアップコンバートされる。ここで、アップコンバートされた信号には、送信すべきチャネルの帯域外の領域に信号が含まれるため、フィルタ817−1〜817−NBS−Antで帯域外成分を除去し、送信すべき電気的な信号を生成する。生成された信号は、ハイパワーアンプ818−1〜818−NBS−Antで増幅され、アンテナ素子819−1〜819−NBS−Antより送信される。

なお、図6では、各サブキャリアの信号の加算合成を加算合成回路812−1〜812−NBS−Antで実施した後に、IFFT処理、ガードインターバルの挿入、波形整形等の処理を行っているが、送信信号処理回路811−1〜811−NSDMにてこれらの処理を行い、機能配分的にはこの位置にてIFFT&GI付与回路813−1〜813−NBS−Antを省略する構成としてもよい。この場合、送信信号処理回路811−1〜811−NSDMにおける送信ウエイト乗算後の必要に応じた残りの信号処理とは、IFFT処理、ガードインターバルの挿入、波形整形等の処理を指す。

また、送信信号処理回路811−1〜811−NSDMで乗算される送信ウエイトは、信号送信処理時に、送信ウエイト処理部830に備えられているマルチユーザMIMO送信ウエイト算出回路833より取得する。送信ウエイト処理部830では、チャネル情報取得回路831において、受信部85にて取得されたチャネル情報を通信制御回路820経由で別途取得しておき、これを逐次更新しながら、チャネル情報記憶回路832に記憶する。信号の送信時には通信制御回路820からの指示に従い、マルチユーザMIMO送信ウエイト算出回路833は、宛先とする端末局装置に対応したチャネル情報をチャネル情報記憶回路832から読み出し、読み出したチャネル情報を基に宛先とする端末局装置の組み合わせに対応した送信ウエイトを算出する。マルチユーザMIMO送信ウエイト算出回路833は、算出した送信ウエイトを送信信号処理回路811−1〜811−NSDMに出力する。

また、宛先とする端末局装置の管理や、全体のタイミング制御など、全体の通信に係る制御を通信制御回路820が管理する。上述の送信ウエイトの算出に係る信号処理を行う送信ウエイト処理部830に対し、通信制御回路820は宛先とする端末局装置等を示す情報を出力する。

(受信部85の回路構成)
図7は、マルチユーザMIMOシステムにおける基地局装置80における受信部85の構成の一例を示す概略ブロック図である。図7に示す様に、受信部85は、アンテナ素子851−1〜851−NBS−Antと、ローノイズアンプ(LNA)852−1〜852−NBS−Antと、ローカル発振器853と、ミキサ854−1〜854−NBS−Antと、フィルタ855−1〜855−NBS−Antと、A/D(アナログ/デジタル)変換器856−1〜856−NBS−Antと、FFT(Fast Fourier Transform:高速フーリエ変換)回路857−1〜857−NBS−Antと、受信信号処理回路858−1〜858−NSDMと、受信ウエイト処理部860とを備えている。受信信号処理回路858−1〜858−NSDMと、受信ウエイト処理部860とは、図5において示した通信制御回路820に接続されている。受信ウエイト処理部860は、チャネル情報推定回路861と、マルチユーザMIMO(MU−MIMO)受信ウエイト算出回路862とを備えている。

アンテナ素子851−1〜851−NBS−Antで受信した信号をローノイズアンプ852−1〜852−NBS−Antで増幅する。増幅された信号とローカル発振器853から出力される局部発振信号とがミキサ854−1〜854−NBS−Antで乗算され、増幅された信号は無線周波数の信号からベースバンドの信号にダウンコンバートされる。ダウンコンバートされた信号には、受信すべき周波数帯域外の領域にも信号が含まれるため、フィルタ855−1〜855−NBS−Antで帯域外成分を除去する。帯域外成分が除去された信号は、A/D変換器856−1〜856−NBS−Antでデジタルベースバンド信号に変換される。デジタルベースバンド信号は全てFFT回路857−1〜857−NBS−Antに入力され、ここでは記載を省略したタイミング検出用の回路で判定した所定のシンボルタイミングで、時間軸上の信号を周波数軸上の信号に変換(各サブキャリアの信号に分離)する。この各サブキャリアに分離された信号は、受信信号処理回路858−1〜858−NSDMに入力されると共に、チャネル情報推定回路861にも入力される。

チャネル情報推定回路861では、各サブキャリアに分離されたチャネル推定用の既知の信号(無線パケットの先頭に付与されるプリアンブル信号等)を基に各端末局装置のアンテナ素子と、基地局装置80の各アンテナ素子851−1〜851−NBS−Antとの間のチャネル情報をサブキャリアごとに推定し、その推定結果をマルチユーザMIMO受信ウエイト算出回路862に出力する。マルチユーザMIMO受信ウエイト算出回路862では、入力されたチャネル情報を基に乗算すべき受信ウエイトをサブキャリアごとに算出する。この際、各アンテナ素子851−1〜851−NBS−Antで受信された信号を合成する受信ウエイトは、信号系列ごとに異なり、抽出すべき信号系列に対応する受信信号処理回路858−1〜858−NSDMそれぞれに入力される。

受信信号処理回路858−1〜858−NSDMでは、FFT回路857−1〜857−NBS−Antから入力されたサブキャリアごとの信号に対し、マルチユーザMIMO受信ウエイト算出回路862から入力された受信ウエイトを乗算し、各アンテナ素子851−1〜851−NBS−Antで受信された信号をサブキャリアごとに加算合成する。受信信号処理回路858−1〜858−NSDMは、加算合成した信号に対して復調処理を施し、再生されたデータをMAC層処理回路88に出力する。ここでの復調処理では、例えば一旦受信信号の軟判定を行い、必要に応じてデインタリーブ処理を行い、その後に誤り訂正処理を行うなどして最終的な信号検出を行う構成としても良い。

ここで、異なる受信信号処理回路858−1〜858−NSDMでは、異なる信号系列の信号処理が行われる。また、MAC層処理回路88は、MAC層に関する処理(例えば、インタフェース回路87に対して入出力するデータと、無線回線上で送受信されるデータとの変換、MAC層のヘッダ情報の終端など)を行う。この処理の中でスケジューリング処理回路881は、マルチユーザMIMO伝送において同時に空間多重を行う端末局装置の組み合わせを含む各種スケジューリング処理を行い、スケジューリング結果を通信制御回路820に出力する。MAC層処理回路88にて処理された受信データは、インタフェース回路87を介して外部機器ないしはネットワークに出力される。

また、送信元の端末局装置の管理や、全体のタイミング制御など、全体の通信に係る制御を通信制御回路820が管理する。また、上述の受信ウエイトの算出に係る信号処理を行う受信ウエイト処理部860に対し、通信制御回路820から送信元の端末局装置等を示す情報が入力される。

なお、信号受信に関しても送信の場合と同様に、OFDM変調方式ないしはSC−FDE方式を用いた広帯域のシステムでは、上述の受信ウエイトの乗算はサブキャリアごとに行われる。つまりA/D変換器856−1〜856−NBS−Antから出力される信号に対し、FFT回路857−1〜857−NBS−AntでFFTを行い各サブキャリアに分離し、分離したサブキャリアごとに、チャネル情報推定回路861での信号処理、及び、受信信号処理回路858−1〜858−NSDMでの受信信号処理が実施されることになる。

以上がマルチユーザMIMOシステムにおける基地局装置80、送信部81、及び受信部85の構成の説明である。上述の様に、例えば送信信号処理回路811−1〜NSDMや受信信号処理回路858−1〜NSDMをそれぞれ単一の端末局装置のNSDM系統の信号系列に対する信号処理回路と見なし、更にマルチユーザMIMO送信ウエイト算出回路833及びマルチユーザMIMO受信ウエイト算出回路862がシングルユーザMIMOに関する送受信ウエイトの算出回路と見なせば、基本的に上述の説明でシングルユーザMIMOシステムにおける基地局装置80、送信部81、及び受信部85の構成を表したものとなる。

ここで重要なのは、送信部81におけるローカル発振器815が送信部81の各アンテナ系統におけるミキサ816−1〜816−NBS−Antで共通化されている点、受信部85におけるローカル発振器853が受信部85の各アンテナ系統におけるミキサ854−1〜854−NBS−Antで共通化されている点である。各アンテナで送受信信号位相を調整することになるが、それぞれのローカル発振器815ないしはローカル発振器853から入力される信号の位相関係が常に一定になる様にすることで、どの様な位相関係で送受信ウエイトを乗算すれば良いかが判断可能となる。このローカル発振器が送信部81内又は受信部85内で非同期のものを複数利用する場合には、少なくとも送信部81において送信ウエイトを乗算する指向性制御が効果的に機能しなくなる。装置の設計においては、この点に注意が必要である。

[見通し波が支配的なMIMOチャネルの特徴]
まず、見通し波が支配的な伝搬路での空間多重特性について整理する。送信局と受信局との間が見通し環境にある場合のチャネル行列をHLOS、行列の各成分が独立無相関となるチャネル行列をHi.i.d.とする。簡単のため、HLOSを各成分が全て「1」である行列で代用し、下記のチャネル行列を送信アンテナ16本、受信アンテナ16本の場合と、送信アンテナ256本、受信アンテナ16本の二つの場合について、下記の式(9)で与えられるチャネル行列の16個の特異値の絶対値の分布を評価する。

図8にチャネル行列ごとの特異値の絶対値の分布特性を示す。図8(a)はHi.i.d.のみの場合(i.i.d. channel)、図8(b)はライス係数K=10dBの場合の式(9)で表されるライスチャネル(Rician channel)の場合を示し、左側が送受信16本アンテナの場合、右側は送信側が256本とした場合である。送受信アンテナの本数が16本と同数の場合には、特異値の絶対値の分布は広がると共に、第1特異値と第16特異値の絶対値のギャップは広がる傾向がある。しかし、送信又は受信アンテナの本数が冗長になり、例えば送信アンテナが256本にもなると、特異値の絶対値はHi.i.d.の評価ごとの乱数の値に影響を受けず、分布確率0%と100%値の差が殆どなくなる。これは図8(a)、図8(b)で共通であるが、図8(a)のHi.i.d.のみの場合には第1特異値から第16特異値までのギャップが非常に小さくなるのに対し、図8(b)のライスチャネルの場合には第1特異値と第2特異値の絶対値の間のギャップがライス係数よりも10dB大きい20dBあり、一方で第2特異値と第16特異値のギャップは小さい。つまり、図8(a)及び図8(b)より分かることは、見通し波が支配的な場合にはアンテナ素子数を増やしても第1特異値に相当する図2(c)の一番上(λ1)のパイプに相当する伝送路に回線利得が集中しすぎて、空間多重を行うための図2(c)の上から2番目(λ2)、3番目(λ3)のパイプに相当する伝送路が殆ど活用できないことを意味する。

一方で、ミリ波などを用いる場合には自由空間伝搬損失が周波数に依存して大きくなるため、例えば5GHzに対して80GHzでは24dB程度の利得を何処かで稼がなくてはならない。このためにアンテナを大規模化することが有効であるが、空間多重のためのアンテナの大規模化と、回線利得を稼ぐためのアンテナの大規模化は、別の観点から実施する必要がある。

[チャネル情報の推定及びフィードバックについて]
大規模MIMOにおいては多数のアンテナ素子を活用することによる回線利得の向上はあくまでも送受信指向性制御(ビームフォーミング)を行うことにより得られる効果であり、その指向性制御のためには高精度なチャネル情報が必要となる。しかし、1本のアンテナ素子対1本のアンテナ素子の間の信号は指向性形成前の回線利得向上が図られていない段階の信号であるため、取得されたチャネル情報の推定精度は一般には低い。同一信号の繰り返し受信と平均化処理でSNRを改善することは可能であるが、そのためにはチャネルフィードバックのオーバヘッドが増大する。例えば、全サブキャリアのうちの奇数又は偶数サブキャリアを用い、2本のアンテナ素子にそれぞれ奇数と偶数サブキャリアのいずれかのみを間欠的に割り当てて利用して、割り当てのないサブキャリアに関しては前後のサブキャリアで求めたチャネル情報からチャネル推定を行うこととすれば、2本のアンテナのチャネル推定を同時に行うことができる上に、チャネルフィードバックを行うサブキャリアのSNRを3dB程度改善することも可能である。間欠的なサブキャリアの周期を上述の様に2サブキャリア間隔からより大きなサブキャリア間隔にすれば、更にチャネルフィードバックが行われるサブキャリアのSNRを向上することは原理的には可能であるが、一般的なチャネル情報の場合には周波数依存性が非常に大きく、不連続なサブキャリアの間のチャネルの補間の精度が大幅に劣化するという問題があった。逆に、このサブキャリアの間のチャネルの補間精度を向上するために、間引きするサブキャリア数NSCを限定すると、そこで得られるSNRの改善量は限定されることになる。したがって、高いSNR環境での高精度のチャネル推定と高効率なチャネルフィードバックを実現する技術が求められている。

この様な課題に対して、例えば非特許文献5では、基地局装置が多数のアンテナを所定の送受信ウエイトで合成し、非常にビーム幅の狭い高利得の超指向性ビームを水平及び垂直方向に所定の角度の刻みで多数形成することで対処する提案がなされている。例えば、水平方向に±60度(合計120度)のエリアに端末局装置が存在する場合、5度刻みでビームを形成すると25通りの指向性ビームで水平方向はカバーできる。垂直方向は、例えばユーザが30度程度のエリア内にしか存在しなければ、5度刻みでビームを形成すると7通りの指向性ビームで垂直方向はカバーできる。垂直方向及び水平方向を同時にカバーするためには、合計で175パターンの固定的な指向性ビームを用いれば良いことになる。この刻み幅を10度にすれば、同様に52パターンの固定的な指向性ビームで全体をカバーできる。この様な固定的なビームを複数選択して、その数だけの仮想的なアンテナ素子と端末局装置のアンテナ素子の間のMIMOチャネルだと考えれば、この仮想的なアンテナ素子に対してであれば十分に回線利得を確保できた状況でチャネル情報の取得が可能になる。ただし、この仮想的アンテナ素子の数だけトレーニング信号を送信しなければ、端末局装置側はどの仮想的なアンテナ素子を選択すれば良好な通信環境を確保できるのかが分からないため、その多数の仮想的アンテナ素子の送信に要するオーバヘッドが必要となる。この様に、高次の空間多重を実現するためのMIMOのチャネル情報を、十分な回線利得を確保しながら取得することは可能であるが、それでもやはり小さなオーバヘッドで効率的に取得するためには、更なる工夫が必要とされる。

キャリブレーションとインプリシット・フィードバックについて]
実際の無線通信装置では、送信側の信号処理において、送信の直前にハイパワーアンプにて信号増幅を行うことが多い。この場合、ハイパワーアンプの個体差により増幅率誤差があると共に、ハイパワーアンプ内で複素位相がハイパワーアンプごとに異なる値で回転する場合がある。同様に、受信側の信号処理において、受信の直後にローノイズアンプにて信号増幅を行うことが多い。この場合、ローノイズアンプの個体差により増幅率に誤差があると共に、ローノイズアンプ内で複素位相がローノイズアンプごとに異なる値で回転する場合がある。更に厳密には、その他のフィルタ等のRF系の回路を含めた送信系及び受信系の回路等においても個体差が伴う。

一般に、ハイパワーアンプ及びローノイズアンプの増幅率及び位相回転量には、周波数依存性がある。周波数依存性を伴う増幅率及び複素位相の回転量の個体差が無視できないほどに大きい場合には、アップリンクのチャネル情報からダウンリンクのチャネル情報を推定する際に、キャリブレーション処理を施す必要がある。この増幅率及び位相回転量の誤差が時間的にはほぼ安定している場合、増幅率及び位相回転量の誤差を事前に測定しておき、誤差の影響をキャンセルするための係数を用いてアップリンクのチャネル情報からダウンリンクのチャネル情報に換算する。一般に、この様な性質を利用したチャネル推定方法をインプリシット・フィードバックと呼び、ダウンリンクで推定したチャネル情報をデジタルデータとして制御情報に収容してアップリンクで通知するエクスプリシット・フィードバックと区別されている。

以下にキャリブレーション処理の一例を説明する。図9は、アップリンクとダウンリンクとのチャネル情報の非対称性を示す図である。図9において、符号25−0〜25−2は無線モジュールを示し、符号21−0〜21−2はハイパワーアンプ(HPA)を示し、符号22−0〜22−2はローノイズアンプ(LNA)を示し、符号23−0〜23−2は時分割スイッチ(TDD−SW)を示し、符号24−0〜24−2はアンテナ素子を示している。

ここでは、基地局装置においてチャネル情報に影響を与える機能のみを抽出したため、図示した以外の構成は省略したが、無線モジュール25−0〜25−2にはその他の機能も含まれる。また、信号がハイパワーアンプ21−0〜21−2それぞれを通過する際に、振幅及び複素位相がZHPA#0(fk)、ZHPA#1(fk)、ZHPA#2(fk)だけ変化するものとする。また、各種アンプを通過する際に振幅がA、複素位相がθ回転するとした場合には、その影響はZ=A・ejθの係数で表すことが可能である。信号がローノイズアンプ22−0〜22−2それぞれを通過する際に、振幅及び複素位相による影響の係数はZLNA#0(fk)、ZLNA#1(fk)、ZLNA#2(fk)で表されるものとする。ここでは一般的な条件として周波数依存性があるものとし、第kサブキャリアに対する周波数「(fk)」の表記を行っている。

ここで、例えば、無線モジュール25−1及び無線モジュール25−2から試験用の無線モジュール25−0に信号を送信する場合のチャネル情報について説明する。ここでは、無線モジュール25−1のアンテナ素子24−1と、無線モジュール25−0のアンテナ素子24−3との間の空間上のチャネル情報がh1(fk)で表され、無線モジュール25−2のアンテナ素子24−2と無線モジュール25−0のアンテナ素子24−0との間の空間上のチャネル情報がh2(fk)で表されている。

このとき、実際に無線モジュール25−1から無線モジュール25−0に信号を送信する際のチャネル情報は、空間上のh1(fk)にハイパワーアンプ21−1の通過に伴う変化を示す係数ZHPA#1(fk)、及びローノイズアンプ22−0の通過に伴う変化を示す係数ZLNA#0(fk)が乗算された値として観測される。

同様に、無線モジュール25−2から無線モジュール25−0に信号を送信する際のチャネル情報は、空間上のh2(fk)にハイパワーアンプ21−2の通過に伴う変化を示す係数ZHPA#2(fk)、及びローノイズアンプ22−0の通過に伴う変化を示す係数ZLNA#0(fk)が乗算された値として観測される。

したがって、無線モジュール25−1から無線モジュール25−0へのチャネルは、ZHPA#1(fk)・h1(fk)・ZLNA#0(fk)で表される。また、無線モジュール25−2から無線モジュール25−0へのチャネルは、ZHPA#2(fk)・h2(fk)・ZLNA#0(fk)で表される。このため、無線モジュール25−1と無線モジュール25−2との間では、チャネル情報h1(fk)とh2(fk)の差に加えて、相対的にZHPA#2(fk)/ZHPA#1(fk)の差が発生する。

この状況は逆方向の通信においても同様であり、無線モジュール25−0から送信された信号を無線モジュール25−1にて受信する場合、チャネル情報は空間上のh1(fk)にハイパワーアンプ21−0の通過に伴う変化を示す係数ZHPA#0(fk)と、ローノイズアンプ22−1の通過に伴う変化を示す係数ZLNA#1(fk)とが乗算された値として観測される。

同様に、無線モジュール25−0から送信された信号を無線モジュール25−2にて受信する場合、チャネル情報は空間上のh2(fk)にハイパワーアンプ21−0の通過に伴う変化を示す係数ZHPA#0(fk)と、ローノイズアンプ22−2の通過に伴う変化を示す係数ZLNA#2(fk)とが乗算された値として観測される。

したがって、無線モジュール25−0から無線モジュール25−1へのチャネルは、ZHPA#0(fk)・h1(fk)・ZLNA#1(fk)で表される。また、無線モジュール25−0から無線モジュール25−2へのチャネルは、ZHPA#0(fk)・h2(fk)・ZLNA#2(fk)で表される。このため、無線モジュール25−1と無線モジュール25−2との間では、チャネル情報h1(fk)とh2(fk)の差に加えて、相対的にZLNA#2(fk)/ZLNA#1(fk)の差が発生する。

上述した様に、基地局装置は、各アンテナ素子に接続されているローノイズアンプ22−1〜22−2による変化を含むチャネル情報をアップリンクにて取得可能であるが、基地局装置はダウンリンクにおけるチャネル情報を直接求めることができない。そこで、アップリンクのチャネル情報から換算することで、ダウンリンクのチャネル情報を取得する。この換算のためには、各アンテナ素子24−0〜24−2に接続されているローノイズアンプ22−0〜22−2及びハイパワーアンプ21−0〜21−2の個体差の影響をキャンセルする必要がある。

そこで、基地局装置の製造段階において、リファレンスとなる試験用の無線モジュール25−0を用意し、試験用の無線モジュール25−0のアンテナ端子と、無線モジュール25−1、25−2のアンテナ端子とを直接ケーブルで接続する。伝搬路上のチャネル情報が共通の値となる環境で、ハイパワーアンプ21−0〜21−2及びローノイズアンプ22−0〜22−2による変化を含むチャネル情報を測定し、測定したチャネル情報を用いて補正を行う。

図10は、キャリブレーションの概要を示す図である。図10において、符号26−0〜26−2はアンテナ端子を示し、符号27は同軸ケーブルを示している。なお、図9に示した機能部と同じ機能部には同じ符号を付している。

図10(A)は、無線モジュール25−0と無線モジュール25−1とを同軸ケーブルで接続した構成を示している。図10(B)は、無線モジュール25−0と無線モジュール25−2とを同軸ケーブルで接続した構成を示している。図9が実際の空間上を信号が伝搬した状態を示しているのに対して、図10がアンテナ素子を介さずに同軸ケーブル上を信号が伝搬した状態を示している。

無線モジュール25−1、25−2と、無線モジュール25−0とを接続する伝搬路としての同軸ケーブル27のチャネル情報は、h0(fk)である。
このとき、無線モジュール25−1から無線モジュール25−0へのチャネル情報は、ZHPA#1(fk)・h0(fk)・ZLNA#0(fk)で表される。無線モジュール25−2から無線モジュール25−0へのチャネル情報は、ZHPA#2(fk)・h0(fk)・ZLNA#0(fk)で表される。

また、無線モジュール25−0から無線モジュール25−1へのチャネル情報は、ZHPA#0(fk)・h0(fk)・ZLNA#1(fk)で表され、無線モジュール25−0から無線モジュール25−2へのチャネル情報は、ZHPA#0(fk)・h0(fk)・ZLNA#2(fk)で表される。
そこで、これらのチャネル情報を測定した後に、次の式(10)及び式(11)で表されるキャリブレーション係数C1(fk)、C2(fk)を算出しておく。

先ほど、無線モジュール25−0から無線モジュール25−1へのチャネル情報はZHPA#0(fk)・h1(fk)・ZLNA#1(fk)で表され、無線モジュール25−0から無線モジュール25−2へのチャネル情報はZHPA#0・(fk)・h2(fk)・ZLNA#2(fk)で表されると説明した。これらに式(10)及び式(11)のキャリブレーション係数C1(fk)、C2(fk)を乗算すると次の式(12)及び式(13)が得られる。

式(12)及び式(13)の右辺は、先ほど説明した、無線モジュール25−1から無線モジュール25−0へのチャネル情報、及び、無線モジュール25−2から無線モジュール25−0へのチャネル情報に一致している。

この様に、式(10)及び式(11)に相当するキャリブレーション係数を基地局装置の製造段階において取得しておき、これらを基地局装置内に記憶しておくことにより、これらのキャリブレーション係数を用いてアップリンクのチャネル情報からダウンリンクのチャネル情報を算出することができる。

なお、以下の説明では、これらのキャリブレーション係数を予め取得し、その値をデジタル信号処理上で利用する場合の説明を中心に行う。当然ながらアナログ回路上において、これらのキャリブレーション係数が全てほぼ一定の値(複素位相が一定値であれば、絶対値そのものには差があっても構わない)となる様に基地局装置内及び端末局装置内で調整を行っていれば、全てのキャリブレーション係数が1であると見なした処理に読み替えることも可能である。特に、振幅の増幅率の周波数依存性は波形歪に直結するため、一般的にはアンプの特性として周波数軸上で概ね定数(フラットな波形)となる様に工業的に設計されている。

同様に、アップリンクとダウンリンクの複素位相が一定値となる様に、デジタル信号処理におけるFFTの後段(受信時)及びIFFTの前段(送信時)に一括して調整されている場合にも、結果的に式(10)及び式(11)で示されるキャリブレーション係数の複素位相が全てのアンテナ素子でほぼ一定値になるため、同様の効果を得ることができる。

以上は送受信アンテナ素子が1対複数のSIMOチャネルに関するキャリブレーションに関する説明であるが、複数本アンテナ対複数本アンテナのチャネル行列のキャリブレーションの場合には、これを若干補正した形式での説明が必要である。例えば、図11にある様に、送受信アンテナ素子が2本ずつの場合を考える。説明を簡単にするために、左側を基地局装置41、右側を端末局装置51だと見なし、左から右方向の通信であるダウンリンクと、右から左方向の通信であるアップリンクのそれぞれのチャネル行列の関係を整理する。

まずダウンリンクを考えるとき、受信側の端末局装置51のアンテナ素子で観測されるチャネル情報は、送信アンテナ端と受信アンテナ端の間の空間上のチャネル行列の各成分に加えて、基地局装置41の送信用のハイパワーアンプにおける増幅率及び複素位相の回転量と、端末局装置のローノイズアンプにおける増幅率及び複素位相の回転量が乗算される。これらの回転量は、基地局装置の複数のアンテナ素子に対応する個々のハイパワーアンプごとに異なると共に、端末局装置の複数のアンテナ素子に対応する個々のローノイズアンプごとに異なる。一方、アップリンクにおいては、受信側の基地局装置のアンテナ素子で観測されるチャネル情報は、送信アンテナ端と受信アンテナ端の間の空間上のチャネル行列の各成分に加えて、端末局装置の送信用のハイパワーアンプにおける増幅率及び複素位相の回転量と、基地局装置のローノイズアンプにおける増幅率及び複素位相の回転量が乗算される。これらの回転量は、端末局装置の複数のアンテナ素子に対応する個々のハイパワーアンプごとに異なると共に、基地局装置の複数のアンテナ素子に対応する個々のローノイズアンプごとに異なる。ここで、送信アンテナ端と受信アンテナ端の間の空間上のチャネル行列に関しては、空間の対称性故に各成分の値そのものには変更はないが、アップリンクとダウンリンクでは送信アンテナと受信アンテナが対応するのが基地局装置か端末局装置かの関係が逆転するため、空間上のチャネル行列は行列を転置することでアップリンクとダウンリンクの換算が可能になる。これに加えて、上述のSIMOチャネルにおけるキャリブレーションと同様の処理を行うとするならば、任意の試験用の送受信装置との間で、アップリンクとダウンリンクの間のチャネル状態の換算を行うキャリブレーション係数を用いて、アップリンクのチャネル行列からダウンリンクのチャネル行列を取得することが可能となる。

ここで、θBS−HPA,m(k)を基地局装置の第mアンテナ素子に対応するハイパワーアンプの位相回転量と、ABS−HPA,m(k)を基地局装置の第mアンテナ素子に対応するハイパワーアンプの振幅の増幅量と、θBS−LNA,m(k)を基地局装置の第mアンテナ素子に対応するローノイズアンプの位相回転量と、ABS−LNA,m(k)を基地局装置の第mアンテナ素子に対応するローノイズアンプの振幅の増幅量とする。更にθMT−HPA,m(k)を端末局装置の第mアンテナ素子に対応するハイパワーアンプの位相回転量と、AMT−HPA,m(k)を端末局装置の第mアンテナ素子に対応するハイパワーアンプの振幅の増幅量と、θMT−LNA,m(k)を端末局装置の第mアンテナ素子に対応するローノイズアンプの位相回転量と、AMT−LNA,m(k)を端末局装置の第mアンテナ素子に対応するローノイズアンプの振幅の増幅量とする。また、θTest−HPA(k)を試験用局のハイパワーアンプの位相回転量と、ATest−HPA(k)を試験用局のハイパワーアンプの振幅の増幅量と、θTest−LNA(k)を試験用局の位相回転量と、ATest−LNA(k)を試験用局のローノイズアンプの振幅の増幅量とする。各係数の添え字のBS(基地局装置)及びMT(端末局装置)を一般化してSTA(基地局装置又は端末局装置)として示せば、STAの第mアンテナ素子に関するキャリブレーション係数を式(14)の様に定義し、これを用いてアップリンクのチャネル行列からダウンリンクのチャネル行列を式(15)の様にして取得することが可能になる。

なお一般に、チャネル行列の全ての要素に等しく乗算される係数は、そのチャネル行列の示す伝搬路の特性を評価する場合にも、送受信ウエイト行列(ベクトル)を算出する際にも、全く影響を与えることのない係数として扱うことが可能である。この意味で、式(15)の中には、試験局に関する係数θTest−HPA(k)と、ATest−HPA(k)と、θTest−LNA(k)と、ATest−LNA(k)とが含まれているが、これらの全てはチャネル行列の全要素に等しく乗算される係数であるため、特に送受信ウエイト行列(ベクトル)を求める際にはこの値は特に影響を与えない。更に、送信局側においてベースバンド信号を無線周波数に変換する際のミキサに入力するローカル発振器の信号、及び受信局側において無線周波数の信号をベースバンド信号に変換する際のミキサに入力するローカル発振器の信号のそれぞれの信号の複素位相の状態なども、実際には観測されるチャネル行列の各成分の複素位相に影響を与えるが、全ての係数は全てのアンテナに等しく乗算されるため、これもまたチャネル行列の全成分に等しく係数として乗算されることになる。この係数も送受信ウエイト行列(ベクトル)には影響を与えないため、これらの影響を無視して評価を行うことが可能である。この様に、事前にキャリブレーションの係数が分かっていれば、このキャリブレーション係数を基にアップリンクとダウンリンクの間のチャネル行列の換算が可能となる。また同様に、受信ウエイトベクトルが取得できればその受信ウエイトベクトルにキャリブレーション係数を適用することで、送信ウエイトベクトルを算出することも可能となる。

モバイルフロントホールにおける無線エントランス]
第4世代の携帯電話においても同様であるが、多数設置する必要性のある基地局装置の保守性の向上や、複数の基地局装置からの協調伝送などを想定すると、基地局装置の大部分の機能(BBU: Base Band Unit)を1か所に集約し、(機能1)デジタル・サンプリング・データからD/A変換によりアナログベースバンド信号の生成、(機能2)アナログベースバンド信号から無線周波数帯の信号へのアップコンバート、(機能3)電力増幅とアンテナからの送信、(機能4)アンテナでの受信と電力増幅、(機能5)無線周波数帯の信号からアナログベースバンド信号へのダウンコンバート、(機能6)アナログベースバンド信号からA/D変換によりデジタル・サンプリング・データの生成、等の機能のみを備えるリモートレディオ・ヘッドRRH: Remote Radio Head)のみを分散配置する、クラウド型無線アクセス網(C-RAN: Centralized Radio Access Network 又は Cloud Radio Access Network)が有効である。これは、所謂「バックホール回線」との対比で「フロントホール」ないしは「モバイル・フロントホール」と呼ばれる技術であり、現在も光ファイバでデジタル・サンプリング・データを伝送するためのインタフェース規格としてCPRI(Common Public Radio Interface)が標準化されている。

ここで、複数のRRHで協調送信(JT: Joint Transmit)ないしは協調受信(JR: Joint Reception)を行うためには、10−9オーダーの精度で遅延ジッタを抑制し、且つ、光ファイバ上でのビット誤り率は10−12オーダーの高品質、更には100μs以下の低遅延が求められる。このモバイル・フロントホールは光ファイバのみならず無線回線で提供することも可能であるが、その場合には無線回線でありながら遅延ジッタ10−9、ビット誤り率10−12、伝送遅延100μs以下の高品質を実現しなければならない。

既存の無線エントランス装置の中には、大型のパラボラアンテナで40dBiから50dBiの超高利得、高指向性を形成し、このアンテナを対向させることでマルチパス成分を殆ど除外した、非線形歪のない安定した伝送路により光ファイバと同等のビット誤り率10−12を再送制御なしに1回の伝送で実現することを可能とするものが存在する。しかし、上述の様に大規模MIMOを活用して指向性利得を確保する場合には、そのアンテナの冗長性を利用し、通常の空間多重と同様にマルチパス成分を利用することで複数ストリーム多重化を実現することも可能であった。ただし、この様なマルチパス成分を取り込む場合には非線形歪の影響は無視できず、一般には誤り率特性エラーフロアを引き、高SNR環境であっても十分低い誤り率を実現することは困難であった。この場合、再送制御を行うことで誤り率特性を改善する必要があるが、一般には再送制御には大きな伝送処理遅延が伴い、100μs以下の低遅延で再送制御を完了することは困難である。更に、超広帯域の大容量伝送において高効率の再送制御をする場合、選択再送制御の処理が煩雑化し、加えて100μs以下という遅延に関する制約から、送信の成功/失敗に係らず、2〜3回程度の送信回数の上限で再送打ち切って廃棄する処理も必要となる。再送の打ち切りにおいて、送信側と受信側で不整合を起こす原因となり得るが、この送信側と受信側との間の不整合は通信のデッドロック状態につながる。しかし、この様な状態の回避のためのネゴシエーション処理などを行えば、更に処理は複雑化することになり好ましくない。これらの信号処理の煩雑化を回避し、超高速での高能率の再送制御を実現することが求められている。

このモバイル・フロントホールでは、上述の様にBBUとRRHとの間では、RRHのアンテナ素子から送信すべき信号のデジタル・サンプリング・データを伝送し、RRHにて上記(機能1)から(機能6)の機能を実施し、実際の無線周波数の信号を送受信していた。しかし、第5世代のスモールセル基地局装置において大規模アンテナを用いる場合には、デジタル・サンプリング・データを光ファイバ上で伝送するという従来の手法を踏襲するのであれば、アンテナ素子ごとに、それぞれのデジタル・サンプリング・データを伝送する必要があった。一般に、無線区間において実際に伝送されるべきユーザデータ量に対し、デジタル・サンプリング・データの伝送容量は約16倍と言われており、仮に無線区間で1Gbit/sのデータ伝送を行う場合であっても、モバイル・フロントホール区間では16Gbit/s相当のデジタル・サンプリング・データを伝送しなければならない。しかし、仮に第5世代のスモールセル基地局装置において256素子のアンテナ素子を用いた大規模MIMO技術を採用するのであれば、モバイル・フロントホールで必要となる伝送容量は4Tbit/sとなり、伝送媒体が光ファイバであっても、現時点では非現実的な領域である。一般に、比較的廉価で利用可能なシステムは伝送速度が低くて広く普及したシステムであり、現状では10Gbit/s程度の通信システムである。将来的な技術革新を考慮しても、アンテナ素子数の増大に合わせてモバイル・フロントホール上で伝送すべきデータ容量が発散することは許されず、せめて空間多重する信号系統数分のデジタル・サンプリング・データの容量に収めることが求められる。

この様な視点から、現在ではBBUとRRHとの間の機能配分の見直しが検討されており、上述の(機能1)〜(機能6)の機能に加えて、本来はBBU側にて実施すべき無線信号処理における物理レイヤ変調機能、復調機能に加え、複雑なMIMO信号処理、FFT/IFFT信号処理などをRRH側に実装する検討がなされている。これによりモバイル・フロントホールで伝送すべき情報容量は大幅に圧縮されることになるが、これは本来のモバイル・フロントホールの思想から大分かけ離れたものとなっている。つまり、(機能1)〜(機能6)内には採用する無線システム特有変復調方式などに特化した機能が含まれないために、将来的なシステムのバージョンアップ時に、BBU側の変更のみでRRHには手を加えずに対応できたものが、上述の様な機能配分の見直しを行ってしまうと、例えばサブキャリア数の変更などの基本的な設計パラメータの変更であっても、バージョンアップのためにはRRHそのものの改造が余儀なくされることになる。

そこで、大規模MIMOに対応可能でありながら、モバイル・フロントホール上で伝送されるべきデジタル・サンプリング・データの伝送容量を増大させないための工夫が求められている。

以下、モバイル・フロントホールに関する説明を図を基に行う。図12は、従来技術におけるモバイル・フロントホール及びモバイル・バックホール機能分担の概要を示す図である。特に図12(a)はモバイル・フロントホールを、図12(b)はモバイル・バックホールを表している。ここではネットワーク側からユーザに向けての方向に関する信号の伝送(モバイル・フロントホールであれば、BBUからRRH方向)に関する機能のみを抜粋した。図において、401はMAC層処理回路、402は送信信号処理回路、403は時間軸信号生成回路、404は光インタフェース回路、405は光ファイバ、406は光インタフェース回路、407はD/A変換器、408はRF処理回路、409はアンテナ素子、411−1はBBU、412−1はRRH、414は光インタフェース回路、415は光ファイバ、416は光インタフェース、を表す。MAC層処理回路401、送信信号処理回路402、時間軸信号生成回路403は全体で無線に関するベースバンド信号処理を行う領域400及び410を構成する。

図12(a)において、ネットワーク側からBBU441−1に送信すべき信号が入力されると、MAC層処理回路401はMAC層の信号処理を行い、無線区間での送受信に用いるフレームフォーマットと、ネットワーク側を流れるデータのフレームフォーマットの変換・終端を行い、無線パケットのフォーマットの信号を送信信号処理回路402に入力する。送信信号処理回路402では、無線信号送信信号処理を行う。ここでは特に無線区間の伝送方式は限定されず、例えばOFDMを用いるのであれば、必要に応じて誤り訂正の符号化、インタリーブ、サブキャリアごとの変調処理などを行う。この様にして生成した信号は、時間軸信号生成回路403にて時間軸の信号に変換される。例えば、先ほどのOFDMの場合を例に取れば、IFFTを行い周波数軸の信号を時間軸の信号に変換すると共に、ガードインターバルを挿入し、シンボル間の波形整形処理などを施す。この結果、デジタルベースバンド信号の各サンプリング値が時系列で連続する信号に変換される。これらのサンプリング値のデータは、光インタフェース回路404にて所定のフレームフォーマットに変換され、電気信号から光信号に変換されて光ファイバ405に出力される。光ファイバ405に出力された信号はRRH442−1側に伝達され、RRH442−1では光インタフェース回路406にて光信号を電気信号に変換し、所定のフォーマットの信号を終端し、デジタルベースバンド信号としてサンプリング値の情報列を生成する。これをD/A変換器407は所定のクロックレートでアナログベースバンド信号に変換し、RF処理回路408ではアップコンバータで無線周波数の信号に変換し、フィルタにて帯域外輻射信号を除去した後にハイパワーアンプで増幅し、これをアンテナ409より空間に送信する。以上の様に、全体で無線信号の基地局装置に相当する機能を、光ファイバにて仲介されるBBU441−1とRRH442−1に機能を分けて収容する。ここでの特徴は、ネットワーク側の局舎内に備えるBBUに無線のデジタルベースバンド信号処理が集約されているため、無線通信方式の変更が何かあったとしても、全てがBBU側の変更で済むというメリットがある。

これに対しモバイル・バックホールでは、図12(a)に対応する構成として図12(b)に示す構成を取る。例えばビルの屋上や電信柱の上などに設置される基地局装置に対し、光ファイバでユーザデータをそのまま伝送し、全てを基地局装置内に閉じて無線信号処理を行う。具体的には、ネットワーク側では光インタフェース回路414から、光ファイバ415を介して基地局装置内の光インタフェース回路416に対して無線回線で送信すべきユーザデータを伝送する。光インタフェース回路416にて光信号を電気信号に変換し、所定のフォーマットの信号を終端し、ユーザデータをMAC層処理回路401に出力する。MAC層処理回路401ではMAC層の信号処理を行い、無線区間での送受信に用いるフレームフォーマットと、ネットワーク側を流れるデータのフレームフォーマットの変換・終端を行い、無線パケットのフォーマットの信号を送信信号処理回路402に入力する。送信信号処理回路402では、無線信号の送信信号処理を行う。ここでは特に無線区間の伝送方式は限定されず、例えばOFDMを用いるのであれば、必要に応じて誤り訂正の符号化、インタリーブ、サブキャリアごとの変調処理などを行う。この様にして生成した信号は、時間軸信号生成回路403にて時間軸の信号に変換される。例えば、先ほどのOFDMの場合を例に取れば、IFFTを行い周波数軸の信号を時間軸の信号に変換すると共に、ガードインターバルを挿入し、シンボル間の波形整形処理などを施す。この結果、デジタルベースバンド信号の各サンプリング値が時系列で連続する信号に変換される。これらのサンプリング値のデータは、D/A変換器407に入力され、D/A変換器407は所定のクロックレートでアナログベースバンド信号に変換し、RF処理回路408ではアップコンバータで無線周波数の信号に変換し、フィルタにて帯域外輻射信号を除去した後にハイパワーアンプで増幅し、これをアンテナ409より空間に送信する。これまで説明してきた基地局装置の信号処理及び回路構成の説明は、このモバイル・バックホールを意識したものである。

以上の図12の説明では、RRH442−1が備えるアンテナ素子は1素子であったが、将来モバイルネットワークでは、多素子のアンテナを用いたMassiveMIMO技術の適用が想定されるため、それだけ光ファイバ上で伝送すべき情報量が増えることになる。図13は、多素子アンテナを用いる場合の従来技術におけるモバイル・フロントホール及びモバイル・バックホールの機能分担の概要を示す図である。特に図13(a)はモバイル・フロントホールを、図13(b)はモバイル・バックホールを表している。ここでは図12と同様に、ネットワーク側からユーザに向けての方向に関する信号の伝送(モバイル・フロントホールであれば、BBUからRRH方向)に関する機能のみを抜粋した。図13において、図12と同じものには同様の符号を振っている。図13において、412は送信信号処理回路、424は光インタフェース回路、425は光ファイバ、426は光インタフェース回路、427はD/A変換器、428はRF処理回路、429はアンテナ素子、430は送信ウエイト乗算回路、431は送信ウエイト処理回路、433は時間軸信号生成回路、441−2はBBU、442−2はRRHを表す。MAC層処理回路401、送信信号処理回路412、送信ウエイト乗算回路430、送信ウエイト処理回路431、時間軸信号生成回路433は全体で無線に関するベースバンド信号処理を行う領域420を構成する。同様に、MAC層処理回路401、送信信号処理回路412、送信ウエイト乗算回路430、送信ウエイト処理回路431、時間軸信号生成回路433は全体で無線に関するベースバンド信号処理を行う領域420又は440を構成する。図13(a)において、ネットワーク側からBBU441−2に送信すべき信号が入力されると、MAC層処理回路401はMAC層の信号処理を行い、無線区間での送受信に用いるフレームフォーマットと、ネットワーク側を流れるデータのフレームフォーマットの変換・終端を行い、無線パケットのフォーマットの信号を送信信号処理回路412に入力する。送信信号処理回路412では、無線信号の送信信号処理を行う。ここでは特に無線区間の伝送方式は限定されず、例えばOFDMを用いるのであれば、必要に応じて誤り訂正の符号化、インタリーブ、サブキャリアごとの変調処理などを行う。合わせて、例えばここでは図示していないBBUの受信側において収集した受信ウエイト情報などを、送信信号処理回路412を介して送信ウエイト処理回路431に提供する。送信ウエイト処理回路431では、この受信ウエイト情報などにキャリブレーション処理を施し、送信ウエイトを算出し、これを送信ウエイト乗算回路430に出力する。送信ウエイト乗算回路430では、送信信号処理回路412から入力された送信信号に送信ウエイトを乗算する。ここでの処理は、例えばOFDMを用いる場合では周波数軸上で実施する。すなわち、サブキャリアごとに異なる受信ウエイトを基に算出したサブキャリアごとに異なる送信ウエイトを用い、サブキャリアごとに異なる送信信号にサブキャリアごとに乗算する。この様にして生成した信号は、時間軸信号生成回路433にてアンテナ系統ごとに時間軸の信号に変換される。例えば、先ほどのOFDMの場合を例に取れば、IFFTを行い周波数軸の信号を時間軸の信号に変換すると共に、ガードインターバルを挿入し、シンボル間の波形整形処理などを施す処理を、アンテナ系列ごとに実施する。この結果、デジタルベースバンド信号の各サンプリング値が時系列で連続するアンテナ素子ごとの信号に変換される。これらのサンプリング値のデータは、光インタフェース回路424にて所定のフレームフォーマットに変換され、電気信号から光信号に変換されて光ファイバ425に出力される。ここでは先ほどの図12の場合と異なり、光ファイバ上にはアンテナ素子数分の信号を同時に収容する必要があり、波長多重TDMや複数の光ファイバを用いるなど、任意の方法で大容量化がなされた光ファイバの伝送路上で伝達され、RRH442−2側入力される。RRH442−2では光インタフェース回路426にて光信号を電気信号に変換し、所定のフォーマットの信号を終端し、デジタルベースバンド信号としてサンプリング値の情報列を生成する。上述の様に、ここではアンテナ素子数分の系統のサンプリング信号が再生される。これをD/A変換器427は所定のクロックレートでアンテナ系統ごとにアナログベースバンド信号に変換し、RF処理回路428ではアンテナ系統ごとに、共通のローカル発振器を用いたアップコンバータで無線周波数の信号に変換し、個別にフィルタにて帯域外輻射信号を除去した後に個別にハイパワーアンプで増幅し、これを個々のアンテナ素子429より空間に送信する。以上の様に、全体で無線信号の基地局装置に相当する機能を、光ファイバにて仲介されるBBU441−2とRRH442−2に機能を分けて収容する。

以上は、そもそものモバイル・フロントホールのポリシーに則った説明であるが、実際に光ファイバ上に流れる信号の伝送容量を考えると、アンテナ素子数は例えば数セクタセクタアンテナなど、ごく少数に限られると考えられる。MassiveMIMOなどで想定する100本以上のアンテナ素子では、敷設する光ファイバの本数や伝送するデータの容量等を考慮するとコストが膨大なものとなるという考え方が一般的である。

これに対しモバイル・バックホールでは、図13(a)に対応する構成として図13(b)に示す構成を取る。図12(b)に対し、無線信号処理を行う領域410が、図13(a)の無線信号処理を行う領域420と全く同じ機能の無線信号処理を行う領域440に置き換えられ、それに伴いD/A変換器427以降の処理が図13(a)と同様に、アンテナ系統ごとに行われる以外は全く同様である。ここでの特徴は、基地局装置のアンテナ素子数は増大しているが、光インタフェース回路414から光ファイバ415を介して基地局装置内の光インタフェース回路416までの伝送路上での情報容量は増加していないことである。したがって、上述の図13(a)の様な問題は生じない。しかし、元々、図12(a)の様なモバイル・フロントホールが有益となる課題については何ら解決するものではなく、一般的には光ファイバ上での伝送容量を抑えながら、モバイル・フロントホールの利点をも両立可能な構成が求められていた。

その様な検討の中で、フロントホールとバックホールの中間的なモバイル・ミッドホールとして、BBUとRRHとの間の機能配分の見直しの検討がなされている。図14に、従来技術におけるモバイル・ミッドホールの構成例を示す。ここでは図12と同様に、ネットワーク側からユーザに向けての方向に関する信号の伝送(BBUからRRH方向)に関する機能のみを抜粋した。図12及び図13と同じものには同様の符号を振っている。MAC層処理回路401、送信信号処理回路412、送信ウエイト乗算回路430、送信ウエイト処理回路431、時間軸信号生成回路433は全体で無線に関するベースバンド信号処理を行う領域445−1及び445−2を構成するが、図12(a)及び図13(a)と異なるのは、MAC層処理回路401はBBU側の領域445−1に、送信信号処理回路412、送信ウエイト乗算回路430、送信ウエイト処理回路431、時間軸信号生成回路433はRRH側の領域445−2に分かれて配置されており、全体の機能配分の見直しが図られている。

以上の機能配分の見直しにより、図14のモバイル・ミッドホールの場合には光ファイバ上での伝送容量が図12(a)と同程度であり、図13(a)の様に情報量が大幅に増大せずに済んでいる。この意味では光ファイバ上での伝送容量の抑制的な効果は十分に得られている。しかし、そもそものモバイル・フロントホールの目的であるRRH442−3側から無線伝送方式に依存する処理を排除し、全ての無線方式に依存する処理をBBU441−3側に集約するという視点で見れば、領域445−2の処理がRRH442−3側に配置されているのは、図12(a)に示すモバイル・フロントホールの構成に比べればフロントホールの目的に十分に適っていない。この意味でフロントホールとバックホールの中間としてミッドホールとの呼ばれ方もしているのであるが、理想的にはRRH側に多数のアンテナ素子を実装しながらも、BBU側に無線伝送方式に依存する処理を集約し、それでいて光ファイバ上に流れる情報容量をバックホールと同程度に抑えることができるのが好ましい。

[その他の課題]
マルチパス環境の場合にはマルチパス成分の除去のために、OFDMやSC−FDEなどの技術が一般には有効であることが知られている。しかし、既存のOFDMやSC−FDEなどのシステムでは、一般には基地局装置と無線局装置はそれぞれ非同期の独自のクロック、ローカル発振器を用いており、バーストモードで伝送処理を行う。バーストモードでは、仮にクロックの誤差がある場合でもバーストごとに処理がリセットされるために問題ない。更には、クロックの誤差やローカル発振器の周波数誤差についても、FFTを行う際のサブキャリアごとの直交性を破らない程度の誤差であれば、それ以上の高精度の同期は求められない。したがって、ある程度の周波数誤差が検知されれば、送信側及び受信側のAFC処理により周波数誤差を補正し、それでも残る残留周波数誤差については、例えばOFDMであればパイロットサブキャリアにより位相回転量を推定し、その補正処理を行うことが可能であった。

しかし、上述の様にモバイル・フロントホールの場合には遅延のジッタが10−9以下であることが求められ、OFDMやSC−FDEなどのブロック伝送技術では要求される遅延のジッタを満たすことはできなかった。

更に、70〜80GHzのeバンド帯などの利用を想定すれば、位相雑音の存在する帯域幅がOFDMやSC−FDEなどのサブキャリア間隔よりも広くなり、OFDMシンボル周期よりも短い時間内での複素位相の不確定なふらつきである位相雑音により、OFDMなどのサブキャリア間の直交性を破る成分が無視できないことになる。これはひとえにFFT処理を行うから問題となるものであり、シングルキャリア伝送であればOFDMやSC−FDEなどのブロック伝送の単位となるブロック長よりも短い時間周期シングルキャリアの信号処理を行うため、位相雑音の累積が大きくなる前に位相の変動成分を補正することが可能であった。しかし、上述の様にMIMOチャネルを活用して空間多重伝送を行うのであれば、各ストリームの信号を分離するための送信及び受信ウエイトはサブキャリアごとに異なる値を持ち、このウエイトの周波数依存性を反映して信号処理を行うためには、受信信号を一旦FFTにより周波数軸上の信号に変換する必要があった。この様に、空間多重の信号分離のためにはFFT処理が必須であるが、FFTを実施すると位相雑音が除去できない状態になってしまい問題である。しかし、FFT処理を実施して周波数軸上の空間分離を行う前の状態では、複数ストリームのシングルキャリアの信号は相互に干渉となるため、シングルキャリアの信号検出は困難となる。この様に、FFT処理を施さずに時間軸上で信号分離ができれば、その後にシングルキャリア信号の信号処理で位相雑音補償が可能になり、その様な技術が求められている。

概要

見通し環境が支配的な環境でMIMOによって伝送容量を増大させることが可能となる無線通信システム及びアンテナ素子配置方法を提供する。無線通信システムでは、第1の無線局装置は、複数の単一アンテナ素子又は複数のアンテナ素子で構成され、且つ、グループごとに指向性形成が可能な複数のグループにより形成される第1のアンテナ群とを有する。第2の無線局装置は、1次元的なリニアアレー又は2次元的な格子アレー構成をとる第2のアンテナ素子群を有する。複数の第1のアンテナ群を構成する各アンテナは、アンテナの間隔が、第1の無線局装置と第2の無線局装置との距離Lと、無線通信の信号波の波長λと、第2のアンテナ素子群を構成する格子の縦方向又は横方向のいずれかのアンテナ素子の数Nと、第2のアンテナ素子群を構成するアンテナ素子同士の間隔dとに基づいて算出された値の整数倍になる様に配置される。

目的

この場合、例えばスモールセル用基地局装置を設置するビルに対面するビルの屋上まで光ファイバを引き、ビルの屋上からビル壁面のスモールセル用基地局装置に無線回線でエントランス回線を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

第1の無線局装置と第2の無線局装置とを備える無線通信システムであって、前記第1の無線局装置は、複数の単一アンテナ素子により構成される又はアンテナ素子グループごとに指向性形成が可能な複数のアンテナ素子グループにより構成される第1のアンテナ群と、該複数の単一アンテナ素子又は複数のアンテナ素子グループに対応付けられた無線通信信号処理を実行する信号処理部と、を有し、前記第2の無線局装置は、1次元的なリニアアレー又は2次元的な格子アレー構成をとる第2のアンテナ素子群と、該第2のアンテナ素子群を介して前記信号処理部との無線通信を実行する送受信部と、を有し、複数の前記第1のアンテナ群を構成する各単一アンテナ素子又はアンテナ素子グループは、前記アンテナ素子の間隔又は前記アンテナ素子グループの間隔が、前記第1の無線局装置と前記第2の無線局装置との距離Lと、無線通信の信号波波長λと、前記第2のアンテナ素子群を構成するリニアアレー状のアンテナ素子の数N又は格子状に配置された縦方向又は横方向のいずれかのアンテナ素子の数Nと、前記第2のアンテナ素子群を構成する縦方向又は横方向のいずれかのアンテナ素子の間隔dとに基づいて算出された値の整数倍になる様に配置される無線通信システム。

請求項2

前記第1のアンテナ群と前記第2のアンテナ素子群とは、正対する位置に配置される、請求項1に記載の無線通信システム。

請求項3

複数の前記第1のアンテナ群を構成するアンテナ素子は、直線状に配置され、前記第2のアンテナ素子群を構成するアンテナ素子は、リニアアレー状にアンテナ素子同士の間隔dで配置され、且つ、前記第1のアンテナ群と前記第2のアンテナ素子群とを結ぶ直線の方向に対し、前記第1のアンテナ群の正面方向が角度θ度ずれた方向に、及び前記第2のアンテナ群の正面方向が角度θ’度ずれた方向に向けて配置されている場合、複数の前記第1のアンテナ群を構成するアンテナ素子同士の間隔が、いずれのアンテナ素子の組み合わせに対しても(λL/{Ndcosθcosθ’})の整数倍となる、請求項1又は請求項2に記載の無線通信システム。

請求項4

複数の前記第1のアンテナ群を構成するアンテナ素子は、直線状に配置され、前記第2のアンテナ素子群を構成するアンテナ素子は、縦方向にN本のアンテナ素子が間隔dで並び且つ横方向にN’本のアンテナ素子が間隔d’で並ぶ格子アレー状に配置され、且つ、前記第1のアンテナ群と前記第2のアンテナ素子群とを結ぶ直線の方向に対し、前記第1のアンテナ群の正面方向が正対する位置から角度θ度ずれた方向に、及び前記第2のアンテナ群の正面方向が角度θ’度ずれた方向に向けて配置されている場合、複数の前記第1のアンテナ群を構成するアンテナ素子同士の間隔が、いずれのアンテナ素子の組み合わせに対しても(λL/{Ndcosθcosθ’})の整数倍又は(λLcosθ/N’d’)の整数倍となる、請求項1又は請求項2に記載の無線通信システム。

請求項5

前記第1のアンテナ群を構成するアンテナ素子は、複数のアンテナ素子により構成されるアンテナ素子群であり、アンテナ素子群は前記第2のアンテナ素子群との間の無線通信に用いるMIMO(Multiple Input Multiple Output)チャネル行列に対する送信ウエイトベクトル及び受信ウエイトベクトルのうち少なくとも一方を、前記MIMOチャネル行列の第1特異値に対応する第1右特異ベクトル及び第1左特異ベクトルのうち少なくとも一方、又は、前記第1右特異ベクトルの近似解及び前記第1左特異ベクトルの近似解のうち少なくとも一方に基づいて算出し、当該送信ウエイトベクトル及び受信ウエイトベクトルの少なくとも一方を用いて、送信する無線信号及び受信した無線信号の少なくとも一方の指向性形成を行う、請求項1から請求項4のいずれか一項に記載の無線通信システム。

請求項6

第1の無線局装置と第2の無線局装置とを備える無線通信システムにおけるアンテナ素子配置方法であって、前記第1の無線局装置は、複数の単一アンテナ素子により構成される又はアンテナ素子グループごとに指向性形成が可能な複数のアンテナ素子グループにより構成される第1のアンテナ群と、該複数の単一アンテナ素子又は複数のアンテナ素子グループに対応付けられた無線通信の信号処理を実行する信号処理部と、を有し、前記第2の無線局装置は、1次元的なリニアアレー又は2次元的な格子状アレー構成をとる第2のアンテナ素子群と、該第2のアンテナ素子群を介して前記信号処理部との無線通信を実行する送受信部と、を有する場合、複数の前記第1のアンテナ群を構成する各単一アンテナ素子又はアンテナ素子グループは、前記アンテナ素子同士の間隔又は前記アンテナ素子グループの間隔が、前記第1の無線局装置と前記第2の無線局装置との距離Lと、無線通信の信号波の波長λと、前記第2のアンテナ素子群を構成するリニアアレー状のアンテナ素子の数N又は格子状に配置された縦方向又は横方向のいずれかのアンテナ素子の数Nと、前記第2のアンテナ素子群を構成する縦方向又は横方向のいずれかのアンテナ素子同士の間隔dとに基づいて算出された値の整数倍になる様に配置されるステップを含むアンテナ素子配置方法。

技術分野

0001

本発明は、無線通信システム及びアンテナ素子配置方法に関する。

背景技術

0002

まえがき
現在、スマートフォン爆発的な普及に伴って、利便性の高いマイクロ波帯周波数資源枯渇している。対策として、第3世代の携帯電話から第4世代の携帯電話への移行や、新しい周波数帯割り当てが行われている。しかし、サービスの提供を望む事業者が多いことから、各事業者に割り当てられる周波数資源は限られている。

0003

携帯電話のサービスにおいては、複数のアンテナ素子を利用したマルチアンテナ・システムによる周波数利用効率の向上を目指す検討が進められている。既に普及している無線標準規格IEEE(The Institute of Electrical and Electronics Engineers, Inc.)802.11nでは、送信と受信との双方に複数のアンテナ素子を用いるMIMO(Multiple Input Multiple Output)伝送技術を用いて空間多重伝送を行う。これにより、IEEE802.11nでは、伝送容量を高めて周波数利用効率を向上させている。なお、MIMOという用語は、一般には送信局及び受信局共に複数アンテナ素子を備えることを想定して使われる。受信側が単数アンテナ素子の場合には、MIMOではなく、MISO(Multiple Input Single Output)という用語が使われる。ただし、以下では、これらを全て包含する意味でMIMOという用語を用いる。

0004

また、最近の通信技術としては、OFDM(Orthogonal Frequency Division Multiplexing)変調方式やSC−FDE(Single Carrier Frequency Domain Equalization)方式の様に、複数の周波数成分(サブキャリア)に分割して周波数軸上で信号処理を行う方式が一般的である。以下では、特にOFDMやSC−FDEの区別をせず、それらに共通する一般的な方式を前提として「サブキャリア」という用語を用いて説明する。

0005

MIMO伝送技術においては、送信局と受信局との間の伝送路情報を知ることで、より効率的な伝送を行うことが可能となる。最も単純な例としては、受信側で複数のアンテナの場合を示したが、送信側にN本のアンテナ素子を備え、受信側に1本のアンテナ素子のみを備える場合、N本のアンテナ素子から送信される信号が受信側のアンテナ素子において同位相合成される様に送信側で指向性制御を行う。これにより、回線利得を高めることができる。具体的には、第kサブキャリアにおける送信局の第jアンテナ素子から受信局のアンテナ素子までの間のチャネル情報をhj(k)としたときに、そのアンテナ素子に対して下記の式(1)の送信ウエイトwj(k)を算出し、これを送信信号乗算したものを各アンテナ素子から送信する(等利得合成)。なお、本明細書におけるチャネル情報とは実運用上の回路構成や信号処理及び制御の手順を考慮し、厳密には、送信系及び受信系のRF(Radio Frequency)回路内のアンプフィルタ等の複素位相の回転及び振幅変動情報などを含むものとする。

0006

0007

送信側の第1アンテナ素子から第Nアンテナ素子それぞれに対応するチャネル情報を成分とするベクトル(h1(k),…,hj(k),…,hN(k))をチャネルベクトルh(k)と称する。また、送信側の第1アンテナ素子から第Nアンテナ素子に対応する送信ウエイトを成分とするベクトル(w1(k),…,wj(k),…,wN(k))T(Tは転置を表す。)を送信ウエイトベクトルw(k)と称する。なお、厳密には、ダウンリンクにおけるチャネルベクトル→h(k)(「h(k)」の前の記号「→」は、hの上に付与されてベクトルを表すための記号である)は行ベクトル、送信ウエイトベクトル→w(k)は列ベクトルとして表記されるべきである。しかし、以下では、簡単のために、記号「→」を省略すると共に行ベクトルと列ベクトルとを区別せずに表記する。また、以降の説明では受信信号Rx、送信信号Tx及びノイズnに関する表記も同様に「→」を付与してベクトルであることを明示すべきであるが、他に紛らわしい表記がないので「→」を省略して説明する。受信信号Rxは、送信信号Tx及びノイズnに対して下記の式(2)で与えられる。

0008

0009

式(1)を式(2)に代入すると、チャネルベクトルh(k)の各成分hj(k)の絶対値を全アンテナ成分に亘って加算した値がチャネル利得として得られる。各アンテナ素子からの送信電力を1本アンテナで送信する場合と同じままとするならば、N本アンテナ素子であれば、受信信号の振幅は1本のアンテナ素子で送信した場合のN倍になるものと期待される。受信信号電力は、振幅の2乗に比例するからN2倍にまで改善される。この値が複数のアンテナ素子をアレーアンテナとして利用した場合の利得である。厳密には、アレーアンテナそのものの利得としては、(総送信電力一定のもとでの評価した結果である)受信電力N倍と解釈されるのが一般的であるが、以下の説明では実運用環境を想定し、1素子当たりの送信電力一定の場合を基準として説明を行う。

0010

一般的には、シャノンの定理により、SNR(Signal-Noise Ratio)の改善量に対する伝送容量の増加は、低SNR領域ほど大きく、高SNR領域ほど小さいことが知られている。そのため、回線利得の改善によって伝送容量の向上を目指すより、受信側にも複数のアンテナ素子を備え、空間多重によって伝送容量の向上を目指すことが多い。空間多重によって伝送容量の増加を目指すのがMIMO伝送技術である。

0011

図1MIMO伝送概要を示す。ここではある周波数に着目した説明として、サブキャリアないし周波数を表す添え字「k」は省略している。図1において、符号11は送信局、符号12は受信局を表す。この例では送信局11、受信局12共に2本のアンテナ素子を備えており、送信局11の送信アンテナ#1と受信局12の受信アンテナ#1との間のチャネル情報(振幅、複素位相の回転量を表す情報)をh11、送信局11の送信アンテナ#1と受信局12の受信アンテナ#2との間のチャネル情報(振幅、複素位相の回転量を表す情報)をh21、送信局11の送信アンテナ#2と受信局12の受信アンテナ#1との間のチャネル情報(振幅、複素位相の回転量を表す情報)をh12、送信局11の送信アンテナ#2と受信局12の受信アンテナ#2との間のチャネル情報(振幅、複素位相の回転量を表す情報)をh22として表せば、送信局11の2本の送信アンテナから送信される信号t1、t2と、受信局12の2本の受信アンテナで受信される信号r1、r2との間には、雑音信号n1、n2を用いて以下の式(3)で表される。

0012

0013

基本的にMIMO伝送では、受信側の受信信号とチャネル行列を基に、送信側の信号を推定する。式(3)の雑音項が十分に小さければ、両辺にチャネル行列の逆行列を乗算することで、受信信号から送信信号を推定することができる。送信側で所定の送信ウエイト行列を乗算し、更に受信側でも所定の受信ウエイトを乗算することで伝送特性を改善でき、より効率的な伝送が可能になる。例えば複数の送信側のアンテナ素子と受信側のアンテナ素子との間のチャネル情報が既知の場合には、そのチャネル行列を特異値分解SVD:Singular Value Decomposition)し、固有モードでの伝送を行うことで伝送容量を最大化する。

0014

具体的には、下記の式(4)の様に、チャネル行列Hをユニタリー行列UとV及び特異値λを対角成分に持つ対角行列Dに分解する。

0015

0016

この際、送信ウエイト行列としてユニタリー行列Vを用いれば、受信信号ベクトルRxは、送信信号ベクトルTx、ノイズベクトルnに対して、下記の式(5)で与えられる。

0017

0018

受信側では、ユニタリー行列Uのエルミート共役行列UHを乗算することで、下記の式(6)を得る。

0019

0020

式(6)において、対角行列Dの非対角成分はゼロであるから、送信信号のクロスタームは既にキャンセルされ、信号分離された状態となる。また、ノイズベクトルは受信ウエイト行列UHを乗算され、座標軸が回転されて表されるノイズベクトルn’に変換されているが、ベクトルの統計的特徴は元のノイズベクトルと等価なままである。図2に、固有モード伝送概念図を示す。図2(a)は基本のMIMOチャネルを、図2(b)は送受信ウエイト行列の乗算を行った状況、図2(c)は固有モード伝送で形成される仮想的な伝送路をそれぞれ示している。送信局11と受信局12との各送受信アンテナの間のチャネル行列Hは、式(4)で示した通り、特異値分解により特異値λを各対角成分に持つ行列Dと、二つのユニタリー行列U、VHの積で表される。ここで図2(b)及び式(5)で示す様に送信側で送信ウエイト行列V、受信側で受信ウエイト行列UHを用いると、式(4)のユニタリー行列の部分に乗算されて単位行列となり、結果的に式(6)に示す様に非対角成分がゼロで対角成分のみが非ゼロの行列Dで表すことが可能になる。これはあたかも、図2(c)に示す様に、特異値λ1、λ2・・・で表される仮想的なチャネルの伝送路がパラレルに張られた状況に相当する。このとき、各特異値λの絶対値の2乗値が個別の信号系列の回線利得に相当する。各特異値λは、信号系統ごとに異なる値となる。この固有モードの特異値に合わせて伝送モードを最適化することによって、伝送容量を最大化することができる。伝送モードは、変調多値数誤り訂正符号化率などの組み合わせで定まる信号伝送の具体的なモードである。

0021

ここで、MIMOチャネルのチャネル行列の各成分が独立で無相関であれば、各特異値の絶対値はそれぞれが比較的大きな値となる。例えば反射波が多数存在し、見通し波の受信電力が相対的に低い場合には、上述の様に各特異値は比較的大きな値を持つことになる。一方で、送受信アンテナが見通し環境にあり、反射波があまり存在しない様な場合には、第1特異値の絶対値だけが極端に大きく、第2特異値以降の特異値の絶対値は極端に小さくなる傾向がある。このため、一般的にはMIMO伝送はマルチパス環境に適していると言われ、見通し波が支配的な場合にはあまり適さないと言われている。

0022

上記は、1台の基地局装置と1台の端末局装置とを想定したシングルユーザMIMO伝送技術に関する説明である。同様の説明は、1台の基地局装置と複数台の端末局装置との間において同時に同一周波数軸上で通信を行うマルチユーザMIMOにも拡張可能である。マルチユーザMIMOにおいては、一般に、各端末局装置は空間多重する合計の信号系統数よりも少ない本数のアンテナ素子で通信を行う。そのため、ダウンリンクにおいては、送信側で事前ユーザ間干渉抑圧するための指向性制御を行う。具体的な式は若干異なるが、基本的には上記の固有モード伝送と同様に、チャネル行列を把握した上でそれに合わせた送信ウエイトを用いる。

0023

また、上記の説明では、ダウンリンクを中心に説明を行ったが、アップリンクにおいても同様に事前にチャネル情報を把握した上で、そのチャネル情報を利用した通信を行うことができる。例えば、最初に説明したアレーアンテナとしての処理においては、式(1)にて与えられる同位相合成のウエイトを受信ウエイトとして用いる他、最大比合成のウエイトとして、下記の式(7)で与えられるものを用いることも可能である。

0024

0025

式(7)の定数Cは適宜定められる係数である。ベクトルの各成分の中でhj(k)の絶対値が大きいものは大きな重みで足し合わされ、また、小さな信号は小さな重みで足し合わされる様にCが決定される。これにより、SNRの大きな信号を重視し、SNRの小さな信号の雑音が過度に影響を与えない様に調整が図られる。

0026

なお、送信ウエイトの算出のためにはダウンリンクのチャネル情報が必要になるが、これは様々な形のチャネルフィードバックにより実現可能である。最も単純な例では、ダウンリンクで基地局装置が送信したトレーニング信号を端末局装置が受信し、その受信結果をアップリンクの制御情報に収容して通知することが可能である。一般に、この様なループバックを行うチャネル推定方法を、エクスプリシット・フィードバックと呼ぶ。この他には、例えば基地局装置の装置内部でのアップリンクのチャネル情報とダウンリンクのチャネル情報との換算に必要となるキャリブレーション係数を事前に取得しておき、アップリンクでチャネル推定を行った後、このキャリブレーション係数を乗算することでダウンリンクのチャネル情報を推定することも可能である。この方法はインプリシット・フィードバックと呼ばれる。アンテナ数が膨大となる大規模アンテナの場合には、インプリシット・フィードバックが一般的には有利とされている。ただし、本発明においてはチャネルフィードバックの方法は特に限定せず、一般的なチャネル推定方法が利用可能であるとしている。

0027

[将来モバイルネットワークの方向性
前述の通り、スマートフォンの爆発的な普及に伴って、更なる伝送容量の増大が求められている。現在の無線通信の研究においては、第4世代の携帯電話に続く第5世代の携帯電話のための技術検討が進められており、ここでは第4世代の更に10倍以上の伝送容量を実現することが求められている。ここでは単に、一つの基地局装置とその配下の無線システムの伝送容量の増大のみではなく、単位面積当たりの伝送容量の増大も合わせて求められている。具体的には、新宿、谷、銀座大手など、人が多く集まる場所では単に無線システムの伝送容量増大だけでは対処できず、一つの基地局装置のカバーするエリア面積縮小し(以降、「スモールセル」と呼ぶ)、より狭い面積で同等の伝送容量を実現し、そのスモールセルを多数設定することでスモールセルの数に比例する伝送容量を実現する。ただし、このスモールセルは人が集まり更なる伝送容量が必要となる場所に設置することが求められるため、広大なエリア面積を持つマクロセルの様に置局設計が十分にできない。元々、周波数資源が枯渇する中でスモールセルを導入するため、複数の周波数チャネルが利用可能であるならば、それは周波数繰り返し(周波数リユース)としてその資源活用するのではなく、同一場所にて複数の周波数チャネルを利用することでトータルの伝送容量を増やすことが好ましい。したがって、同一周波数チャネルであっても、置局設計なしに比較的近距離でスモールセルの繰り返し設置ができる技術が求められる。

0028

更に、マイクロ波帯の周波数資源が枯渇する中で、10Gbit/s以上の伝送容量を実現するためには周波数帯域幅をある程度確保する必要があり、そのためにはより高い周波数帯の活用が期待される。しかし、回線設計的には周波数が10倍になると自由空間伝搬損失は20dB増加するため、同一の送信電力であれば伝搬到達距離は見通し環境においては1/10に縮小されてしまう。更には送信側のハイパワーアンプ大出力化に関しても、周波数が高くなるほど困難になり、1アンテナ辺りの送信電力を限定的としながらも、回線設計的に十分に10Gbit/s以上の伝送容量を実現できる技術が求められる。

0029

この様な観点から、現在、大規模MIMO(Massive MIMO)伝送技術が注目を集めている。MassiveMIMO伝送技術では、基地局装置側のアンテナ本数を最大でも数本程度であった従来のMIMO伝送よりも少なくとも一桁以上増加させ、数十本〜数百本の多数のアンテナ素子を用いることで、宛先とする端末局装置への回線利得向上と、宛先以外の端末局装置への与被干渉を低減する。Massive MIMOの実現方法適用方法については様々なバリエーションがあり、所謂スモールセルに関しては、宛先以外の端末局装置への与被干渉の低減を「セル間干渉の抑圧」に活用している。またMassive MIMO伝送技術としては、当然ながら従来技術と同様に、大規模なMIMO行列を単純に単一の端末局装置で利用するシングルユーザMIMOとしての利用の他、複数の端末局装置で同時通信を行うマルチユーザMIMOとしての利用もある。ここでマルチユーザMIMOとしての利用においては、スモールセルの場合とは異なり同一エリア内の端末局装置間の「ユーザ間干渉の抑圧」に非常に冗長な数のアンテナ素子数を活用することも可能である。以下では、これらの大規模アンテナに関する技術の一例として、大規模アンテナシステム(例えば、非特許文献1から非特許文献4参照)について簡単に説明する。

0030

[大規模アンテナシステムの概要]
図3は、大規模アンテナシステムの概要を示す図である。図3においては、基地局装置1、無線局装置2、見通し波3、構造物による安定反射波4、地上付近多重反射波5〜6、構造物7が示されている。図3の大規模アンテナシステムにおいては、基地局装置1は、多数(例えば100本以上)のアンテナ素子を備え、ビルの屋上や高い鉄塔の上など高所に設置される。無線局装置2も同様に、ビルの屋上、家屋屋根の上、電信柱や鉄塔の上など高所に設置される。そのため、基地局装置1と無線局装置2との間は概ね見通し環境にあり、その間には見通し波3のパスや大型の安定的な構造物7による安定反射波4のパスなどに加え、地上付近での車や人などの移動体などによる多重反射波5、6のパスが混在する。なお、指向性アンテナを用いる場合などは特に、地上付近の多重反射波5、6は、見通し波3及び安定反射波4などに比べて受信レベルが低くなる。

0031

図4は、見通し環境及び見通し外環境におけるインパルス応答を表す図である。図4(a)は見通し外環境でのインパルス応答を、図4(b)は見通し環境でのインパルス応答をそれぞれ示している。図4(a)及び(b)において、横軸遅延時間を表し、縦軸は各遅延波の受信レベルを表す。図4(a)に示した見通し外環境の場合、見通し区間直接波成分は存在せず、様々な経路の多重反射波が数多く成分として存在し、各振幅及び複素位相は時間と共にランダム激しく変動する。

0032

これに対し、図3に示した大規模アンテナシステムの様な見通し環境を想定する場合、見通し波3、構造物7による安定反射波4の安定パスはレベルが高い。見通し波3、構造物7による安定反射波4よりも一般的に遅延量が大きい時変動パスの多重反射波は、多重反射経路長に伴う減衰により、図4(b)に示す様に相対的にレベルが小さくなる。この様なチャネル情報を複数回取得して平均化すると、安定パスの成分は振幅及び複素位相ともに毎回安定して同様の値が得られる。しかし、時変動パスの成分は複素空間上でランダムに合成され平均化されて平均値0に近づく。そのため、平均化により安定成分のみを効果的に抽出することが可能になる。なお、絶対的なチャネル情報はシンボルタイミングに依存し、このシンボルタイミングが異なるとチャネル情報の平均化を適切に行うことができない。この様な問題を解決するために、非特許文献2では基準となるアンテナ素子の複素位相を基準とした相対チャネル情報(ないしは、各チャネル情報を基準アンテナのチャネル情報で除算したものと考えても良い)を活用する技術が紹介されている。この様な平均化が伴わない場合には相対チャネル情報を用いず、絶対的なチャネル情報を用いて議論することが可能であるが、その様な場合でも送受信ウエイトの算出においては相対チャネル情報を用いても何ら問題は生じない。以降の説明では平均化処理を行うことも含めて包括的に扱うために、チャネル情報は基本的に基準アンテナの複素位相を基準とした相対チャネル情報として扱うこととする。

0033

この様にして得られる時変動のない安定パスのチャネル情報を基に、基地局装置1(図3参照)は送受信ウエイトを算出する。基地局装置1は、算出した送受信ウエイトを用いて多数のアンテナ素子で同位相合成を行うための指向性制御を行う。上記の送受信ウエイトを用いることで、基地局装置1は、指向性制御のターゲットとする通信相手の無線局装置への指向性利得をアンテナ本数Nの2乗倍に比例して高めることができる。

0034

また、宛先以外の無線局装置への与干渉の指向性利得はN倍に留まるため、相対的に希望信号干渉信号との間には単純計算でN倍のギャップが生じる。結果的にSIR(Signal to Interference Ratio)の期待値は10Log10(N)[dB]となる。この期待値は、Nが100の場合には20dBとなる。更に相関の小さな無線局装置を選択的に空間多重する場合には、更なるSIR特性の改善が期待され、より高い空間多重が実現できる。

0035

非特許文献3及び非特許文献4には、上記の送受信ウエイトでは抑圧しきれない干渉を更に抑圧するための技術や、チャネル情報の相関(チャネル相関)のより低い無線局装置の組み合わせを選択する技術が紹介されている。超高次の空間多重を実現するためには、チャネル情報の相関の小さな無線局装置を組み合わせることが重要である。基地局装置の多数のアンテナ素子と第j無線局装置のアンテナ素子との間の第kサブキャリアに関するチャネル情報を成分とするチャネルベクトルhj(k)(「hj(k)」はベクトルであり、本来は記号「→」をhの上に付与してベクトルであることを明示すべきであるが省略する。以下、同様に説明の上では省略する。)と、別の第i無線局装置におけるチャネルベクトルhi(k)との間のチャネル相関は以下の式(8)で与えられる。

0036

0037

見通し環境を想定するシステムでは、見通し波のみで構成される仮想的なチャネルモデルを想定し、無線局装置側の各アンテナと基地局装置の間のチャネルベクトルhi(k)の相関が小さい場合には空間多重には適し、逆に相関が大きい場合には空間多重には適さない状況となる。

0038

[スモールセルにおける大規模MIMOについて]
上述の式(8)の説明においては、無線局装置側が1本アンテナであることを想定し、異なる無線局装置であれば空間的な広がりによりチャネルベクトルの相関は一般的には低くなることが想定されていた。これに対し、第5世代の携帯電話においてはユーザ当たりのスループット向上を目的として、無線局装置側にも多数のアンテナを実装し、同様に基地局装置側にも多数のアンテナを実装する。最近の研究報告の中では基地局装置側のアンテナ素子数を256素子、無線局装置側のアンテナ素子数を16素子として、256×16のサイズの大規模MIMOによる大容量化の検討がなされている。ここではユーザが携帯する無線局装置はサイズ的にも携帯可能な小規模なものであることが想定される。更に、例えば基地局装置も隣接するスモールセル間の相互干渉を低減すること、更には人が集中する場所への設置などを考えると、既存のビルの壁面(例えば地上高20m程度)に設置し、各アンテナ素子に指向性を与え、上方から下方を見下ろす形で限定的なエリア照射する形態が予想される。この場合、ビルの壁面などに大型のアンテナを設置することは安全性や設置の容易性などの観点から好ましくない。ミリ波準ミリ波などの高い周波数帯の利用の場合、波長が短くなるのに伴いアンテナ素子の小型化やアンテナの指向性形成が容易になり、基地局装置であっても非常に狭い領域に多数のアンテナを多数詰め込んだ小型アンテナ・セットを利用することが期待される。

0039

この場合、例えば単一無線局装置内の複数のアンテナのうちの第j及び第iアンテナの間のチャネル相関を上記の式(8)により求めるならば、ユーザ側の無線局装置のアンテナ間隔が非常に短く、且つ基地局装置と無線局装置間の見通しが確保できている条件下では、アンテナ素子間でのチャネル相関が非常に大きなMIMOチャネルと見ることができる。上述の様に基地局装置がビルの壁面などの高所に下方を見下ろす形で設置され、ユーザはスマートフォン等を手に持ち利用する場合には、基地局装置と無線局装置の各アンテナ素子間は概ね見通し環境となることが期待され、この様な状況は一般的な使用環境であると予想される。

0040

この場合、MIMO行列を特異値分解した場合、第1特異値の絶対値は見通し波成分を利用して非常に高い値になるが、第2特異値以降の高次の特異値は、第1特異値に比較して相対的に非常に小さくなる傾向になる。つまり、MIMOチャネルを活用した空間多重伝送としては、第1特異値に対応する第1のパスに関しては非常に回線利得に余裕がある状況であるが、第2特異値以上の高次のパスに関しては、相対的に効率は良くない状況と言える。

0041

この問題を回避するためには、例えば基地局装置のアンテナを小規模な筐体集約せず、空間的な広がりを確保することが理想的である。例えば、基地局装置アンテナを10m程度の直線状に均等配置するリニアアレー状に組めば、仮に見通し波が支配的である場合であっても基地局装置のアンテナの空間的な広がりにより、MIMOチャネルとしては第2特異値以上の高次の特異値の絶対値を大きくし、容量の増加に寄与すると期待することができる。しかし、この様な大規模な構造物にすることはアンテナ設置の構造上も好ましくない。例えば基地局装置側のアンテナ素子数を256素子とする場合、約4cm間隔で256個のアンテナを個別にビルの壁面に設置するのは設置工事の負担を増大させる。一方で、既にリニアアレーに組んだ構造物をビル壁面に設置する際には、その構造物が大型化するために、ビルの壁面に設置するのは安全対策上厳しいものがある。更に全てのアンテナ素子で協調的に伝送するためには、一つの基地局装置の筐体から無線周波数の信号をケーブルで10m程度の空間的な広がりを持つアンテナ素子に分配する必要があり、特に高い周波数帯での信号伝送のケーブル損失は無視できない。例えば無線周波数として20GHzを想定すれば、10mで10dB以上のケーブル損失となり、折角、アンテナ素子数の増大で稼いだ回線利得を損なうことになりかねない。

0042

この様な理由のため、見通し波が支配的な大規模MIMOの運用において、少なくとも無線局装置側のアンテナを小型化することが求められる場合には、シングルユーザMIMOによる空間多重伝送で大容量化を図ることは困難となる。

0043

[無線エントランスの場合]
以上の状況はスモールセル環境を中心に説明を行ったが、見通し波が支配的であるという同様の条件であれば無線エントランス回線においても同様の課題は残される。例えば、ビルの壁面に第5世代の携帯電話のスモールセル用基地局装置を設置する場合、そこには大容量のエントランス回線が必要になる。一般に、基地局装置へのエントランス回線は光ファイバを用いて提供するのが一般的であるが、しかし既設のビルの壁面への光ファイバの敷設は容易ではない。例えば、屋上ないしは地上などの何処かまで光ファイバを引き、更にビルの壁面に沿ってケーブルを設置する場合、既に建築済みのビルの外観を損ねることになりかねず、ビル・オーナー同意を得にくい。ビル屋内からビルの壁面に光ファイバを提供するためにビル壁面に穴を貫通させる工事に関しては、更にビル・オーナーの同意を得にくい場合も想定される。この場合、例えばスモールセル用基地局装置を設置するビルに対面するビルの屋上まで光ファイバを引き、ビルの屋上からビル壁面のスモールセル用基地局装置に無線回線でエントランス回線を提供することも考えられる。

0044

この場合の課題は、先ほどと同様にビル壁面の基地局装置は十分に小型化することが想定されるため、やはり見通し環境ではMIMOチャネルの第2特異値以上の高次のパスは空間多重伝送への寄与が限定的と想定され第1特異値を積極的に活用することが安定した伝送のために有効であると考えられる。

0045

列車等の移動体への無線エントランス]
次に、第5世代の携帯電話の利用形態を考慮した中で、もう一つの大きな課題について説明する。先ほども説明した様に、非常に狭いエリアに多数のユーザが存在する場合、それらの多数のユーザに対して大容量の無線回線を提供できる様にすることは重要である。スモールセルとはその名の通り比較的小さなサービスエリアを構成しているので、ここで大容量の無線回線を提供する対象はせいぜい歩行速度程度の低速で移動するユーザである。したがって、大多数のユーザでスモールセルを移り変わる(ないしはスモールセルとマクロセル間の)ハンドオーバなどは想定しておらず、その切り替わりの制御情報のやり取りの負荷はそれほど問題とはならない。しかし、例えば列車などで移動するユーザを想定すると、各ユーザがハンドオーバするタイミングは概ね一致しており、ネットワーク側に対して瞬時の大量処理が要求される。この信号処理の負荷、及び大量の制御信号が発生することによる伝送容量の圧迫などは非効率であり、通常は列車内の各ユーザは列車内で一旦トラヒックを集約し、この集約されたトラヒックを束ねて列車から見て外部のネットワークに対するエントランス回線を無線回線にて確保することが好ましい。これにより、無用な膨大な量のハンドオーバによる負荷、及び膨大な制御情報量による伝送容量の圧迫を回避する。この考え方は、第5世代の携帯電話のサービスエリアであるセルが列車と共に移動するという意味で、ムービングセルという概念で捉えられている。

0046

先ほどのビル壁面の第5世代の携帯電話のスモールセル用基地局装置へのエントランス回線は、無理をすれば光ファイバにより提供することも不可能ではなかったが、この列車によるムービングセル(以降、「列車ムービングセル」と呼ぶ)を想定すると、エントランス回線は光ファイバを用いることは不可能であり、この列車ムービングセルへの無線エントランスの効率的な構築方法確立することは極めて第5世代の携帯電話において重要となる。

0047

ここで、例えば都市部の列車を例に取り、必要な回線容量見積もってみる。例えば山手線などでは11両編成で、1車両あたり100人程度の乗客乗車している状況が想定される。通勤時間帯などであればスマートフォンなどを携帯するビジネスマンや大学生が大半を占め、その半数程度の全車両で550人ものユーザは無線通信でのインターネットアクセスを試みていると想定される。第5世代の時代において、コンテンツの大容量化により1ユーザが平均で10Mbit/sの通信をしていたとすれば、5.5Gbit/s程度の容量が必要とされる。時間的な変動を考慮し、その倍程度の回線容量を確保するとすれば、列車ムービングセルの無線エントランスとしては10Gbit/s程度の容量が要求される。

0048

これだけの大容量回線を提供するためには、当然ながらミリ波や準ミリ波などの高い周波数帯での回線提供が必要となると共に、上述のスモールセルの場合と異なり、100km/h以上の高速移動を想定した移動体への広帯域大容量伝送が余儀なくされる。上述の様に頻繁なハンドオーバを回避するためには、列車ムービングセルの無線エントランスにおいては、数百メートル程度の区間は同一の基地局装置でサービス提供できることが好ましく、高周波数帯で自由空間伝搬損失が大きいことを考慮すれば、やはり大規模MIMOによる回線利得の確保が必要になる。

0049

ここで、先ほどの説明の様に10Gbit/s程度の伝送容量を実現する場合、例えば周波数利用効率として3bit/Hz・s程度の効率を想定すると、空間多重なしでは3〜4GHz程度の帯域幅を必要とする。例えば、70〜80GHzのeバンド帯などを利用する場合、1チャネルで3〜4GHzもの帯域幅を占有する場合には、1チャネルしか確保することができない。しかし一方で、平行して走る複数の路線ごとに周波数チャネルによる棲み分けを行うことを考えれば、1チャネルの帯域幅を1GHz程度に抑え、複数チャネルによる運用が必要になる。この場合、足りない分の容量は空間多重で確保する必要があり、上述の例では4多重程度の空間多重が必要となる。

0050

先ほど説明した様に、列車ムービングセルでも大規模MIMOの適用が必須であるが、その場合には大規模MIMOによる利得拡大のためには指向性形成のために必要となるチャネル情報を高精度で把握している必要がある。しかし、高周波数帯では波長が短く、無線局装置の移動に対してチャネルの時変動は相対的に大きく見える。更に、対向する列車同士ですれ違う場合、通常の直線移動に伴うチャネルの変動以上に外部環境が激しく変動し、反射波成分は激しく乱れることになる。基地局装置側から列車に向けて送信する際には、指向性形成のためにチャネル情報は必須であるが、チャネル情報にある程度の推定精度の高さを求めるならば、非常に頻繁にチャネル情報を相互に交換する必要に迫られる。しかし、伝送容量の大容量化を目指しているにもかかわらず、チャネル情報フィードバックという制御情報のためのオーバヘッドが大きくなることは本末転倒であり、チャネル情報のフィードバックに伴う伝送容量の低下を避け、チャネルの時変動が大きい環境でも安定的に大容量の空間多重が実現できることが求められている。

0051

[MIMO伝送の装置構成例]
(全体の回路構成)
図5は、マルチユーザMIMOシステムにおける基地局装置80の構成の一例を示す概略ブロック図である。ここではマルチユーザMIMOシステムとして説明を行うが、空間多重する対象が異なる端末局装置の代わりに、同一無線局内の複数のアンテナ素子で複数の信号系列を行うと理解すれば、基本的に装置構成はシングルユーザMIMOシステムと同一である。

0052

図5に示す様に、基地局装置80は、送信部81、受信部85、インタフェース回路87、MAC(Medium Access Control)層処理回路88、及び通信制御回路820を備えている。MAC層処理回路88はスケジューリング処理回路881を有している。

0053

基地局装置80は、インタフェース回路87を介して、外部機器ないしはネットワークとのデータの入出力を行う。インタフェース回路87は、入力されるデータのうち、無線回線上で転送すべきデータを検出し、検出したデータをMAC層処理回路88に出力する。MAC層処理回路88は、基地局装置80全体の動作の管理制御を行う通信制御回路820の指示に従い、MAC層に関する処理を行う。ここで、MAC層に関する処理には、インタフェース回路87で入出力されるデータと、無線回線上で送受信されるデータの変換、MAC層のヘッダ情報の付与などが含まれる。この処理の中で、スケジューリング処理回路881は、マルチユーザMIMO伝送において同時に空間多重を行う端末局装置の組み合わせを含む各種スケジューリング処理を行う。スケジューリング処理回路881は、スケジューリング結果を通信制御回路820に出力する。マルチユーザMIMOでは、複数の端末局装置宛に一度に信号を送信するため、複数系統の信号系列がMAC層処理回路88から送信部81に出力される。

0054

(送信部81の回路構成)
図6は、マルチユーザMIMOシステムにおける基地局装置80における送信部81の構成の一例を示す概略ブロック図である。図6に示す様に、送信部81は、送信信号処理回路811−1〜811−NSDM(NSDMは2以上の整数)と、加算合成回路812−1〜812−NBS−Ant(NBS−Antは2以上の整数)と、IFFT(Inverse Fast Fourier Transform:逆高速フーリエ変換)&GI(Guard Interval:ガードインターバル)付与回路813−1〜813−NBS−Antと、D/A(デジタルアナログ変換器814−1〜814−NBS−Antと、ローカル発振器815と、ミキサ816−1〜816−NBS−Antと、フィルタ817−1〜817−NBS−Antと、ハイパワーアンプ(HPA)818−1〜818−NBS−Antと、アンテナ素子819−1〜819−NBS−Antと、送信ウエイト処理部830とを備えている。送信信号処理回路811−1〜811−NSDMと、送信ウエイト処理部830とは、図5において示した通信制御回路820に接続されている。

0055

送信ウエイト処理部830は、チャネル情報取得回路831と、チャネル情報記憶回路832と、マルチユーザMIMO(MU−MIMO)送信ウエイト算出回路833とを備えている。ここで、図6における送信信号処理回路811−1〜811−NSDMの添え字のNSDMは、同時に空間多重を行う多重数を表す。また、加算合成回路812−1〜812−NBS−Antからアンテナ素子819−1〜819−NBS−Antまでの回路の添え字のNBS−Antは、基地局装置80が備えるアンテナ素子数を表す。NBS−Antは、例えば、100である。

0056

マルチユーザMIMOでは、複数の端末局装置宛に一度に信号を送信するため、複数系統の信号系列がMAC層処理回路88から送信部81に入力され、入力された複数系統の信号系列が送信信号処理回路811−1〜811−NSDMに入力される。送信信号処理回路811−1〜811−NSDMは、宛先の端末局装置それぞれに送信すべきデータ(データ入力#1〜#NSDM)がMAC層処理回路88から入力されると、無線回線で送信する無線パケットを生成して変調処理を行う。ここで、例えばOFDM変調方式を用いるのであれば、各信号系列の信号はサブキャリアごとに変調処理が行われる。更に、変調処理がなされたベースバンド信号にサブキャリアごとに送信ウエイトを乗算する。各アンテナ素子819−1〜819−NBS−Antに対応した送信ウエイトが乗算された信号は、必要に応じて残りの信号処理が施され、ベースバンドにおける送信信号のサンプリングデータとして加算合成回路812−1〜812−NBS−Antに入力される。

0057

加算合成回路812−1〜812−NBS−Antに入力された信号は、サブキャリアごとに合成される。合成された信号は、IFFT&GI付与回路813−1〜813−NBS−Antにて周波数軸上の信号から時間軸上の信号に変換され、更にガードインターバルの挿入やOFDMシンボル間(SC−FDE(Single-Carrier Frequency Domain Equalization)であればブロック伝送のブロック間)の波形整形等の処理が行われ、アンテナ素子819−1〜819−NBS−Antごとに、D/A変換器814−1〜814−NBS−Antでデジタル・サンプリング・データからベースバンドのアナログ信号に変換される。更に、各アナログ信号は、ローカル発振器815から入力される局部発振信号と、ミキサ816−1〜816−NBS−Antで乗算され、無線周波数の信号にアップコンバートされる。ここで、アップコンバートされた信号には、送信すべきチャネルの帯域外の領域に信号が含まれるため、フィルタ817−1〜817−NBS−Antで帯域外成分を除去し、送信すべき電気的な信号を生成する。生成された信号は、ハイパワーアンプ818−1〜818−NBS−Antで増幅され、アンテナ素子819−1〜819−NBS−Antより送信される。

0058

なお、図6では、各サブキャリアの信号の加算合成を加算合成回路812−1〜812−NBS−Antで実施した後に、IFFT処理、ガードインターバルの挿入、波形整形等の処理を行っているが、送信信号処理回路811−1〜811−NSDMにてこれらの処理を行い、機能配分的にはこの位置にてIFFT&GI付与回路813−1〜813−NBS−Antを省略する構成としてもよい。この場合、送信信号処理回路811−1〜811−NSDMにおける送信ウエイト乗算後の必要に応じた残りの信号処理とは、IFFT処理、ガードインターバルの挿入、波形整形等の処理を指す。

0059

また、送信信号処理回路811−1〜811−NSDMで乗算される送信ウエイトは、信号送信処理時に、送信ウエイト処理部830に備えられているマルチユーザMIMO送信ウエイト算出回路833より取得する。送信ウエイト処理部830では、チャネル情報取得回路831において、受信部85にて取得されたチャネル情報を通信制御回路820経由で別途取得しておき、これを逐次更新しながら、チャネル情報記憶回路832に記憶する。信号の送信時には通信制御回路820からの指示に従い、マルチユーザMIMO送信ウエイト算出回路833は、宛先とする端末局装置に対応したチャネル情報をチャネル情報記憶回路832から読み出し、読み出したチャネル情報を基に宛先とする端末局装置の組み合わせに対応した送信ウエイトを算出する。マルチユーザMIMO送信ウエイト算出回路833は、算出した送信ウエイトを送信信号処理回路811−1〜811−NSDMに出力する。

0060

また、宛先とする端末局装置の管理や、全体のタイミング制御など、全体の通信に係る制御を通信制御回路820が管理する。上述の送信ウエイトの算出に係る信号処理を行う送信ウエイト処理部830に対し、通信制御回路820は宛先とする端末局装置等を示す情報を出力する。

0061

(受信部85の回路構成)
図7は、マルチユーザMIMOシステムにおける基地局装置80における受信部85の構成の一例を示す概略ブロック図である。図7に示す様に、受信部85は、アンテナ素子851−1〜851−NBS−Antと、ローノイズアンプ(LNA)852−1〜852−NBS−Antと、ローカル発振器853と、ミキサ854−1〜854−NBS−Antと、フィルタ855−1〜855−NBS−Antと、A/D(アナログ/デジタル)変換器856−1〜856−NBS−Antと、FFT(Fast Fourier Transform:高速フーリエ変換)回路857−1〜857−NBS−Antと、受信信号処理回路858−1〜858−NSDMと、受信ウエイト処理部860とを備えている。受信信号処理回路858−1〜858−NSDMと、受信ウエイト処理部860とは、図5において示した通信制御回路820に接続されている。受信ウエイト処理部860は、チャネル情報推定回路861と、マルチユーザMIMO(MU−MIMO)受信ウエイト算出回路862とを備えている。

0062

アンテナ素子851−1〜851−NBS−Antで受信した信号をローノイズアンプ852−1〜852−NBS−Antで増幅する。増幅された信号とローカル発振器853から出力される局部発振信号とがミキサ854−1〜854−NBS−Antで乗算され、増幅された信号は無線周波数の信号からベースバンドの信号にダウンコンバートされる。ダウンコンバートされた信号には、受信すべき周波数帯域外の領域にも信号が含まれるため、フィルタ855−1〜855−NBS−Antで帯域外成分を除去する。帯域外成分が除去された信号は、A/D変換器856−1〜856−NBS−Antでデジタルベースバンド信号に変換される。デジタルベースバンド信号は全てFFT回路857−1〜857−NBS−Antに入力され、ここでは記載を省略したタイミング検出用の回路で判定した所定のシンボルタイミングで、時間軸上の信号を周波数軸上の信号に変換(各サブキャリアの信号に分離)する。この各サブキャリアに分離された信号は、受信信号処理回路858−1〜858−NSDMに入力されると共に、チャネル情報推定回路861にも入力される。

0063

チャネル情報推定回路861では、各サブキャリアに分離されたチャネル推定用の既知の信号(無線パケットの先頭に付与されるプリアンブル信号等)を基に各端末局装置のアンテナ素子と、基地局装置80の各アンテナ素子851−1〜851−NBS−Antとの間のチャネル情報をサブキャリアごとに推定し、その推定結果をマルチユーザMIMO受信ウエイト算出回路862に出力する。マルチユーザMIMO受信ウエイト算出回路862では、入力されたチャネル情報を基に乗算すべき受信ウエイトをサブキャリアごとに算出する。この際、各アンテナ素子851−1〜851−NBS−Antで受信された信号を合成する受信ウエイトは、信号系列ごとに異なり、抽出すべき信号系列に対応する受信信号処理回路858−1〜858−NSDMそれぞれに入力される。

0064

受信信号処理回路858−1〜858−NSDMでは、FFT回路857−1〜857−NBS−Antから入力されたサブキャリアごとの信号に対し、マルチユーザMIMO受信ウエイト算出回路862から入力された受信ウエイトを乗算し、各アンテナ素子851−1〜851−NBS−Antで受信された信号をサブキャリアごとに加算合成する。受信信号処理回路858−1〜858−NSDMは、加算合成した信号に対して復調処理を施し、再生されたデータをMAC層処理回路88に出力する。ここでの復調処理では、例えば一旦受信信号の軟判定を行い、必要に応じてデインタリーブ処理を行い、その後に誤り訂正処理を行うなどして最終的な信号検出を行う構成としても良い。

0065

ここで、異なる受信信号処理回路858−1〜858−NSDMでは、異なる信号系列の信号処理が行われる。また、MAC層処理回路88は、MAC層に関する処理(例えば、インタフェース回路87に対して入出力するデータと、無線回線上で送受信されるデータとの変換、MAC層のヘッダ情報の終端など)を行う。この処理の中でスケジューリング処理回路881は、マルチユーザMIMO伝送において同時に空間多重を行う端末局装置の組み合わせを含む各種スケジューリング処理を行い、スケジューリング結果を通信制御回路820に出力する。MAC層処理回路88にて処理された受信データは、インタフェース回路87を介して外部機器ないしはネットワークに出力される。

0066

また、送信元の端末局装置の管理や、全体のタイミング制御など、全体の通信に係る制御を通信制御回路820が管理する。また、上述の受信ウエイトの算出に係る信号処理を行う受信ウエイト処理部860に対し、通信制御回路820から送信元の端末局装置等を示す情報が入力される。

0067

なお、信号受信に関しても送信の場合と同様に、OFDM変調方式ないしはSC−FDE方式を用いた広帯域のシステムでは、上述の受信ウエイトの乗算はサブキャリアごとに行われる。つまりA/D変換器856−1〜856−NBS−Antから出力される信号に対し、FFT回路857−1〜857−NBS−AntでFFTを行い各サブキャリアに分離し、分離したサブキャリアごとに、チャネル情報推定回路861での信号処理、及び、受信信号処理回路858−1〜858−NSDMでの受信信号処理が実施されることになる。

0068

以上がマルチユーザMIMOシステムにおける基地局装置80、送信部81、及び受信部85の構成の説明である。上述の様に、例えば送信信号処理回路811−1〜NSDMや受信信号処理回路858−1〜NSDMをそれぞれ単一の端末局装置のNSDM系統の信号系列に対する信号処理回路と見なし、更にマルチユーザMIMO送信ウエイト算出回路833及びマルチユーザMIMO受信ウエイト算出回路862がシングルユーザMIMOに関する送受信ウエイトの算出回路と見なせば、基本的に上述の説明でシングルユーザMIMOシステムにおける基地局装置80、送信部81、及び受信部85の構成を表したものとなる。

0069

ここで重要なのは、送信部81におけるローカル発振器815が送信部81の各アンテナ系統におけるミキサ816−1〜816−NBS−Antで共通化されている点、受信部85におけるローカル発振器853が受信部85の各アンテナ系統におけるミキサ854−1〜854−NBS−Antで共通化されている点である。各アンテナで送受信信号位相を調整することになるが、それぞれのローカル発振器815ないしはローカル発振器853から入力される信号の位相関係が常に一定になる様にすることで、どの様な位相関係で送受信ウエイトを乗算すれば良いかが判断可能となる。このローカル発振器が送信部81内又は受信部85内で非同期のものを複数利用する場合には、少なくとも送信部81において送信ウエイトを乗算する指向性制御が効果的に機能しなくなる。装置の設計においては、この点に注意が必要である。

0070

[見通し波が支配的なMIMOチャネルの特徴]
まず、見通し波が支配的な伝搬路での空間多重特性について整理する。送信局と受信局との間が見通し環境にある場合のチャネル行列をHLOS、行列の各成分が独立無相関となるチャネル行列をHi.i.d.とする。簡単のため、HLOSを各成分が全て「1」である行列で代用し、下記のチャネル行列を送信アンテナ16本、受信アンテナ16本の場合と、送信アンテナ256本、受信アンテナ16本の二つの場合について、下記の式(9)で与えられるチャネル行列の16個の特異値の絶対値の分布を評価する。

0071

0072

図8にチャネル行列ごとの特異値の絶対値の分布特性を示す。図8(a)はHi.i.d.のみの場合(i.i.d. channel)、図8(b)はライス係数K=10dBの場合の式(9)で表されるライスチャネル(Rician channel)の場合を示し、左側が送受信16本アンテナの場合、右側は送信側が256本とした場合である。送受信アンテナの本数が16本と同数の場合には、特異値の絶対値の分布は広がると共に、第1特異値と第16特異値の絶対値のギャップは広がる傾向がある。しかし、送信又は受信アンテナの本数が冗長になり、例えば送信アンテナが256本にもなると、特異値の絶対値はHi.i.d.の評価ごとの乱数の値に影響を受けず、分布確率0%と100%値の差が殆どなくなる。これは図8(a)、図8(b)で共通であるが、図8(a)のHi.i.d.のみの場合には第1特異値から第16特異値までのギャップが非常に小さくなるのに対し、図8(b)のライスチャネルの場合には第1特異値と第2特異値の絶対値の間のギャップがライス係数よりも10dB大きい20dBあり、一方で第2特異値と第16特異値のギャップは小さい。つまり、図8(a)及び図8(b)より分かることは、見通し波が支配的な場合にはアンテナ素子数を増やしても第1特異値に相当する図2(c)の一番上(λ1)のパイプに相当する伝送路に回線利得が集中しすぎて、空間多重を行うための図2(c)の上から2番目(λ2)、3番目(λ3)のパイプに相当する伝送路が殆ど活用できないことを意味する。

0073

一方で、ミリ波などを用いる場合には自由空間伝搬損失が周波数に依存して大きくなるため、例えば5GHzに対して80GHzでは24dB程度の利得を何処かで稼がなくてはならない。このためにアンテナを大規模化することが有効であるが、空間多重のためのアンテナの大規模化と、回線利得を稼ぐためのアンテナの大規模化は、別の観点から実施する必要がある。

0074

[チャネル情報の推定及びフィードバックについて]
大規模MIMOにおいては多数のアンテナ素子を活用することによる回線利得の向上はあくまでも送受信指向性制御(ビームフォーミング)を行うことにより得られる効果であり、その指向性制御のためには高精度なチャネル情報が必要となる。しかし、1本のアンテナ素子対1本のアンテナ素子の間の信号は指向性形成前の回線利得向上が図られていない段階の信号であるため、取得されたチャネル情報の推定精度は一般には低い。同一信号の繰り返し受信と平均化処理でSNRを改善することは可能であるが、そのためにはチャネルフィードバックのオーバヘッドが増大する。例えば、全サブキャリアのうちの奇数又は偶数サブキャリアを用い、2本のアンテナ素子にそれぞれ奇数と偶数サブキャリアのいずれかのみを間欠的に割り当てて利用して、割り当てのないサブキャリアに関しては前後のサブキャリアで求めたチャネル情報からチャネル推定を行うこととすれば、2本のアンテナのチャネル推定を同時に行うことができる上に、チャネルフィードバックを行うサブキャリアのSNRを3dB程度改善することも可能である。間欠的なサブキャリアの周期を上述の様に2サブキャリア間隔からより大きなサブキャリア間隔にすれば、更にチャネルフィードバックが行われるサブキャリアのSNRを向上することは原理的には可能であるが、一般的なチャネル情報の場合には周波数依存性が非常に大きく、不連続なサブキャリアの間のチャネルの補間の精度が大幅に劣化するという問題があった。逆に、このサブキャリアの間のチャネルの補間精度を向上するために、間引きするサブキャリア数NSCを限定すると、そこで得られるSNRの改善量は限定されることになる。したがって、高いSNR環境での高精度のチャネル推定と高効率なチャネルフィードバックを実現する技術が求められている。

0075

この様な課題に対して、例えば非特許文献5では、基地局装置が多数のアンテナを所定の送受信ウエイトで合成し、非常にビーム幅の狭い高利得の超指向性ビームを水平及び垂直方向に所定の角度の刻みで多数形成することで対処する提案がなされている。例えば、水平方向に±60度(合計120度)のエリアに端末局装置が存在する場合、5度刻みでビームを形成すると25通りの指向性ビームで水平方向はカバーできる。垂直方向は、例えばユーザが30度程度のエリア内にしか存在しなければ、5度刻みでビームを形成すると7通りの指向性ビームで垂直方向はカバーできる。垂直方向及び水平方向を同時にカバーするためには、合計で175パターンの固定的な指向性ビームを用いれば良いことになる。この刻み幅を10度にすれば、同様に52パターンの固定的な指向性ビームで全体をカバーできる。この様な固定的なビームを複数選択して、その数だけの仮想的なアンテナ素子と端末局装置のアンテナ素子の間のMIMOチャネルだと考えれば、この仮想的なアンテナ素子に対してであれば十分に回線利得を確保できた状況でチャネル情報の取得が可能になる。ただし、この仮想的アンテナ素子の数だけトレーニング信号を送信しなければ、端末局装置側はどの仮想的なアンテナ素子を選択すれば良好な通信環境を確保できるのかが分からないため、その多数の仮想的アンテナ素子の送信に要するオーバヘッドが必要となる。この様に、高次の空間多重を実現するためのMIMOのチャネル情報を、十分な回線利得を確保しながら取得することは可能であるが、それでもやはり小さなオーバヘッドで効率的に取得するためには、更なる工夫が必要とされる。

0076

キャリブレーションとインプリシット・フィードバックについて]
実際の無線通信装置では、送信側の信号処理において、送信の直前にハイパワーアンプにて信号増幅を行うことが多い。この場合、ハイパワーアンプの個体差により増幅率誤差があると共に、ハイパワーアンプ内で複素位相がハイパワーアンプごとに異なる値で回転する場合がある。同様に、受信側の信号処理において、受信の直後にローノイズアンプにて信号増幅を行うことが多い。この場合、ローノイズアンプの個体差により増幅率に誤差があると共に、ローノイズアンプ内で複素位相がローノイズアンプごとに異なる値で回転する場合がある。更に厳密には、その他のフィルタ等のRF系の回路を含めた送信系及び受信系の回路等においても個体差が伴う。

0077

一般に、ハイパワーアンプ及びローノイズアンプの増幅率及び位相回転量には、周波数依存性がある。周波数依存性を伴う増幅率及び複素位相の回転量の個体差が無視できないほどに大きい場合には、アップリンクのチャネル情報からダウンリンクのチャネル情報を推定する際に、キャリブレーション処理を施す必要がある。この増幅率及び位相回転量の誤差が時間的にはほぼ安定している場合、増幅率及び位相回転量の誤差を事前に測定しておき、誤差の影響をキャンセルするための係数を用いてアップリンクのチャネル情報からダウンリンクのチャネル情報に換算する。一般に、この様な性質を利用したチャネル推定方法をインプリシット・フィードバックと呼び、ダウンリンクで推定したチャネル情報をデジタルデータとして制御情報に収容してアップリンクで通知するエクスプリシット・フィードバックと区別されている。

0078

以下にキャリブレーション処理の一例を説明する。図9は、アップリンクとダウンリンクとのチャネル情報の非対称性を示す図である。図9において、符号25−0〜25−2は無線モジュールを示し、符号21−0〜21−2はハイパワーアンプ(HPA)を示し、符号22−0〜22−2はローノイズアンプ(LNA)を示し、符号23−0〜23−2は時分割スイッチ(TDD−SW)を示し、符号24−0〜24−2はアンテナ素子を示している。

0079

ここでは、基地局装置においてチャネル情報に影響を与える機能のみを抽出したため、図示した以外の構成は省略したが、無線モジュール25−0〜25−2にはその他の機能も含まれる。また、信号がハイパワーアンプ21−0〜21−2それぞれを通過する際に、振幅及び複素位相がZHPA#0(fk)、ZHPA#1(fk)、ZHPA#2(fk)だけ変化するものとする。また、各種アンプを通過する際に振幅がA、複素位相がθ回転するとした場合には、その影響はZ=A・ejθの係数で表すことが可能である。信号がローノイズアンプ22−0〜22−2それぞれを通過する際に、振幅及び複素位相による影響の係数はZLNA#0(fk)、ZLNA#1(fk)、ZLNA#2(fk)で表されるものとする。ここでは一般的な条件として周波数依存性があるものとし、第kサブキャリアに対する周波数「(fk)」の表記を行っている。

0080

ここで、例えば、無線モジュール25−1及び無線モジュール25−2から試験用の無線モジュール25−0に信号を送信する場合のチャネル情報について説明する。ここでは、無線モジュール25−1のアンテナ素子24−1と、無線モジュール25−0のアンテナ素子24−3との間の空間上のチャネル情報がh1(fk)で表され、無線モジュール25−2のアンテナ素子24−2と無線モジュール25−0のアンテナ素子24−0との間の空間上のチャネル情報がh2(fk)で表されている。

0081

このとき、実際に無線モジュール25−1から無線モジュール25−0に信号を送信する際のチャネル情報は、空間上のh1(fk)にハイパワーアンプ21−1の通過に伴う変化を示す係数ZHPA#1(fk)、及びローノイズアンプ22−0の通過に伴う変化を示す係数ZLNA#0(fk)が乗算された値として観測される。

0082

同様に、無線モジュール25−2から無線モジュール25−0に信号を送信する際のチャネル情報は、空間上のh2(fk)にハイパワーアンプ21−2の通過に伴う変化を示す係数ZHPA#2(fk)、及びローノイズアンプ22−0の通過に伴う変化を示す係数ZLNA#0(fk)が乗算された値として観測される。

0083

したがって、無線モジュール25−1から無線モジュール25−0へのチャネルは、ZHPA#1(fk)・h1(fk)・ZLNA#0(fk)で表される。また、無線モジュール25−2から無線モジュール25−0へのチャネルは、ZHPA#2(fk)・h2(fk)・ZLNA#0(fk)で表される。このため、無線モジュール25−1と無線モジュール25−2との間では、チャネル情報h1(fk)とh2(fk)の差に加えて、相対的にZHPA#2(fk)/ZHPA#1(fk)の差が発生する。

0084

この状況は逆方向の通信においても同様であり、無線モジュール25−0から送信された信号を無線モジュール25−1にて受信する場合、チャネル情報は空間上のh1(fk)にハイパワーアンプ21−0の通過に伴う変化を示す係数ZHPA#0(fk)と、ローノイズアンプ22−1の通過に伴う変化を示す係数ZLNA#1(fk)とが乗算された値として観測される。

0085

同様に、無線モジュール25−0から送信された信号を無線モジュール25−2にて受信する場合、チャネル情報は空間上のh2(fk)にハイパワーアンプ21−0の通過に伴う変化を示す係数ZHPA#0(fk)と、ローノイズアンプ22−2の通過に伴う変化を示す係数ZLNA#2(fk)とが乗算された値として観測される。

0086

したがって、無線モジュール25−0から無線モジュール25−1へのチャネルは、ZHPA#0(fk)・h1(fk)・ZLNA#1(fk)で表される。また、無線モジュール25−0から無線モジュール25−2へのチャネルは、ZHPA#0(fk)・h2(fk)・ZLNA#2(fk)で表される。このため、無線モジュール25−1と無線モジュール25−2との間では、チャネル情報h1(fk)とh2(fk)の差に加えて、相対的にZLNA#2(fk)/ZLNA#1(fk)の差が発生する。

0087

上述した様に、基地局装置は、各アンテナ素子に接続されているローノイズアンプ22−1〜22−2による変化を含むチャネル情報をアップリンクにて取得可能であるが、基地局装置はダウンリンクにおけるチャネル情報を直接求めることができない。そこで、アップリンクのチャネル情報から換算することで、ダウンリンクのチャネル情報を取得する。この換算のためには、各アンテナ素子24−0〜24−2に接続されているローノイズアンプ22−0〜22−2及びハイパワーアンプ21−0〜21−2の個体差の影響をキャンセルする必要がある。

0088

そこで、基地局装置の製造段階において、リファレンスとなる試験用の無線モジュール25−0を用意し、試験用の無線モジュール25−0のアンテナ端子と、無線モジュール25−1、25−2のアンテナ端子とを直接ケーブルで接続する。伝搬路上のチャネル情報が共通の値となる環境で、ハイパワーアンプ21−0〜21−2及びローノイズアンプ22−0〜22−2による変化を含むチャネル情報を測定し、測定したチャネル情報を用いて補正を行う。

0089

図10は、キャリブレーションの概要を示す図である。図10において、符号26−0〜26−2はアンテナ端子を示し、符号27は同軸ケーブルを示している。なお、図9に示した機能部と同じ機能部には同じ符号を付している。

0090

図10(A)は、無線モジュール25−0と無線モジュール25−1とを同軸ケーブルで接続した構成を示している。図10(B)は、無線モジュール25−0と無線モジュール25−2とを同軸ケーブルで接続した構成を示している。図9が実際の空間上を信号が伝搬した状態を示しているのに対して、図10がアンテナ素子を介さずに同軸ケーブル上を信号が伝搬した状態を示している。

0091

無線モジュール25−1、25−2と、無線モジュール25−0とを接続する伝搬路としての同軸ケーブル27のチャネル情報は、h0(fk)である。
このとき、無線モジュール25−1から無線モジュール25−0へのチャネル情報は、ZHPA#1(fk)・h0(fk)・ZLNA#0(fk)で表される。無線モジュール25−2から無線モジュール25−0へのチャネル情報は、ZHPA#2(fk)・h0(fk)・ZLNA#0(fk)で表される。

0092

また、無線モジュール25−0から無線モジュール25−1へのチャネル情報は、ZHPA#0(fk)・h0(fk)・ZLNA#1(fk)で表され、無線モジュール25−0から無線モジュール25−2へのチャネル情報は、ZHPA#0(fk)・h0(fk)・ZLNA#2(fk)で表される。
そこで、これらのチャネル情報を測定した後に、次の式(10)及び式(11)で表されるキャリブレーション係数C1(fk)、C2(fk)を算出しておく。

0093

0094

0095

先ほど、無線モジュール25−0から無線モジュール25−1へのチャネル情報はZHPA#0(fk)・h1(fk)・ZLNA#1(fk)で表され、無線モジュール25−0から無線モジュール25−2へのチャネル情報はZHPA#0・(fk)・h2(fk)・ZLNA#2(fk)で表されると説明した。これらに式(10)及び式(11)のキャリブレーション係数C1(fk)、C2(fk)を乗算すると次の式(12)及び式(13)が得られる。

0096

0097

0098

式(12)及び式(13)の右辺は、先ほど説明した、無線モジュール25−1から無線モジュール25−0へのチャネル情報、及び、無線モジュール25−2から無線モジュール25−0へのチャネル情報に一致している。

0099

この様に、式(10)及び式(11)に相当するキャリブレーション係数を基地局装置の製造段階において取得しておき、これらを基地局装置内に記憶しておくことにより、これらのキャリブレーション係数を用いてアップリンクのチャネル情報からダウンリンクのチャネル情報を算出することができる。

0100

なお、以下の説明では、これらのキャリブレーション係数を予め取得し、その値をデジタル信号処理上で利用する場合の説明を中心に行う。当然ながらアナログ回路上において、これらのキャリブレーション係数が全てほぼ一定の値(複素位相が一定値であれば、絶対値そのものには差があっても構わない)となる様に基地局装置内及び端末局装置内で調整を行っていれば、全てのキャリブレーション係数が1であると見なした処理に読み替えることも可能である。特に、振幅の増幅率の周波数依存性は波形歪に直結するため、一般的にはアンプの特性として周波数軸上で概ね定数(フラットな波形)となる様に工業的に設計されている。

0101

同様に、アップリンクとダウンリンクの複素位相が一定値となる様に、デジタル信号処理におけるFFTの後段(受信時)及びIFFTの前段(送信時)に一括して調整されている場合にも、結果的に式(10)及び式(11)で示されるキャリブレーション係数の複素位相が全てのアンテナ素子でほぼ一定値になるため、同様の効果を得ることができる。

0102

以上は送受信アンテナ素子が1対複数のSIMOチャネルに関するキャリブレーションに関する説明であるが、複数本アンテナ対複数本アンテナのチャネル行列のキャリブレーションの場合には、これを若干補正した形式での説明が必要である。例えば、図11にある様に、送受信アンテナ素子が2本ずつの場合を考える。説明を簡単にするために、左側を基地局装置41、右側を端末局装置51だと見なし、左から右方向の通信であるダウンリンクと、右から左方向の通信であるアップリンクのそれぞれのチャネル行列の関係を整理する。

0103

まずダウンリンクを考えるとき、受信側の端末局装置51のアンテナ素子で観測されるチャネル情報は、送信アンテナ端と受信アンテナ端の間の空間上のチャネル行列の各成分に加えて、基地局装置41の送信用のハイパワーアンプにおける増幅率及び複素位相の回転量と、端末局装置のローノイズアンプにおける増幅率及び複素位相の回転量が乗算される。これらの回転量は、基地局装置の複数のアンテナ素子に対応する個々のハイパワーアンプごとに異なると共に、端末局装置の複数のアンテナ素子に対応する個々のローノイズアンプごとに異なる。一方、アップリンクにおいては、受信側の基地局装置のアンテナ素子で観測されるチャネル情報は、送信アンテナ端と受信アンテナ端の間の空間上のチャネル行列の各成分に加えて、端末局装置の送信用のハイパワーアンプにおける増幅率及び複素位相の回転量と、基地局装置のローノイズアンプにおける増幅率及び複素位相の回転量が乗算される。これらの回転量は、端末局装置の複数のアンテナ素子に対応する個々のハイパワーアンプごとに異なると共に、基地局装置の複数のアンテナ素子に対応する個々のローノイズアンプごとに異なる。ここで、送信アンテナ端と受信アンテナ端の間の空間上のチャネル行列に関しては、空間の対称性故に各成分の値そのものには変更はないが、アップリンクとダウンリンクでは送信アンテナと受信アンテナが対応するのが基地局装置か端末局装置かの関係が逆転するため、空間上のチャネル行列は行列を転置することでアップリンクとダウンリンクの換算が可能になる。これに加えて、上述のSIMOチャネルにおけるキャリブレーションと同様の処理を行うとするならば、任意の試験用の送受信装置との間で、アップリンクとダウンリンクの間のチャネル状態の換算を行うキャリブレーション係数を用いて、アップリンクのチャネル行列からダウンリンクのチャネル行列を取得することが可能となる。

0104

ここで、θBS−HPA,m(k)を基地局装置の第mアンテナ素子に対応するハイパワーアンプの位相回転量と、ABS−HPA,m(k)を基地局装置の第mアンテナ素子に対応するハイパワーアンプの振幅の増幅量と、θBS−LNA,m(k)を基地局装置の第mアンテナ素子に対応するローノイズアンプの位相回転量と、ABS−LNA,m(k)を基地局装置の第mアンテナ素子に対応するローノイズアンプの振幅の増幅量とする。更にθMT−HPA,m(k)を端末局装置の第mアンテナ素子に対応するハイパワーアンプの位相回転量と、AMT−HPA,m(k)を端末局装置の第mアンテナ素子に対応するハイパワーアンプの振幅の増幅量と、θMT−LNA,m(k)を端末局装置の第mアンテナ素子に対応するローノイズアンプの位相回転量と、AMT−LNA,m(k)を端末局装置の第mアンテナ素子に対応するローノイズアンプの振幅の増幅量とする。また、θTest−HPA(k)を試験用局のハイパワーアンプの位相回転量と、ATest−HPA(k)を試験用局のハイパワーアンプの振幅の増幅量と、θTest−LNA(k)を試験用局の位相回転量と、ATest−LNA(k)を試験用局のローノイズアンプの振幅の増幅量とする。各係数の添え字のBS(基地局装置)及びMT(端末局装置)を一般化してSTA(基地局装置又は端末局装置)として示せば、STAの第mアンテナ素子に関するキャリブレーション係数を式(14)の様に定義し、これを用いてアップリンクのチャネル行列からダウンリンクのチャネル行列を式(15)の様にして取得することが可能になる。

0105

0106

0107

なお一般に、チャネル行列の全ての要素に等しく乗算される係数は、そのチャネル行列の示す伝搬路の特性を評価する場合にも、送受信ウエイト行列(ベクトル)を算出する際にも、全く影響を与えることのない係数として扱うことが可能である。この意味で、式(15)の中には、試験局に関する係数θTest−HPA(k)と、ATest−HPA(k)と、θTest−LNA(k)と、ATest−LNA(k)とが含まれているが、これらの全てはチャネル行列の全要素に等しく乗算される係数であるため、特に送受信ウエイト行列(ベクトル)を求める際にはこの値は特に影響を与えない。更に、送信局側においてベースバンド信号を無線周波数に変換する際のミキサに入力するローカル発振器の信号、及び受信局側において無線周波数の信号をベースバンド信号に変換する際のミキサに入力するローカル発振器の信号のそれぞれの信号の複素位相の状態なども、実際には観測されるチャネル行列の各成分の複素位相に影響を与えるが、全ての係数は全てのアンテナに等しく乗算されるため、これもまたチャネル行列の全成分に等しく係数として乗算されることになる。この係数も送受信ウエイト行列(ベクトル)には影響を与えないため、これらの影響を無視して評価を行うことが可能である。この様に、事前にキャリブレーションの係数が分かっていれば、このキャリブレーション係数を基にアップリンクとダウンリンクの間のチャネル行列の換算が可能となる。また同様に、受信ウエイトベクトルが取得できればその受信ウエイトベクトルにキャリブレーション係数を適用することで、送信ウエイトベクトルを算出することも可能となる。

0108

モバイルフロントホールにおける無線エントランス]
第4世代の携帯電話においても同様であるが、多数設置する必要性のある基地局装置の保守性の向上や、複数の基地局装置からの協調伝送などを想定すると、基地局装置の大部分の機能(BBU: Base Band Unit)を1か所に集約し、(機能1)デジタル・サンプリング・データからD/A変換によりアナログベースバンド信号の生成、(機能2)アナログベースバンド信号から無線周波数帯の信号へのアップコンバート、(機能3)電力増幅とアンテナからの送信、(機能4)アンテナでの受信と電力増幅、(機能5)無線周波数帯の信号からアナログベースバンド信号へのダウンコンバート、(機能6)アナログベースバンド信号からA/D変換によりデジタル・サンプリング・データの生成、等の機能のみを備えるリモートレディオ・ヘッドRRH: Remote Radio Head)のみを分散配置する、クラウド型無線アクセス網(C-RAN: Centralized Radio Access Network 又は Cloud Radio Access Network)が有効である。これは、所謂「バックホール回線」との対比で「フロントホール」ないしは「モバイル・フロントホール」と呼ばれる技術であり、現在も光ファイバでデジタル・サンプリング・データを伝送するためのインタフェース規格としてCPRI(Common Public Radio Interface)が標準化されている。

0109

ここで、複数のRRHで協調送信(JT: Joint Transmit)ないしは協調受信(JR: Joint Reception)を行うためには、10−9オーダーの精度で遅延ジッタを抑制し、且つ、光ファイバ上でのビット誤り率は10−12オーダーの高品質、更には100μs以下の低遅延が求められる。このモバイル・フロントホールは光ファイバのみならず無線回線で提供することも可能であるが、その場合には無線回線でありながら遅延ジッタ10−9、ビット誤り率10−12、伝送遅延100μs以下の高品質を実現しなければならない。

0110

既存の無線エントランス装置の中には、大型のパラボラアンテナで40dBiから50dBiの超高利得、高指向性を形成し、このアンテナを対向させることでマルチパス成分を殆ど除外した、非線形歪のない安定した伝送路により光ファイバと同等のビット誤り率10−12を再送制御なしに1回の伝送で実現することを可能とするものが存在する。しかし、上述の様に大規模MIMOを活用して指向性利得を確保する場合には、そのアンテナの冗長性を利用し、通常の空間多重と同様にマルチパス成分を利用することで複数ストリーム多重化を実現することも可能であった。ただし、この様なマルチパス成分を取り込む場合には非線形歪の影響は無視できず、一般には誤り率特性エラーフロアを引き、高SNR環境であっても十分低い誤り率を実現することは困難であった。この場合、再送制御を行うことで誤り率特性を改善する必要があるが、一般には再送制御には大きな伝送処理遅延が伴い、100μs以下の低遅延で再送制御を完了することは困難である。更に、超広帯域の大容量伝送において高効率の再送制御をする場合、選択再送制御の処理が煩雑化し、加えて100μs以下という遅延に関する制約から、送信の成功/失敗に係らず、2〜3回程度の送信回数の上限で再送打ち切って廃棄する処理も必要となる。再送の打ち切りにおいて、送信側と受信側で不整合を起こす原因となり得るが、この送信側と受信側との間の不整合は通信のデッドロック状態につながる。しかし、この様な状態の回避のためのネゴシエーション処理などを行えば、更に処理は複雑化することになり好ましくない。これらの信号処理の煩雑化を回避し、超高速での高能率の再送制御を実現することが求められている。

0111

このモバイル・フロントホールでは、上述の様にBBUとRRHとの間では、RRHのアンテナ素子から送信すべき信号のデジタル・サンプリング・データを伝送し、RRHにて上記(機能1)から(機能6)の機能を実施し、実際の無線周波数の信号を送受信していた。しかし、第5世代のスモールセル基地局装置において大規模アンテナを用いる場合には、デジタル・サンプリング・データを光ファイバ上で伝送するという従来の手法を踏襲するのであれば、アンテナ素子ごとに、それぞれのデジタル・サンプリング・データを伝送する必要があった。一般に、無線区間において実際に伝送されるべきユーザデータ量に対し、デジタル・サンプリング・データの伝送容量は約16倍と言われており、仮に無線区間で1Gbit/sのデータ伝送を行う場合であっても、モバイル・フロントホール区間では16Gbit/s相当のデジタル・サンプリング・データを伝送しなければならない。しかし、仮に第5世代のスモールセル基地局装置において256素子のアンテナ素子を用いた大規模MIMO技術を採用するのであれば、モバイル・フロントホールで必要となる伝送容量は4Tbit/sとなり、伝送媒体が光ファイバであっても、現時点では非現実的な領域である。一般に、比較的廉価で利用可能なシステムは伝送速度が低くて広く普及したシステムであり、現状では10Gbit/s程度の通信システムである。将来的な技術革新を考慮しても、アンテナ素子数の増大に合わせてモバイル・フロントホール上で伝送すべきデータ容量が発散することは許されず、せめて空間多重する信号系統数分のデジタル・サンプリング・データの容量に収めることが求められる。

0112

この様な視点から、現在ではBBUとRRHとの間の機能配分の見直しが検討されており、上述の(機能1)〜(機能6)の機能に加えて、本来はBBU側にて実施すべき無線信号処理における物理レイヤ変調機能、復調機能に加え、複雑なMIMO信号処理、FFT/IFFT信号処理などをRRH側に実装する検討がなされている。これによりモバイル・フロントホールで伝送すべき情報容量は大幅に圧縮されることになるが、これは本来のモバイル・フロントホールの思想から大分かけ離れたものとなっている。つまり、(機能1)〜(機能6)内には採用する無線システム特有変復調方式などに特化した機能が含まれないために、将来的なシステムのバージョンアップ時に、BBU側の変更のみでRRHには手を加えずに対応できたものが、上述の様な機能配分の見直しを行ってしまうと、例えばサブキャリア数の変更などの基本的な設計パラメータの変更であっても、バージョンアップのためにはRRHそのものの改造が余儀なくされることになる。

0113

そこで、大規模MIMOに対応可能でありながら、モバイル・フロントホール上で伝送されるべきデジタル・サンプリング・データの伝送容量を増大させないための工夫が求められている。

0114

以下、モバイル・フロントホールに関する説明を図を基に行う。図12は、従来技術におけるモバイル・フロントホール及びモバイル・バックホール機能分担の概要を示す図である。特に図12(a)はモバイル・フロントホールを、図12(b)はモバイル・バックホールを表している。ここではネットワーク側からユーザに向けての方向に関する信号の伝送(モバイル・フロントホールであれば、BBUからRRH方向)に関する機能のみを抜粋した。図において、401はMAC層処理回路、402は送信信号処理回路、403は時間軸信号生成回路、404は光インタフェース回路、405は光ファイバ、406は光インタフェース回路、407はD/A変換器、408はRF処理回路、409はアンテナ素子、411−1はBBU、412−1はRRH、414は光インタフェース回路、415は光ファイバ、416は光インタフェース、を表す。MAC層処理回路401、送信信号処理回路402、時間軸信号生成回路403は全体で無線に関するベースバンド信号処理を行う領域400及び410を構成する。

0115

図12(a)において、ネットワーク側からBBU441−1に送信すべき信号が入力されると、MAC層処理回路401はMAC層の信号処理を行い、無線区間での送受信に用いるフレームフォーマットと、ネットワーク側を流れるデータのフレームフォーマットの変換・終端を行い、無線パケットのフォーマットの信号を送信信号処理回路402に入力する。送信信号処理回路402では、無線信号送信信号処理を行う。ここでは特に無線区間の伝送方式は限定されず、例えばOFDMを用いるのであれば、必要に応じて誤り訂正の符号化、インタリーブ、サブキャリアごとの変調処理などを行う。この様にして生成した信号は、時間軸信号生成回路403にて時間軸の信号に変換される。例えば、先ほどのOFDMの場合を例に取れば、IFFTを行い周波数軸の信号を時間軸の信号に変換すると共に、ガードインターバルを挿入し、シンボル間の波形整形処理などを施す。この結果、デジタルベースバンド信号の各サンプリング値が時系列で連続する信号に変換される。これらのサンプリング値のデータは、光インタフェース回路404にて所定のフレームフォーマットに変換され、電気信号から光信号に変換されて光ファイバ405に出力される。光ファイバ405に出力された信号はRRH442−1側に伝達され、RRH442−1では光インタフェース回路406にて光信号を電気信号に変換し、所定のフォーマットの信号を終端し、デジタルベースバンド信号としてサンプリング値の情報列を生成する。これをD/A変換器407は所定のクロックレートでアナログベースバンド信号に変換し、RF処理回路408ではアップコンバータで無線周波数の信号に変換し、フィルタにて帯域外輻射信号を除去した後にハイパワーアンプで増幅し、これをアンテナ409より空間に送信する。以上の様に、全体で無線信号の基地局装置に相当する機能を、光ファイバにて仲介されるBBU441−1とRRH442−1に機能を分けて収容する。ここでの特徴は、ネットワーク側の局舎内に備えるBBUに無線のデジタルベースバンド信号処理が集約されているため、無線通信方式の変更が何かあったとしても、全てがBBU側の変更で済むというメリットがある。

0116

これに対しモバイル・バックホールでは、図12(a)に対応する構成として図12(b)に示す構成を取る。例えばビルの屋上や電信柱の上などに設置される基地局装置に対し、光ファイバでユーザデータをそのまま伝送し、全てを基地局装置内に閉じて無線信号処理を行う。具体的には、ネットワーク側では光インタフェース回路414から、光ファイバ415を介して基地局装置内の光インタフェース回路416に対して無線回線で送信すべきユーザデータを伝送する。光インタフェース回路416にて光信号を電気信号に変換し、所定のフォーマットの信号を終端し、ユーザデータをMAC層処理回路401に出力する。MAC層処理回路401ではMAC層の信号処理を行い、無線区間での送受信に用いるフレームフォーマットと、ネットワーク側を流れるデータのフレームフォーマットの変換・終端を行い、無線パケットのフォーマットの信号を送信信号処理回路402に入力する。送信信号処理回路402では、無線信号の送信信号処理を行う。ここでは特に無線区間の伝送方式は限定されず、例えばOFDMを用いるのであれば、必要に応じて誤り訂正の符号化、インタリーブ、サブキャリアごとの変調処理などを行う。この様にして生成した信号は、時間軸信号生成回路403にて時間軸の信号に変換される。例えば、先ほどのOFDMの場合を例に取れば、IFFTを行い周波数軸の信号を時間軸の信号に変換すると共に、ガードインターバルを挿入し、シンボル間の波形整形処理などを施す。この結果、デジタルベースバンド信号の各サンプリング値が時系列で連続する信号に変換される。これらのサンプリング値のデータは、D/A変換器407に入力され、D/A変換器407は所定のクロックレートでアナログベースバンド信号に変換し、RF処理回路408ではアップコンバータで無線周波数の信号に変換し、フィルタにて帯域外輻射信号を除去した後にハイパワーアンプで増幅し、これをアンテナ409より空間に送信する。これまで説明してきた基地局装置の信号処理及び回路構成の説明は、このモバイル・バックホールを意識したものである。

0117

以上の図12の説明では、RRH442−1が備えるアンテナ素子は1素子であったが、将来モバイルネットワークでは、多素子のアンテナを用いたMassiveMIMO技術の適用が想定されるため、それだけ光ファイバ上で伝送すべき情報量が増えることになる。図13は、多素子アンテナを用いる場合の従来技術におけるモバイル・フロントホール及びモバイル・バックホールの機能分担の概要を示す図である。特に図13(a)はモバイル・フロントホールを、図13(b)はモバイル・バックホールを表している。ここでは図12と同様に、ネットワーク側からユーザに向けての方向に関する信号の伝送(モバイル・フロントホールであれば、BBUからRRH方向)に関する機能のみを抜粋した。図13において、図12と同じものには同様の符号を振っている。図13において、412は送信信号処理回路、424は光インタフェース回路、425は光ファイバ、426は光インタフェース回路、427はD/A変換器、428はRF処理回路、429はアンテナ素子、430は送信ウエイト乗算回路、431は送信ウエイト処理回路、433は時間軸信号生成回路、441−2はBBU、442−2はRRHを表す。MAC層処理回路401、送信信号処理回路412、送信ウエイト乗算回路430、送信ウエイト処理回路431、時間軸信号生成回路433は全体で無線に関するベースバンド信号処理を行う領域420を構成する。同様に、MAC層処理回路401、送信信号処理回路412、送信ウエイト乗算回路430、送信ウエイト処理回路431、時間軸信号生成回路433は全体で無線に関するベースバンド信号処理を行う領域420又は440を構成する。図13(a)において、ネットワーク側からBBU441−2に送信すべき信号が入力されると、MAC層処理回路401はMAC層の信号処理を行い、無線区間での送受信に用いるフレームフォーマットと、ネットワーク側を流れるデータのフレームフォーマットの変換・終端を行い、無線パケットのフォーマットの信号を送信信号処理回路412に入力する。送信信号処理回路412では、無線信号の送信信号処理を行う。ここでは特に無線区間の伝送方式は限定されず、例えばOFDMを用いるのであれば、必要に応じて誤り訂正の符号化、インタリーブ、サブキャリアごとの変調処理などを行う。合わせて、例えばここでは図示していないBBUの受信側において収集した受信ウエイト情報などを、送信信号処理回路412を介して送信ウエイト処理回路431に提供する。送信ウエイト処理回路431では、この受信ウエイト情報などにキャリブレーション処理を施し、送信ウエイトを算出し、これを送信ウエイト乗算回路430に出力する。送信ウエイト乗算回路430では、送信信号処理回路412から入力された送信信号に送信ウエイトを乗算する。ここでの処理は、例えばOFDMを用いる場合では周波数軸上で実施する。すなわち、サブキャリアごとに異なる受信ウエイトを基に算出したサブキャリアごとに異なる送信ウエイトを用い、サブキャリアごとに異なる送信信号にサブキャリアごとに乗算する。この様にして生成した信号は、時間軸信号生成回路433にてアンテナ系統ごとに時間軸の信号に変換される。例えば、先ほどのOFDMの場合を例に取れば、IFFTを行い周波数軸の信号を時間軸の信号に変換すると共に、ガードインターバルを挿入し、シンボル間の波形整形処理などを施す処理を、アンテナ系列ごとに実施する。この結果、デジタルベースバンド信号の各サンプリング値が時系列で連続するアンテナ素子ごとの信号に変換される。これらのサンプリング値のデータは、光インタフェース回路424にて所定のフレームフォーマットに変換され、電気信号から光信号に変換されて光ファイバ425に出力される。ここでは先ほどの図12の場合と異なり、光ファイバ上にはアンテナ素子数分の信号を同時に収容する必要があり、波長多重TDMや複数の光ファイバを用いるなど、任意の方法で大容量化がなされた光ファイバの伝送路上で伝達され、RRH442−2側入力される。RRH442−2では光インタフェース回路426にて光信号を電気信号に変換し、所定のフォーマットの信号を終端し、デジタルベースバンド信号としてサンプリング値の情報列を生成する。上述の様に、ここではアンテナ素子数分の系統のサンプリング信号が再生される。これをD/A変換器427は所定のクロックレートでアンテナ系統ごとにアナログベースバンド信号に変換し、RF処理回路428ではアンテナ系統ごとに、共通のローカル発振器を用いたアップコンバータで無線周波数の信号に変換し、個別にフィルタにて帯域外輻射信号を除去した後に個別にハイパワーアンプで増幅し、これを個々のアンテナ素子429より空間に送信する。以上の様に、全体で無線信号の基地局装置に相当する機能を、光ファイバにて仲介されるBBU441−2とRRH442−2に機能を分けて収容する。

0118

以上は、そもそものモバイル・フロントホールのポリシーに則った説明であるが、実際に光ファイバ上に流れる信号の伝送容量を考えると、アンテナ素子数は例えば数セクタセクタアンテナなど、ごく少数に限られると考えられる。MassiveMIMOなどで想定する100本以上のアンテナ素子では、敷設する光ファイバの本数や伝送するデータの容量等を考慮するとコストが膨大なものとなるという考え方が一般的である。

0119

これに対しモバイル・バックホールでは、図13(a)に対応する構成として図13(b)に示す構成を取る。図12(b)に対し、無線信号処理を行う領域410が、図13(a)の無線信号処理を行う領域420と全く同じ機能の無線信号処理を行う領域440に置き換えられ、それに伴いD/A変換器427以降の処理が図13(a)と同様に、アンテナ系統ごとに行われる以外は全く同様である。ここでの特徴は、基地局装置のアンテナ素子数は増大しているが、光インタフェース回路414から光ファイバ415を介して基地局装置内の光インタフェース回路416までの伝送路上での情報容量は増加していないことである。したがって、上述の図13(a)の様な問題は生じない。しかし、元々、図12(a)の様なモバイル・フロントホールが有益となる課題については何ら解決するものではなく、一般的には光ファイバ上での伝送容量を抑えながら、モバイル・フロントホールの利点をも両立可能な構成が求められていた。

0120

その様な検討の中で、フロントホールとバックホールの中間的なモバイル・ミッドホールとして、BBUとRRHとの間の機能配分の見直しの検討がなされている。図14に、従来技術におけるモバイル・ミッドホールの構成例を示す。ここでは図12と同様に、ネットワーク側からユーザに向けての方向に関する信号の伝送(BBUからRRH方向)に関する機能のみを抜粋した。図12及び図13と同じものには同様の符号を振っている。MAC層処理回路401、送信信号処理回路412、送信ウエイト乗算回路430、送信ウエイト処理回路431、時間軸信号生成回路433は全体で無線に関するベースバンド信号処理を行う領域445−1及び445−2を構成するが、図12(a)及び図13(a)と異なるのは、MAC層処理回路401はBBU側の領域445−1に、送信信号処理回路412、送信ウエイト乗算回路430、送信ウエイト処理回路431、時間軸信号生成回路433はRRH側の領域445−2に分かれて配置されており、全体の機能配分の見直しが図られている。

0121

以上の機能配分の見直しにより、図14のモバイル・ミッドホールの場合には光ファイバ上での伝送容量が図12(a)と同程度であり、図13(a)の様に情報量が大幅に増大せずに済んでいる。この意味では光ファイバ上での伝送容量の抑制的な効果は十分に得られている。しかし、そもそものモバイル・フロントホールの目的であるRRH442−3側から無線伝送方式に依存する処理を排除し、全ての無線方式に依存する処理をBBU441−3側に集約するという視点で見れば、領域445−2の処理がRRH442−3側に配置されているのは、図12(a)に示すモバイル・フロントホールの構成に比べればフロントホールの目的に十分に適っていない。この意味でフロントホールとバックホールの中間としてミッドホールとの呼ばれ方もしているのであるが、理想的にはRRH側に多数のアンテナ素子を実装しながらも、BBU側に無線伝送方式に依存する処理を集約し、それでいて光ファイバ上に流れる情報容量をバックホールと同程度に抑えることができるのが好ましい。

0122

[その他の課題]
マルチパス環境の場合にはマルチパス成分の除去のために、OFDMやSC−FDEなどの技術が一般には有効であることが知られている。しかし、既存のOFDMやSC−FDEなどのシステムでは、一般には基地局装置と無線局装置はそれぞれ非同期の独自のクロック、ローカル発振器を用いており、バーストモードで伝送処理を行う。バーストモードでは、仮にクロックの誤差がある場合でもバーストごとに処理がリセットされるために問題ない。更には、クロックの誤差やローカル発振器の周波数誤差についても、FFTを行う際のサブキャリアごとの直交性を破らない程度の誤差であれば、それ以上の高精度の同期は求められない。したがって、ある程度の周波数誤差が検知されれば、送信側及び受信側のAFC処理により周波数誤差を補正し、それでも残る残留周波数誤差については、例えばOFDMであればパイロットサブキャリアにより位相回転量を推定し、その補正処理を行うことが可能であった。

0123

しかし、上述の様にモバイル・フロントホールの場合には遅延のジッタが10−9以下であることが求められ、OFDMやSC−FDEなどのブロック伝送技術では要求される遅延のジッタを満たすことはできなかった。

0124

更に、70〜80GHzのeバンド帯などの利用を想定すれば、位相雑音の存在する帯域幅がOFDMやSC−FDEなどのサブキャリア間隔よりも広くなり、OFDMシンボル周期よりも短い時間内での複素位相の不確定なふらつきである位相雑音により、OFDMなどのサブキャリア間の直交性を破る成分が無視できないことになる。これはひとえにFFT処理を行うから問題となるものであり、シングルキャリア伝送であればOFDMやSC−FDEなどのブロック伝送の単位となるブロック長よりも短い時間周期シングルキャリアの信号処理を行うため、位相雑音の累積が大きくなる前に位相の変動成分を補正することが可能であった。しかし、上述の様にMIMOチャネルを活用して空間多重伝送を行うのであれば、各ストリームの信号を分離するための送信及び受信ウエイトはサブキャリアごとに異なる値を持ち、このウエイトの周波数依存性を反映して信号処理を行うためには、受信信号を一旦FFTにより周波数軸上の信号に変換する必要があった。この様に、空間多重の信号分離のためにはFFT処理が必須であるが、FFTを実施すると位相雑音が除去できない状態になってしまい問題である。しかし、FFT処理を実施して周波数軸上の空間分離を行う前の状態では、複数ストリームのシングルキャリアの信号は相互に干渉となるため、シングルキャリアの信号検出は困難となる。この様に、FFT処理を施さずに時間軸上で信号分離ができれば、その後にシングルキャリア信号の信号処理で位相雑音補償が可能になり、その様な技術が求められている。

先行技術

0125

太田厚、黒崎聰、丸田一輝、新井拓人、飯塚正孝、「B−5−175 大規模アンテナ無線エントランスシステムの提案」、電子情報通信学会総合大会講演論文集2013年(通信_1)、2013年3月5日、p.585
新井拓人、太田厚、黒崎聰、丸田一輝、飯塚正孝、「B−5−176 大規模アンテナ無線エントランスシステムにおける送受信ウエイト算出法」、電子情報通信学会総合大会講演論文集2013年(通信_1)、2013年3月5日、p.586
丸田一輝、太田厚、黒崎聰、新井拓人、飯塚正孝、「B−5−177 大規模アンテナ無線エントランスシステムにおけるユーザ間干渉抑圧法」、電子情報通信学会総合大会講演論文集2013年(通信_1)、2013年3月5日、p.587
黒崎聰、太田厚、丸田一輝、新井拓人、飯塚正孝、「B−5−178 大規模アンテナ無線エントランスシステムにおける低相関スケジューリング法」、電子情報通信学会総合大会講演論文集2013年(通信_1)、2013年3月5日、p.588
小原辰徳、須山聡、シンキユン、奥幸彦、「RCS2013−349高周波数帯を用いた超高速MassiveMIMO伝送における固定ビームフォーミングと固有モードプリコーディング結合処理」、電子情報通信学会技術研究報告、無線通信システム(RCS)、Vol.113、No.456、2014年2月24日、p.259−p.264

発明が解決しようとする課題

0126

将来モバイルネットワークで伝送路の大容量化が求められる環境としては、(環境1)モバイルユーザへのアクセス系において、基地局装置からモバイルユーザの端末局装置への大容量伝送、(環境2)スモールセル用無線基地局装置を例えばビルの壁面などに設置する場合、施工上の理由から基地局装置へのエントランス回線を無線化する無線エントランスでの大容量伝送、(環境3)例えば列車内の膨大な数のモバイルユーザのデータを列車内で一旦集約し、この集約されたデータを一括して地上のネットワークに転送するエントランス回線としての無線エントランスの大容量伝送、などが考えられる。(環境1)の場合においては、比較的狭いエリアに存在するユーザへの効率的な伝送の目的から、ビルの壁面や屋上等の高所から真下方向に見下ろす方向でサービスエリアを形成し、端末局装置においては上方からの電波が到達するという物理的な特徴から、見通し環境は概ね確保されており、端末局装置が実装するアンテナ素子も上方からの電波の到来を意識して多少の指向性利得を備えるアンテナを用いるなら、結果的に見通し波が非常に支配的な環境となっている。同様に(環境2)の場合には、設置場所が固定的に設置されていることから、相互に見通し環境を確保し、アンテナ素子も高利得の指向性アンテナを用いることが予想され、(環境1)以上に見通し波が支配的な状況となっている。(環境3)の場合には例えば列車などは移動体であるがために(環境2)ほどの高い指向性アンテナを用いることはできないが、列車の1次元的な移動という特徴を考慮すれば、その1次元的な経路に見合った指向性アンテナを利用し、且つ、線路上に障害物割り込むことは考えにくく、やはり(環境1)以上に見通し波が支配的であることが期待される。

0127

ここで、先にも説明をしたが一般にMIMOチャネル行列を利用した空間多重伝送においては反射波が多数存在するマルチパス環境が効果的で、直接の見通し波成分が支配的な場合にはあまり適していないことが知られている。この問題を回避して見通し波が支配的な環境で高次の空間多重伝送をするためには、基地局装置のアンテナ素子を空間的に大規模にする(アンテナ開口長を広げる)ことが一つの選択肢である。つまり、各アンテナ素子間の伝送路上の経路長がランダムに異なる状況を形成することで、擬似的にマルチパス環境に近づけることは可能である。

0128

一方、前述した通り、将来モバイルネットワークの中では伝送路の大容量化が求められており、周波数帯域幅を広げての運用を考慮すると、準ミリ波やミリ波等の高い周波数帯での運用が余儀なくされる。ここで注意すべき点は、高い周波数帯を利用した場合には各装置間ないしは装置とアンテナ間を同軸ケーブル等で接続し、このケーブル上で送受信信号等を伝送する場合、ケーブル上での伝送損失が非常に大きくなるという課題がある点である。具体的には、60GHz帯の信号などではケーブルにも依存はするが、1m当たりで15dB程度の損失が見込まれる。

0129

ただでさえ回線設計上の利得として不利となるミリ波帯を用いながら、その回線利得確保のためにアンテナを多数設置しても、そのアンテナの空間的な広がりの間を繋ぐケーブル上で膨大なケーブルロスが発生したのでは意味がない。また更に、回線利得を確保するためにアンテナ素子数を大規模化する場合には、そのアンテナの空間的な広がりの間を膨大な数のケーブルが張り巡らされることになり、その間の伝送損失を低減するために低損失のケーブルを利用するならば、その間のケーブル取り回しはケーブルの曲げなどの設置上の自由度も低く、基地局装置の設置に対する制約は非常に大きくなり、現実的ではなくなる。

0130

つまり、将来モバイルネットワークにおける無線エントランス又はアクセス系において、見通し波が支配的な環境であるにもかかわらず、ミリ波等の高い周波数帯を用いて高次の空間多重により大容量伝送を実現するには、これらの課題を解決して無線システムを構築する必要がある。
また、以上の無線回線に特化した議論に加えて、多数のアンテナ素子を実装した基地局装置への光ファイバを用いたモバイル・フロントホール回線の提供においても、上述の無線のトレンドは無視できない状況である。上述の様に元々モバイル・フロントホール回線でのサンプリングデータの伝送には、実際のユーザデータの情報量の約16倍の容量の光回線が必要となる。5Gモバイルでは、(準)ミリ波帯などの活用などによりユーザデータとして10Gbpsもの大容量化が目標とされるが、その16倍となると160Gbpsの容量がモバイル・フロントホール回線に求められる上、更にアンテナ素子の増大に伴い160Gbps×アンテナ素子数までの大容量化が理屈の上では求められることになる。仮に無線回線の大容量化のスピードと光回線の大容量化の技術開発のスピードが同等であったとしても、このアンテナ素子数分の大容量化は光回線の許容限界を遥かに超えるものであり、コスト的にとても選択可能なものではない。
この様に、将来モバイルネットワークにおける光ファイバを用いたモバイル・フロントホール回線の利用においても、多数のアンテナ素子を備えた無線基地局装置の経済的な敷設のために、これらの課題を解決して光と無線を融合した将来モバイルネットワークを構築する必要がある。

0131

記事情に鑑み、本発明は、見通し環境が支配的な環境でMIMOによって伝送容量を増大させることが可能な無線通信システム及びアンテナ素子配置方法を提供することを目的としている。

課題を解決するための手段

0132

本発明の一態様は、第2の実施形態に関し、第1の無線局装置と第2の無線局装置とを備える無線通信システムであって、前記第1の無線局装置は、複数の単一アンテナ素子により構成される又はアンテナ素子グループごとに指向性形成が可能な複数のアンテナ素子グループにより構成される第1のアンテナ群と、該複数の単一アンテナ素子又は複数のアンテナ素子グループに対応付けられた無線通信の信号処理を実行する信号処理部と、を有し、前記第2の無線局装置は、1次元的なリニアアレー又は2次元的な格子アレー構成をとる第2のアンテナ素子群と、該第2のアンテナ素子群を介して前記信号処理部との無線通信を実行する送受信部と、を有し、複数の前記第1のアンテナ群を構成する各単一アンテナ素子又はアンテナ素子グループは、前記アンテナ素子の間隔又は前記アンテナ素子グループの間隔が、前記第1の無線局装置と前記第2の無線局装置との距離Lと、無線通信の信号波の波長λと、前記第2のアンテナ素子群を構成するリニアアレー状のアンテナ素子の数N又は格子状に配置された縦方向又は横方向のいずれかのアンテナ素子の数Nと、前記第2のアンテナ素子群を構成する縦方向又は横方向のいずれかのアンテナ素子の間隔dとに基づいて算出された値の整数倍になる様に配置される無線通信システムである。

0133

本発明の一態様は、第2の実施形態に関し、前記第1のアンテナ群と前記第2のアンテナ素子群とは、正対する位置に配置される無線通信システムである。

0134

本発明の一態様は、第2の実施形態に関し、複数の前記第1のアンテナ群を構成するアンテナ素子は、直線状に配置され、前記第2のアンテナ素子群を構成するアンテナ素子は、リニアアレー状にアンテナ素子同士の間隔dで配置され、且つ、前記第1のアンテナ群と前記第2のアンテナ素子群とを結ぶ直線の方向に対し、前記第1のアンテナ群の正面方向が角度θ度ずれた方向に、及び前記第2のアンテナ群の正面方向が角度θ’度ずれた方向に向けて配置されている場合、複数の前記第1のアンテナ群を構成するアンテナ素子同士の間隔が、いずれのアンテナ素子の組み合わせに対しても(λL/{Ndcosθcosθ’})の整数倍となる、無線通信システムである。

0135

本発明の一態様は、第2の実施形態に関し、複数の前記第1のアンテナ群を構成するアンテナ素子は、直線状に配置され、前記第2のアンテナ素子群を構成するアンテナ素子は、縦方向にN本のアンテナ素子が間隔dで並び且つ横方向にN’本のアンテナ素子が間隔d’で並ぶ格子アレー状に配置され、且つ、前記第1のアンテナ群と前記第2のアンテナ素子群とを結ぶ直線の方向に対し、前記第1のアンテナ群の正面方向が正対する位置から角度θ度ずれた方向に、及び前記第2のアンテナ群の正面方向が角度θ’度ずれた方向に向けて配置されている場合、複数の前記第1のアンテナ群を構成するアンテナ素子同士の間隔が、いずれのアンテナ素子の組み合わせに対しても(λL/{Ndcosθcosθ’})の整数倍又は(λLcosθ/N’d’)の整数倍となる、請求項1又は請求項2に記載の無線通信システムである。

0136

本発明の一態様は、第2の実施形態に関し、前記第1のアンテナ群を構成するアンテナ素子は、複数のアンテナ素子により構成されるアンテナ素子群であり、アンテナ素子群は前記第2のアンテナ素子群との間の無線通信に用いるMIMO(Multiple Input Multiple Output)チャネル行列に対する送信ウエイトベクトル及び受信ウエイトベクトルのうち少なくとも一方を、前記MIMOチャネル行列の第1特異値に対応する第1右特異ベクトル及び第1左特異ベクトルのうち少なくとも一方、又は、前記第1右特異ベクトルの近似解及び前記第1左特異ベクトルの近似解のうち少なくとも一方に基づいて算出し、当該送信ウエイトベクトル及び受信ウエイトベクトルの少なくとも一方を用いて、送信する無線信号及び受信した無線信号の少なくとも一方の指向性形成を行う無線通信システムである。

0137

本発明の一態様は、第2の実施形態に関し、第1の無線局装置と第2の無線局装置とを備える無線通信システムにおけるアンテナ素子配置方法であって、前記第1の無線局装置は、複数の単一アンテナ素子により構成される又はアンテナ素子グループごとに指向性形成が可能な複数のアンテナ素子グループにより構成される第1のアンテナ群と、該複数の単一アンテナ素子又は複数のアンテナ素子グループに対応付けられた無線通信の信号処理を実行する信号処理部と、を有し、前記第2の無線局装置は、1次元的なリニアアレー又は2次元的な格子状アレー構成をとる第2のアンテナ素子群と、該第2のアンテナ素子群を介して前記信号処理部との無線通信を実行する送受信部と、を有する場合、複数の前記第1のアンテナ群を構成する各単一アンテナ素子又はアンテナ素子グループは、前記アンテナ素子同士の間隔又は前記アンテナ素子グループの間隔が、前記第1の無線局装置と前記第2の無線局装置との距離Lと、無線通信の信号波の波長λと、前記第2のアンテナ素子群を構成するリニアアレー状のアンテナ素子の数N又は格子状に配置された縦方向又は横方向のいずれかのアンテナ素子の数Nと、前記第2のアンテナ素子群を構成する縦方向又は横方向のいずれかのアンテナ素子同士の間隔dとに基づいて算出された値の整数倍になる様に配置されるステップを含むアンテナ素子配置方法である。

発明の効果

0138

本発明により、無線通信システム及びアンテナ素子配置方法は、見通し環境が支配的な環境でMIMOによって伝送容量を増大させることが可能となる。

図面の簡単な説明

0139

MIMO伝送の例の概要を示す図である。
固有モード伝送の例の概念図である。
大規模アンテナシステムの例の概要を示す図である。
見通し環境及び見通し外環境におけるインパルス応答の例を表す図である。
マルチユーザMIMOシステムにおける基地局装置の構成の一例を示す概略ブロック図である。
マルチユーザMIMOシステムにおける基地局装置における送信部の構成の一例を示す概略ブロック図である。
マルチユーザMIMOシステムにおける基地局装置における受信部の構成の一例を示す概略ブロック図である。
チャネル行列ごとの特異値の絶対値の分布特性の例を示す図である。
アップリンクとダウンリンクとのチャネル情報の非対称性の例を示す図である。
キャリブレーションの例の概要を示す図である。
複数対複数のチャネル行列のキャリブレーションの例を示す図である。
モバイル・フロントホール及びモバイル・バックホールの機能分担の概要を示す図である。
多素子アンテナを用いる場合の従来技術におけるモバイル・フロントホール及びモバイル・バックホールの機能分担の概要を示す図である。
モバイル・ミッドホールの構成例を示す図である。
第1の実施形態における、基地局装置の100本のアンテナ素子が等間隔に配置されたリニアアレーの例を示す図である。
第1の実施形態における、基地局装置の100本のアンテナ素子が25本ごとの4個のグループに分けて配置されたリニアアレーの例を示す図である。
第1の実施形態における、基地局装置の構成の一例を示す概略ブロック図である。
第1の実施形態における、基地局装置の第1の送信信号処理部の構成の一例を示す概略ブロック図である。
第1の実施形態における、基地局装置の第1の受信信号処理部の構成の一例を示す概略ブロック図である。
第1の実施形態における、端末局装置の構成の一例を示す概略ブロック図である。
第1の実施形態における、端末局装置の送信部の構成の第1例を示す概略ブロック図である。
第1の実施形態における、端末局装置の受信部の構成の第1例を示す概略ブロック図である。
第1の実施形態における、端末局装置の受信部の構成の第2例を示す概略ブロック図である。
第1の実施形態における、基地局装置の第2の受信信号処理部ないしは端末局装置の第2の受信信号処理回路の装置構成の例を示す概略ブロック図である。
第1の実施形態における、端末局装置の送信部の構成の第2例を示す概略ブロック図である。
第1の実施形態における、信号送信時の信号処理フローの概要を示すフローチャートである。
第1の実施形態における、信号受信時の信号処理フローの第1例の概要を示すフローチャートである。
第1の実施形態における、信号受信時の信号処理フローの第2例の概要を示すフローチャートである。
第2の実施形態における、基地局装置に4本のパラボラアンテナ、端末局装置に16本のアンテナ素子をリニアアレー状に実装したケースの第1例を示す図である。
第2の実施形態における、基地局装置側のあるパラボラアンテナからの端末局装置側のアンテナ素子ごとの経路差の例を示す図である。
第2の実施形態における、基地局装置に4本のパラボラアンテナ、端末局装置に16本のアンテナ素子をリニアアレー状に実装したケースの第2例を示す図である。
第3の実施形態における、統括基地局装置からサテライト基地局装置への信号の送受信を無線回線で実現する第1例を示す図である。
第3の実施形態における、統括基地局装置からサテライト基地局装置への信号の送受信を無線回線で実現する第2例を示す図である。
第3の実施形態における、統括基地局装置とサテライト基地局装置との間の信号処理と、サテライト基地局装置と端末局装置との間の信号処理との概要を示す図である。
第3の実施形態における、サテライト基地局装置の回路構成を示す図である。
第4の実施形態における無線通信システムの構成の概要を示す。
第4の実施形態における第1特異値に対応する仮想的伝送路を複数系統用いた列車ムービングセルにおける信号処理の概要を示す図である。
第4の実施形態における座標情報及びチャネル情報を取得した後に行うオフラインの信号処理の概要を示す図である。
第4の実施形態における第1特異値に対応する仮想的伝送路を複数系統用いた列車ムービングセルにおける別の信号処理の概要を示す図である。
第4の実施形態における座標情報及びチャネル情報を取得した後に行うオフラインの別の信号処理の概要を示す図である。
第4の実施形態の無線通信システムにおけるサービス運用中における座標情報から送受信ウエイトベクトルを取得する場合の信号処理の例を示す図である。
第4の実施形態における基地局装置の構成例を示すブロック図である。
第4の実施形態における端末局装置の構成例を示すブロック図である。
第5の実施形態における関数F(α)を示すグラフである。
第5の実施形態における干渉信号の除去方法を説明する図である。
第5の実施形態の無線通信システムにおける時間軸ビームフォーミングの送受信ウエイト取得の処理を示すフローチャートである。
第5の実施形態における基地局装置が備える第1の送信信号処理部の構成例を示す図である。
第5の実施形態における基地局装置の第1の受信信号処理部の構成例を示すブロック図である。
第5の明実施形態における端末局装置が備える送信部の回路構成の例を示すブロック図である。
第5の実施形態における端末局装置の受信部の構成例を示すブロック図である。
複数のアンテナ素子で受信した受信信号の概要を示す図である。
限定的なサブキャリアによるチャネル推定の概要を示す図である。
第6の実施形態におけるチャネル行列取得の近似解法の処理動作を示すフローチャートである。
複数アンテナを用いたチャネル行列の近似解法の処理動作を示すフローチャートである。
双方向のチャネル推定結果からチャネル行列の近似解を求める処理動作を示すフローチャートである。
シミュレーションによる分布特性を評価した結果示す図である。
重心から離れたアンテナを用いた送受信ウエイトベクトル近似解における利得特性を示す図である。
リニアアレーを用いる場合のトレーニング信号の送信に用いるアンテナ素子の例を示す図である。
最密充填状の2次元アンテナ配置を用いる場合のトレーニング信号の送信に用いるアンテナ素子の例を示す図である。
リニアアレーの重心付近にトレーニング信号送信用のアンテナ素子を追加する場合の例を示す図である。
近似ウエイト値線形補間の具体例を示す図である。
近似ウエイト値の線形補間における複素位相オフセット判定処理の動作を示すフローチャートである。
複数の第1特異値に対応するウエイトベクトルの近似解法の処理動作を示すフローチャートである。
同一エリア内に存在する複数のスモールセル間での同時チャネル推定を行う装置構成を示す図である。
第8の実施形態におけるフレーム構成の例を示す図である。
エリア内に新たに入ってきた端末局装置と基地局装置の間の通信開始のための処理動作を示すフローチャートである。
基地局装置の送受信信号処理動作を示すフローチャートである。
端末局装置の送受信信号処理動作を示すフローチャートである。
前提条件となるフレーム構成を示す図である。
トレーニング信号を省略し、データペイロードのみで通信を行う例を示す図である。
他の第2の受信ウエイト行列算出の処理動作を示すフローチャートである。
時間軸ビームフォーミングの他の信号処理動作を示すフローチャートである。
第10の実施形態における、マルチユーザMIMO適用時の基地局装置及び端末局装置の構成を示す図である。
第10の実施形態における、マルチユーザMIMO適用時の基地局装置の第1の送信信号処理部の回路構成を表す図である。
第10の実施形態における、マルチユーザMIMO適用時の基地局装置の第1の受信信号処理部の回路構成を示す図である。
第11の実施形態における第1特異値に対応する仮想的伝送路を用いたモバイル・フロントホールの機能分担の概要を示す図である。
第11の実施形態における複数の第1特異値に対応する仮想的伝送路を用いたモバイル・フロントホールの機能分担の概要(ダウンリンク)を示す図である。
第11の実施形態における複数の第1特異値に対応する仮想的伝送路を用いたモバイル・フロントホールの機能分担の概要(アップリンク)を示す図である。
第11の実施形態における相関検出回路の概要を示す図である。
第11の実施形態における複数の第1特異値に対応する仮想的伝送路を用いた別のモバイル・フロントホールの機能分担の概要(アップリンク)を示す図である。
第11の実施形態における複数の第1特異値に対応する仮想的伝送路を用いたモバイル・フロントホールのマルチユーザMIMO適用時の機能分担の概要(ダウンリンク)を示す図である。
第11の実施形態における複数の第1特異値に対応する仮想的伝送路を用いたモバイル・フロントホールのマルチユーザMIMO適用時の機能分担の概要(アップリンク)を示す図である。
実施形態における、第1の信号処理部と第2の信号処理部とをアクセス系に適用する場合の構成の例を示す図である。

実施例

0140

本発明の実施形態について図面を参照して詳細に説明する。
以下の実施形態における記号を説明する。
NSDM:空間多重数
N、M、N’、M’:自然数
i、j、m、n:主としてアンテナ素子等の通し番号(一般的な整数)。
k:サブキャリアの番号(周波数成分の番号)。
NBS−Ant:基地局装置のアンテナ素子の総数
N’BS−Ant:基地局装置の第1の送信信号処理部又は第1の受信信号処理部が備えるアンテナ素子の数。
NMT−Ant:端末局装置のアンテナ素子の数。
NAnt:基地局装置又は端末局装置のアンテナ素子の数。
NSC:サブキャリアの数。
NFFT:FFTのポイントの数。
L:距離。
K:ライス係数。
λk:第kサブキャリアの波長。
rji:送信側の第iアンテナ素子と、受信側の第jアンテナ素子との間の距離。
hji、h’ji:送信側の第iアンテナ素子と、受信側の第jアンテナ素子との間のチャネル情報(周波数依存性を持つため、説明上で必要があれば第k周波数成分であることを明示的に示す場合もある)。
d:アンテナ素子同士の間隔。
Δdmn:第nアンテナ素子と第mアンテナ素子の間隔。
ΔLm:第1アンテナ素子を基準とした第mアンテナ素子の経路長差
c:光速(3×108m/s)。
fc:無線信号の中心周波数[Hz]。
fk:ベースバンド信号の第kサブキャリアの周波数[Hz]。
t:時刻
W:帯域幅[Hz]。
Δt:サンプリング周期(Δt=1/W)。
ψj(t)、Φj(t):時刻tにおける第jアンテナ素子での受信信号(サンプリング値)。
φj(k)(t):時刻tにおける第jアンテナ素子での第kサブキャリアの受信信号(サンプリング値の中の所定のサブキャリアに着目した値)。
ηk:最小二乗法を用いる場合の2π周期の複素位相を考慮した第kサブキャリアのオフセット値
um:第m左特異ベクトル。
vm:第m右特異ベクトル。

0141

[第1の実施形態]
[複数の第1特異値に対応する仮想的伝送路を用いた空間多重伝送]
(第1の実施形態に係る基本原理の概要)
図8でも説明した様に、図8(b)の様な見通し波が支配的な環境の場合には第1特異値と第2特異値の絶対値の間のギャップが大きくなり、第2特異値以上の特異値に相当する伝送路を利用する場合には、ほんの僅かな反射波によるHi.i.d.の成分を用いて稼いだ僅かな回線利得により通信を行うことになる。しかし、例えばビルの壁面に設置された基地局装置から下方の限定的なスモールセルのエリア内を照射する場合には、基地局装置側は指向性利得の高いアンテナを実装する。更に、波長の短いミリ波等の特徴を利用して、指向性利得を得ることが可能な小型のアンテナ素子が端末局装置側に実装されることが予想される状況では、送信側・受信側双方オムニ指向性のアンテナを実装するマイクロ波帯のシステムなどに比べて、マルチパス成分は非常に限定的となることが予想される。そこで、見通し波のみを考慮した場合のMIMO伝送の特性を整理する。

0142

図15は、基地局装置の100本のアンテナ素子が等間隔に配置されたリニアアレーの例を示す図である。図15において、符号40は無線通信システムであり、符号301は基地局装置であり、符号302は端末局装置である。図15では、基地局装置301の100本のアンテナ素子は、リニアアレー状に実装されている。基地局装置301の100本のアンテナ素子は、長さD1に亘って等間隔に配置されている。また、端末局装置302の16本のアンテナ素子は、長さD2に亘ってリニアアレー状に等間隔に配置されている。

0143

図16は、基地局装置の100本のアンテナ素子が25本ごとの4個のグループに分けて配置されたリニアアレーの例を示す図である。図16において、符号50は無線通信システムであり、符号303は基地局装置、符号302は端末局装置、符号304−1〜304−4は第1の信号処理部、符号305は第2の信号処理部(厳密にはインタフェース回路、MAC層処理回路、通信制御回路などのその他の基地局装置機能を含む)である。図16では、基地局装置303の100本のアンテナ素子は、25本のアンテナ素子ごとの4個のグループに分けられている。同じグループの25本のアンテナ素子は、図15の場合に比べて非常に狭い間隔で、長さD1よりも短い長さD3に亘って、リニアアレー状に配置されている。

0144

図16では、基地局装置303の100本のアンテナ素子は、グループ(25本のアンテナ素子)ごとに、リニアアレー状に実装されている。すなわち、基地局装置303の100本のアンテナ素子は、第1の信号処理部304ごとに、リニアアレー状に実装されている。第1の信号処理部304−1〜304−4は、信号処理により、グループ(25本のアンテナ素子)ごとに一つの指向性ビームを形成する。また、端末局装置302の16本のアンテナ素子は、長さD2に亘ってリニアアレー状に等間隔に配置されている。

0145

ここで、図15図16とに示すふたつのケースのそれぞれにおいて、四つの信号系統を空間多重(4多重)して伝送する場合の伝送特性を比較する。伝送の特性の把握は、図2(c)に示す各伝送路の利得により把握可能で、これはチャネル行列の特異値分解を行った特異値の絶対値の2乗値に相当する。図15に示すケースでは、例えばダウンリンクを想定し、基地局装置301が送信局11、端末局装置302が受信局12であるものとすれば、チャネル行列のサイズは16×100となる。この行列に対して特異値分解を行う。

0146

一方、図16に示すケースでは下記の手順を想定し、その特性を把握する。まず、基地局装置303は、基地局装置303の各25本のアンテナ素子と、端末局装置302の16本のアンテナ素子とにより形成される16×25のチャネル行列(ダウンリンクの場合)を基に特異値分解を行い、第1右特異ベクトルを用いて送信する、と仮定する。具体的には、基地局装置303は、第1の信号処理部304−1〜304−4に接続された各25本のアンテナ素子と、端末局装置302の16本のアンテナ素子の間の部分チャネル行列H1〜H4を特異値分解する。部分チャネル行列H1〜H4を、式(16)に示す。

0147

0148

ここでの各部分チャネル行列H1〜H4は16×25の行列である。したがって、各右特異ベクトルを形成するvijはそれぞれ25次元ベクトルであり、四つのグループのアンテナ群のi番目のグループの中の第j特異値に対応する右特異ベクトルを表している。同様に、各左特異ベクトルを形成するuijはそれぞれ16次元ベクトルであり、四つのグループのアンテナ群のi番目のグループの中の第j特異値に対応する左特異ベクトルを表しているここで、基地局装置303の全アンテナ素子と端末局装置302との間の全体チャネル行列を、式(17)に示す。

0149

0150

ここでの送信ウエイト行列WTxを、式(18)に示す。

0151

0152

ここでは表記の都合上、送信ウエイト行列WTxのエルミート共役の表現を用いているが、送信ウエイト行列WTx自体のサイズは100×4である。この結果、全体チャネル行列と送信ウエイト行列の積は、式(19)に示される。

0153

0154

ここで、Hivi1は16×1の行列(列ベクトル)であり、式(16)によりλiui1と一致する。この結果、全体チャネル行列と送信ウエイト行列の積の全体のサイズは16×4となる。一般には部分チャネル行列H1〜H4の第1左特異ベクトルはそれぞれ直交していないため、受信時には信号分離のための受信ウエイトを形成して乗算する。ただし、部分チャネル行列H1〜H4の第1左特異ベクトルがそれぞれ概ね直交している環境にある場合には、全体チャネル行列と送信ウエイト行列との積で表される行列を特異値分解した4個の特異値の絶対値の2乗値が、図2(c)の伝送路の回線利得に概ね一致する。ここでの評価では、見通し波のみを考慮した自由空間伝搬モデルにより、チャネル行列の各要素が下記の式(20)で表されるものとする。

0155

0156

ここで、rijは送信側の第iアンテナと受信側の第jアンテナとの間の距離を表し、λは波長を表す。全体の特徴を把握するため、全体に係数として乗算される係数はここでは簡単化のため省略している。

0157

そこで、図16においてL=100m、D1=12m、D2=10cm、D3=30cm、周波数80GHzの場合について、それと同程度のアンテナ開口長で設置した図15の特性を比較する。ここでは回線利得として特異値の絶対値をXとしたとき、回線利得を20Log(X)[dB]として評価する。このとき、図15の4本の回線の利得はそれぞれ−56.5dB、−83.4dB、−118.3dB、−157.2dBであるのに対し、図16に対し上述の処理を施したものはそれぞれ−62.5dBとなる。図15の場合には、図2(c)の第1特異値に相当する利得最大の回線のみが大きな値を持ち、残りの特異値に相当する回線の利得は相対的に小さく、送信電力やアンテナ利得などのパラメータの値にも依存するが、実質的には第1特異値に相当する回線しか利用できない状況にある。これに対し、図16の場合には4本の伝送路がほぼ均等に利用可能であることが分かる。ここで、図15の第1特異値に対する利得と図16の特異値に対する利得差は6dBであるが、これは図16では指向性ビーム形成に用いるアンテナ素子数が100本から25本に1/4となっており、その分の10Log(1/4)=−6dBに相当する。言い換えれば、アンテナ素子群を4分割することにより効率が1/4になるが、シャノン限界によるチャネル容量には、SNRを6dB改善するよりも4本の信号系列を多重化した方が、伝送容量増大の観点では圧倒的に効率が良い。

0158

送信電力やアンテナ利得などのパラメータの値の設定により、第2特異値以降の特異値に相当する回線の回線利得が十分に有効利用可能なほど、反射波成分の受信信号電力が強ければ別だが、一般にはミリ波等の高周波数帯を利用に伴い減少する回線利得を補うためにアンテナ素子数を増大させるのであれば、第2特異値以降の特異値に相当する回線の回線利得が十分であるという状況は一般的には考えにくく、データ伝送としては実質1回線分の伝送を行う図15のケースよりも、4回線分の伝送を並列的に行う図16の方が伝送容量を増大するのに適していると見ることができる。この様にアンテナをグループ化し、それぞれのグループで第1特異値に相当する仮想的伝送路を効率的に利用することが有効である。

0159

(特異値分解とキャリブレーション)
ここで前述の式(14)において、ローノイズアンプやハイパワーアンプの増幅率がアンテナ素子ごとに差がない(ないしは、一定値であると近似可能な)場合について考える。式をシンプルにするために、アップリンクのチャネル行列をHUL、ダウンリンクのチャネル行列をHDL、基地局装置側のキャリブレーション行列をCBS、端末局装置側のキャリブレーション行列をCMTとして、更にアップリンクのチャネル行列HULの特異値分解結果を、式(21)と式(22)に示す。

0160

0161

0162

ここで式(21)の対角項の絶対値はそれぞれの行列で全て等しいものとする。この場合、式(21)の両式はそれぞれユニタリー行列となり、この項はあくまでも座標軸の回転として振る舞うことになる。
ここで、ダウンリンクのチャネル行列HDLは、キャリブレーション行列CBS、CMTとアップリンクのチャネル行列HULを用いて表し、式(22)を代入すると、式(23)に示される。

0163

0164

ここで、右辺のDULの両側の式を、式(24)と式(25)に示す。

0165

0166

0167

キャリブレーション行列の各成分の絶対値が概ね等しい場合には、アップリンクのチャネル行列にキャリブレーションを施してから特異値分解をして送受信ウエイトを求めた結果と、アップリンクのチャネル行列を特異値分解して得られた第1右特異ベクトル及び第1左特異ベクトルの各成分に対し、キャリブレーション係数を乗算してキャリブレーション処理を行った結果とが一致することが、式(24)と式(25)から分かる。

0168

つまり、アップリンクのチャネル行列に対して特異値分解を施せば、ダウンリンクに関しては特異値分解を実施しなくても、得られた受信ウエイトベクトル(ないしは行列)の各成分にキャリブレーション処理を施せば、それにより所望の送信ウエイトベクトル(ないしは行列)を取得可能であることが分かる。このため、特異値分解は一度だけ実施すればよいことになる。

0169

(本発明における基地局装置の回路構成について)
以下に、本発明の第1の実施形態における基地局装置303の回路構成を図に従って説明する。
図17は、本発明のMIMOシステムにおける基地局装置70の構成の一例を示す概略ブロック図である。図16では基地局装置303が1台と、端末局装置302が1台とのPoint−to−Point型の1対1通信の場合を例示したが、当然ながら複数の端末局装置302が存在していても構わない。図16の信号の送受信は、着目するサブキャリアで見れば同時に1台の端末局装置302としか通信しておらず、シングルユーザMIMO伝送の形態となり、スケジューリングにより通信対象は一つの端末局装置302が選択される。アクセス制御でOFDMAを用いるのであれば、サブキャリアごとに異なる端末局装置302が割り当てられても良いが、各サブキャリアに着目すれば、一つの端末局装置302に割り当ては限定されている。また、Point−to−Point型の通信で端末が固定されている場合には、スケジューリングにおいて通信相手の端末局装置302を選択する処理は不要になる。本発明の第1の実施形態においては、Point−to−MultiPoint型の1対多通信のマルチユーザMIMO伝送の形態のバリエーションにおいても利用可能であるが、以下の説明ではこの様なバリエーションに関係なく、一般的なシングルユーザMIMO伝送に関する説明を行う。また以下の説明では、説明を簡単にするために広帯域のシステムを想定しOFDMないしはSC−FDEなどの様に周波数軸でのサブキャリアごとの信号処理を行う場合について説明を行うが、その他のシステム(例えば狭帯域のシングルキャリアのシステムなど)においても拡張可能である。

0170

図17に示す様に、基地局装置303に対応する基地局装置70は、第1の送信信号処理部181−1〜181−4と、第2の送信信号処理部71と、第1の受信信号処理部185−1〜185−4と、第2の受信信号処理部75と、インタフェース回路77と、MAC(Medium Access Control)層処理回路78と、及び通信制御回路120とを備えている。MAC層処理回路78はスケジューリング処理回路781を有している。

0171

基地局装置70は、インタフェース回路77を介して、外部機器ないしはネットワークとのデータの入出力を行う。インタフェース回路77は、入力されるデータのうち、無線回線上で転送すべきデータを検出し、検出したデータをMAC層処理回路78に出力する。MAC層処理回路78は、基地局装置70全体の動作の管理制御を行う通信制御回路120の指示に従い、MAC層に関する処理を行う。ここで、MAC層に関する処理には、インタフェース回路77で入出力されるデータと、無線回線上で送受信されるデータとの変換と、MAC層のヘッダ情報の付与などが含まれる。この処理の中で、スケジューリング処理回路781は、空間多重を行う端末局装置302の各種スケジューリング処理を行う。スケジューリング処理回路781は、スケジューリング結果を通信制御回路120に出力する。MIMO伝送では、複数の信号系列の信号を一度に空間多重して送信するため、複数系統の信号系列がMAC層処理回路78から第2の送信信号処理部71に出力される。

0172

第2の送信信号処理部71の動作は後述するが、基本的にはMAC層処理回路78からの複数系列の信号に所定の変調処理を行い、必要に応じて何らかのプリコーディング処理(送信側での等化処理や信号分離などの処理)などを施し、第1の送信信号処理部181−1〜181−4に出力する。この際、OFDMやSC−FDEを用いる場合にかかわらず、第1の送信信号処理部181−1〜181−4にて周波数軸上の信号処理を行う場合には、第2の送信信号処理部71内で周波数軸上の信号を生成し、これを第1の送信信号処理部181−1〜181−4に出力する。後述する第5の実施形態の様に第1の送信信号処理部で時間軸上の信号処理を行う場合には、時間軸の信号を出力する構成としても良い。第1の送信信号処理部181−1〜181−4はそれぞれ図16に示す様に複数のアンテナが接続され、それぞれのアンテナに対して送信信号を出力する。この際、第1の送信信号処理部181−1〜181−4ごとにグループ化されたアンテナ素子群の中で、第1の特異値に相当する送信ウエイトベクトルを乗算した信号(厳密には、例えばOFDMであれば各サブキャリアの信号を合成した信号を時間軸成分に変換し、これを無線周波数にアップコンバートした信号)が各アンテナから送信される。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 日本無線株式会社の「 アレーアンテナ装置」が 公開されました。( 2019/05/09)

    【課題】少ない実在アンテナ素子でより大開口化に対応可能なアレーアンテナ装置を提供する。【解決手段】第1の間隔d1ごとに複数の第1の配設位置が設けられ、一部の第1の配設位置に第1の実在アンテナ素子FTが... 詳細

  • 日本無線株式会社の「 アレーアンテナ装置」が 公開されました。( 2019/05/09)

    【課題】少ない実在アンテナ素子で近距離の方位と高さを検出し、かつ、遠距離を高感度に検出することが可能なアレーアンテナ装置を提供するアレーアンテナ装置を提供する。【解決手段】水平方向と垂直方向に規定間隔... 詳細

  • 日本無線株式会社の「 アンテナ装置」が 公開されました。( 2019/05/09)

    【課題】少ない実在アンテナ素子で方位と高さを検出することが可能なアンテナ装置を提供する。【解決手段】横方向に複数の配設位置Pが設けられ、一部の配設位置Pに実在アンテナ素子RFが配設され、他の配設位置P... 詳細

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ