図面 (/)

技術 健康情報処理装置、健康情報表示装置及び方法

出願人 国立大学法人東北大学株式会社東芝
発明者 根本靖久末永智一田中秀治高山卓三
出願日 2016年10月17日 (4年1ヶ月経過) 出願番号 2016-203741
公開日 2017年1月12日 (3年10ヶ月経過) 公開番号 2017-006745
状態 特許登録済
技術分野 生体の呼吸・聴力・形態・血液特性等の測定 診断用測定記録装置
主要キーワード 基盤データ 自センサ 組合情報 ソリューションシステム 避難地 母子手帳 一次利用 レジリエント
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2017年1月12日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題

センサを意識しない非意識センシングを行い、個人の真のデータを効率的かつ継続的に収集すること。

解決手段

実施形態に係る健康情報処理装置は、蓄積部と、解析部と、推定部とを備える。蓄積部は、各ユーザの健康情報である、ゲノム情報と、当該各ユーザの体内に取り込まれる飲み込み型センサから送信される生体情報及び行動情報とを、複数ユーザ分蓄積する。解析部は、蓄積された複数ユーザ分の健康情報を解析する。推定部は、前記解析の結果と所定のユーザの健康情報とを用いて、当該所定のユーザの将来の健康リスクを推定する。

概要

背景

従来、先制医療個別化予防の実現に向けて、世の中では様々な取り組みが進められている。ここで、先制医療とは、疾病発症前に、高い精度で発症の予測若しくは発症前の診断を行い、発症前の適切な時期に治療的介入を実施して、発症を防止若しくは遅らせることをいう。また、個別化予防とは、各個人に適した疾病の予防をいう。

しかしながら、健康状態の評価や疾病の発症に至る前の未病状態判別を厳密且つ客観的に行うことは、未だ困難である。例えば、個人のライフログ収集し、本人にフィードバックする取り組みは数多く試みられているが、健康状態の評価や未病状態の判別に必要な基盤データとの連携がないものや、個人の体質に基づいた個別の健康指導には至らないものが大半である。

また、健康管理に関しては、これまで多くの地域で健康や生活のデータをセンサや体重体脂肪計などの計測器で集め、簡単なライフログを収集し、本人にフィードバックする取り組みが数多く試みられてきたが、まだ一般には普及していない。この要因としては、例えば、現行のセンサ・デバイスが大型でかさばり装着感が良くないため、断片的かつ限定的にしか健康情報を収集できず、長期的な健康維持には活用しにくいことが挙げられる。また、問診ヒアリングピンポイント健康診断を行なうことで、各種健康データが収集されるが、問診ヒアリングでは本人が虚偽や見栄も含めて正確に回答しないことも多く、ピンポイントの健康診断では生体の様々な状況を取得することは困難である。

概要

センサを意識しない非意識センシングを行い、個人の真のデータを効率的かつ継続的に収集すること。実施形態に係る健康情報処理装置は、蓄積部と、解析部と、推定部とを備える。蓄積部は、各ユーザの健康情報である、ゲノム情報と、当該各ユーザの体内に取り込まれる飲み込み型センサから送信される生体情報及び行動情報とを、複数ユーザ分蓄積する。解析部は、蓄積された複数ユーザ分の健康情報を解析する。推定部は、前記解析の結果と所定のユーザの健康情報とを用いて、当該所定のユーザの将来の健康リスクを推定する。

目的

本発明は、上記に鑑みてなされたものであって、センサを意識しない非意識センシングを行い、個人の真のデータを効率的かつ継続的に収集することが可能な、健康情報処理装置、健康情報表示装置及び方法を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

各ユーザの健康情報である、ゲノム情報と、当該各ユーザの体内に取り込まれる飲み込みセンサから送信される生体情報及び行動情報とを、複数ユーザ蓄積する蓄積部と、蓄積された複数ユーザ分の健康情報を解析する解析部と、前記解析の結果と所定のユーザの健康情報とを用いて、当該所定のユーザの将来の健康リスク推定する推定部とを備えた、健康情報処理装置

請求項2

前記生体情報は、前記各ユーザの体内に取り込まれるセンサから前記各ユーザが携帯する情報端末を介して送信され、前記蓄積部に蓄積されることを特徴とする請求項1に記載の健康情報処理装置。

請求項3

前記飲み込み型センサは、食事と共に体内に取り込まれる食事型センサであることを特徴とする請求項1又は2に記載の健康情報処理装置。

請求項4

前記飲み込み型センサは、自動駆動型センサであり、所定の環境下において電源が入ることを特徴とする請求項1〜3のいずれか1つに記載の健康情報処理装置。

請求項5

前記飲み込み型センサは、水分、酵素磁気の何れかの検出された場合、又は所定の湿度である場合に電源が入ることを特徴とする請求項4に記載の健康情報処理装置。

請求項6

前記飲み込み型センサは、複数のセンシング種別のうち、前記ユーザの目的に応じて選択されるセンシング種別を使用することを特徴とする請求項1〜5のいずれか1つに記載の健康情報処理装置。

請求項7

ユーザの健康情報である、ゲノム情報と、体内に取り込まれる飲み込み型センサから送信される情報を含む生体情報、及び行動情報とを蓄積する蓄積部と、蓄積された複数のユーザ分の健康情報を解析し、将来発症し得る疾病との関連性を導き出す解析部と、前記解析部による解析の結果と所定のユーザの健康情報とを用いて、当該所定のユーザの将来の健康リスクを推定する推定部と、前記推定部により推定された将来の健康リスクとして当該ユーザが将来発症し得る疾病名称を表示する表示部と、を備えた健康情報表示装置

請求項8

前記表示部は、前記ユーザ若しくは前記ユーザの関係者に対して前記疾病の名称を表示する場合には、一部の疾病の名称を非表示とすることを特徴とする請求項7に記載の健康情報表示装置。

請求項9

前記表示部は、医療従事者に対して前記疾病の名称を表示する場合には、正式名称及びICD(InternationalClassificationofDiseases)コードのうち、少なくとも1つで表示することを特徴とする請求項7に記載の健康情報表示装置。

請求項10

ユーザの健康情報である、ゲノム情報と、体内に取り込まれる飲み込み型センサから送信される情報を含む生体情報、及び行動情報とを蓄積する蓄積部と、蓄積された複数のユーザ分の健康情報を解析し、将来発症し得る疾病との関連性を導き出す解析部と、前記解析部による解析の結果と所定のユーザの健康情報とを用いて、当該所定のユーザの将来の健康リスクを推定する推定部と、前記推定部により推定された将来の健康リスクとして当該ユーザ並びにこのユーザが指定した関係者が閲覧するために、解析された将来の健康リスクに係わるデータを出力する出力部と、前記出力部により出力される情報のうち、当該ユーザが閲覧できる閲覧範囲と、当該ユーザが指定した関係者が閲覧できる閲覧範囲を設定する設定部と、を備えた健康情報表示装置。

請求項11

前記設定部は、当該ユーザへの閲覧範囲をユーザの関係者への閲覧範囲より限定的に制限を加えて設定することを特徴とする請求項10に記載の健康情報表示装置。

請求項12

前記蓄積部は、各ユーザの健康情報である、ゲノム情報と、継続的に収集される生体情報及び行動情報とを、複数ユーザ分蓄積し、前記出力部は、前記ユーザから、前記健康情報の開示項目、及び、前記健康情報の開示先利用許諾受け付け、受け付けた利用許諾の内容に応じて前記健康情報を出力することを特徴とする請求項10または請求項11に記載の健康情報表示装置。

請求項13

前記出力部で提供される当該ユーザの健康リスクに係わるデータは、前記推定部で推定される将来発症し得る疾病の名称であることを特徴とする請求項10〜12のいずれか1つに記載の健康情報表示装置。

請求項14

健康情報処理装置が、各ユーザの健康情報である、ゲノム情報と、当該各ユーザの体内に取り込まれる飲み込み型センサから送信される生体情報及び行動情報とを、複数ユーザ分蓄積し、蓄積した複数ユーザ分の健康情報を解析し、前記解析の結果と所定のユーザの健康情報とを用いて、当該所定のユーザの将来の健康リスクを推定する、健康情報処理方法

請求項15

健康情報表示装置が、ユーザの健康情報である、ゲノム情報と、体内に取り込まれる飲み込み型センサから送信される情報を含む生体情報、及び行動情報とを蓄積し、蓄積した複数のユーザ分の健康情報を解析し、将来発症し得る疾病との関連性を導き出し、前記解析の結果と所定のユーザの健康情報とを用いて、当該所定のユーザの将来の健康リスクを推定し、推定した将来の健康リスクとして当該ユーザが将来発症し得る疾病名称を表示する、健康情報表示方法

請求項16

健康情報表示装置が、ユーザの健康情報である、ゲノム情報と、体内に取り込まれる飲み込み型センサから送信される情報を含む生体情報、及び行動情報とを蓄積し、蓄積した複数のユーザ分の健康情報を解析し、将来発症し得る疾病との関連性を導き出し、前記解析の結果と所定のユーザの健康情報とを用いて、当該所定のユーザの将来の健康リスクを推定し、推定した将来の健康リスクとして当該ユーザ並びにこのユーザが指定した関係者が閲覧するために、解析された将来の健康リスクに係わるデータを出力し、出力する情報のうち、当該ユーザが閲覧できる閲覧範囲と、当該ユーザが指定した関係者が閲覧できる閲覧範囲を設定する、健康情報表示方法。

技術分野

0001

本発明の実施形態は、健康情報処理装置、健康情報表示装置及び方法に関する。

背景技術

0002

従来、先制医療個別化予防の実現に向けて、世の中では様々な取り組みが進められている。ここで、先制医療とは、疾病発症前に、高い精度で発症の予測若しくは発症前の診断を行い、発症前の適切な時期に治療的介入を実施して、発症を防止若しくは遅らせることをいう。また、個別化予防とは、各個人に適した疾病の予防をいう。

0003

しかしながら、健康状態の評価や疾病の発症に至る前の未病状態判別を厳密且つ客観的に行うことは、未だ困難である。例えば、個人のライフログ収集し、本人にフィードバックする取り組みは数多く試みられているが、健康状態の評価や未病状態の判別に必要な基盤データとの連携がないものや、個人の体質に基づいた個別の健康指導には至らないものが大半である。

0004

また、健康管理に関しては、これまで多くの地域で健康や生活のデータをセンサや体重体脂肪計などの計測器で集め、簡単なライフログを収集し、本人にフィードバックする取り組みが数多く試みられてきたが、まだ一般には普及していない。この要因としては、例えば、現行のセンサ・デバイスが大型でかさばり装着感が良くないため、断片的かつ限定的にしか健康情報を収集できず、長期的な健康維持には活用しにくいことが挙げられる。また、問診ヒアリングピンポイント健康診断を行なうことで、各種健康データが収集されるが、問診ヒアリングでは本人が虚偽や見栄も含めて正確に回答しないことも多く、ピンポイントの健康診断では生体の様々な状況を取得することは困難である。

先行技術

0005

特開2001−327472号公報
特開2006−320735号公報

発明が解決しようとする課題

0006

本発明は、上記に鑑みてなされたものであって、センサを意識しない非意識センシングを行い、個人の真のデータを効率的かつ継続的に収集することが可能な、健康情報処理装置、健康情報表示装置及び方法を提供することを課題とする。

課題を解決するための手段

0007

実施形態に係る健康情報処理装置は、蓄積部と、解析部と、推定部とを備える。蓄積部は、各ユーザの健康情報である、ゲノム情報と、当該各ユーザの体内に取り込まれる飲み込み型センサから送信される生体情報及び行動情報とを、複数ユーザ分蓄積する。解析部は、蓄積された複数ユーザ分の健康情報を解析する。推定部は、前記解析の結果と所定のユーザの健康情報とを用いて、当該所定のユーザの将来の健康リスクを推定する。

発明の効果

0008

センサを意識しない非意識センシングを行い、個人の真のデータを効率的かつ継続的に収集することが可能になるという効果を奏する。

図面の簡単な説明

0009

図1は、本実施形態によって実現されるモチベーション向上社会を説明するための図。
図2は、本実施形態におけるソリューションシステムの一例を説明するための図。
図3は、本実施形態におけるソリューションシステムの概要を説明するための図。
図4は、本実施形態におけるPHR(Personal Health Record)データを説明するための図。
図5は、本実施形態におけるライフログ情報の収集を説明するための図。
図6は、本実施形態における食事型センサが混合される食品の一例を示す図。
図7は、本実施形態における食事型センサのセンシングの種別の一例を説明するための図。
図8は、本実施形態における食事型センサの識別方法について説明するための図。
図9Aは、本実施形態における食事型センサの利用の流れの一例を説明するための図。
図9Bは、本実施形態における食事型センサの利用の流れの一例を説明するための図。
図10は、本実施形態における装着型情報端末に記憶される計測結果の一例を示す図。
図11は、本実施形態における食事型センサのセンサ群の一例を説明するための図。
図12は、本実施形態における食事型を利用したセンシングの処理手順を示す図。
図13は、本実施形態における食事型センサの利用の流れの一例を説明するための図。
図14は、本実施形態における食事型を利用したセンシングの処理手順を示す図。
図15は、本実施形態における食事型センサの機能ブロック図。
図16は、本実施形態におけるセンサの処理の例を説明するための図。
図17は、本実施形態における食事型センサの構造の一例を示す図。
図18は、本実施形態における食事型センサの応用例を示す図。
図19は、本実施形態におけるPHRビッグデータの解析を説明するための図。
図20は、本実施形態におけるライフスタイルの型を説明するための図。
図21は、本実施形態における健康リスク推定テーブルTを説明するための図。
図22は、本実施形態における健康リスクの推定を説明するための図。
図23は、本実施形態における元気予報ポータルサイトを説明するための図。
図24は、本実施形態における日常人間ドックの処理手順を示す図。
図25は、本実施形態における主治医用ポータルサイトの画面遷移を示す図。
図26は、本実施形態におけるユーザ用ポータルサイトの画面遷移を示す図。
図27は、本実施形態における健康リスクのシミュレーションを説明するための図。
図28は、本実施形態において主治医及びユーザに表示される健康リスクグラフを説明するための図。
図29は、本実施形態における二次利用サービスの一例(第1の例)を説明するための図。
図30は、本実施形態における二次利用サービスの一例(第1の例)を説明するための図。
図31は、本実施形態における二次利用サービスの一例(第2の例)を説明するための図。
図32は、本実施形態における二次利用サービスの一例(第3の例)を説明するための図。
図33は、本実施形態におけるインセンティブ仕組みその1を説明するための図。
図34は、本実施形態におけるインセンティブの仕組みその2を説明するための図。
図35は、本実施形態に係るPHR処理装置の機能ブロック図。
図36は、本実施形態におけるPHR処理装置(又はPHR表示装置)のハードウェア構成を示す図。

実施例

0010

以下、図面を参照しながら、実施形態に係る食事型センサ、センシング方法及び食品を説明する。以下の実施形態においては、本実施形態に係る食事型センサを利用することで実現される、生きることへのモチベーションが高まるモチベーション向上社会を例に挙げて、食事型センサの詳細について説明する。ここで、以下では、まず、食事型センサによって収集されたセンシングデータを利用してモチベーション向上社会を実現する健康情報処理装置や、健康情報表示装置について説明した後、食事型センサの詳細について説明する。なお、以下の実施形態では、健康情報処理装置や、健康情報表示装置が、複数の機能(例えば、一次利用サービス、二次利用サービス等)を実現する例を説明するが、必ずしも、複数の機能を実現することが必須の構成ではない。健康情報処理装置や、健康情報表示装置は、複数の機能のうちの一部の機能を実現する構成でもよい。

0011

(本実施形態によって実現されるモチベーション向上社会)
以下に説明する実施形態によれば、生きることへのモチベーションが高まる、モチベーション向上社会が実現される。そこで、実施形態の具体的な構成の説明に入る前に、まずは、我々が提案する、モチベーション向上社会の実現について述べる。

0012

図1は、本実施形態によって実現されるモチベーション向上社会を説明するための図である。今日、誰もが、家族と地域の中で健康快活に、仕事趣味に生きるのが理想だが、将来の病気への不安、痴呆、うつ、孤独感、離れた家族への心配等が、少子高齢化の進む現代社会において人々を脅かし、安寧な生活を蝕んでいる。そのような状況では、将来像どころか、日々の生きることへのモチベーションすら低下し、強い心持ちにはなれない。もし、さりげなく自分や家族の日常生活心身の健康状態がわかり、想い描いた自己実現に向けていつでも支援してくれるツールや、家族や自分が健康で且つ活力ある生活を実現するための取り組みに向けて意欲を高めてくれる仕組みが世の中にあれば、誰もが、自己実現の結果、生きることへのモチベーションを高め、現在の暮らしや将来への不安、ストレスから解放され、安心安寧な心持ちで強くなれる。このような理想の自己を獲得し、家族との強い絆に裏打ちされた、不安・ストレスのない強い個々人が、かつての昭和の様な活力と成長力みなぎ経済や社会を取戻す。そこで、以下の実施形態では、半導体通信エネルギー素材医療技術の輝ける創意を一つに結集して、生きることへのモチベーションを取戻すためのソリューションシステムを開発し、社会実装することを提案した。

0013

図1に示すように、『現代社会』においては、将来の健康や生活に対する不安が蔓延し、家族や社会との絆すら消失しかけている。少子高齢化社会が迫り来るなか、人は、病気にならないか、痴呆やうつにならないか、孤独な生活にならないか、離れた家族は大夫か、どうすれば自信を持てるのか等、不安感や孤独感、そして家族の心配に苛まれている。不安、うつ、ストレス、脳疾患心疾患を抱え、やる気やモチベーションを喪失しかけている。

0014

このような『現代社会』において、誰もが、家族と社会の中で健康快活に、仕事や趣味に生きることを理想としている。その実現手段の1つが、図1に示す『日常人間ドック』である。この『日常人間ドック』では、生体情報とライフログ情報とが紐付けられた真のバイタルデータと、個人のゲノム情報から解析された体質データベースとを統合した革新的なPHR(Personal Health Record)ビッグデータを基盤に、理想のライフスタイルを創造する。

0015

また、『日常人間ドック』では、この革新的なPHRデータを、非意識(Unconscious Sensing)技術により収集する。なお、センシングデータには、図1に示すように、例えば、心拍数、ストレス、血圧ホルモン血中濃度交感神経薬剤服用量等がある。また、センシングデータには、例えば、糖分、塩分、胃酸農薬微生物環境物質等がある。また、図1に示すように、ヘルスケアクラウド10上にはPHR処理装置100が構築される。PHR処理装置100は、各個人の生体情報と行動情報とを関連付けてライフログ情報として収集、蓄積する。そして、PHR処理装置100は、図1に示すように、時系列で収集した膨大なライフログ情報とゲノム情報に基づく体質データベースとを複数ユーザについて統合化したPHRビッグデータを、ヘルスケアクラウド10上で一元管理する。

0016

PHR処理装置100は、かかるPHRビッグデータを解析することで、ゲノム情報に基づく将来の疾病発症リスク食事量運動量、又は運動負荷に対する体の応答反応等を高度且つ詳細に分析する。ひいては、疾病発症リスクや発作予兆、自分の体質、ライフスタイルに最適な食事内容、運動、ライフスタイル、薬やサプリメントの選択等、理想像を目指した日々の生活の設計も可能になる。なお、PHR処理装置100は、例えば、ビッグデータマイニング、統合ゲノム解析、シミュレーション、コミュニケーション可視化定量化技術等を適用する。

0017

ところで、本実施形態においては、このように各個人から収集されたPHRデータを、『日常人間ドック』の仕組みで本人にフィードバックする「一次利用」に活用するだけでなく、様々なサービスへの「二次利用」にも活用する。そこで、以下では、PHRデータがどのように活用されるか、本実施形態において、ヘルスケアクラウド上にて実現されるヘルスケアインフォマテクスの概要を、「一次利用」と「二次利用」とに分けて説明する。

0018

まず、「一次利用」である、『日常人間ドック』の仕組みを簡単に説明する。例えば、PHR処理装置100は、PHRビッグデータの解析の結果を、対象者が装着する装着型情報端末に表示することで、対象者にフィードバックする。そのフィードバックの一例が、「週刊元気予報」である。対象者は、装着型情報端末上に提供される「週刊元気予報」サービスで、自らの将来の健康リスクを把握するとともにその対処法告知を受け、更に、見える化された目標を持つことができる。また、対象者は、この装着型情報端末上で、医師の指導や家族(若しくは、仮想の家族)等の激励を受けることができる。例えば、図1では、対象者は、主治医の指導(「塩分を控えて!」)を受けている。このように、「週刊元気予報」は、実在人物仮想人物による応答システムとしても機能する。こうして、本実施形態によれば、各個人は、日常、さりげなく精度良く収集した情報に基づいて、装着型情報端末等で、各自の健康状態を得て、主治医や家庭医、健康支援スタッフによる指導、激励を受けることができる。また、自分や家族の心身の状態管理や、行動及び生活を確認することができる。

0019

また、『日常人間ドック』の仕組みの中で、PHR処理装置100は、これらの情報を、対象者にフィードバックするだけでなく医療機関にフィードバックすることもできる。医師は、PHR処理装置100からフィードバックされた解析の結果をもとに、例えば、ハイリスクな疾病発症予備を認識し、必要に応じ積極的にこれらの者にアクセスする。なお、対象者から送信されたセンシングデータは、対象者の身体の異常検知にも役立てられる。例えば、PHR処理装置100は、ハイリスクな疾病発症予備軍の対象者について日々送信されるセンシングデータを常時監視し、その中で異常を検知すると、直ちに医療機関等にフィードバックする。

0020

また、「二次利用」について説明すると、例えば、PHR処理装置100が、PHRビッグデータの解析の結果を医療機関や各種企業等に提供することで、様々なサービスへの二次利用や、新産業創出に貢献することができる。具体例については、後述する。

0021

こうして、図1に示すように、例えば、5〜10年後には、モチベーション向上社会が実現される。図1では、モチベーション向上社会を実現するための技術のキーワードとして、「バーチャルクローン」、「週刊元気予報」、及び「家族見守りサービス」を挙げている。このうち、「バーチャルクローン」及び「週刊元気予報」は、「一次利用」の例である。また、「家族見守りサービス」は、「二次利用」の例である。

0022

例えば、PHR処理装置100は、各対象者に「バーチャルクローン」を設定し、「バーチャルクローン」に基づく健康づくりを実現している。例えば、PHR処理装置100は、各対象者に対して、「バーチャルクローン」として、将来の健康状態から予測される特徴的な風貌を自分の顔や容姿に反映させた自己像提示することで、直感的に、現状生活の及ぼす、X年後の自分の将来像を表示させることができる。なお、「バーチャルクローン」には、理想の自己像を設定することもできる。また、本実施形態において、「バーチャルクローン」は、「週刊元気予報」の中で提示される。

0023

また、例えば、PHR処理装置100は、各対象者に、「週刊元気予報」を提示する。この「週刊元気予報」では、仮想的な家族や、上述した仮想的な自己像(バーチャルクローン)が映し出される。また、「週刊元気予報」では、理想的に設計した自分との乖離度や、今の生活を続けた場合の将来の自分の姿を映し出し、理想に向けた指導もしてくれる。また、「週刊元気予報」を見る者は、仮想的な人物や家族との対話を図ることで、常時励ましや元気づけ、健康指導を受けることができ、意欲・気力が高揚し、理想の自己実現に向けた取り組み意欲を向上させることができる。即ち、対象者は、この週刊元気予報を通して、医師や家族(若しくは、仮想の家族)、友達(仮想の友達)や恋人(仮想の恋人)の指導や激励を受けて、やる気をアップすることができる。更に、「週刊元気予報」では、健康度を確認することもできる。

0024

また、例えば、本実施形態では、二次利用サービスの一例として「家族見守りサービス」を実現する。この「家族見守りサービス」によれば、離れた家族をいつでも見守ることができる。ユビキタスなライフログ情報は、離れた病気がちの独居高齢者が、きちんと食事や薬を服用し、つつがなく過ごしていることを、その家族が手に取るように分かるための見守り、コミュニケーションを図る絆ツールとしても活用でき、体調が悪い時は知らせてくれる。その結果、身内に遠慮や気遣いをして無理な我慢や気丈な振る舞いをしたがために、周囲が発症に気づかずに見過して手遅れとなるようなことも防げ、家族の心配や不安までをも和らげてくれる。家族や社会との絆が強化されるばかりでなく、活気ある高齢化社会における自身の強化にもつながる。

0025

更に、図1では図示を省略しているが、本実施形態によれば、努力目標への到達度、競い合う友人の将来像との比較機能、それらのSNS(Social Networking Service)等による公開機能報償としての地域通貨ポイント付与等の機能によって、例えば、ポイント獲得を目標に、更に、皆の意欲を向上させることができる。また、本実施形態によれば、病気持ちの人にとっては、常時病状が見守られ、発作の予兆が検知され、体調が悪い時や緊急時にはすぐに介助者救護者が駆けつけ、心身のケアをしてくれる。

0026

例えば、上述してきた「日常人間ドック」を誰もが活用できれば、自分や家族の心身の状態や行動、生活の状況を把握し、管理することができ、誰もが、病気の発症を遠ざける先制医療・個別化予防を享受できるようになる。その結果、理想的な自己目標も明確化され、健全な心身の実現に向けて意欲が高揚し、理想自己実現による達成感は、生きることへのモチベーションを高め、一人一人が強くなることができる。また、「家族見守りサービス」によれば、離れた家族の心身の状態や、行動、生活状況を具体的に把握できることで、不安と心配から解放され、自分と家族の絆を常に身近に感じることで、安心安寧な社会を実現することができる。それは現在十分ではない、日々のきめ細やかな健康維持、食事や体調の管理、高齢者や子供の見守りを支援し、家族と社会の強い絆を取り戻し、健全快活で安心安寧な生活が送れるの社会像でもある。このようなモチベーション向上社会が実現すれば、現代社会に蔓延していた、不安、うつ、ストレス、脳疾患、心疾患からも解放される。

0027

上述したように、「日常人間ドック」を活用することで実現される「バーチャルクローン」、「週間元気予報」及び「家族見守りサービス」などが提供されるモチベーション向上社会は、個人の生きることへのモチベーションを高め、一人一人を強くすることができる。さらに、多数の人が「日常人間ドック」を活用して、膨大なPHRビッグデータが蓄積されることで、様々なサービスへの二次利用や新産業の創出を導き、幅広い分野においてイノベーションが連鎖していくことが期待される。本実施形態では、このようなヘルスケアのソリューションシステムの構築が可能となる。

0028

図2は、本実施形態におけるソリューションシステムの一例を説明するための図である。図2に示すように、本実施形態におけるソリューションシステムは、DNAチップゲノム配列情報活用基盤に基づく生体情報や、リアルタイムのライフログである行動情報、脳とこころのチェックなどによる健康(セルフ)チェックが実施され、ヘルスケアクラウド10に情報が集約される。例えば、ユーザAについて、病院診療所から電子カルテの情報などが集約される。また、ユーザAについて、企業や健康保険におけるレセプト情報、勤労情報、健康診断結果などが集約される。また、研究機関や大学からコホートデータシーケンスデータなどが集約される。そして、ユーザAから非意識で収集されたセンシングデータが集約される(図中PHR入力)。

0029

このようなパーソナルヘルスレコード(PHR)は、ユーザ(例えば、ユーザA)ごとに管理され、多数の人のPHRが集約されたPHR群がPHRビッグデータとしてヘルスケアクラウド10で管理される。これらPHRビッグデータは、データ信託銀行(データ信託会社とも呼ぶ)によって運用管理される。例えば、データ信託銀行は、PHRビッグデータを解析(ビッグデータ解析)することで、PHRデータの解析データに基づく、各個人の将来予測や、ライフスタイルの提案を可能にする。一例を挙げると、ライフサポートを行なう健康コンシェルジュであるかかりつけ医がPHRデータの解析データに基づくライフスタイルの提案を行なったり、解析データに基づいてバーチャルクローンや、週間元気予報を提供したりする。すなわち、PHRデータを入力したデータに対して、本人の体質及びライフスタイルを反映した元気予報、ライフスタイル変リスク診断などの個別の健康指導をフィードバックすることができる。

0030

ユーザは、PHRデータを入力するインセティブとして、上記フィードバックを授受することができることから、継続してPHRデータを入力するようになる(PHRデータ入力常態化)。さらに、ユーザがそれらPHRデータの二次利用を許諾するようになれば、データ信託銀行は、管理するPHRデータ、或いは、解析データを各種メーカーや、販売流通業者に提供することが可能となる。ここで、PHRデータ及び解析データは、慎重な取り扱いが求められる個人情報であることから、図示するように、必要に応じて匿名化させる。

0031

PHRデータや解析データの提供を受ける各種メーカーや、販売・流通業者としては、例えば、「セキュリティ」、「製薬」、「食品」、「化粧品」などが挙げられ、各種メーカーや、販売・流通業者は、提供を受けたPHRデータや解析データなどのヘルスケア情報に基づいて、高付加価値製品開発や、サービス提供を行なうことが可能となる。ここで、各種メーカーや、販売・流通業者によって行なわれる製品開発や、サービスは、例えば、医薬品の開発や、薬事法上の承認を得るために行われる臨床試験治験)、或いは、映画番組視聴者から身体に現れた生体情報を集めるといった単なるマーケティングなど、非常に幅広い分野に亘る。本実施形態のソリューションシステムは、このような幅広い分野で利用され、各分野において、イノベーションの連鎖を引き起こすことが可能である。

0032

また、本実施形態のソリューションシステムは、各個人が日常人間ドックを活用することで、その人向けの新規センサを構築して提供したり(例えば、ユーザのゲノム情報やライフスタイルの情報に基づいて、その人に最適なセンサを提供)、PHRデータの解析データから新たなDNAチップの開発を促進させたりすることも可能である。

0033

(ソリューションシステムの概要)
本実施形態では、まず、ゲノム情報を含むPHRデータをヘルスケアクラウド10上に集約して大規模ゲノム・コホートデータベース114aを形成し、この大規模ゲノム・コホートデータベース114aに蓄積されたPHRビッグデータを基盤データとすることで、将来の健康リスク(例えば、各疾病の発症確率)を精度良く推定する仕組みを構築する。また、個人のPHRデータを、各方面から継続的に収集して一元管理することで、この個人に対して、本人の体質及びライフスタイルを反映した個別の健康指導をフィードバックする仕組み(日常人間ドック)を構築する。更に、ヘルスケアクラウド10上に集約されたPHRビッグデータの二次利用(他人のための利用や商業的利用)の仕組みを構築する。

0034

図3は、本実施形態におけるソリューションシステムの概要を説明するための図である。図3に示すように、本実施形態におけるソリューションシステムでは、ヘルスケアクラウド10上にPHR処理装置100(「健康情報処理装置」とも呼ばれる)が構築され、PHR処理装置100が、上述した各種の仕組みを実現する。なお、図3に示すように、PHR処理装置100のオペレーションを含むヘルスケアクラウドサービスの運用管理は、データ信託会社11によって行われる。例えば、データ信託会社11は、一次利用サービス(日常人間ドック)の提供を受けるユーザや医療機関13、二次利用サービスの提供を受ける医療機関や各種企業等15に対して、サービス提供のための各種手続きを、オンライン若しくはオフラインで行う(図3点線を参照)。

0035

PHR処理装置100は、PHRデータの収集及び蓄積を行うPHR蓄積部110と、PHR蓄積部110に蓄積されたPHRデータの運用管理を行うPHR運用管理部120とを備える。

0036

PHR蓄積部110は、個人のみならず、研究機関、医療機関、企業等からも、この個人に関するPHRデータ(図3において、PHRデータ12)を収集し、これを個人のPHRデータとして集約、個別に一元管理する。例えば、PHRデータには、個人から継続的に収集されるライフログ情報の他、研究機関から得られる本人のゲノム情報、医療機関から得られる電子カルテ情報、企業や健康保険組合から得られる健康保険組合情報(レセプト情報、勤務情報検診手帳情報)、母子手帳情報、学校の健康診断の情報等がある。即ち、PHRデータは、個人の健康に関連する情報として、個人のみならず各種機関等から収集されるものであり、その種類に限定はない。また、PHR蓄積部110は、かかるPHRデータを大規模に収集し(例えば、15万人規模)、大規模ゲノム・コホートデータベース114aを形成する。この大規模ゲノム・コホートデータベース114aは、各個人については、新たな情報が日々蓄積されることでその規模を拡大し、また、収集対象者の範囲を拡大することでもその規模を拡大する。なお、以下では、大規模ゲノム・コホートデータベース114aのPHRデータ全体を意味する場合には、これを「PHRビッグデータ」と呼び、個人のPHRデータと区別する。また、PHRデータは、「健康情報」とも呼ばれる。

0037

PHR運用管理部120は、PHRビッグデータ解析部121と、一次利用サービス提供部122(「推定部」とも呼ばれる)と、二次利用サービス提供部123(「出力部」とも呼ばれる)とを備える。PHRビッグデータ解析部121は、所定の目的に従って、大規模ゲノム・コホートデータベース114aに蓄積されたPHRビッグデータを解析し、ゲノム情報と、ライフスタイルと、健康リスクとの関連性を導き出す。そして、PHRビッグデータ解析部121は、個人の体質及びライフスタイルの組み合わせとの何らかの関連性が示された解析結果を得る。

0038

例えば、PHRビッグデータ解析部121は、PHRビッグデータを対象にコホート分析を行い、ゲノムの型及びライフスタイルの型の組み合わせと、将来発症し得る疾病のリスク(「疾病発症リスク」と呼ばれる)との関連性を導き出す。すると、一次利用サービス提供部122は、PHRビッグデータ解析部121によって導き出されたこの関連性を各個人のPHRデータに適用することで、本人の体質及びライフスタイルに応じた疾病発症リスクを割り出す。そして、一次利用サービス提供部122は、割り出した疾病発症リスクの情報をユーザのポータルサイト14aに登録する等して本人へのフィードバックを行う。このポータルサイト14aは、本人の他、家族及び主治医による閲覧が可能であり、ポータルサイト14aを通じて3者間でコミュニケーションを図ることができる。これが、本実施形態における「日常人間ドック」の概要である。「日常人間ドック」の詳細については、後述する。

0039

また、例えば、PHRビッグデータ解析部121は、PHRビッグデータを対象にコホート分析を行い、二次利用サービス用の解析結果を導き出す。また、二次利用サービス提供部123は、PHRビッグデータ解析部121によって導き出された解析結果を出力し、各種企業等(医療機関、食品・サプリメント販売会社製薬会社医療機器メーカー流通会社セキュリティ会社等)に提供する。二次利用サービスの具体例については、後述する。

0040

また、図3に示すように、ユーザやユーザの家族等の関係者、ユーザの主治医は、PHR表示装置200(「健康情報表示装置」とも呼ばれる)によって、例えば、一次利用サービス提供部122によって提供されるポータルサイト14aを閲覧する。PHR表示装置200は、スマートフォン、PC(Personal Computer)、インターネットテレビ、装着型情報端末等である。また、PHR表示装置200は、表示制御部210と、表示部220とを備え、表示制御部210は、ユーザの将来の健康リスクを表示部220に表示する。

0041

(PHRデータ)
次に、図4は、本実施形態におけるPHRデータを説明するための図である。上述したように、PHRデータは、個人の健康に関連する情報として個人のみならず各種機関等から収集されるものであり、その種類に限定はない。したがって、本実施形態では、PHRデータとして何の情報を収集するかという点も個人毎に異なると考える。もっとも、以下に説明するように、本実施形態の「日常人間ドック」では、個人のPHRデータから本人のライフスタイルの型を割り出す。また、このライフスタイルの型は、本実施形態では、10の項目喫煙飲酒睡眠、ストレス、運動、食生活、薬・サプリメント、精神状態疲れ、免疫)を評価することで割り出される。よって、本実施形態では、この10の項目を評価することが可能なPHRデータが、各個人から収集されることを想定する。なお、図3では、ユーザAのPHRデータのうち、ゲノム情報及びライフログ情報のみを概念的に示す。

0042

まず、ゲノム情報は、ユーザAの遺伝情報である。図4に示すように、細胞の核の中には染色体が存在し、この染色体を構成するデオキシリボ核酸(Deoxyribonucleic acid)という物質がDNAである。DNAは、その構成単位であるヌクレオチド鎖状に連なるとともに、2本の鎖による2重螺旋構造となっている。また、遺伝子は、DNA上の区画である。ヌクレオチドは、デオキシリボース糖がリン酸によって連結されたものであり、デオキシリボース糖に、4種類の塩基のうちのいずれかが結合する。2本の鎖の間では、アデニン(A)とチミン(T)との塩基対グアニン(G)とシトシン(C)との塩基対が結合される。ヒトのゲノム情報は、約30億塩基対から構成される。

0043

本実施形態において、ゲノム情報は、この約30億塩基対の配列情報、若しくは、ヒトの個性を決定する約100万塩基対の配列情報である。なお、PHR蓄積部110は、塩基対の配列情報をそのまま蓄積してもよいし、あるいは、標準ゲノム情報(例えば、日本人の標準SNP(Single Nucleotide Polymorphism))との差分の形で蓄積してもよい。例えば、ユーザAが研究機関に自身の血液を提供し、研究機関にてユーザAから抽出されたゲノムの全塩基配列(配列情報)が特定された場合、その配列情報を、ユーザAのゲノム情報として取り扱う。

0044

なお、ゲノム情報は、上述した配列情報に限られるものではなく、DNAチップ等想定される種々の手法による解析結果も含む。例えば、ユーザAが研究機関に自身の血液を提供し、研究機関にてDNAチップによる解析が行われた場合、その解析結果を、ユーザAのゲノム情報として取り扱う。例えば、DNAチップによるSNP解析、CNV(Copy Number Variation)解析、マイクロサテライト解析、エピゲノム解析、あるいは遺伝子発現量解析等によって、特定の疾病(例えば、高血圧高脂血症肥満糖尿病等)に関する遺伝子の型や、特定の薬剤の代謝、アルコール分解に関する遺伝子の型が判明した場合には、その解析結果が、ユーザAのゲノム情報となる。

0045

次に、ライフログ情報は、ユーザAのライフスタイル(生活様式)を表す情報である。図4に示すように、本実施形態では、生体情報及び行動情報を合わせてライフログ情報と呼び、必要に応じてその両者が関連付けられることで、正確なライフログ情報を得ることができると考える。

0046

ここで、図4を用いて、生体情報である「血圧」と、行動情報である「運動量」及び「行動履歴」とが関連付けられることで、正確なライフログ情報が得られる点を説明する。例えば、ユーザAは、生体センサと、加速度センサとを装着しているものとする。これらのセンサは、後述する装着型情報端末に備えられてもよいし、装着型情報端末とは別に、ユーザAに装着(例えば、貼付)されてもよい。生体センサは、例えば、指、手首等の末梢血管における血流変化を検出し、検出した血流変化に基づいて、血圧、心拍数、脈拍等を得る。一方、加速度センサは、直流成分から、ユーザの姿勢を検知し、交流成分から、ユーザの動作(歩行走行自転車自動車電車等)を識別する。そして、加速度センサは、ユーザの姿勢とユーザの動作とから、ユーザの運動量を得る。更に、行動履歴は、装着型情報端末、若しくは、スマートフォン、PC等の情報端末に入力されたスケジュール情報から得られる。

0047

そして、本実施形態において、生体センサから得られた生体情報、及び、加速度センサやその他の情報端末から得られた行動情報は、それぞれの情報が有する時間情報によって関連付けられるか、若しくは、それぞれの情報が同じレコードに記録されることで、関連付けられる。改めて図4を参照すると、例えば、生体情報である血圧は、日中に一旦上昇しているが、この生体情報と関連付けられた行動履歴を参照すると、この上昇は、会議を起因とするストレスによるものであることが判明する。また、同じく血圧は、夕方以降に下降しているが、この生体情報と関連付けられた行動履歴を参照すると、この下降は、飲酒によるものであることが判明する。更に、血圧と運動量との関連も、明らかとなる。

0048

このように、本実施形態においては、生体情報及び行動情報を、相互に関連付けて取り扱うことを基本としている。なお、本実施形態において、PHR処理装置100は、ライフスタイルの型や現在の健康状態の評価に必要な情報を、収集すべき生体情報及び行動情報として適宜選択することになる。例えば、生体情報は、現在の健康状態を表す各種数値情報や、体内に取り込まれた成分の量、物質の有無を表す情報である。例えば、生体情報は、血圧、心拍数、脈拍、体温、体成分、イオン、pH濃度等である。また、例えば、生体情報は、糖分、塩分等の成分量、胃酸の濃度、農薬、環境物質、食品添加物の有無、アルコールニコチン薬剤成分の摂取量等である。また、例えば、行動情報は、運動量や睡眠量、スケジュール情報、GPS(Global Positioning System)等の位置情報である。本実施形態では、かかるライフログ情報の全部若しくは一部を、センサや各種情報端末から収集する。また、例えば、スマートフォン(運動系アプリケーションスケジュールアプリケーション等)や、SNS、電子レシート等から得られた情報を用いてもよい。

0049

図5は、本実施形態におけるライフログ情報の収集を説明するための図である。本実施形態においては、一例として、ユーザが、装着型情報端末を装着していることを想定する。装着型情報端末としては、例えば、腕時計型のものや、眼鏡型のもの、指輪型のもの等が考えられる。この装着型情報端末は、センサとしての機能を備えて生体情報を収集することができる。また、この装着型情報端末は、いわゆる情報端末としての機能も備えて、行動情報を収集することもできる。そこで、装着型情報端末は、ライフログ情報のドックとしての役割を果たし、図5に示すように、ユーザから個別に収集された生体情報と行動情報との関連付け(ペアリング)を行い、ペアリング後のライフログ情報を、ヘルスケアクラウド10にアップロードする。個別に収集される生体情報や行動情報は、1日の中で定期的あるいは不定期に収集される一方で、ヘルスケアクラウド10へのアップロードは、例えば1日に1回といった頻度で行われる。また、この装着型情報端末は、装着型情報端末とは別にユーザに装着されたセンサや情報端末から、生体情報や行動情報を受信することもできる。この場合も、装着型情報端末は、ユーザから個別に収集された生体情報と行動情報との関連付け(ペアリング)を行い、ペアリング後のライフログ情報を、ヘルスケアクラウド10にアップロードする。なお、ペアリングは、装着型情報端末の側ではなく、ヘルスケアクラウド10側で行われてもよい。

0050

更に、本実施形態において、装着型情報端末は、個人認証を行う。即ち、装着型情報端末は、当該端末を装着している者が確かに本人であるか否かの個人認証を行う。例えば、腕時計型の場合、装着型情報端末は、手首の静脈認証によって個人認証を行う。また、例えば、カメラを備えている場合、装着型情報端末は、顔認証によって個人認証を行う。また、例えば、眼鏡型の場合、装着型情報端末は、網膜認証や虹彩認証によって個人認証を行う。また、例えば、指輪型の場合、装着型情報端末は、指の静脈認証によって個人認証を行う。なお、個人認証の手法は、上述した手法に限られるものではない。なお、本実施形態では、装着型情報端末からライフログ情報をアップロードする手法を説明したが、実施形態はこれに限られるものではない。例えば、携帯型情報端末や、据付型情報端末から、ライフログ情報をアップロードしてもよい。

0051

(本実施形態の概要)
以下、本実施形態における食事型センサについて説明する。上述したように、本実施形態では、センサを意識しない非意識センシングを行なうことで、個人の真のデータを効率的かつ継続的に収集する。ここで、本実施形態における食事型センサは、超小型自律駆動型高性能センサであり、食品と混在し、かつ体内に入った際にも消化及び吸収されずに排出されることで非意識で生体情報をセンシングする。例えば、食事型センサは、毎日摂取される様々な食品(生鮮食品加工食品調味料、飲料など)に混合され、食品とともに体内に取り込まれ、体内の生体情報を収集する。

0052

図6は、本実施形態における食事型センサが混合される食品の一例を示す図である。例えば、本実施形態における食事型センサは、図6に示すように、ネギなどの生鮮食品や、パン、ふりかけ、ごま、のり、かつおぶし、冷凍食品などの加工食品、ラー油ドレッシング、こしょう、しょうゆ、みそ、七味、ソースなどの調味料、そのほか、おや水などの飲料などに混合され、上記した食品とともに体内に飲み込まれる。ここで、食事型センサは、例えば、生鮮食品に対しては、調理時に混合され、加工食品及び調味料に対しては、製造時に混合される。そして、食事型センサは、食事型センサが混合されたいずれかの食品をユーザが食すことで、体内に取り込まれ、体内の生体情報を収集する。

0053

ここで、本実施形態における食事型センサは、センサ自体を小型化するために、食事型センサ1つで単一の物質のセンシングを行なう。例えば、食事型センサとしては、塩分を計測するセンサ、糖分を計測するセンサ、PHを計測するセンサ、酵素を計測するセンサ、ウィルスを計測するセンサ、菌を計測するセンサ、アルコールを計測するセンサ、煙草ヤニやニコチンなどの特定物質を計測するセンサ、血液を計測するセンサ、特定の薬剤成分を計測するセンサ、脂質を計測するセンサ、鉄分を計測するセンサ、カルシウムを計測するセンサ、繊維質を計測するセンサ、ビタミンを検出するセンサなどがそれぞれ構築される。

0054

また、酵素、ウィルス、菌、特定の薬成分及びビタミンなどについては、さらに、種々の酵素ごと、ウィルスごと、菌ごと、薬剤成分ごと、ビタミンごとの食事型センサがそれぞれ構築される。すなわち、例えば、ふりかけに食事型センサを混合する場合には、各物質をセンシング対象とする複数の食事型センサがふりかけに混合され、ふりかけとともにごはんにかけられ、ユーザの体内にそれぞれ飲み込まれる。そして、各食事型センサは、ユーザの体内の所定の物質をそれぞれ計測し、計測結果を体外の通信装置にそれぞれ送信する。

0055

ここで、食事型センサは、特定の環境下におかれた場合に電源がONの状態となり、体外の通信装置と通信を行って、計測結果を送信するように構築される。例えば、食事型センサは、水分を検出した場合、所定の温度にさらされた場合、体内の酵素を検出した場合、或いは、磁気を検出した場合などに電源がONの状態となり、ユーザが装着する装着型情報端末との通信を開始するように構築される。なお、食事型センサの通信開始の詳細については、後述する。また、上述したセンサの種類や、食品の種類はあくまでも一例であり、実施形態はこれに限定されるものではない。例えば、その他のセンサとして、農薬や環境物質、食品添加物などをセンシングの対象とするセンサが用いられる場合であってもよい。また、例えば、その他の食品として、チョコレートクッキーなどの菓子類を用いる場合であってもよい。また、食事型センサと食品とはどのように混合されてもよく、例えば、単純に混合する場合であってもよく、或いは、食品の中に埋め込まれる場合であってもよい。

0056

また、本実施形態の食事型センサは、人間を対象としたセンシングだけではなく、ペット家畜などを対象とすることも可能である。かかる場合には、例えば、図6に示すように、食事型センサが飼葉に混合されて家畜に与えられたり、ペットフードに混合されてペットに与えられたりする。これにより、家畜やペットの体内の種々の物質のセンシングを行なうことができる。

0057

次に、食事型センサのセンシングの種別と、各食事型センサの識別方法について説明する。以下、食事型センサが人間によって飲み込まれる場合を例に挙げて説明する。食事型センサは、食品と混合され、食品とともに飲み込まれて体内の各物質の情報を収集するが、利用するユーザによってセンシングの対象を種々変化させることができる。例えば、食事型センサがふりかけに混合される場合に、利用者によってセンシング対象の物質を任意に組み合わせることが可能である。

0058

図7は、本実施形態における食事型センサのセンシングの種別の一例を説明するための図である。例えば、図7に示すように、食事型センサは、「特定個人用」、「目的別(各種疾病用):ex.糖尿病」、「目的別(健康管理用):ex.ダイエット」及び「基本型不特定多数用)」などがある。ここで、「特定個人用」の食事型センサとは、特定の個人用にセンシングの対象が組み合わせられたものである。例えば、ユーザAが日常人間ドックを活用している中で、特に重点的に観察したほうがよいと判断された物質をセンシングする食事型センサの組み合わせである。

0059

また、「目的別(各種疾病用):ex.糖尿病」の食事型センサとは、各種疾病用にセンシングの対象がそれぞれ組み合わせられたものである。例えば、図7に示すように、糖尿病患者にとって重点的に観察したほうがよい物質をセンシングする食事型センサの組み合わせである。また、「目的別(健康管理用):ex.ダイエット」の食事型センサとは、健康管理用にセンシングの対象がそれぞれ組み合わせられたものである。例えば、図7に示すように、ダイエットを目的とするユーザにとって重点的に観察したほうがよい物質をセンシングする食事型センサの組み合わせである。また、「基本型(不特定多数用)」の食事型センサとは、図7に示すように、不特定多数の人を対象とした食事型センサの組み合わせであり、例えば、全ての種類の食事型センサを含むものである。基本型の食事型センサを利用するユーザとしては、例えば、特に大きな目的がなく、日常人間ドックを活用したいユーザなどが挙げられる。

0060

このように、食事型センサは、センシングの種別によって異なる組み合わせで利用される。例えば、食事型センサが混合されたふりかけは、上記した4つの種別があり、食事型センサを利用するユーザが種別を選択してふりかけを使うこととなる。ここで、上記した4つの種別においては、「特定個人用」や、「目的別(各種疾病用)」の食事型センサのユーザは限定的であるのに対して、「目的別(健康管理用)」や、「基本型(不特定多数用)」の食事型センサのユーザは非限定的である可能性が高い。例えば、「特定個人用」や、「目的別(各種疾病用)」の食事型センサが混合されたふりかけは、特定のユーザにのみ利用されるが、「目的別(健康管理用)」や、「基本型(不特定多数用)」の食事型センサが混合されたふりかけは、複数のユーザ(例えば、家族全員など)に利用される可能性が高い。従って、本実施形態における食事型センサは、体内に取り込まれた食事型センサから送信された計測結果が、当該食事型センサを飲み込んだユーザの計測結果であることを識別するための仕組みが構築される。

0061

例えば、本実施形態における食事型センサは、図7に示すように、「特定個人用」や、「目的別(各種疾病用)」の食事型センサの場合の多くがダイレクト型で識別され、「目的別(健康管理用)」や、「基本型(不特定多数用)」の食事型センサの場合の多くが食器経由型で識別される。以下、図8を用いて、ダイレクト型の識別と、食器経由型の識別について説明する。図8は、本実施形態における食事型センサの識別方法について説明するための図である。なお、図8においては、ふりかけに食事型センサが混合された場合を例に挙げて説明する。

0062

例えば、ダイレクト型の識別の場合には、図8の(A)に示すように、ふりかけのビンに含まれる食事型センサ400の全センサIDの情報をユーザAの装着型情報端末500に登録することで、食事型センサ400から送信される計測結果が当該食事型センサ400を飲み込んだユーザの計測結果であることを識別する。すなわち、「特定個人用」や、「目的別(各種疾病用)」の食事型センサの場合、ユーザが限定的であることから、ふりかけを食するユーザは、ユーザAに限られる。そこで、ふりかけを食す前に、まず、ふりかけに混合された全センサのセンサIDの情報をユーザAの装着型情報端末500に登録しておくだけで、ふりかけに混合された全食事型センサ400によって送信された計測結果がユーザAのものであると識別することが可能である。

0063

一方、食器経由型の識別の場合には、ユーザ専用の食器を用いることで、計測結果を識別する。例えば、図8の(B)に示すように、ユーザB専用のユーザB茶碗600が用いられる。ここで、ユーザB茶碗600は、ユーザBの装着型情報端末500との間でのみ通信を行なうことが可能であり、ふりかけに混合された食事型センサ400のうち、ユーザB茶碗600に入った食事型センサ400のセンサIDの情報をユーザBの装着型情報端末500に送信して登録させる。複数のユーザによって同一のふりかけが食される場合であっても、上述したように、各ユーザ専用の茶碗が用いられ、茶碗に入った食器型センサのセンサIDをそれぞれ対応するユーザの装着型情報端末500に送信して登録させることで、各ユーザの計測結果を正確に識別することが可能となる。すなわち、ユーザBがユーザB茶碗600内の食事型センサ400を食し、ユーザBの体内の食器型センサ400によって送信された計測結果がユーザBのものであると識別することが可能である。

0064

ここで、食事型センサ400は、ユーザによって食される段階になるまで電源がOFFの状態となっている。そして、上述したように、食事型センサは、特定の環境下におかれた場合に電源がONの状態となる。例えば、食器経由型の場合には、図8の(B)に示すように、食器(例えば、ユーザB茶碗600)に埋め込まれた磁石によって発生された磁力によって電源がONとなるように構築される。すなわち、ユーザB茶碗600内のごはんにふりかけがかけられると、磁力によって食事型センサ400の電源がONとなる。そして、食事型センサ400は、ユーザB茶碗600に対してセンサIDを送信する。ユーザB茶碗600は、受信したセンサIDの情報をユーザBの装着型情報端末500に送信することで、ユーザB茶碗600内に入った食事型センサ400のセンサIDのみを登録させる。

0065

なお、上述した実施形態では、センシングの種別によってダイレクト型の識別と、食器経由型の識別とが使い分けられる場合について説明したが、食事型センサ400が混合される食品に応じてダイレクト型と食器経由型が使い分けられる場合であってもよい。例えば、個人用に小分けされた食品の場合には、「基本型(不特定多数用)」の食事型センサであっても、ダイレクト型で識別することができる。

0066

次に、図9A及び図9Bを用いて、ダイレクト型の食事型センサ400の利用の一連の流れを説明する。図9A及び図9Bは、本実施形態における食事型センサ400の利用の流れの一例を説明するための図である。例えば、利用するユーザが非限定的な「基本型(不特定多数用)」及び「目的別(健康管理用)」の食事型センサ400の場合には、食品(例えば、ふりかけ等)の製造時などに予め食事型センサ400が混合され、図9Aの(A)の左図に示すように、ドラッグストアや、スーパーなどで販売される。一方、利用するユーザが限定的な「特定個人用」や、「目的別(各種疾病用)」の食事型センサ400の場合には、図9Aの(A)の右図に示すように、医師の処方箋に基づいて、薬局などでユーザごとにセンサの組み合わせがカスタマイズされ、食品(例えば、ふりかけ等)に混合されて販売される。

0067

このように購入されたふりかけには、例えば、図9Aの(B)に示すように、ビンに食事型センサ400を登録するためのバーコードが記載されている。ここで、ビンに記載されたバーコードは、ビン内のすべての食事型センサ400をそれぞれ一意に特定するためのセンサIDの情報を含む。ユーザは、装着型情報端末500でバーコードを読み取ることによって、ふりかけに混合された全食事型センサ400のセンサIDを装着型情報端末500に登録する。

0068

そして、図9Aの(C)に示すように、食事型センサ400は、ふりかけとともにごはんにかけられ、図9Bの(D)に示すように、ユーザによって食される。ここで、食事型センサ400は、特定の環境下で電源がONの状態となる。例えば、食事型センサ400は、ごはんの上に乗せられて所定の温度になった場合や、唾液によって湿った場合などに、電源がONの状態となり、ユーザの装着型情報端末500との通信が可能となる。さらに、食事型センサ400は、自センサがユーザの体内に入ったことを検知する。例えば、食事型センサ400は、口腔内の温度にさらされた場合や、唾液に含まれるアミラーゼを検出した場合、胃酸に含まれるリパーゼを検出した場合、光が検出されなくなった場合などに自センサがユーザの体内に入ったことを検知する。なお、食事型センサ400の電源をONの状態にする条件と、食事型センサ400がユーザの体内に入ったことを検知する条件とに同じ条件を用いる場合であってもよい。例えば、食事型センサ400が所定の温度にさらされた場合に、電源をONの状態にするとともに、自センサが体内に入ったと検知する場合であってもよい。

0069

そして、食事型センサ400は、自センサがユーザの体内に入ったことを検知すると、センサ機能起動させてセンシングを開始し、排出されるまで継続して物質の計測を行う。例えば、食事型センサ400は、図9Bの(E)に示すように、口腔内、食道内胃内及び腸内などで、対象とする物質のセンシングを行なう。一例を挙げると、食事型センサ400は、胃内における塩分、糖分、脂質、鉄分、カルシウム、繊維質、各ビタミンの成分量、PH、各酵素、各ウィルス、各菌、各薬剤成分、アルコールの有無や濃度、煙草のヤニやニコチンの特定物質の有無、体内の出血による血液の有無などを計測し、計測結果を自センサのセンサIDに対応付けて装着型情報端末500に送信する。

0070

ここで、食事型センサ400は、体内における滞在時間に応じて所定の頻度でセンシングを行なう。一般的に、口から入った食物は、固形物の場合には約30秒〜60秒、液体の場合には約1〜6秒で口〜食道を通過し、に約4時間、小腸に約7〜9時間、大腸に約25〜30時間それぞれ滞在することとなる。そこで、食事型センサ400は、例えば、センサ機能が起動された初期の段階から段階的にセンシングの頻度を低下させるように構築される。一例を挙げると、食事型センサ400は、センサ機能が起動されて即座に物質の計測を行なったのち、5分ごとに物質の計測を行なう。そして、胃を通過したと考えられる時間(例えば、4時間以上)経過したのちには、食事型センサ400は、20分ごとに物質の計測を行う。さらに、食事型センサ400は、小腸及び大腸における滞在時間を考慮して、センシングの頻度を段階的に低下させる。

0071

ここで、食事型センサ400は、体内で物質を計測するごとに、計測結果を装着型情報端末500に送信する。図10は、本実施形態における装着型情報端末500に記憶される計測結果の一例を示す図である。例えば、装着型情報端末500は、図10に示すように、「センサID」ごとに「データ」及び「タイム」を対応付けた生体情報を記憶する。ここで、「センサID」とは、予め登録した食事型センサ400のセンサIDを示す。また、「データ」とは、食事型センサ400から受信した計測結果を示す。また、「タイム」とは、計測結果を受信した日時を示し、装着型情報端末500によって付与される。

0072

例えば、装着型情報端末500は、図10に示すように、生体情報「センサID:1、データ:a1、タイム:20131001073015」を記憶する。かかる情報は、「センサID」が「1」の食事型センサ400によって計測された計測結果「a1」を、装着型情報端末500が「2013年10月1日7時30分15秒」に受信したことを示す。同様に、装着型情報端末500は、センサIDごとに、受信した計測結果と受信時間とを対応付けて記憶する。例えば、図10に示すように、装着型情報端末500は、5分ごとに受信した計測結果をセンサIDごとに受信時間を対応付けた生体情報を記憶する。

0073

このように、食事型センサ400は、体内に飲み込まれた後、排出されるまで物質のセンシングを行い、装着型情報端末500に計測結果を送信する。ここで、食事型センサ400は、体外に排出されたことを検知して電源をOFFの状態にすることができる。例えば、食事型センサ400は、温度の変化、PHの変化、光の検出、或いは、電源がONになってから所定の時間が経過したことなどを検知することにより、自センサが体外に排出されたと判定し、自センサの電源をOFFの状態にする。

0074

図9Bに戻って、装着型情報端末500は、図9Bの(F)に示すように、食事型センサ400から受信して、記憶した生体情報と、行動情報とのペアリングを行い、ペアリング後のライフログ情報を、ヘルスケアクラウド10にアップロード(データ送信)する。ここで、ヘルスケアクラウド10へのライフログ情報のアップロードは、例えば1日に1回といった頻度で行われる。例えば、装着型情報端末500は、図10に示す生体情報に行動情報を対応付けたライフログ情報をヘルスケアクラウド10にアップロードする。ヘルスケアクラウド10においては、アップロードされたライフログ情報を用いて各種PHRビッグデータ解析が実行される。ここで、食事型センサ400によって収集された情報は、各物質の有無や濃度、量が解析されるだけではなく、例えば、口から入って排出されるまでの体内の通過時間を算出することが可能である。例えば、PHを検出する食事型センサ400の計測結果を時系列で解析し、PHが大きく変化した2つの時点(口に入ってPHが変化した時点と、体外に排出されることでPHが変化した時点)に基づいて、体内の通過時間を算出することが可能である。このように、食事型センサ400は、体内の種々の物質を計測することで、種々の情報を解析することが可能となる。

0075

上述したように、食事型センサ400は、食品に混合されてユーザの体内に飲み込まれ、体内の所定の物質のセンシングを行うが、1つのセンサにつき、単一の物質をセンシングするため、一回の食事で計測対象となっているすべての物質に対応する各食事型センサ400が体内に飲み込まれることが望まれる。ここで、例えば、図9Aの(C)に示すようなふりかけの場合、一回の食事で計測対象となっているすべての物質に対応する各食事型センサ400がごはんの上にかけられたか否か判断しにくい。そこで、計測対象となっているすべての物質に対応する各食事型センサ400が1つのセンサ群として構築させることが可能である。

0076

図11は、本実施形態における食事型センサ400のセンサ群の一例を説明するための図である。例えば、図11の(A)に示すように、測定対象となっている物質に対応するすべての種類の食事型センサ400がつながり1つのセンサ群40が形成され、ふりかけのビンに入れられる。ここで、すべての種類の食事型センサ400が、例えば、低融点食用などによって1つのセンサ群40としてつなげられる。それにより、図11の(B)に示すように、ふりかけとともにセンサ群40がごはんのうえに載せられると、図11の(C)に示すように、食事型センサ400をつなげていた食用糊が溶けて、食事型センサ400がバラバラになる。これにより、サイズが小さくなり、ユーザが飲み込み易くなる。

0077

次に、食事型センサ400を利用したダイレクト型のセンシングの処理の流れについて説明する。図12は、本実施形態における食事型400を利用したセンシングの処理手順を示す図である。図12に示すように、ダイレクト型のセンシングでは、まず、装着型情報端末500が、食品のパッケージについたバーコードを読み取ることで、パッケージ内の全センサのセンサIDを登録する(ステップS101)。

0078

そして、食事型センサ400が、特定の環境下で電源がONの状態となると(ステップS102)、自センサがユーザの体内に入ったか否かが判定される(ステップS103)。ここで、自センサが体内に入ったと判定すると(ステップS103肯定)、食事型センサ400は、所定の物質を計測して(ステップS104)、計測結果を装着型情報端末500に送信する(ステップS105)。なお、食事型センサ400は、自センサがユーザの体内に入るまで待機状態となる(ステップS103否定)。

0079

その後、装着型情報端末500は、計測結果を受信すると(ステップS106)、計測結果を送信した食事型センサ400のセンサIDに、計測結果と、時間とを対応付けて記憶する(ステップS107)。食事型センサ400は、計測結果を送信すると、所定の時間が経過したか否かを判定する(ステップS108)。ここで、所定の時間が経過したと判定すると(ステップS108肯定)、食事型センサ400は、ステップS104に戻って、所定の物質を再度計測する。

0080

装着型情報端末500は、受信した全計測結果を行動情報とペアリングしたのち、所定の頻度でヘルスケアクラウド10に送信する(ステップS109)。ヘルスケアクラウド10では、全計測結果を受信して(ステップS110)、PHRデータとして記憶する。なお、上述した処理手順では、自センサが体内に入ったと判定された後に、所定の物質が計測され、計測結果が送信される場合について説明した。しかしながら、実施形態はこれに限定されるものではなく、例えば、自センサが体内に入ったと判定される前から、所定の物質が計測され、計測結果が装着型情報端末500に送信される場合であってもよい。かかる場合には、自センサが体内に入ったと判定された後の測定結果に対してフラグを立てて装着型情報端末500に送信する。これにより、装着型情報端末500は、体内に入る前後の計測結果を識別することができ、体内に入った後の計測結果のみを利用することが可能である。

0081

次に、図13を用いて、食器経由型の食事型センサ400の利用の一連の流れを説明する。図13は、本実施形態における食事型センサ400の利用の流れの一例を説明するための図である。上述したように食器経由型は、ユーザ専用の食器を用いることで、複数のユーザによって同時に利用される食事型センサ400の計測結果を正確に識別する。例えば、図13の(A)に示すように、ユーザFとユーザGが同一の食卓で食事をしており、「基本型(不特定多数用)」の食事型センサ400が混合されたふりかけを利用していたとする。

0082

このような場合に、食器経由型の食事型センサ400を用いることで、例えば、ユーザFの茶碗に入った食事型センサ400のセンサID「7、10、2、・・・、15」がユーザFの装着型情報端末500に予め登録される。同様に、ユーザGの茶碗に入った食事型センサ400のセンサID「9、8、13、・・・、5」がユーザGの装着型情報端末500に予め登録される。そして、ユーザF及びユーザGが、それぞれふりかけとともに食事型センサ400を飲み込むと、飲み込まれた食事型センサ400から各物質の計測結果が体外の装着型情報端末500に対して送信されることとなる。

0083

ここで、食事型センサ400の計測結果の送信範囲は、例えば、同一の食卓で食事をしている場合には、図13の(B)に示すように、ユーザFとユーザGとで重なってしまう。このような状況では、一方のユーザが隣のユーザに少し近づくだけで、お互いに隣のユーザの食事型センサ400の計測結果の送信範囲内に入ってしまい、装着型情報端末500が隣のユーザの計測結果を受信してしまうが、食器経由型の食事センサ400を用いることで、自分の食器に入った食事型センサ400以外の計測結果を破棄するように制御することができる。例えば、図13の(C)に示すように、ユーザFの装着型情報端末500は、予め登録したセンサID「7、10、2、・・・、15」からの計測結果をOKとし、登録されていないユーザGのセンサID「9、8、13、・・・、5」からの計測結果をNGとして破棄するように制御する。ユーザGの装着型情報端末500においても同様に制御される。

0084

食器経由型の食事型センサ400を用いたセンシングにおいても、以後の処理は、ダイレクト型の食事型センサ400を用いたセンシングと同様であり、各ユーザの装着型情報端末500が、食事型センサ400から受信した生体情報と、行動情報とをペアリングしたライフログ情報を、ヘルスケアクラウド10にアップロード(データ送信)する。なお、上述した食器経由型では、茶碗が用いられる場合を例に挙げて説明したが、実施形態はこれに限定されるものではなく、皿などの他の食器が用いられる場合であってもよい。

0085

以下、食事型センサ400を利用した食器経由型のセンシングの処理の流れについて説明する。図14は、本実施形態における食事型400を利用したセンシングの処理手順を示す図である。図14に示すように、食器経由型のセンシングでは、例えば、食器600に内蔵された磁石から発生される磁力によって食事型センサ400の電源がONの状態となると(ステップS201)、食事型センサ400は、食器600に対してセンサIDを送信する(ステップS202)。

0086

食器600は、食事型センサ400からセンサIDを受信すると(ステップS203)、受信した全センサIDを対応するユーザの装着型情報端末500に送信する(ステップS204)。装着型情報端末500は、センサIDを受信して(ステップS205)、受信した全センサIDを登録する(ステップS206)。

0087

そして、食事型センサ400は、自センサがユーザの体内に入ったか否かを判定する(ステップS207)。ここで、自センサが体内に入ったと判定すると(ステップS207肯定)、食事型センサ400は、所定の物質を計測して(ステップS208)、計測結果を装着型情報端末500に送信する(ステップS209)。なお、食事型センサ400は、自センサがユーザの体内に入るまで待機状態となる(ステップS207否定)。

0088

その後、装着型情報端末500は、計測結果を受信すると(ステップS210)、受信した計測結果のセンサIDが登録したセンサIDであるか否かを判定する(ステップS211)。ここで、登録したセンサIDではない場合には(ステップS211否定)、装着型情報端末500は、受信した計測結果を破棄する(ステップS212)。一方、登録したセンサIDである場合には(ステップS211肯定)、装着型情報端末500は、計測結果を送信した食事型センサ400のセンサIDに、計測結果と、時間とを対応付けて記憶する(ステップS213)。

0089

食事型センサ400は、計測結果を送信すると、所定の時間が経過したか否かを判定する(ステップS214)。ここで、所定の時間が経過したと判定すると(ステップS214肯定)、食事型センサ400は、ステップS208に戻って、所定の物質を再度計測する。装着型情報端末500は、受信した全計測結果を行動情報とペアリングしたのち、所定の頻度でヘルスケアクラウド10に送信する(ステップS215)。ヘルスケアクラウド10では、全計測結果を受信して(ステップS216)、PHRデータとして記憶する。なお、上述した処理手順では、自センサが体内に入ったと判定された後に、所定の物質が計測され、計測結果が送信される場合について説明した。しかしながら、実施形態はこれに限定されるものではなく、例えば、自センサが体内に入ったと判定される前から、所定の物質が計測され、計測結果が装着型情報端末500に送信される場合であってもよい。かかる場合には、自センサが体内に入ったと判定された後の測定結果に対してフラグを立てて装着型情報端末500に送信する。これにより、装着型情報端末500は、体内に入る前後の計測結果を識別することができ、体内に入った後の計測結果のみを利用することが可能である。

0090

(食事型センサの構成)
次に、食事型センサ400の構成について説明する。図15は、本実施形態における食事型センサの機能ブロック図である。図15に示すように、食事型センサ400は、バッテリー410と、温度計420と、センサ430と、Amp(amplifier)440と、Amp450と、ADC(analog to digital converter)460と、メモリ470と、Logic480と、アンテナ490とを備える。

0091

バッテリー410は、食事型センサ400の電源となる超小型複合電池である。例えば、バッテリー410は、ウェットな環境下で動作する電気二重層型キャパシタ電池(例えば、化学電池振動電池熱電池など)とを組み合わせた電池である。これにより、バッテリー410は、例えば、口に入れられ、唾液によって湿った場合に動作を開始する電池として構築することも可能となる。なお、バッテリー410は、例えば、電極部と、湿って始めて機能するポリマー電解質との超薄膜(例えば、10ナノメートル程度)サンドイッチ構造を有する。

0092

温度計420は、金属接合部(例えば、p-n接合)の抵抗変化に基づいて、体内の温度を計測する。センサ430は、体内の所定の物質を検出するセンサであり、例えば、電極光感受性素子フォトンカウンタ)などで構成される。図16は、本実施形態におけるセンサ430の処理の例を説明するための図である。例えば、センサ430は、体内の所定の物質を受容するための受容膜を有する。センサ430の受容膜は、所定の物質の受容を、例えば、化学物質、光、熱、質量、屈折率などに変換する。そして、センサ430は、受容膜が所定の物質の受容を化学物質に変換する場合には電極で検出して電気信号で出力し、受容膜が所定の物質の受容を光に変換する場合にはフォトンカウンタで検出して電気信号で出力し、受容膜が所定の物質の受容を熱に変換する場合にはサーミスタで検出して電気信号で出力するように構成される。また、センサ430は、受容膜が所定の物質の受容を質量に変換する場合には水晶振動子で検出して電気信号で出力し、受容膜が所定の物質の受容を屈折率に変換する場合にはSPR(Surface Plasmon Resonance)で検出して電気信号で出力するように構成される。

0093

このように、センサ430は、受容する物質(例えば、塩分、糖分、脂質、鉄分、カルシウム、繊維質、各ビタミン、PH、各酵素、各ウィルス、各菌、各薬剤成分、アルコール、煙草のヤニやニコチンなどの特定物質、血液、Na+、Cl-などのイオンなど)ごとにそれぞれ最適な検出方法で検出して電気信号で出力する。ここで、センサ430の受容膜は、受容する物質との特異性を出すために各物質に対する抗体を固定させることも可能である。なお、電気信号での出力はあくまでも一例であり、光信号で出力する場合であってもよい。

0094

図15に戻って、Amp440は、センサ430から出力された電気信号や光信号を増幅する。Amp450は、温度計420によって計測された温度に応じてフィードバック補正をかけるための信号を増幅する。ADC460は、センサ430から出力された信号(電気信号や、光信号など)をデジタルデータ変換する。メモリ470は、ADC460によって変換されたデジタルデータを記憶する。Logic480は、食事型センサ400を制御する集積回路である。例えば、Logic480は、センサ430によるセンシング、温度計420による温度計測、ADC460におけるアナログデータからデジタルデータへの変換、メモリ470へのデジタルデータの書込み、アンテナ490を介した装着型情報端末500へのデータ送信などを制御する。

0095

ここで、本実施形態における食事型センサ400においては、センサ部430が体内に入ったか否かを検知して、センサ430が体内に入ったと検知された後に、センサ430によって検出された物質の情報を体外の通信装置に送信する。例えば、食事型センサ400は、温度計420によって計測される温度に応じて、自センサが体内に入ったか否かを判定する。一例を挙げると、食事型センサ400は、温度計420によって計測された温度が所定の温度で安定した場合、或いは、温度が大きく変化した場合などをセンサ430が体内に入ったものとして検知する。また、図示しないもう1つのセンサをさらに備え、当該センサによって自センサが体内に入ったか否かを判定する場合であってもよい。一例を挙げると、食事型センサ400は、唾液に含まれるアミラーゼを検出するセンサをさらに備え、当該センサがアミラーゼを検出した場合にセンサ430が体内に入ったものとして検知する。なお、酵素による判定としては、体内のその他の酵素をセンシングする場合であってもよい。また、酵素を検出するセンサではなく、PHを測定するセンサが用いられる場合であってもよい。かかる場合には、PHが大きく変化した場合に、センサ430が体内に入ったと判定する場合であってもよい。また、光を測定するセンサが用いられる場合であってもよい。かかる場合には、光が検出されなくなった場合に、センサ430が体内に入ったと判定する場合であってもよい。なお、上述した各処理は、Logic480の制御のもと実行される。

0096

また、食事型センサ400は、アンテナ490を介したデジタルデータ(計測結果)の送信を所定の頻度で実行する。例えば、センサ430が体内に入ったと判定された後の経過時間に応じて、センサ430によるセンシング及びアンテナ490を介したデジタルデータの送信の頻度を段階的に変化させるように、Logic480が構築される。例えば、Logic480は、体内に入った後、時間の経過に伴って頻度を段階的に低下させながら体内の所定の物質を検出して、デジタルデータを送信するように構築される。

0097

そして、食事型センサ400は、センサ部430が体外に出たか否かを検知して、センサ430が体外に出たと検知された場合に、電源をOFFにすることができる。例えば、食事型センサ400は、温度計420によって計測される温度に応じて、自センサが体外に出たか否かを判定する。一例を挙げると、食事型センサ400は、温度計420によって計測された温度が大きく変化した場合などをセンサ430が体外に出たものとして検知する。また、図示しないもう1つのセンサによって自センサが体外に出たか否かを判定する場合であってもよい。一例を挙げると、食事型センサ400は、PHを測定するセンサが、PHの大きな変化を検知した場合に、センサ430が体外に出たと判定する場合であってもよい。また、光を測定するセンサが、光が検出されなくなった後に、再度光を検出した場合に、センサ430が体外に出たと判定する場合であってもよい。そして、食事型センサ400は、センサ430が体外に出たと判定すると、自センサの電源をOFFするように制御することができる。なお、上述した各処理は、Logic480の制御のもと実行される。

0098

図17は、本実施形態における食事型センサの構造の一例を示す図である。ここで、図17においては、図17の(A)が食事型センサ400の上面図を示し、図17の(B)が食事型センサ400の断面図を示す。食事型センサ400は、人が違和感なく飲み込むことができるサイズで構築される。例えば、図17の(A)に示すように、食事型センサ400は、「縦:0.5〜1.0mm」、「横:0.5〜1.0mm」のサイズで構築される。そして、食事型センサ400は、図17の(B)に示すように、センサ430などの回路集積された基板とバッテリーが重ねられ、体内で消化及び吸収されないように、ガラスや、樹脂塩化ビニルなどでコーティングされる。ここで、コーティングに用いられる材料は、ガラスや、樹脂、塩化ビニルに限られず、形成しやすく、熱や胃酸、各消化酵素などに対する耐性が高く、人体に影響のないものであれば、どのようなものが用いられても良い。

0099

そして、食事型センサ400は、図17の(B)に示すように、センサの表面の一部或いは全部が露出した構造を有する。すなわち、体内の所定の物質がセンサ430に接触することができるように、センサ430が露出される。また、電池をウェットな環境下になってはじめて機能させる場合には、食事型センサ400は、図17の(B)に示すように、バッテリーの一部が露出した構造を有することとなる。なお、電池をウェットな環境下で機能させるケースではない場合には、バッテリー全体がコーティングされることとなる。また、温度や、光などで電源のONとOFFとを検知する場合には、それぞれのセンサの表面が露出することとなる。

0100

なお、上述した実施形態では、1つの食事型センサ400が単一の物質をセンシングする場合について説明した。しかしながら、実施形態はこれに限定されるものではなく、例えば、2つ以上の物質をセンシングする場合であってもよい。かかる場合には、1つの食事型センサ400が複数のセンサ430を有することとなる。また、食事型センサ400の形は、図17に図示された構造に限られるものではなく、例えば、楕円状や、球状であってもよい。かかる場合には、例えば、長軸のサイズが「0.5mm〜1.0mm」となる。

0101

上述したように、食品と混在し、かつ体内に入った際にも消化及び吸収されずに排出される食事型センサ400は、体内の所定の物質を検出するセンサ430と、センサ430が体内に入ったか否かを検知する温度計420又はセンサと、温度計420又はその他のセンサによってセンサ430が体内に入ったと検知されたことに基づいて、センサ430によって検出された物質の情報を体外の装着型情報端末500に送信するLogic480とを備え、食品とともに飲み込まれる。これにより、食事型センサ400は、非意識で体内の物質のセンシングを正確に行なうことができ、個人の真のデータを効率的かつ継続的に収集することを可能にする。

0102

また、センサ430は、体内の所定の物質を所定の頻度で検出し、Logic480は、センサ430によって検出されるごとに、検出された物質の情報を体外の装着型情報端末500に送信する。これにより、食事型センサ400は、バッテリー410の浪費を抑止して、電池を小型化することを可能にする。

0103

また、センサ430は、体内に入った後の経過時間に応じて、所定の頻度を段階的に変化させて体内の所定の物質を検出する。これにより、食事型センサ400は、体内の滞在時間を考慮してセンシングを行なうことを可能にする。

0104

また、センサ430は、体内に入った後、時間の経過に伴って頻度を段階的に低下させながら体内の所定の物質を検出する。これにより、食事型センサ400は、体内の部位ごとに異なる通過時間に基づいて、センシングの間隔を設定することができ、無駄なセンシングを抑止して、個人の真のデータを効率よく収集することを可能にする。

0105

また、温度計420又はセンサは、温度、水素イオン指数及び所定の酵素のうち、少なくとも1つに基づいて、センサ430が体内に入ったか否かを検知する。これにより、食事型センサ400は、センサ430は体内に入ったか否かを正確に判定することを可能にする。

0106

また、食事型センサ400は、1ミリメートル四方以下で形成される。これにより、食事型センサ400は、違和感なく飲み込むことを可能にする。

0107

また、食事型センサ400は、体内での消化及び吸収に対して耐性を有する物質によって表面がコーティングされる。これにより、人体に影響なく、正確にセンシングすることを可能にする。

0108

また、Logic480は、ユーザごとに対応付けられ、当該ユーザの装着型情報端末500と通信を行なう食器内に自センサが入れられたことを条件に、食器に対して自センサの識別子を送信して、食器を介して自センサの識別子を装着型情報端末500に登録させる。これにより、食事型センサ400は、複数のユーザが1つの食品を共有して食す場合でも、測定結果を正確に識別することを可能にする。

0109

また、食品が、生鮮食品、加工食品、調味料又は飲料である。これにより、食事型センサ400は、様々なバリエーションの食事に適応することを可能にする。

0110

上述したように、本実施形態における食事型センサ400は、食品に混合されて飲み込まれることで、体内の所定の物質を計測するが、実施形態はこれに限定されるものではなく、食事型センサ400が、食器に内蔵される場合であってもよい。図18は、本実施形態における食事型センサの応用例を示す図である。例えば、食事型センサ400は、図18に示すように、の先端に内蔵され、口腔内の物質をセンシングすることも可能である。

0111

以上、本実施形態における食事型センサ400について説明した。以下、上述した食事型センサ400によって収集されたライフログ情報を含むPHRビッグデータの解析について説明する。

0112

(PHRビッグデータの解析及び解析結果を用いた健康リスクの推定)
続いて、大規模ゲノム・コホートデータベース114aのPHRビッグデータを対象に行われるコホート分析を説明する。ここで、上述したように、本実施形態では、健康状態の評価や健康リスクの推定を精度良く行うために、大規模ゲノム・コホートデータベース114aを形成し、これを基盤データとする。例えば、PHRビッグデータ解析部121は、後述するコホート分析において、生まれてから亡くなるまでの一生涯のPHRデータの中で、疾病発症から転帰、その際の生活や環境に関する情報との紐付けを行う。また、例えば、PHRビッグデータ解析部121は、後述するコホート分析において、特定地域コホートについて長期間の追跡調査を行い、更に他地域コホートとの間で比較解析を行い、地域間の差を検討する。このような解析は、大規模ゲノム・コホートデータベース114aを対象とするからこそ実現可能であり、小規模なものではその実現は困難であり、特定の疾患を対象にしたもの等に限局される。更に、本実施形態において、PHRビッグデータに含まれるライフログ情報は、センシング技術等によって収集されたものであるので、従来の問診による回答とは異なり正確且つ精密な解析が可能となる。なお、大規模ゲノム・コホートデータベース114aが形成されることで、更には、日本人の低頻度アレルの取得、網羅的な日本人のオリジナルの標準SNPデータベースの構築、タイピングアレイ標準化等も可能となる。

0113

さて、本実施形態において、PHRビッグデータ解析部121は、大規模ゲノム・コホートデータベース114aに蓄積されたPHRビッグデータを対象にコホート分析を行い、ゲノムの型及びライフスタイルの型の組み合わせと、健康リスク(即ち、疾病発症リスク)との関連性を導き出す。

0114

ここで、本実施形態におけるコホート分析とは、特定の要因に曝露された集団(特定のゲノムの型及びライフスタイルの型の組み合わせにあてはまる集団)と曝露されていない集団(その組み合わせにあてはまらない集団)とを一定期間追跡し、所定の疾病の発症確率を比較することで、要因(特定のゲノムの型及びライフスタイルの型の組み合わせ)と、疾病発症との関連性を導き出す手法である。例えば、PHRビッグデータ解析部121は、大規模ゲノム・コホートデータベース114aに蓄積される健常者標準データ、健常者と未病者との乖離データ、健常者と発症者との乖離データ、ライフログ情報上の異常サイン等を類型化し、ゲノムの型との関連性を明らかにする。なお、PHRビッグデータ解析部121が解析に用いる手法は、上述したコホート分析に限られるものではなく、他の手法でもよい。

0115

図19は、本実施形態におけるPHRビッグデータの解析を説明するための図である。図19に示すように、大規模ゲノム・コホートデータベース114aは、各個人のPHRデータであるライフログ情報等が日々新たに蓄積されるとともに、新たな個人のPHRデータが新たな運用管理の対象として蓄積されることで、その規模を日々拡大している。なお、この大規模ゲノム・コホートデータベース114aには、例えば、個人の一生涯のPHRデータが蓄積されるので、見方を変えると、健常者、未病者、及び発症者のPHRデータが蓄積されることになる。

0116

図19に示すように、PHRビッグデータ解析部121は、この大規模ゲノム・コホートデータベース114aを対象にコホート分析を行い、ゲノムの型及びライフスタイルの型の組み合わせ毎に健康リスクを推定する、「健康リスク推定テーブルT」を作成する。なお、上述したように、PHR蓄積部110は、PHRデータを新たに蓄積することで、大規模ゲノム・コホートデータベース114aの規模を拡大する。そこで、PHRビッグデータ解析部121は、大規模ゲノム・コホートデータベース114aの日々の拡大に伴い、新たに解析を行い、新たな解析結果である「健康リスク推定テーブルT」を得る。一次利用サービス提供部122は、新たに得られた解析結果を用いて健康リスクを推定する。このため、「健康リスク推定テーブルT」の精度は日々向上し、一次利用サービス提供部122による健康リスクの推定の精度も日々向上する。

0117

まず、本実施形態において、PHRビッグデータ解析部121は、30億塩基対のうちの1つの塩基対若しくは複数の塩基対の組み合わせパターン、又は、ヒトの個性を表すとされる100万塩基対のうちの1つの塩基対若しくは複数の塩基対の組み合わせパターンを、ゲノムの型とする。

0118

また、図20は、本実施形態におけるライフスタイルの型を説明するための図である。図20に示すように、PHRビッグデータ解析部121は、ライフログ情報から得られる10の項目を、「レベルI」から「レベルIII」までの3段階に分類し、それら全ての組み合わせ(例えば、3の10乗分の組み合わせ)のパターンを、ライフスタイルの型とする。なお、本実施形態におけるライフスタイルの型は一例に過ぎず、項目やレベルを任意に変更することができる。また、ライフスタイルの型の導き方自体も、任意に変更することができる。

0119

このようなことから、ゲノムの型及びライフスタイルの型の組み合わせの数は、膨大な数となるが、PHRビッグデータ解析部121によるコホート分析によって疾病発症との関連性が明らかになる型の組み合わせは、当初、その一部に留まると考えられる。大規模ゲノム・コホートデータベース114aの日々の拡大や、その他個別に進む研究の成果等が徐々に反映されることで、疾病発症との関連性が明らかになる型の組み合わせは、徐々に増え、健康リスク推定テーブルT内の空欄も、徐々に結果を反映して埋められていく。

0120

さて、コホート分析にあたり、PHRビッグデータ解析部121は、ライフログ情報に基づいて10の項目を導き出すためのアルゴリズムを、予め保持している。例えば、PHRビッグデータ解析部121は、生体情報としてセンサから得られた「ニコチンの摂取量」から、ユーザの喫煙の有無や、どの程度喫煙したかといった喫煙のレベルを導き出す。また、例えば、PHRビッグデータ解析部121は、生体情報としてセンサから得られた「アルコールの摂取量」から、ユーザの飲酒の有無や、どの程度飲酒したかといった飲酒のレベルを導き出す。また、例えば、PHRビッグデータ解析部121は、生体情報としてセンサから得られた「心拍数」や、行動情報としてスマートフォンから得られた「アラームの設定を行った時刻」及び「アラームの時刻」、その他、センサから得られた生活音等から、ユーザの睡眠時間や睡眠の質といった睡眠のレベルを導き出す。

0121

また、例えば、PHRビッグデータ解析部121は、生体情報としてセンサから得られた「血圧」、「心拍数」や、行動情報としてスマートフォンから得られた「スケジュール情報」等から、ユーザがどの程度ストレスを感じているかといったストレスのレベルを導き出す。また、例えば、PHRビッグデータ解析部121は、生体情報としてセンサから得られた「心拍数」や、行動情報としてセンサから得られたユーザの姿勢や動作、行動情報としてスマートフォンの運動系アプリケーションから得られた「運動情報」等から、ユーザがどの程度の運動を行ったかといった運動のレベルを導き出す。また、例えばセンサで計測した末梢の体温の変動や発汗度合いから交感神経・副交感神経バランスを計測することで、精神の緊張弛緩度合が導き出される。また、例えば、PHRビッグデータ解析部121は、生体情報としてセンサから得られた「糖分」、「塩分」、「胃酸」、「アルコール摂取量」等から、ユーザがどのような食生活を送っていたかといった食生活のレベルを導き出す。また、例えば、PHRビッグデータ解析部121は、生体情報としてセンサから得られた「薬剤成分」等から、ユーザがどのような薬やサプリメントを服用しているかといった薬サプリのレベルを導き出す。なお、上述したアルゴリズムは一例に過ぎない。

0122

このように、PHRビッグデータ解析部121は、ライフログ情報のうち生体情報及び行動情報のいずれか一方のみで、あるいは、両者の組み合わせから、上述した10の項目の値を得て、この値に基づいて各項目のレベルを導き出す。なお、ゲノムの型は、同一の対象者に関しては原則変化しない一方で、ライフスタイルの型は、時間経過とともに変化する可能性がある。

0123

図21は、本実施形態における健康リスク推定テーブルTを説明するための図である。本実施形態では、同一のライフスタイルの型のユーザであっても、ゲノムの型が異なれば、発症リスクの高い疾病の種類や順序は異なると考える。また、同一のゲノムの型のユーザであっても、ライフスタイルの型が異なれば、発症リスクの高い疾病の種類や順序は異なると考える。なお、図21に示す健康リスク推定テーブルTの表現方法は一例に過ぎず、図21に例示される疾病の種類や順序も、説明の便宜上の一例に過ぎない。

0124

例えば、PHRビッグデータ解析部121は、ゲノムの型及びライフスタイルの型の組み合わせ毎に、疾病発症リスクを示す健康リスクグラフを作成する。各健康リスクグラフの縦軸は、疾病発症リスクにおけるライフスタイル要因及びゲノム要因の割合を表し、横軸には疾病が並ぶ。横軸の右方向へ行くほど、ライフスタイル要因の影響が強い疾病であること、横軸の左方向へ行くほど、ゲノム要因の影響が強い疾病であることを表す。即ち、健康リスクグラフは、ゲノムの型及びライフスタイルの型の組み合わせ毎に、ゲノム要因及びライフスタイル要因のいずれの影響を強く受けるかに応じて順序付けされた、将来発症し得る疾病のリストである。なお、横軸には、疾病の名称として、疾病の正式名称と、国際疾病分類に基づくICD(International Classification of Diseases)コードとが表示される。なお、実施形態はこれに限られるものではなく、例えば、疾病の正式名称か、ICDコードのいずれかのみを表示してもよい。

0125

例えば、図21の(A)と(B)とを比較すると、同一のライフスタイル3型のユーザであっても、ゲノムの型が2型と3型とで異なれば、発症リスクの高い疾病の種類や順序が異なることが分かる。例えば、「アルコール性肝疾患(K70)」がライフスタイル要因の影響が強い疾病であることについては共通する一方で、ゲノム2型のユーザにとって、ライフスタイル要因の影響が強い疾病である「痛風性関節炎(M1009)」が、ゲノム3型のユーザにとっては、むしろゲノム要因の影響が強い疾病に位置付けられている。反対に、ゲノム3型のユーザにとって、ライフスタイル要因の影響が強い疾病である「糖尿病性腎症(E142)」が、ゲノム2型のユーザにとっては、むしろゲノム要因の影響が強い疾病に位置付けられている。

0126

また、例えば、図21の(B)と(C)とを比較すると、同一のゲノム3型のユーザであっても、ライフスタイルの型が3型と2型とで異なれば、発症リスクの高い疾病の種類や順序が異なることが分かる。例えば、ライフスタイル3型のユーザについては、「アルコール性肝疾患(K70)」、「肝細胞癌(C220)」、「糖尿病性腎症(E142)」等が、ライフスタイル要因の影響が強い疾病として位置付けられている一方で、ライフスタイル2型のユーザについては、「肺胞性肺気腫(J43)」、「肺門腺癌(C340)」、「急性右室梗塞(I212)」等が、ライフスタイル要因の影響が強い疾病として位置付けられている。例えば、同一のゲノム3型のユーザの中でも、ライフスタイル3型は、飲酒のレベルが高いユーザで、ライフスタイル2型は、喫煙のレベルが高いユーザである場合等が考えられる。なお、同じゲノム3型のユーザでは、ライフスタイルの型に関わらず、「脊髄小脳変性症(G319)」や「痛風性関節炎(M1009)」等がゲノム要因の影響が強い疾病として位置付けられている。

0127

ここで、PHRビッグデータ解析部121による「健康リスクグラフ」作成処理の一例を説明する。また、具体的な一例として、ゲノム3型及びライフスタイル3型の組み合わせに対する「健康リスクグラフ」を作成する場合を説明する。

0128

例えば、PHRビッグデータ解析部121は、ゲノム情報としてゲノム3型を有するユーザの病歴情報(例えば、電子カルテ情報から得られる)を参照して、ゲノム3型のユーザにとって発症リスクの高い疾病として「疾病A,疾病B,疾病C,疾病D」を特定する。また、PHRビッグデータ解析部121は、ライフログ情報としてライフスタイル3型を有するユーザの病歴情報を参照して、ライフスタイル3型のユーザにとって発症リスクの高い疾病として「疾病D,疾病E,疾病F,疾病G」を特定する。そして、PHRビッグデータ解析部121は、特定した疾病を比較して、ゲノム3型のユーザにとって発症リスクの高い疾病にのみ含まれる「疾病A,疾病B,疾病C」を、「遺伝子要因の影響が強い疾病」に分類する。また、PHRビッグデータ解析部121は、ライフスタイル3型のユーザにとって発症リスクの高い疾病にのみ含まれる「疾病E,疾病F,疾病G」を、「ライフスタイル要因の影響が強い疾病」に分類する。また、PHRビッグデータ解析部121は、その両方に含まれる「疾病D」を、「ライフスタイル要因及び遺伝子要因の影響が強い疾病」に分類する。

0129

続いて、PHRビッグデータ解析部121は、ゲノム3型及びライフスタイル3型の組み合わせのユーザの病歴情報を参照して、ゲノム3型及びライフスタイル3型の組み合わせのユーザにとって発症リスクの高い疾病を特定する。ここで、例えば、PHRビッグデータ解析部121が、ゲノム3型及びライフスタイル3型の組み合わせのユーザにとって発症リスクの高い疾病として「疾病A,疾病C,疾病F,疾病G」を特定したものとする。かかる場合、PHRビッグデータ解析部121は、先に「遺伝子要因の影響が強い疾病」に分類された「疾病A,疾病B,疾病C」と共通する「疾病A」及び「疾病C」を、「遺伝子要因の影響が強い疾病」であると判定し、図21に示す「健康リスクグラフ」において、横軸の左方向へ位置付ける。また、PHRビッグデータ解析部121は、先に「ライフスタイル要因の影響が強い疾病」に分類された「疾病E,疾病F,疾病G」と共通する「疾病F」及び「疾病G」を、「ライフスタイル要因の影響が強い疾病」であると判定し、図21に示す「健康リスクグラフ」において、横軸の右方向へ位置付ける。

0130

ところで、PHRビッグデータ解析部121は、ある基準のもとで、図21に示した健康リスク推定テーブルTを作成する。例えば、PHRビッグデータ解析部121は、「標準の健康状態にある者が、例えば1年間同じライフスタイルの型の生活を継続した場合の10年後の健康リスク(発症確率30%)」という基準のもとで、健康リスク推定テーブルTを作成する。この点、実際のユーザのライフスタイルの型は、一般に、1日、1週間、1ヶ月、1年等、期間の長さに応じて異なると考えられる。例えば、今週は歓送迎会が多かったために特別に飲酒の量が増えたが、1ヶ月で考えたときには、それほど飲酒の量が多いわけではないという場合である。そこで、一次利用サービス提供部122が、この健康リスク推定テーブルTを用いてあるユーザの健康リスクを推定する際には、推定に用いるPHRデータの期間(推定対象期間と呼ぶ)に応じた個別の推定と、現在の健康状態に応じた調整とを行う。なお、PHRビッグデータ解析部121は、上述した基準を、適宜変更することができる。また、PHRビッグデータ解析部121は、上述した基準のうち、推定する将来の「時点」を複数設定することができる(例えば、1日後、1週間後、1ヶ月後、1年後、5年後、10年後、20年後等)。この場合、PHRビッグデータ解析部121は、それぞれの基準に対応する健康リスク推定テーブルTを作成する。なお、異なる「時点」の健康リスク推定テーブルTを比較すると、例えば、1ヶ月後の健康リスク推定テーブルTには、直ぐに発症する疾病が列挙される一方で、10年後の健康リスク推定テーブルTには、長期経過後に発症する疾病が列挙されるといった違いが現れる場合がある。

0131

図22は、本実施形態における健康リスクの推定を説明するための図である。例えば、一次利用サービス提供部122は、ユーザAの健康リスクを推定する際に、ユーザAのPHRデータから、推定対象期間に応じてライフログ情報を抽出する。例えば、一次利用サービス提供部122は、図22に示すように、操作者から指定された推定対象期間に応じて、ユーザAのPHRデータから、例えば、今週のライフログ情報D1、今月のライフログ情報D2、今年のライフログ情報D3をそれぞれ抽出する。

0132

続いて、一次利用サービス提供部122は、推定対象期間毎に、それぞれ10の項目(喫煙、飲酒、睡眠、ストレス、運動、食生活、薬・サプリ、精神状態、疲れ、免疫)の値を得て、この値に基づいて、各項目のレベルを導き出す。そして、一次利用サービス提供部122は、推定対象期間毎に、各項目のレベルの組み合わせのパターンの1つであるライフスタイルの型を、ユーザAのライフスタイルの型(今週のライフスタイルの型、今月のライフスタイルの型、今年のライフスタイルの型)として判定する。例えば、一次利用サービス提供部122は、図22に示すように、今週のライフログ情報D1に基づいて、今週のライフスタイルの型「3型」を判定し、今月のライフログ情報D2に基づいて、今月のライフスタイルの型「30型」を判定し、今年のライフログ情報D3に基づいて、今年のライフスタイルの型「30型」を判定する。

0133

次に、一次利用サービス提供部122は、判定したライフスタイルの型を用いて健康リスク推定テーブルTを参照し、該当の健康リスクグラフを、推定対象期間毎にそれぞれ特定する。例えば、図22の例では、ライフスタイル3型の健康リスクグラフにおいて、「アルコール性肝疾患(K70)」、「肝細胞癌(C220)」、「糖尿病性腎症(E142)」が、発症リスクの高い疾病として列挙されているのに対し、ライフスタイル30型の健康リスクグラフにおいては、「アルコール性肝疾患(K70)」及び「肝細胞癌(C220)」が、発症リスクの高い疾病から外れ、「糖尿病性腎症(E142)」のみが、発症リスクの高い疾病として列挙されている。これはあくまで説明の便宜上の一例に過ぎないが、このように、推定対象期間によってライフスタイルの型が異なれば、推定対象期間によって、発症リスクの高い疾病の種類や順序も異なってくる。推定対象期間に応じて個別の推定を行い、例えば、今週、今月、今年の間で比較を行うことで、健康リスクの方向性(例えば、良い方向に向かっているのか、あるいは悪い方向に向かっているのか等)を提示することができる。

0134

更に、一次利用サービス提供部122は、推定対象期間毎に特定された各健康リスクグラフについて、現在の健康状態に応じた調整を行う。例えば、一次利用サービス提供部122は、ライフログ情報に含まれる生体情報を考慮して、各健康リスクグラフの内容を、個別のユーザの現在の健康状態に応じた内容に変更する。例えば、一次利用サービス提供部122がユーザAの生体情報を解析したところ、ユーザAの肝機能が極めて良好な状態であることが判明したとする。すると、一次利用サービス提供部122は、ゲノム3型及びライフスタイル3型の組み合わせの健康リスクグラフにおいて、「アルコール性肝疾患(K70)」、「肝細胞癌(C220)」、「糖尿病性腎症(E142)」のうち、「肝細胞癌(C220)」の発症リスクは低いと判定して、これを削除する。なお、これはあくまで説明の便宜上の一例に過ぎないが、このように、現在の健康状態によって、発症リスクの高い疾病の種類や順序も異なってくる。

0135

本実施形態において一次利用サービス提供部122が健康リスクの推定を行う際には、上述したような推定対象期間に応じた個別の推定と、現在の健康状態に応じた調整とを行う。なお、上述の例では、推定対象期間として、「今週」、「今月」、「今年」の例を挙げたが、実施形態はこれに限られるものではない。「過去1日分」、「過去1週間分」、「過去1ヶ月分」、「過去1年分」等のように、一定の単位で区切られた期間でもよいし、あるいは、ユーザから適宜設定を受け付け、ユーザの要望に応じた任意の期間であってもよい。

0136

なお、これまで、PHRビッグデータ解析部121が、ゲノムの型及びライフスタイルの型の組み合わせに応じて、疾病発症リスクにおけるゲノム要因及びライフスタイル要因の割合を示す「健康リスク推定テーブルT」を生成するものとして説明した。これに加えて、PHRビッグデータ解析部121は、「ゲノム要因の影響が強い疾病」について、疾病発症リスクを更に増加させる要因となるライフスタイルを示す情報を生成することも可能である。

0137

これまでに、ALDH2遺伝子にSNPを有する場合、喫煙習慣、飲酒習慣がある場合に食道癌の発症リスクが高くなることが知られている。このようなことから、例えば、ある遺伝子にSNPを有するゲノムの型のユーザについて、ライフスタイル別に発症リスクの高い疾病を解析することで、SNPを有することで発症する疾病とライフスタイルとの相関を推定することが可能となる。

0138

かかる場合、例えば、PHRビッグデータ解析部121は、ある遺伝子にSNPを有するゲノムの型のユーザをゲノム情報から検索する。そして、PHRビッグデータ解析部121は、ある遺伝子にSNPを有するゲノムの型のユーザの病歴情報(例えば、電子カルテ情報等から得られる)を参照して、発症リスクの高い疾病を特定する。続いて、PHRビッグデータ解析部121は、ある遺伝子にSNPを有するゲノムの型のユーザのライフログ情報を参照して、特定した疾病の発症リスクを高めるライフスタイルを特定する。

0139

また、上述した実施形態では、健康リスクグラフが「標準の健康状態にある者」を想定して作成されると述べたが、実施形態はこれに限られるものではない。例えば、糖尿病には、腎障害網膜障害神経障害等の合併症があることが知られている。また、高血圧には、脳卒中、各種心臓病、腎障害等の合併症があることが知られている。また、インフルエンザには、細菌性肺炎インフルエンザ脳症心筋炎等の合併症があることが知られている。このように、ある疾病に合併症がある場合、その疾病に罹患した者の健康リスクグラフにおいては、これらの合併症の発症リスクが高まると考えられる。そこで、例えば、PHRビッグデータ解析部121は、合併症を有する疾病に罹患している者を分類した上でコホート分析を行うことで、例えば、「糖尿病に罹患している者」、「高血圧の者」、「インフルエンザに罹患している者」を想定した罹患者専用の健康リスクグラフを作成することができる。また、この場合、一次利用サービス提供部122は、「糖尿病に罹患している者」、「高血圧の者」、「インフルエンザに罹患している者」に対して日常人間ドックサービスを提供する場合には、罹患者専用の健康リスクグラフを参照して、発症リスクの高い疾病を特定することができる。

0140

(日常人間ドック−週刊元気予報)
さて、本実施形態において、一次利用サービス提供部122は、健康リスク推定テーブルTを用いて、PHRデータを提供したユーザ本人に対するフィードバックを行うことで、日常人間ドックを一次利用サービスとして提供する。その提供の手法としては様々な手法が考えられるが、以下では、図23を用いて1つの手法を説明する。

0141

図23は、本実施形態における元気予報ポータルサイトを説明するための図である。図23に示すように、例えば、一次利用サービス提供部122は、ヘルスケアクラウド10上にユーザA用のポータルサイト14aを立ち上げ、ユーザA及び家族に対してポータルサイト14aへのアクセスを許可する。また、例えば、一次利用サービス提供部122は、ヘルスケアクラウド10上に主治医用のポータルサイト14bを立ち上げ、主治医に対しては、主治医用のポータルサイト14b経由で、ユーザA用のポータルサイト14aへのアクセスを許可する。このように、ユーザA用のポータルサイト14aを介して、ユーザA、家族、主治医のアクセスを受け付けることで、ユーザA本人に対するフィードバックと、3者間の情報共有とを実現する。

0142

また、図23に示すように、本実施形態において、ポータルサイト14aを通じて閲覧可能な範囲は、主治医とユーザA本人(及び家族)とで異なっている。即ち、主治医であれば、ユーザAのPHRデータ自体、並びに、PHRデータに基づく健康リスクの推定結果の両方を閲覧することができる。一方、ユーザA本人や家族は、ユーザAのPHRデータ自体を閲覧することはできない。例えば、ゲノム情報の本人に対する開示は適宜制限されるべきだからである。なお、このような閲覧範囲の制限は一例に過ぎず、他の制限を設けてもよいが、一般に、本人の閲覧範囲よりも主治医の閲覧範囲が広くなる場合が多いと考えられる。

0143

また、主治医の意見に基づいて、ユーザA本人や家族に対する閲覧範囲を調整してもよい。例えば、一次利用サービス提供部122は、健康リスクの推定結果のうち、ユーザA本人に閲覧させた方が望ましい項目、閲覧させない方が望ましい項目の指定を、主治医から受け付ける。そして、一次利用サービス提供部122は、主治医からの指定に従って、ユーザA本人に対して閲覧させる閲覧範囲を調整する。例えば、一次利用サービス提供部122は、主治医用の健康リスクグラフを表示する場合に表示していた疾病の一部を、ユーザ用の健康リスクグラフを表示する場合には非表示とする。本実施形態においては、ユーザのゲノム要因の影響を強く受ける疾病についても、発症リスクの高い疾病として判明する可能性がある。しかしながら、このようなゲノム要因の影響を強く受ける疾病は、ライフスタイルの変更によっても避けられないこと、且つ、例えば治療法確立しない難病の場合には、本人への告知が意味をなさない(若しくは、かえって悪影響を与える)事態が想定される。そこで、一次利用サービス提供部122は、ユーザ用の健康リスクグラフを表示する場合には、疾病の一部を非表示とすることができる。例えば、一次利用サービス提供部122は、主治医から、非表示とすべき疾病の指定を受け付け、健康リスクグラフの表示にあたり、この指定を反映して、非表示とする。また、このような難病に限られず、例えば、主治医が、本人の性格を考慮して、本人への告知が望ましくないと考える場合も想定される。このような場合も、例えば、一次利用サービス提供部122は、主治医から、非表示とすべき疾病の指定を受け付け、健康リスクグラフの表示にあたり、この指定を反映して、非表示とする。

0144

このように、主治医と、ユーザA本人や家族とでは閲覧範囲が異なること、また、そもそも、主治医と、ユーザA本人や家族とでは閲覧の目的も異なることから、本実施形態においては、図23に示すように、主治医用のコンテンツ14cと、ユーザA本人や家族用のコンテンツ14dとが、別々に準備される。この点については、以下で画面遷移を説明する際に詳しく述べる。

0145

また、本実施形態において、一次利用サービス提供部122は、健康リスクの推定結果を、「健康リスクグラフ」、「バーチャルクローン」、「健康ステータス」、「健康リスクを視覚的に表現したマーク」、「文字情報」のうちの1つ若しくは複数で提示する。

0146

例えば、一次利用サービス提供部122は、健康リスクの推定結果を、ユーザA本人のPHRデータと紐付いた、「バーチャルクローン」によって提示する。例えば、「バーチャルクローン」は、過去から未来までの各時点に対応付けて設定されており、各時点における健康状態を、部位毎に点数化された健康ステータスの形で保持する。例えば、一次利用サービス提供部122は、健康リスクグラフからライフスタイル要因の影響が強い疾病を適宜抽出し、疾病の種類に応じた重み付けを行い、部位毎に点数を算出する。なお、ある部位の疾病が他の部位にも影響を及ぼす場合には、一次利用サービス提供部122は、その点を加味して点数を算出する。また、例えば、「バーチャルクローン」は、健康ステータスに応じた表情の画像を保持する。こうして、病気への距離感の見える化が実現される。

0147

例えば、過去の「バーチャルクローン」は、過去のPHRデータから判明する過去の健康状態やライフスタイルの型に応じた健康ステータス、及び、既往症の情報を保持する。現在の「バーチャルクローン」は、現在のPHRデータから判明する現在の健康状態やライフスタイルの型に応じた健康ステータス、及び、現在罹患中の疾病の情報を保持する。未来の「バーチャルクローン」は、現在のPHRデータから判明する現在の健康状態に、現在のライフスタイルの型を加味した未来の健康ステータス、及び、未来において発症リスクの高い疾病の情報を保持する。更に、本実施形態においては、ユーザA本人にとって理想の「バーチャルクローン」も設定、提示される。

0148

例えば、ユーザAや主治医は、ユーザA用のポータルサイト14aにアクセスしてユーザAの「バーチャルクローン」を閲覧することで、ユーザA本人の健康状態を過去から未来に亘るまで把握することができる。例えば、ユーザAや主治医は、「バーチャルクローン」の時間を過去に移動させることで、本人の病歴やその重症度を把握することができる。また、例えば、ユーザAや主治医は、「バーチャルクローン」の時間を未来に移動させることで、本人の現在のライフスタイルを前提とした未来の健康リスクを表示させることができる。

0149

また、例えば、一次利用サービス提供部122は、健康リスクの推定結果を、「健康リスクを視覚的に表現したマーク」で提示する。このマークは、例えば、健康ステータスに応じたマークとなっており、健康ステータスが悪ければ「悪魔」、健康ステータスが良ければ「天使」のように、ユーザにとって認識し易いものが望ましい。また、例えば、一次利用サービス提供部122は、健康リスクの推定結果を、「文字情報」で提示する。例えば、一次利用サービス提供部122は、健康リスクグラフからライフスタイル要因の影響が強い疾病を適宜抽出し、抽出した疾病の名称を並べて提示する。あるいは、先に述べた「バーチャルクローン」において、将来の健康状態から予測される特徴的な風貌を自分の顔や容姿に反映させた自己像を提示することで、直感的に現状生活の及ぼす、X年後の自分の将来像を表示させることでもよい。

0150

図24は、本実施形態における日常人間ドックの処理手順を示す図である。図24に示すように、ユーザAは、PHR処理装置100に対して、予めゲノム情報を登録しているものとする(ステップS301)。なお、このステップS301の処理は、原則として少なくとも1回行われればよい処理であり、ステップS302以降の処理が、繰り返し行われる処理である。

0151

また、図24に示すように、ユーザAは、PHR処理装置100に対して、センサやその他の情報端末によって収集されたライフログ情報を、装着型情報端末から、日々送信する(ステップS302)。PHR処理装置100のPHR蓄積部110は、受信したライフログ情報を、ユーザAのPHRデータとして日々蓄積し、一元管理する。

0152

一次利用サービス提供部122は、例えば、1週間に1回の頻度で、ステップS303以降の処理を行う。まず、一次利用サービス提供部122は、健康リスクの推定対象期間毎に、ユーザAのライフスタイルの型を判定する(ステップS303)。例えば、一次利用サービス提供部122は、ユーザAのPHRデータから、今週のライフログ情報D1、今月のライフログ情報D2、今年のライフログ情報D3をそれぞれ抽出し、推定対象期間毎に、ユーザAのライフスタイルの型を判定する。

0153

続いて、一次利用サービス提供部122は、予め判明しているユーザAのゲノムの型と、ステップS303で判定したライフスタイルの型とを用いて、健康リスクの推定対象期間毎に、健康リスク推定テーブルTを参照する(ステップS304)。例えば、一次利用サービス提供部122は、健康リスク推定テーブルTを参照し、ユーザAのゲノムの型が3型で、今週のライフスタイルの型が3型である場合、図21の(B)の健康リスクグラフを特定する。このように、一次利用サービス提供部122は、推定対象期間毎に、健康リスクグラフを特定する。

0154

次に、一次利用サービス提供部122は、ユーザAの現在の健康状態に応じて、ステップS304で得られた健康リスクグラフを、推定対象期間毎に調整する(ステップS305)。例えば、一次利用サービス提供部122は、ユーザAの生体情報から、ユーザAの肝機能が極めて良好な状態であると判明した場合、「肝細胞癌(C220)」の発症リスクは低いと判定して、今週の健康リスクグラフからこれを削除する。

0155

そして、一次利用サービス提供部122は、現在から未来までの健康ステータスを推定対象期間毎に算出し(ステップS306)、推定対象期間毎に準備された、現在から未来までの「バーチャルクローン」に登録する(ステップS307)。例えば、一次利用サービス提供部122は、前の週に算出された現在の健康ステータスと今週の生体情報とに基づいて、ユーザAの現在の健康ステータスを算出し、これを、ユーザAの現在の「バーチャルクローン」に対応付けて登録する。また、一次利用サービス提供部122は、現在の健康ステータスを基準に、加齢に伴う減点や、ステップS305で判明した未来の健康リスクに伴う減点等を組み合わせて未来の健康ステータスを算出し、これを、ユーザAの未来の「バーチャルクローン」に対応付けて登録する。なお、一次利用サービス提供部122は、未来のある時点について健康ステータスを算出すると、現在からその時点までの間の中間の時点や、その時点以降の更に未来の時点の健康ステータスを、適宜補間により(複数の時点の健康リスク推定テーブルTが準備されている場合は、それを用いて)算出する。例えば、一次利用サービス提供部122は、1日後、1週間後、1ヶ月後から、1年後、5年後、10年後、あるいは20年後まで、各時点の健康ステータスを算出する。また、一次利用サービス提供部122は、このような健康ステータスの算出を、推定対象期間毎に行う。

0156

また、一次利用サービス提供部122は、ユーザAの主治医が保持する健康リスクランキングリスト更新する(ステップS307)。例えば、一次利用サービス提供部122は、主治医が担当する複数のユーザに関して、例えば、推定対象期間を「今年」とした場合の10年後の健康ステータスに基づいて、疾病の発症リスクが高い者から順に並べた、健康リスクランキングリストを作成している。そこで、一次利用サービス提供部122は、ステップS106で算出された「今年」の健康ステータスに基づいて、この健康リスクランキングリストを更新する。

0157

そして、一次利用サービス提供部122は、上述した処理の結果を、主治医用のコンテンツ、ユーザA用のコンテンツにそれぞれ反映する(ステップS308)。例えば、一次利用サービス提供部122は、主治医用のコンテンツにおいては、更新された健康リスクランキングを反映する。また、一次利用サービス提供部122は、ユーザA用のコンテンツにおいては、推定対象期間毎のライフスタイルの型、推定対象期間毎の健康リスクグラフ、推定対象期間毎の健康ステータスを反映する。

0158

そして、一次利用サービス提供部122は、主治医に対して登録を通知する(ステップS309)。主治医は、まず、主治医用のポータルサイトにおいて健康リスクランキングを閲覧する。そして、例えば、健康リスクランキングでユーザAが上位に位置付けられていた場合には、主治医は、更に、ユーザA用のポータルサイトを閲覧し、自身のコメントを録画して、ユーザA用のポータルサイトにアップロードする(ステップS310)。なお、コメントは、動画データに限られるものではなく、テキストデータによるコメント等でもよい。

0159

続いて、一次利用サービス提供部122は、ユーザA本人に登録を通知し(ステップS311)、ユーザAが、ユーザA用のポータルサイトを閲覧する(ステップS312)。ステップS310において既に主治医のコメントが録画されている場合、ユーザAは、主治医のコメントとしてこの動画を再生することもできる。

0160

なお、図24に示した処理手順は一例に過ぎない。例えば、図24では、主治医によるコメント付与を待って、ユーザA本人による閲覧を可能とする処理手順としたが、実施形態はこれに限られるものではない。例えば、一次利用サービス提供部122は、ユーザ、家族、主治医の3者に対して同時に、ポータルサイトの登録を通知してもよい。また、図24に示した処理手順は、主治医の介在を前提とせずに行われてもよい。その他、推定対象期間の設定や健康ステータスの算出等は、サービスの提供形態に応じて、任意に変更することや、省略することが可能である。

0161

次に、主治医用のポータルサイトやユーザA用のポータルサイトにおいて、どのようなコンテンツを閲覧することができるか、その一例を画面遷移によって説明する。図25は、本実施形態における主治医用ポータルサイトの画面遷移を示す図であり、図26は、本実施形態におけるユーザ用ポータルサイトの画面遷移を示す図である。なお、図25図26に示す画面遷移はあくまで一例に過ぎず、その画面遷移の順序や、画面の構成等は、任意に変更することが可能である。

0162

ここで、以下に例示する画面遷移は、主治医のPHR表示装置200、又は、ユーザA本人のPHR表示装置200において表示されるものである。これは、一次利用サービス提供部122による制御により実現されるものであると同時に、PHR表示装置200側の表示制御部210による表示制御により実現されるものである。

0163

まず、主治医側の画面遷移を説明する。主治医は、PHR表示装置200によって主治医用のポータルサイトにアクセスする。すると、図25の画面P1に示すように、健康リスクランキングリストの更新があったことが通知されている。そこで、主治医は、『Enter』ボタンを押下して、健康リスクランキングリストを閲覧する。

0164

すると、画面P2に示すように、一次利用サービス提供部122は、主治医のPHR表示装置200に、健康リスクランキングを表示する。健康リスクランキングには、健康リスクスコアが低い順に、ユーザの氏名と、健康リスクスコアと、発症リスクが高い疾病の名称とが表示される。例えば、この健康リスクランキングの上位に、ユーザAの氏名が含まれていたとする。

0165

この場合、主治医は、健康リスクランキング上でユーザAの名前を選択し、ユーザA用のポータルサイトにアクセスする。すると、画面P3に示すように、一次利用サービス提供部122は、主治医のPHR表示装置200に、ユーザA用のポータルサイトを表示する。例えば、一次利用サービス提供部122は、ユーザAの現在の「バーチャルクローン」を表示する。なお、画面P3に示すように、画面上には、推定対象期間を選択するためのタブ(「今週」、「今月」、「今年」のタブ)が設定されている。ここでは、主治医が、推定対象期間として「今週」を選択したものとして説明する。また、「バーチャルクローン」の下には、確認したい時点を受け付けるためのツールとして、バーが表示されている。例えば、主治医は、このバーの位置を10年後の「2023年」に合わせ、『健康リスクグラフを確認』のボタンを押下する。

0166

すると、画面P4に示すように、一次利用サービス提供部122は、主治医のPHR表示装置200に、ユーザAのゲノムの型と今週のライフスタイルの型とを表示するとともに、該当する健康リスクグラフを表示する。また、図示を省略するが、一次利用サービス提供部122は、必要に応じて、ライフスタイルの型の各項目の内容を具体的に表示してもよい。そして、例えば、主治医は、健康リスクグラフを確認後、『PHR確認』のボタンを押下する。

0167

すると、画面P5に示すように、一次利用サービス提供部122は、ユーザAのPHRデータを表示する。なお、画面P5においては、ライフログ情報をグラフ形式で表示する例を示すが、実施形態はこれに限られるものではない。一次利用サービス提供部122は、主治医によって指定されたPHRデータを主治医が望む形式(例えば、表形式)に加工して表示することができる。例えば、主治医は、推定対象期間毎の健康リスクグラフやPHRデータをひと通り確認すると、『コメント』のボタンを押下する。

0168

そして、画面P6に示すように、主治医は、例えば、PHR表示装置200の録画機能を用いてコメント動画を録画し、『送信』ボタンを押下することで、コメント動画をアップロードする。

0169

上述してきた画面遷移について、PHR表示装置200の表示制御部210による表示制御の観点から説明すると、以下の通りである。例えば、主治医のPHR表示装置200は、ユーザのPHRデータに基づいて推定されたユーザの将来の健康リスクを表示部220に表示する表示制御部210を備える。表示制御部210は、複数のユーザ間の比較に基づく健康リスクランキングリストを表示し、健康リスクランキングリストに対して所定のユーザが指定された場合に、指定されたユーザの将来の健康リスク及びPHRデータを表示する。将来の健康リスクは、例えば、バーチャルクローンや、健康リスクグラフ、その他の文字情報等で表示される。また、PHRデータは、グラフ形式や、表形式、その他の文字情報等で表示される。また、表示制御部210は、ユーザのPHRデータとして、ゲノムの型、及び、ライフスタイルの型を表示する。なお、図25においては図示を省略するが、表示制御部210は、疾病の名称を表示する場合に、正式名称やICDコードで表示する。

0170

次に、ユーザA側の画面遷移を説明する。ユーザAは、PHR表示装置200によって、ユーザA用のポータルサイトにアクセスする。すると、図26の画面P7に示す画面が表示されるので、ユーザAは、『Enter』ボタンを押下して、閲覧を開始する。

0171

すると、画面P8に示すように、一次利用サービス提供部122は、ユーザAの現在の「バーチャルクローン」を表示する。なお、画面P8に示すように、画面上には、推定対象期間を選択するためのタブ(「今週」、「今月」、「今年」のタブ)が設定されている。ここでは、ユーザAが、推定対象期間として「今週」を選択したものとして説明する。また、「バーチャルクローン」の下には、確認したい時点を受け付けるためのツールとして、バーが表示されている。例えば、ユーザAは、このバーの位置を10年後の「2023年」に合わせ、『詳細』のボタンを押下する。

0172

すると、画面P9に示すように、一次利用サービス提供部122は、ユーザAによって指定された時点の「バーチャルクローン」と、その時点の健康ステータスとを表示する。また、一次利用サービス提供部122は、健康リスクの推定結果「10年後(2023年)に、「アルコール性肝疾患」、「糖尿病」を発症するリスクが高まっています」を表示する。また、一次利用サービス提供部122は、健康リスクを視覚的に表現したマークを表示する。画面P9の例では、重い疾病を発症するリスクが高まっていることを視覚的に表現する意味で、「悪魔」のマークが表示されている。ここで、例えば、ユーザは、『シミュレーション』のボタンを押下する。

0173

すると、画面P10に示すように、一次利用サービス提供部122は、ライフスタイルの変更を受け付けて健康リスクをシミュレーションするシミュレーション画面を表示する。図27は、本実施形態における健康リスクのシミュレーションを説明するための図である。例えば、一次利用サービス提供部122は、図27に示すように、ライフログ情報から得られる10の項目について、「レベルI」から「レベルIII」までの3段階を選択可能なGUI(Graphical User Interface)を表示する。図27に示すGUIにおいて、各項目の各レベルは、ユーザの押下によって選択可能なボタンとなっている。一次利用サービス提供部122は、初めは、図27の左側に示すように、ユーザAの現在のライフスタイルの型を選択状態にして表示するが、図27の右側に示すように、ユーザAからの押下を受け付けて、そのライフスタイルの型を変更する。ここでは、例えば、ユーザAが、項目「飲酒」のレベルを「レベルIII」から「レベルII」に引き下げ、項目「疲れ」のレベルを「レベルII」から「レベルI」に引き下げた例を示す。なお、ユーザAによる選択の結果、ライフスタイルの型が30型に変更されたことも表示されている。また、シミュレーションのためのGUIは、図27の例に限られるものではない。例えば、プルダウンメニュー等で変更するものでもよい。

0174

こうして、シミュレーションしたいライフスタイルの型を選択すると、ユーザAは、図26の画面P10において、『実行』のボタンを押下する。すると、一次利用サービス提供部122は、シミュレーションされたライフスタイルの型に対応する健康リスクグラフを特定するとともに、ユーザAの現在の健康状態に応じて、この健康リスクグラフを調整し、画面P11に示すように、シミュレーション後の健康リスクグラフを表示する。

0175

ここで、一次利用サービス提供部122は、主治医等の医師に対して健康リスクグラフを表示する場合と、ユーザに対して健康リスクグラフを表示する場合とで、その表示形態を変更する。図28は、本実施形態において主治医及びユーザに表示される健康リスクグラフを説明するための図である。表示形態を変更するポイントは、主に次の2点である。

0176

まず1点目は、疾病の名称の表示形態である。図28に示すように、一次利用サービス提供部122は、主治医用の健康リスクグラフを表示する場合には、疾病の正式名称と、ICDコードとを表示する。一方で、一次利用サービス提供部122は、ユーザ用の健康リスクグラフを表示する場合には、疾病の通称を表示する。例えば、一次利用サービス提供部122は、主治医用の健康リスクグラフにおいて、「肝細胞癌(C220)」と表示していた疾病を、ユーザ用の健康リスクグラフにおいては、「肝臓癌」と表示する。また、例えば、一次利用サービス提供部122は、主治医用の健康リスクグラフにおいて、「糖尿病性腎症(E142)」と表示していた疾病を、ユーザ用の健康リスクグラフにおいては、単に「糖尿病」と表示する。なお、一次利用サービス提供部122は、正式名称及びICDコードと、通称との対応付けを予め保持し、健康リスクグラフの表示にあたり、この対応付けを参照して、適宜置き換えを行う。

0177

次に2点目は、疾病の非表示である。図28に示すように、一次利用サービス提供部122は、主治医用の健康リスクグラフを表示する場合に表示していた疾病の一部を、ユーザ用の健康リスクグラフを表示する場合には非表示とする。即ち、上述したように、本実施形態においては、ユーザのゲノム要因の影響を強く受ける疾病についても、発症リスクの高い疾病として判明する可能性がある。しかしながら、このようなゲノム要因の影響を強く受ける疾病は、ライフスタイルの変更によっても避けられないこと、且つ、例えば治療法が確立しない難病の場合には、本人への告知が意味をなさない(若しくは、かえって悪影響を与える)事態が想定される。そこで、一次利用サービス提供部122は、ユーザ用の健康リスクグラフを表示する場合には、疾病の一部を非表示とすることができる。例えば、一次利用サービス提供部122は、主治医用の健康リスクグラフを表示する場合に表示していた疾病「脊髄小脳変性症(G319)」を、ユーザ用の健康リスクグラフを表示する場合には非表示とする。なお、例えば、一次利用サービス提供部122は、ゲノム要因の影響が強い難病のリストを予め保持し、健康リスクグラフの表示にあたり、このリストを参照して、適宜非表示とする。あるいは、例えば、一次利用サービス提供部122は、主治医から、非表示とすべき疾病の指定を受け付け、健康リスクグラフの表示にあたり、この指定を反映して、非表示とする。

0178

例えば、ユーザAは、シミュレーション後の健康リスクグラフを確認すると、画面P11に示す『健康ステータス』のボタンを押下する。すると、画面P12に示すように、一次利用サービス提供部122は、シミュレーション後の「バーチャルクローン」と、健康ステータスとを表示する。例えば、ユーザAは、シミュレーション後の「バーチャルクローン」の表情や、健康ステータスを確認することで、シミュレーションの内容を実行することにより、健康リスクや健康ステータスが改善することを認識することができる。例えば、ユーザAは、飲酒をやや控え、十分に休養をとる生活に切り換えることで、「アルコール性肝疾患」や「肝臓癌」の発症を回避できることを認識することができる。また、一次利用サービス提供部122は、重い疾病を発症するリスクが低まったことを視覚的に表現したマークとして、「天使」のマークを表示する。なお、例えば、主治医からのコメントがアップロードされていた場合、一次利用サービス提供部122は、画面P12上に、『主治医からのコメント』のボタンを表示する。ユーザAは、この『主治医からのコメント』のボタンを押下することで、主治医のコメントを確認することもできる。

0179

上述してきた画面遷移について、PHR表示装置200の表示制御部210による表示制御の観点から説明すると、以下の通りである。例えば、ユーザA本人のPHR表示装置200は、ユーザのPHRデータに基づいて推定されたユーザの将来の健康リスクを表示部220に表示する表示制御部210を備える。表示制御部210は、将来の健康リスクとともに、ユーザAの目標の健康状態及び当該目標の健康状態に到達するための指導情報のうち、少なくとも1つを表示する。将来の健康リスクは、例えば、バーチャルクローンや、健康ステータス、健康リスクグラフ、その他の文字情報等で表示される。また、目標の健康状態は、理想のバーチャルクローンや、理想の健康ステータス、シミュレーション後の健康リスクグラフ、その他の文字情報等で表示される。また、指導情報は、主治医からのコメントや、予め準備された文字情報等で表示される。

0180

また、表示制御部210は、操作者から推定の時点の指定を受け付けると、受け付けた時点に応じた将来の健康リスクを表示する。また、表示制御部210は、操作者から、推定に用いるユーザのPHRデータの期間の幅を受け付けると、受け付けた期間の幅に応じた将来の健康リスクを表示する。受け付けた期間の幅に応じた将来の健康リスクは、予め期間毎に準備されるものでもよいし、ユーザの指定を受け付けてから準備されるものでもよい。また、表示制御部210は、操作者からライフスタイルの変更指示を受け付けると、受け付けた変更指示に応じてシミュレーションされた将来の健康リスクを更に表示する。また、表示制御部210は、将来の健康リスクとして、ユーザAが将来発症し得る疾病の名称を、通称で表示する。また、表示制御部210は、ユーザA若しくはユーザAの家族に対して疾病の名称を表示する場合には、必要に応じて、一部の疾病の名称を非表示とする。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ