図面 (/)

技術 空気調和装置

出願人 株式会社富士通ゼネラル
発明者 滝英司
出願日 2015年6月30日 (4年8ヶ月経過) 出願番号 2015-130799
公開日 2017年1月19日 (3年1ヶ月経過) 公開番号 2017-015294
状態 特許登録済
技術分野 空調制御装置 不可逆サイクルによる圧縮式冷凍機械
主要キーワード タイマー計測 取り込み室 設定温度情報 運転切替 運転停止処理 フレアナット 低圧センサ 各冷媒配管
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2017年1月19日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (4)

課題

無駄な油回収運転の実行を防ぐ空気調和装置を提供する。

解決手段

CPUは、冷房運転を開始した時点あるいは油回収運転が終了して冷房運転に復帰した時点から第1所定時間Tp1が経過したか否かを判断する。第1所定時間Tp1が経過していれば、CPUは、記憶部に記憶されている室内機運転状態テーブルを参照し、停止時間Ts≧閾停止時間Tstが「Yes」である室内機台数Nsが閾台数Nst以上であるか否かを判断する。停止時間Ts≧閾停止時間Tstが「Yes」である室内機の台数Nsが閾台数Nst以上である場合は、CPUは、油回収運転を実行し、停止時間Ts≧閾停止時間Tstが「Yes」である室内機の台数Nsが閾台数Nst以上でない場合は、CPUは、冷房運転を継続する。

概要

背景

従来、空気調和装置としては、1台の室外機複数台室内機液管およびガス管で接続され、複数台の室内機で同時に冷房運転あるいは暖房運転を行うことが可能であるものが知られている。このような空気調和装置の室外機には、室内機の台数同数膨張弁が設けられており、各室内機に対応する膨張弁の開度を調整することによって、各室内機における冷媒流量を調整できるようになっている。

上記のような空気調和装置で冷房運転を行っているとき、圧縮機から冷媒とともに吐出された冷凍機油は、凝縮器として機能する室外熱交換器を通過して各室内機に分流する。このとき、停止している室内機に対応する膨張弁は全閉とされているため、当該室内機に向かって分流した冷凍機油は全閉とされている膨張弁によってき止められて、膨張弁から上流側の冷媒配管内滞留する。膨張弁から上流側の冷媒配管内に滞留した冷凍機油は、当該膨張弁が開かれないと冷媒回路を流れて圧縮機に戻らない。

全閉とされている膨張弁から上流側の冷媒配管内に滞留する冷凍機油量が多くなると、圧縮機に戻る冷凍機油量が減少するので、圧縮機で冷凍機油が不足して潤滑不良となる恐れがある。そこで、一定時間毎、例えば、圧縮機の運転時間が所定の積算値となれば、各室内機に対応する膨張弁を全て開くとともに圧縮機の回転数を冷房運転時より上げることによって、膨張弁から上流側の冷媒配管内に滞留する冷凍機油を圧縮機に戻す油回収運転を行うことで、定期的に圧縮機に冷凍機油を戻して潤滑不良となることを防止するマルチ型空気調和機が提案されている(特許文献1参照)。

概要

無駄な油回収運転の実行を防ぐ空気調和装置を提供する。CPUは、冷房運転を開始した時点あるいは油回収運転が終了して冷房運転に復帰した時点から第1所定時間Tp1が経過したか否かを判断する。第1所定時間Tp1が経過していれば、CPUは、記憶部に記憶されている室内機運転状態テーブルを参照し、停止時間Ts≧閾停止時間Tstが「Yes」である室内機の台数Nsが閾台数Nst以上であるか否かを判断する。停止時間Ts≧閾停止時間Tstが「Yes」である室内機の台数Nsが閾台数Nst以上である場合は、CPUは、油回収運転を実行し、停止時間Ts≧閾停止時間Tstが「Yes」である室内機の台数Nsが閾台数Nst以上でない場合は、CPUは、冷房運転を継続する。

目的

本発明は以上述べた問題点を解決するものであって、不要な油回収運転の実行を防ぐ空気調和装置を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

室外機と、複数台室内機と、前記室外機と複数台の前記室内機が冷媒配管で接続された冷媒回路を有する空気調和装置であって、前記室外機は、圧縮機と、四方弁と、室外熱交換器と、前記室内機の台数と同じ数だけ設けられる膨張弁と、制御手段を有し、複数台の前記室内機は室内熱交換器を有し、前記空気調和装置は、前記圧縮機から前記冷媒回路に吐出された冷凍機油を前記圧縮機に回収する油回収運転が行え、前記制御手段は、各前記室内機から運転状態を取り込んで記憶するとともに、停止している室内機の停止時間を計測し、同停止時間が所定の閾時間以上である室内機の台数を把握し、前記空気調和装置が冷房運転を開始した後あるいは前記油回収運転を終了して冷房運転を再開した後に運転を停止する室内機があれば、当該室内機が運転を停止した時点から前記停止時間の計測を開始し、前記閾時間以上の所定時間が経過した後に、前記停止時間が前記閾時間以上である室内機の台数が所定の閾台数未満である場合は、前記油回収運転を実行せず前記冷房運転を継続する、ことを特徴とする空気調和装置。

請求項2

前記制御手段は、前記所定時間より長い強制油回収実行時間が経過したときは、前記停止時間が前記閾時間以上である室内機の台数に関わらず前記油回収運転を実行する、ことを特徴とする請求項1に記載の空気調和装置。

技術分野

0001

本発明は、室外機複数台室内機冷媒配管で接続された空気調和装置に関する。

背景技術

0002

従来、空気調和装置としては、1台の室外機に複数台の室内機が液管およびガス管で接続され、複数台の室内機で同時に冷房運転あるいは暖房運転を行うことが可能であるものが知られている。このような空気調和装置の室外機には、室内機の台数同数膨張弁が設けられており、各室内機に対応する膨張弁の開度を調整することによって、各室内機における冷媒流量を調整できるようになっている。

0003

上記のような空気調和装置で冷房運転を行っているとき、圧縮機から冷媒とともに吐出された冷凍機油は、凝縮器として機能する室外熱交換器を通過して各室内機に分流する。このとき、停止している室内機に対応する膨張弁は全閉とされているため、当該室内機に向かって分流した冷凍機油は全閉とされている膨張弁によってき止められて、膨張弁から上流側の冷媒配管内滞留する。膨張弁から上流側の冷媒配管内に滞留した冷凍機油は、当該膨張弁が開かれないと冷媒回路を流れて圧縮機に戻らない。

0004

全閉とされている膨張弁から上流側の冷媒配管内に滞留する冷凍機油量が多くなると、圧縮機に戻る冷凍機油量が減少するので、圧縮機で冷凍機油が不足して潤滑不良となる恐れがある。そこで、一定時間毎、例えば、圧縮機の運転時間が所定の積算値となれば、各室内機に対応する膨張弁を全て開くとともに圧縮機の回転数を冷房運転時より上げることによって、膨張弁から上流側の冷媒配管内に滞留する冷凍機油を圧縮機に戻す油回収運転を行うことで、定期的に圧縮機に冷凍機油を戻して潤滑不良となることを防止するマルチ型空気調和機が提案されている(特許文献1参照)。

先行技術

0005

特開昭63−73052号公報

発明が解決しようとする課題

0006

全閉とされている膨張弁から上流側の冷媒配管内に滞留する冷凍機油量が多くなるのは、停止している室内機の台数が多く、かつ、各室内機の停止時間が長いつまり当該室内機に対応する膨張弁が全閉とされている時間が長い場合である。これとは反対に、停止している室内機の台数が少ない場合や、停止している室内機の台数が多くても各室内機の停止時間が短いつまり当該室内機に対応する膨張弁が全閉とされている時間が短い場合は、全閉とされている膨張弁から上流側の冷媒配管内に滞留する冷凍機油量が少なく、圧縮機で潤滑不良となる危険性も低い。

0007

上述したように、油回収運転を行うときは、停止している室内機に対応するものも含めて膨張弁を全て開くとともに圧縮機の回転数を冷房運転時より上げる。従って、油回収運転は冷房運転時の制御条件とは異なる条件での運転となり、使用者快適性が損なわれる恐れがある。このため、油回収運転を行う回数はできる限り少ないことが好ましい。しかし、特許文献1で提案されている油回収運転では、全閉とされている膨張弁から上流側の冷媒配管内に滞留する冷凍機油量に関わらず一定時間毎に油回収運転を行うため、油回収運転を行う必要がない場合であっても油回収運転が行われるという問題があった。

0008

本発明は以上述べた問題点を解決するものであって、不要な油回収運転の実行を防ぐ空気調和装置を提供することを目的とする。

課題を解決するための手段

0009

上記の課題を解決するために、本発明の空気調和装置は、室外機と、複数台の室内機と、室外機と複数台の室内機が冷媒配管で接続された冷媒回路を有するものであって、室外機は、圧縮機と四方弁と室外熱交換器と室内機の台数と同じ数だけ設けられる膨張弁と制御手段を有し、複数台の室内機は室内熱交換器を有する。この空気調和装置は、圧縮機から冷媒回路に吐出された冷凍機油を圧縮機に回収する油回収運転が行える。制御手段は、各室内機から運転状態を取り込んで記憶するとともに、停止している室内機の停止時間を計測し、停止時間が所定の閾時間以上である室内機の台数を把握する。そして、制御手段は、空気調和装置が冷房運転を開始した後あるいは油回収運転を終了して冷房運転を再開した後に運転を停止する室内機があれば、当該室内機が運転を停止した時点から停止時間の計測を開始し、閾時間以上の所定時間が経過した後に、停止時間が閾時間以上である室内機の台数が所定の閾台数未満である場合は、油回収運転を実行せず冷房運転を継続する。

発明の効果

0010

上記のように構成した本発明の空気調和装置は、所定時間が経過した後は所定の閾停止時間以上停止している室内機が上記閾台数未満である場合は、油回収運転を実行しない。これにより、不要な油回収運転の実行を防いで使用者の快適性が損なわれることを抑制できる。

図面の簡単な説明

0011

本発明の実施形態である空気調和装置の説明図であり、(A)が冷媒回路図、(B)が室外機制御手段のブロック図である。
本発明の実施形態における、室内機運転状態テーブルである。
本発明の実施形態における、室外機制御手段での処理を説明するフローチャートである。

0012

以下、本発明の実施の形態を、添付図面に基づいて詳細に説明する。実施形態としては、1台の室外機に複数台の室内機が冷媒配管で並列に接続され、全ての室内機で同時に冷房運転あるいは暖房運転が行える空気調和装置を例に挙げて説明する。尚、本発明は以下の実施形態に限定されることはなく、本発明の主旨を逸脱しない範囲で種々変形することが可能である。

0013

図1(A)に示すように、本実施形態における空気調和装置1は、1台の室外機2に10台の室内機5が、室内機5の台数と同じ10本の液管8および10本のガス管9で並列に接続されている。具体的には、10本の液管8の各々の一端と室外機2に設けられる10個の液側閉鎖弁27が接続され、10本の液管8の各々の他端と10台の室内機5の液管接続部53が接続されている。また、10本のガス管9の各々の一端と室外機2に設けられる10個のガス側閉鎖弁28が接続され、10本のガス管9の各々の他端と10台の室内機5のガス管接続部54が接続されている。このように、室外機2と10台の室内機5が10本の液管8および10本のガス管9で接続されて、空気調和装置1の冷媒回路10が構成されている。尚、図1(A)では、10台の室内機5、10本の液管8、10本のガス管9、10個の液側閉鎖弁27、および、10個のガス側閉鎖弁28については、各々3つのみ描画している。

0014

室外機2は、圧縮機21と、四方弁22と、室外熱交換器23と、10個の膨張弁24と、アキュムレータ25と、室外ファン26と、上述した10個の液側閉鎖弁27および10個のガス側閉鎖弁28と、室外機制御手段200を備えている。そして、室外ファン26および室外機制御手段200を除くこれら各装置が、以下で詳述する各冷媒配管で相互に接続されて、冷媒回路10の一部をなす室外機冷媒回路20を構成している。尚、図1(A)では、10個の膨張弁24は3個のみ描画している。

0015

圧縮機21は、インバータにより回転数が制御される図示しないモータによって駆動されることで運転容量可変できる能力可変型圧縮機である。圧縮機21の冷媒吐出口と四方弁22のポートaが吐出管41で接続されており、また、圧縮機21の冷媒吸入側とアキュムレータ25の冷媒流出側が吸入管42で接続されている。

0016

四方弁22は、冷媒の流れる方向を切り換えるための弁であり、a、b、c、dの4つのポートを備えている。上述したように、ポートaと圧縮機21の冷媒吐出口が吐出管41で接続されている。ポートbと室外熱交換器23の一方の冷媒出入口が冷媒配管43で接続されている。ポートcとアキュムレータ25の冷媒流入側が冷媒配管46で接続されている。そして、ポートdには室外機ガス管45の一端が接続されている。室外機ガス管45の他端には、10本の室外機ガス分管45a(図1(A)では、このうち3本を描画)の各々の一端が接続されており、10本の室外機ガス分管45aの各々の他端は、10個のガス側閉鎖弁28に接続されている。

0017

室外熱交換器23は、室外ファン26の回転により図示しない吸込口から室外機2の内部に取り込まれた外気と冷媒を熱交換させる。上述したように、室外熱交換器23の一方の冷媒出入口と四方弁22のポートbが冷媒配管43で接続されている。また、室外熱交換器23の他方の冷媒出入口には室外機液管44の一端が接続されている。室外熱交換器23は、冷媒回路10が冷房サイクルとなる場合は凝縮器として機能し、冷媒回路10が暖房サイクルとなる場合は蒸発器として機能する。

0018

室外機液管44の他端には、10本の室外機液分管44a(図1(A)では、このうち3本を描画)の各々の一端が接続され、10本の室外機液分管44aの各々の他端は10個の液側閉鎖弁27に接続されている。そして、各室外機液分管44aには、膨張弁24が設けられている。これら10個の膨張弁24は、全て室外機制御手段200によりその開度が制御される。各膨張弁24の開度を制御することによって、各膨張弁24に接続される10台の室内機5に流れる冷媒量が調整される。10個の膨張弁24は、図示しないパルスモータにより駆動される電子膨張弁であり、パルスモータに与えられるパルス数によって開度が調整される。

0019

アキュムレータ25は、上述したように、冷媒流入側と四方弁22のポートcが冷媒配管46で接続され、冷媒流出側と圧縮機21の冷媒吸入口が吸入管42で接続されている。アキュムレータ25は、流入した冷媒をガス冷媒液冷媒とに分離し、ガス冷媒のみを吸入管42を介して圧縮機21に吸入させる。

0020

室外ファン26は、室外熱交換器23の近傍に配置される樹脂材で形成されたプロペラファンであり、図示しないファンモータによって室外ファン26が回転することで、室外機2に設けられた図示しない吸込口から室外機2の内部に外気を取り込み、室外熱交換器23を流れる冷媒と熱交換した外気を室外機2に設けられた図示しない吹出口から室外機2の外部へ放出する。

0021

以上説明した構成の他に、室外機2には各種のセンサが設けられている。図1(A)に示すように、吐出管41には、圧縮機21から吐出される冷媒の圧力を検出する高圧センサ31と、圧縮機21から吐出される冷媒の温度を検出する吐出温度センサ33が設けられている。冷媒配管46におけるアキュムレータ25の冷媒流入側近傍には、圧縮機21に吸入される冷媒の圧力を検出する低圧センサ32と、圧縮機21に吸入される冷媒の温度を検出する吸入温度センサ34が設けられている。

0022

冷媒配管43における室外熱交換器23の近傍には、室外熱交換器23が凝縮器として機能する際に室外熱交換器23に流入する冷媒の温度を検出する冷媒温度センサ35が設けられている。室外機液管44における室外熱交換器23の近傍には、室外熱交換器23が蒸発器として機能する際に室外熱交換器23に流入する冷媒の温度を検出する冷媒温度センサ36が設けられている。そして、室外機2の図示しない吸込口付近には、室外機2の内部に流入する外気の温度、すなわち外気温度を検出する外気温度検出手段である外気温度センサ37が備えられている。

0023

また、室外機2には、室外機制御手段200が備えられている。室外機制御手段200は、室外機2の図示しない電装品箱に格納された制御基板に搭載されており、図1(B)に示すように、CPU210と、記憶部220と、通信部230と、センサ入力部240とを備えている。

0024

記憶部220は、ROMやRAMで構成されており、室外機2の制御プログラムや各種センサからの検出信号に対応した検出値、圧縮機21や室外ファン26の駆動状態、10台の室内機5の各々から送信される運転情報(運転/停止情報設定温度情報等を含む)等を記憶する。通信部230は、10台の室内機5の各々との通信を行うインターフェイスである。センサ入力部240は、室外機2の各種センサでの検出結果を取り込んでCPU210に出力する。CPU210は、センサ入力部240を介して各種センサでの検出値を定期的(例えば、1分毎)に取り込むとともに、10台の室内機5の各々から送信される運転開始/停止を示す運転状態や運転情報(設定温度室内温度等)を含んだ信号が通信部230を介して入力される。CPU210は、これら入力された各種情報に基づいて、第1膨張弁24a〜第3膨張弁24cの開度制御、圧縮機21や室外ファン26の駆動制御を行う。また、図示は省略するが、CPU210は、タイマー計測機能を有している。

0025

次に、10台の室内機5について説明する。10台の室内機5は全て同じ構成を備えており、室内熱交換器51と、液管接続部53と、ガス管接続部54と、室内ファン55を備えている。そして、室内ファン55を除くこれら各装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路10の一部をなす室内機冷媒回路50を構成している。尚、図1(A)に示すように、10台の室内機には、後述する室内機運転状態テーブル100に記載の室内機番号001〜010が与えられている。

0026

室内熱交換器51は、冷媒と、室内ファン55の回転により室内機5に備えられた図示しない吸込口から室内機5の内部に取り込まれた室内空気を熱交換させるものである。室内熱交換器51の一方の冷媒出入口と液管接続部53が室内機液管71で接続されている。室内熱交換器51の他方の冷媒出入口とガス管接続部54が室内機ガス管72で接続されている。尚、液管接続部53やガス管接続部54には、各冷媒配管が溶接フレアナット等によって接続されている。

0027

室内熱交換器51は、室内機5が冷房運転を行う場合は蒸発器として機能し、室内機5が暖房運転を行う場合は凝縮器として機能する。

0028

室内ファン55は、室内熱交換器51の近傍に配置される樹脂材で形成されたクロスフローファンであり、図示しないファンモータによって回転することで、図示しない吸込口から室内機5の内部に室内空気を取り込み、室内熱交換器51において冷媒と熱交換した室内空気を室内機5に備えられた図示しない吹出口から室内へ供給する。

0029

以上説明した構成の他に、室内機5には各種のセンサが設けられている。室内機液管71における室内熱交換器51の近傍には、室内熱交換器51に流入あるいは室内熱交換器51から流出する冷媒の温度を検出する液側温度センサ61が設けられている。室内機ガス管72における室内熱交換器51の近傍には、室内熱交換器51から流出あるいは室内熱交換器51に流入する冷媒の温度を検出するガス側温度センサ62が設けられている。そして、室内機5の図示しない吸込口付近には、室内機5の内部に流入する室内空気の温度、すなわち室内温度を検出する室内温度センサ63aが備えられている。

0030

次に、本実施形態の空気調和装置1が冷房運転を行うときの冷媒回路10における冷媒の流れや各部の動作を、図1(A)を用いて説明する。以下の説明では、10台の室内機5が全て冷房運転を行っている場合について説明する。図1(A)において、矢印は、冷媒回路10における冷房運転時の冷媒の流れを示しており、また、四方弁22については、冷房運転時の各ポート間の連通状態実線で示している。

0031

尚、空気調和装置1が暖房運転を行うときの冷媒回路10における冷媒の流れや各部の動作については詳細な説明を省略するが、暖房運転時は四方弁22の各ポート間の連通状態は、図1(A)に破線で示す状態となり、室外熱交換器23が蒸発器として機能し、各室内熱交換器51が凝縮器として機能する。

0032

室内機5が冷房運転を行う場合、四方弁22が図1(A)に実線で示す状態、すなわち、四方弁22のポートaとポートbが連通するように、また、ポートcとポートdが連通するように切り換えられる。これにより、冷媒回路10が図1(A)に矢印で示す方向に冷媒が流れる状態となり、室外熱交換器23が凝縮器として機能するとともに、各室内熱交換器51が蒸発器として機能する。

0033

上記のような冷媒回路10の状態で圧縮機21が起動すると、圧縮機21から吐出された高圧の冷媒は吐出管41から四方弁22に流入し、四方弁22から冷媒配管43を流れて室外熱交換器23に流入する。室外熱交換器23に流入した冷媒は、室外ファン26の回転によって室外機2の内部に取り込まれた外気と熱交換を行って凝縮し、室外熱交換器23から室外機液管44に流出する。室外機液管44に流入した冷媒は、各室外機液分管44aに分流し全開とされている各膨張弁24を通過して、各液側閉鎖弁27を介して各液管8に流入する。

0034

各液管8から各液管接続部53を介して各室内機5に流入した冷媒は、各室内機液管71を流れて各室内熱交換器51に流入し、各室内ファン55の回転によって室内機2の内部に取り込まれた室内空気と熱交換を行って蒸発する。各室内熱交換器51から各室内機ガス管72に流出した冷媒は、各ガス管接続部54を介して各ガス管9に流入し、各ガス管9を流れて各ガス側閉鎖弁28を介して室外機2に流入する。室外機2に流入した冷媒は、各室外機ガス分管45aから室外機ガス管45、四方弁22、冷媒配管46へと流れてアキュムレータ25に流入し、アキュムレータ25でガス冷媒と液冷媒とに分離される。アキュムレータ25から吸入管42へと流出したガス冷媒は、吸入管42を流れて圧縮機21に吸入され、再び圧縮される。

0035

以上説明したように空気調和装置1が冷房運転を行っているときに、運転を停止している室内機5がある場合は、当該室内機5に液管8および液側閉鎖弁27を介して接続された室外機液分管44aに設けられた膨張弁24が全閉とされる。圧縮機21から冷媒とともに吐出された冷凍機油は、四方弁22、室外熱交換器23および室外機液管44を介して各室外機液分管44aに分流するが、各室外機液分管44aに分流した冷凍機油のうち、全閉とされている膨張弁24が設けられた室外機液分管44aに流入した冷凍機油は、当該膨張弁24によって堰き止められて室外機液分管44aに滞留する。

0036

全閉とされている膨張弁24によって堰き止められて室外機液分管44aに滞留する冷凍機油量が多くなるのは、停止している室内機5の台数が多く、かつ、各室内機5の停止時間が長いつまり当該室内機5に対応する膨張弁24が全閉とされている時間が長い場合である。これとは反対に、停止している室内機5の台数が少ない場合や、停止している室内機5の台数が多くても各室内機5の停止時間が短いつまり当該室内機5に対応する膨張弁24が全閉とされている時間が短い場合は、全閉とされている膨張弁24から上流側の室外機液分管44aに滞留する冷凍機油量が少ない。

0037

そこで、本発明では、冷房運転を行っているときの各室内機5の運転状態を確認し、冷房運転を開始した時点あるいは油回収運転を終了して冷房運転を再開した時点から第1所定時間が経過するまでの間に1度も運転しなかった室内機5が所定の閾台数未満である場合は、油回収運転を行わずに冷房運転を継続する。また、第1所定時間経過後に所定の閾停止時間以上停止している室内機5の台数が上記閾台数未満である場合は、油回収運転を行わずに冷房運転を継続する。尚、上記第1所定時間が、本発明の所定時間である。

0038

具体的には、室外機制御手段200の記憶部220に記憶されている室内機運転状態テーブル100を用いて、室外機制御手段200のCPU210が、第1所定時間が経過するまでの間に1度も運転しなかった室内機5の台数、あるいは、第1所定時間経過後に所定の閾停止時間以上停止している室内機5の台数を把握し、これらの台数と閾台数を比較した結果に応じて油回収運転の要否を判断する。

0039

尚、上記閾台数および閾停止時間の決定方法については、後に詳細に説明する。

0040

以下の説明では、まず図2を用いて室内機運転状態テーブル100について説明し、次に図3を用いてCPU210が室内機運転状態テーブル100を用いて油回収運転の要否を判断する際に実行する処理について説明する。尚、以下の説明では、各室内機5が停止している時間を停止時間Ts、所定の閾停止時間をTst、第1所定時間をTp1、強制油回収実行時間であり第1所定時間Tp1より長い時間である第2所定時間をTp2、停止時間Ts≧閾停止時間Tst(本実施形態では、180分)となっている室内機5の台数をNs、所定の閾台数をNstとしている。

0041

まず、室内機運転状態テーブル100について説明する。図2に示すように、室内機運転状態テーブル100は、室内機5の室内機番号毎に、各室内機5の運転状態(運転or停止)と、停止している室内機5の停止時間Ts(運転している室内機5では、「———」)と、停止している室内機5の停止時間Tsが閾停止時間Tst以上であるか否か(Ts≧Tstであれば「Yes」、Ts≧Tstでなければ「No」)が、各々表記されている。

0042

CPU210は、通信部230を介して各室内機5から定期的(例えば、5分毎)に運転状態を取り込み、取り込んだ運転状態に変更があれば、室内機運転状態テーブル100の変更があった室内機5に対応する運転状態を更新する。CPU210は、停止している室内機5について、運転状態が停止となった時点から新たに取り込んだ運転状態に変化がない限りはその時点までの時間を停止時間Tsとし、以降は運転状態を取り込む度に時間を加算して停止している室内機5に対応する停止時間Tsを更新する。

0043

また、CPU210は、室内機運転状態テーブル100の停止時間Tsを更新する度に、更新した停止時間Tsと閾時間Tstを比較し、Ts≧Tstであれば室内機運転状態テーブル100の停止している室内機5に対応するTs≧Tstの項を「Yes」、Ts≧Tstでなければ室内機運転状態テーブル100の停止している室内機5に対応するTs≧Tstの項を「No」とする。

0044

尚、閾時間Tstは、後述する閾台数Nstとともに予め試験等を行って定められたものであり、停止時間Tsが閾時間Tst以上となっている室内機5の台数Nsが閾台数Nst以上であるときは、全閉とされている膨張弁24で冷凍機油が堰き止められて室外機液分管44aにおける膨張弁24より上流側(室外熱交換器23側)に滞留している冷凍機油量が多くなって、圧縮機21で潤滑不良が発生する危険性があることがわかっている値である。

0045

次に、図3に示すフローチャートを用いて、本発明の空気調和装置1が冷房運転を行うときに、CPU210が、室内機運転状態テーブル100を用いて油回収運転の要否を判断する際に実行する処理について説明する。図3に示すフローチャートでは、STは処理のステップを表し、これに続く数字はステップ番号を表している。尚、図3では、本発明に関わる処理を中心に説明しており、これ以外の処理、例えば、冷房運転時に使用者が指示した設定温度や風量等の運転条件に応じた制御といった、空気調和装置1に関わる一般的な処理については説明を省略する。

0046

使用者が各室内機5の図示しないリモコン等を操作して運転開始を指示すると、CPU210は、使用者の指示した運転が冷房運転であるか否かを判断する(ST1)。使用者の指示した運転が冷房運転であれば(ST1−Yes)、CPU210は、冷房運転開始処理を実行する(ST2)。ここで、冷房運転開始処理とは、CPU210が四方弁22の各ポートを図1(A)に実線で示す接続となるよう切り換えて、冷媒回路10を冷房サイクルとすることである。

0047

冷房運転開始処理を終えたCPU210は、冷房運転制御を開始する(ST3)。ここで、冷房運転制御とは、CPU210が各室内機5から要求された冷房能力に応じた回転数で圧縮機21の駆動制御を行うとともに、圧縮機21の吐出過熱度SHdが冷房運転時の目標過熱度(予め試験等を行って求められて記憶部220に記憶されているもの。例えば、10deg)以上となるように室外ファン26の駆動制御を行うことである。

0048

冷房運転制御を開始したCPU210は、タイマー計測を開始し(ST4)、各室内機5から通信部230を介して運転状態を取り込み室内機運転状態テーブル100を更新する(ST5)。前述したように、CPU210は、各室内機5から定期的(例えば、5分毎)に運転状態を取り込み、取り込んだ運転状態に変更があれば運転状態を更新する。また、CPU210は、停止している室内機5については、運転状態が停止となった時点からの停止時間Tsを、運転状態が変わらない限り運転状態を取り込む度に更新し、更新した停止時間Tsと閾時間Tstの比較結果を更新する。

0049

次に、CPU210は、ST4でタイマー計測を開始してから第1所定時間Tp1(例えば、180分)が経過したか否かを判断する(ST6)。ここでは、第1所定時間Tp1は閾時間Tstと同じ時間(180分)としているが、第1所定時間Tp1は閾時間Tst以上の時間であればよく、例えば200分であってもよい。

0050

第1所定時間Tp1が経過していなければ(ST6−No)、CPU210は、ST12に処理を進める。第1所定時間Tp1が経過していれば(ST6−Yes)、CPU210は、記憶部220に記憶されている室内機運転状態テーブル100を参照し、Ts≧Tstが「Yes」である室内機5の台数Nsが閾台数Nst以上であるか否かを判断する(ST7)。

0051

Ts≧Tstが「Yes」である室内機5の台数Nsが閾台数Nst以上である場合は(ST7−Yes)、CPU210は、ST9に処理を進める。Ts≧Tstが「Yes」である室内機5の台数Nsが閾台数Nst以上でない場合は(ST7−No)、CPU210は、ST4でタイマー計測を開始してから第2所定時間Tp2(例えば、360分)が経過したか否かを判断する(ST8)。ここで、第2所定時間Tp2は、予め試験等を行って定められたものであり、各室内機5の停止時間TsやTs≧Tstが「Yes」である室内機5の台数Nsに関わらず、冷媒回路10に滞留する冷凍機油量が多くなって圧縮機21で潤滑不良が発生する危険性があることがわかっているものである。

0052

第2所定時間Tp2が経過していなければ(ST8−No)、CPU210は、ST12に処理を進める。第2所定時間Tp2が経過していれば(ST8−Yes)、CPU210は、ST9に処理を進める。そして、CPU210は、ST9において油回収運転を実行する。CPU210は、油回収運転を行うとき、各室内機5の室内熱交換器51における冷媒流量が、各室内熱交換器51の冷媒流路パス)が液冷媒で満たされる流量となるように、各室内機5に対応する膨張弁24の開度を個別に制御するとともに、圧縮機21を所定の回転数(例えば、70rps)とする。ここで、各膨張弁24の開度や圧縮機21の所定回転数は、予め試験等を行って求められて記憶部220に記憶されているものである。

0053

CPU210は、ST17の処理を行って油回収運転を実行しているとき、油回収運転の終了条件成立しているか否かを判断する(ST18)。ここで油回収運転の終了条件とは、圧縮機21に湿った冷媒(ガス冷媒中に液冷媒が含まれている状態)が吸入されており冷媒回路10に滞留している冷凍機油が湿った冷媒とともに圧縮機21に吸入されたと考えられる条件が成立しているか否かであり、例えば、圧縮機21に吸入される冷媒の過熱度である吸入過熱度が0degとなれば油拐取運転条件が成立したと判断し、吸入過熱度が0degでなければ油回収運転を継続する。尚、CPU210は、吸入温度センサ34で検出した吸入温度と、低圧センサ32で検出した吸入圧力をセンサ入力部240を介して取り込み、吸入圧力を用いて算出した低圧飽和温度を吸入温度から減じて吸入過熱度を算出する。CPU210は、吸入過熱度を定期的(例えば、1分毎)に算出している。

0054

ST10において、油回収運転の終了条件が成立していなければ(ST10−No)、CPU210は、ST9に処理を戻す。油回収運転の終了条件が成立していれば(ST10−Yes)、CPU210は、油回収運転を終了してタイマーリセットする(ST11)。

0055

次に、CPU210は、使用者が空気調和装置1の運転停止指示をしたか否かを判断する(ST12)。運転停止指示があれば(ST12−Yes)、CPU210は、圧縮機21および室外ファン26を停止するとともに、各膨張弁24を全閉とする運転停止処理を行い(ST13)、処理を終了する。運転停止指示がなければ(ST12−Yes)、CPU210は、使用者が空気調和装置1の運転切替指示をしたか否かを判断する(ST14)。

0056

ここで、運転切替指示とは、冷房運転から暖房運転への切り替え、あるいは、暖房運転から冷房運転への切り替えが、使用者によって指示されることを意味する。運転切替指示があれば(ST14−Yes)、CPU210は、ST1に処理を戻す。運転切替指示がなければ(ST14−Yes)、CPU210は、現在の運転が冷房運転であるか否かを判断する(ST15)。現在の運転が冷房運転であれば(ST15−Yes)、CPU210は、ST5に処理を戻し、現在の運転が冷房運転でなければ(ST15−No)、つまり、暖房運転であれば、CPU210は、ST17に処理を戻す。

0057

尚、ST1において、使用者の指示した運転が冷房運転でなければ(ST1−No)、つまり、使用者の指示した運転が暖房運転であれば、CPU210は、暖房運転開始処理を実行する(ST16)。ここで、暖房運転開始処理とは、CPU210が四方弁22の各ポートを図1(A)に破線で示す接続となるよう切り換えて、冷媒回路10を暖房サイクルとすることである。

0058

暖房運転開始処理を終えたCPU210は、暖房運転制御を開始する(ST17)。ここで、暖房運転制御とは、CPU210が各室内機5から要求された暖房能力に応じた回転数で圧縮機21や室外ファン26の駆動制御を行うとともに、各膨張弁24の開度を各膨張弁24に対応する室内機5から要求された暖房能力に応じた開度とすることである。

0059

ST17の処理を終えたCPU210は、ST12に処理を進める。

実施例

0060

以上説明したように、本発明の空気調和装置1で冷房運転を行っているとき、第1所定時間が経過した後は所定の閾停止時間以上停止している室内機が上記閾台数未満である場合は、油回収運転を実行しない。これにより、不要な油回収運転の実行を防いで使用者の快適性が損なわれることを抑制できる。

0061

1空気調和装置
2室外機
5室内機
21圧縮機
22四方弁
23室外熱交換器
24膨張弁
51室内熱交換器
100室内機運転状態テーブル
200 室外機制御部
210 CPU
220 記憶部
240センサ入力部
Ns Ts≧Tstである室内機台数
Nst 閾台数
Ts 室内機の停止時間
Tst 閾停止時間
Tp1 第1所定時間
Tp2 第2所定時間

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ