図面 (/)

この項目の情報は公開日時点(2016年10月6日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (14)

課題・解決手段

無線電力伝送システムは、無線誘導電力信号を介して受電器105へ電力伝送を供給するように構成される送電器101を含む。寄生電力損失検出器207は電力伝送に対する寄生電力損失を検出するように構成され、ユーザインジケータ209は寄生電力損失の検出に応答してユーザアラート初期化するように構成される。システムは、ユーザ入力を受信するための入力211と、基準を満たすユーザ入力が受信されない場合に寄生電力損失を検出する寄生電力損失検出器207によって実行される寄生電力損失検出動作適応を開始するように構成されるコントローラ213とを有する。個々の機能の各々は送電器101、受電器105において実現され得るか、又は例えばこれらの間に分散され得る。アプローチは無線電力伝送システムにおける改良された異物検出を可能にし得る。

概要

背景

利用されているポータブルデバイス及びモバイルデバイスの数と種類はこの10年で爆発的に増加した。例えば、携帯電話タブレットメディアプレーヤなどの使用は当たり前になっている。こうしたデバイスは一般的に内蔵バッテリによって給電され、典型的な使用シナリオバッテリ充電若しくは外部電源からのデバイスの直接配線給電を要することが多い。

ほとんどの今日のシステムは外部電源から給電されるために配線及び/又は明示的な電気接点を要する。しかしながら、これは非実用的な傾向があり、ユーザがコネクタ物理的に挿入するか若しくはそうでなければ物理的電気接点を確立することを要する。これはまた、ワイヤの長さを導入することによりユーザにとって不都合な傾向もある。典型的には、電力要求も著しく異なり、現在ほとんどのデバイスはその専用電源を備え、典型的なユーザは各電源特定デバイス専用である多数の異なる電源を持つことになる。内蔵バッテリの使用は使用中に電源への配線接続の必要性を防止し得るが、これはバッテリが充電(若しくは費用のかかる交換)を必要とすることになるので部分的な解決法を提供するに過ぎない。バッテリの使用はデバイスの重量を、潜在的にコストとサイズを大幅に増す可能性もある。

著しく改善されたユーザ経験を提供するために、電力送電デバイス内の送電コイルから個々のデバイス内の受電コイル誘導伝送される無線電源を使用することが提案されている。

磁気誘導を介した送電は、一次送電コイル二次受電コイルの間に密結合を持つ変圧器において主に適用される、周知の概念である。一次送電コイルと二次受電コイルを二つのデバイス間に分離することによって、疎結合変圧器の原理に基づいてこれらのデバイス間の無線電力伝送が可能になる。

こうした構成はいかなる配線若しくは物理的電気接続が作られることも要することなくデバイスへの無線電力伝送を可能にする。実際、これはデバイスが充電されるか若しくは外部から給電されるために送電コイルに隣接して、若しくはその上に置かれることを容易く可能にし得る。例えば、送電デバイスは水平面を備えることができ、その上にデバイスが給電されるために容易く置かれることができる。

さらに、こうした無線電力伝送装置は送電デバイスが様々な受電デバイスと使用されることができるように都合よく設計され得る。特に、Qi規格として知られる無線電力伝送規格が規定されており、現在さらに開発が進んでいる。この規格はQi規格に適合する送電デバイスが同様にQi規格に適合する受電デバイスと使用されることを、これらが同じ製造業者のものであるか若しくは相互に専用品である必要なしに可能にする。Qi規格はさらに(例えば特定電力ドレインに依存して)動作を特定受電デバイスに適応させるための何らかの機能を含む。

Qi規格はワイヤレスパワーコンソーシアムによって策定され、詳細は例えばそのウェブサイト:http://www.wirelesspowerconsortium.com/index.htmlで見られ、ここで特に既定規格文書が見られる。

Qi無線電力規格は送電器受電器保証電力を供給することができなければならないと記述する。必要な特定電力レベルは受電器の設計によって決まる。保証電力を指定するために、条件の各々に対する保証電力レベルを記述するテスト受電器及び負荷条件のセットが定義される。

Qiは元来5W未満の電力ドレインを持つデバイスとみなされるローパワーデバイスのための無線電力伝送を規定した。この規格の範囲内に含まれるシステムは送電器から受電器へ電力を伝送するために二つの平面コイル間の誘導結合を使用する。二つのコイル間の距離は典型的には5mmである。この距離を少なくとも40mmまで拡張することが可能である。

しかしながら、有能電力を増加する作業が進行中であり、特に規格は5Wを超える電力ドレインを持つデバイスであるミッドパワーデバイスに拡張されている。

Qi規格は互換デバイスが満たさなければならない様々な技術的要件パラメータ、及び操作手順を規定する。

通信
Qi規格は受電器から送電器への通信をサポートし、それによって、送電器が特定受電器に適応することを可能にし得る情報を受電器が提供することを可能にする。現在の規格では、受電器から送電器への一方向通信リンクが規定されており、アプローチは受電器が制御素子であるという原理に基づく。送電器と受電器間の電力伝送を準備し制御するために、受電器は特に送電器へ情報を通信する。

一方向通信は受電器が負荷変調を実行することによって達成され、受電器によって二次受電コイルに印加される負荷電力信号変調をもたらすように変更される。得られる電気特性の変化(例えば電流引き込みの変動)は送電器によって検出され、復号復調)され得る。

従って、物理層において、受電器から送電器への通信チャネルデータキャリアとして電力信号を使用する。受電器は負荷を変調し、これは送電コイル電流若しくは電圧振幅及び/又は位相の変化によって検出される。データはバイト及びパケットフォーマットされる。

より詳しくはQi無線電力仕様バージョン1.0)パートチャプタ6を参照のこと。

Qiは一方向通信リンクを使用するが、送電器から受電器への通信を導入することが提案されている。しかしながら、このような双方向リンクを含むことは平凡ではなく、多数の困難や課題にさらされる。例えば、得られるシステムは依然として後方互換性である必要があり、例えば双方向通信対応でない送電器と受電器が依然としてサポートされる必要がある。さらに、例えば変調オプション電力変動、送電オプションなどに関する技術的要件は、既存のパラメータに適合する必要があるため非常に制限的である。コストと複雑性が低く抑えられることも重要であり、例えば追加ハードウェアの要求が最小化されること、検出が容易で信頼できることなどが望ましい。送電器から受電器への通信が受電器から送電器への通信に影響しない、低下させない、若しくは干渉しないことも重要である。さらに、極めて重要な要件通信リンクがシステムの電力伝送能を許容できないほど低下させないことである。

従って、双方向通信を含むようにQiなどの電力伝送システムを改良することには多くの課題と困難が伴う。

システム制御
無線電力伝送システムを制御するために、Qi規格はシステムが動作の異なる時間においてとり得る複数のフェーズ若しくはモードを規定する。より詳しくはQi無線電力仕様(バージョン1.0)パート1チャプタ5を参照のこと。

システムは以下のフェーズにあり得る:
選択フェーズ
このフェーズはシステムが使用されないとき、すなわち送電器と受電器の間に結合がない(すなわち受電器が送電器の近くにない)ときの典型的なフェーズである。

選択フェーズにおいて、送電器はスタンバイモードにあり得るが、オブジェクトが存在する可能性を検出するために感知する。同様に、受電器は電力信号の存在を待機する。

ピンフェーズ
例えば容量変化により、オブジェクトが存在する可能性を送電器が検出する場合、システムは送電器が(少なくとも断続的に)電力信号を供給するピンフェーズへ移る。この電力信号は受電器によって検出され、受電器は送電器への初期パッケージの送信に移る。特に、受電器が送電器のインターフェース上に存在する場合、受電器は初期信号強度パケットを送電器へ通信する。信号強度パケットは送電コイルと受電コイル間の結合度指標を与える。信号強度パケットは送電器によって検出される。

識別及び構成フェーズ
そして送電器と受電器は、受電器が少なくとも識別子と所要電力を通信する識別及び構成フェーズに移る。情報は負荷変調によりマルチデータパケットで通信される。送電器は負荷変調が検出されることを可能にするために識別及び構成フェーズ中一定電力信号を維持する。特に、送電器はこの目的で(負荷変調によって生じる変化を除き)一定振幅周波数、及び位相で電力信号を供給する。

実際の電力伝送の準備において、受電器はその電子機器起動するために受信信号を適用し得るが、その出力負荷を切断したままにする。受電器はパケットを送電器へ通信する。これらのパケットは識別及び構成パケットなどの必須メッセージを含むか、又は拡張識別パケット若しくはパワーホールドオフパケットなど何らかの定義済みオプションメッセージを含み得る。

送電器は受電器から受信した情報に従って電力信号の構成へと移る。

電力伝送フェーズ
そしてシステムは、送電器が所要電力信号を供給し、受電器が出力負荷を接続してそれに受信電力を供給する電力伝送フェーズへと移る。

このフェーズ中、受電器は出力負荷条件をモニタリングし、特に所定動作点の実際の値と所望の値との間の制御誤差を測定する。これはこれらの制御誤差を制御誤差メッセージにおいて例えば250m秒毎の最低レートで送電器へ通信する。これは送電器へ受電器の継続的な存在の表示を与える。加えて制御誤差メッセージは、送電器が報告された誤差を最小化するように電力信号を適応させる閉ループ電力制御を実施するために使用される。特に、動作点の実際の値が所望の値に等しい場合、受電器は値ゼロの制御誤差を通信し、電力信号に変化を生じない。受電器がゼロと異なる制御誤差を通信する場合、送電器は電力信号を然るべく調節する。

無線電力伝送に伴う潜在的問題は、例えば金属性物体に電力が非意図的に伝送され得ることである。例えばコイン、鍵、リングなどといった異物が、受電器を受けるように配置される送電器プラットフォーム上に置かれる場合、送電コイルによって生成される磁束が金属性物体に渦電流誘導し、これはその物体を加熱させる。温度上昇は非常に大きくなる可能性があり、実際に後でその物体を手に取る人に痛みと損傷のリスクをもたらし得る。

実験の結果、送電器の表面に位置する金属性物体は、物体内の電力散逸が500mWと低い場合でも、通常環境温度(20℃)において望ましくない高温(60℃より高い)に達し得ることがわかっている。比較のため、熱い物体との接触によって生じる皮膚火傷は約65℃の温度で始まる。典型的な異物における500mW若しくはそれ以上の電力吸収はその温度を許容できないレベルに上昇させることが実験で示されている。

このようなシナリオを防ぐために、送電器が異物の存在を検出して送信電力を減少させることができる異物検出を導入することが提案されている。例えば、Qiシステムは異物を検出し、異物が検出される場合に電力を減少させるための機能を含む。

異物における電力散逸は送信電力と受信電力との差から推定され得る。異物において過剰な電力が散逸することを防ぐために、送電器は電力損失閾値を超える場合に電力伝送を終了し得る。

現在のQi規格において好適なアプローチは、異物における損失を決定するために送電器と受電器の間のインターフェースにかかる電力損失を決定することである。この目的で、受電器はそのインターフェース面に入る電力の量、すなわち受信電力を推定する。推定値を生成するために、受電器は負荷に供給される電力の量を測定し、コイル、共振コンデンサ整流器などの部品における損失、並びにユーザにさらされない金属部品など、デバイスの導体素子における損失の推定値を加える。受電器は決定される受信電力推定値を送電器へ一定間隔で通信する。

送電器は電力信号から抽出される電力の量、すなわち送信電力を推定する。そして送電器は送信電力と受信電力の差を計算することができ、差が所定レベルを超える場合、送電器は許容できない電力が異物において散逸し得る状況が起きたと決定し得る。例えば、異物は送電器の上若しくは近くに位置する可能性があり、これが電力信号によって加熱されることになる。電力損失が所定閾値を超える場合、送電器は物体が熱くなり過ぎるのを防ぐために電力伝送を終了する。より詳しくはQi規格、無線送電システム説明を参照のこと。

この電力損失検出を実行するとき、異物の存在が検出されることを確実にするために十分な精度で電力損失が決定されることが重要である。まず、磁場からかなりの電力を吸収する異物が検出されることが保証されなければならない。これを保証するために、送信及び受信電力から計算される電力損失を推定する際のいかなる誤差も、異物における電力吸収に対する許容可能なレベルよりも低くなければならない。同様に、誤検出を防ぐために、電力損失計算の精度は、異物が存在しないときに高過ぎる推定電力損失値をもたらさないよう、十分に正確でなければならない。

低電力レベルよりも高電力レベルにおいて十分に正確に送信及び受信電力推定を決定する方が実質的に難しい。例えば、送信及び受信電力の推定の不確実性が±3%であると仮定すると、これは
5Wの送信及び受信電力において±150mW
50Wの送信及び受信電力において±1.5W
の誤差につながり得る。

従って、この精度は低電力伝送動作にとっては許容可能であり得るが、高電力伝送動作にとっては許容できない。

典型的に、送電器はたった350mW若しくはもっと低い異物の電力消費を検出することができなければならないことが要求される。これは受信電力と送信電力の非常に正確な推定を要する。これは高電力レベルにおいて特に困難であり、受電器が十分に正確な推定を生成することは困難であることが多い。しかしながら、受電器が受信電力を過大評価する場合、これは異物による電力消費が検出されないという結果になり得る。逆に、受電器が受信電力を過小評価する場合、これは異物が存在しないにもかかわらず送電器が電力伝送を終了する誤検出につながり得る。

所望の精度を得るために、少なくともより高レベルで電力伝送が実行される前に送電器と受電器が相互にキャリブレーションされることが提案されている。しかしながら、かかるアプローチは多くのシナリオにおいて望ましいかもしれないが、かかるアプローチはよくても電力伝送を遅延させ、多くのシナリオにおいて電力伝送が進行し得る前にユーザ関与を要し得るので、ユーザにとって不都合ともみなされ得る。

改良された電力伝送システムが有利であり得る。特に、使いやすいアプローチを維持しながら改良された動作を可能にするアプローチが有利であり得る。とりわけ、特に高電力レベルにおいて安全な動作を保証しながらより容易なユーザ動作を可能にするアプローチが有利であり得る。柔軟性の増大、実施容易化、動作容易化、より安全な動作、異物加熱のリスク軽減、精度増加及び/又は改良された性能を可能にする改良された電力伝送システムが有利であり得る。

概要

無線電力伝送システムは、無線誘導電力信号を介して受電器105へ電力伝送を供給するように構成される送電器101を含む。寄生電力損失検出器207は電力伝送に対する寄生電力損失を検出するように構成され、ユーザインジケータ209は寄生電力損失の検出に応答してユーザアラートを初期化するように構成される。システムは、ユーザ入力を受信するための入力211と、基準を満たすユーザ入力が受信されない場合に寄生電力損失を検出する寄生電力損失検出器207によって実行される寄生電力損失検出動作の適応を開始するように構成されるコントローラ213とを有する。個々の機能の各々は送電器101、受電器105において実現され得るか、又は例えばこれらの間に分散され得る。アプローチは無線電力伝送システムにおける改良された異物検出を可能にし得る。

目的

内蔵バッテリの使用は使用中に電源への配線接続の必要性を防止し得るが、これはバッテリが充電(若しくは費用のかかる交換)を必要とすることになるので部分的な解決法を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

無線誘導電力信号を介して受電器電力伝送を供給するように構成される送電器を含む無線電力伝送システムであって、寄生電力損失推定が範囲外である場合に電力伝送に対して寄生電力損失検出を生成するように構成される寄生電力損失検出器と、前記寄生電力損失検出に応答してユーザアラート初期化するためのユーザインジケータと、前記寄生電力損失検出に応答して、異物の存在若しくは異物の不在を示すユーザ入力を受信するための入力と、前記ユーザ入力が異物の不在を示す場合、前記寄生電力損失検出を生成する前記寄生電力損失検出器によって実行される寄生電力損失検出動作適応を開始し、前記ユーザ入力が異物の存在を示す場合、前記寄生電力損失検出動作の適応を開始しないように構成されるコントローラとを有し、前記適応は前記寄生電力損失検出動作のパラメータ修正を有する、無線電力伝送システム。

請求項2

前記寄生電力損失検出器は、前記寄生電力損失推定が前記範囲の上限値を上回る値を持つ場合に前記寄生電力損失検出を生成するように構成される、請求項1に記載の無線電力伝送システム。

請求項3

前記寄生電力損失検出器は電力損失推定モデルから前記寄生電力損失推定を生成し、それを前記範囲に比較するように構成され、前記無線電力伝送システムは前記適応を実行するためのアダプタを有し、当該アダプタは前記寄生電力損失推定を決定するためのモデルのパラメータ及び前記範囲の少なくとも一つを修正するように構成される、請求項1に記載の無線電力伝送システム。

請求項4

記入力が前記受電器に少なくとも部分的に含まれる、請求項1、2、又は3に記載の無線電力伝送システム。

請求項5

前記寄生電力損失検出器が前記送電器に少なくとも部分的に含まれる、請求項1又は4に記載の無線電力伝送システム。

請求項6

前記寄生電力損失検出器が前記受電器に少なくとも部分的に含まれ、前記送電器が前記電力信号についての送信電力推定を生成するための電力推定器と、当該送信電力推定を前記受電器に送信するための送信器とを有し、前記受電器が前記送信電力推定を受信するための受信器を有し、前記寄生電力損失検出器が前記送信電力推定に基づいて前記寄生電力損失検出を生成するように構成される、請求項1又は4に記載の無線電力伝送システム。

請求項7

無線誘導電力信号を介して受電器へ電力伝送を供給するように構成される送電器を含む無線電力伝送システムのための装置であって、寄生電力損失推定が範囲外である場合に電力伝送に対して寄生電力損失検出を生成するように構成される寄生電力損失検出器と、前記寄生電力損失検出に応答してユーザアラートを初期化するためのユーザインジケータと、前記寄生電力損失検出に応答して、異物の存在若しくは異物の不在を示すユーザ入力を受信するための入力と、前記ユーザ入力が異物の不在を示す場合、前記寄生電力損失検出を生成する前記寄生電力損失検出器によって実行される寄生電力損失検出動作の適応を開始し、前記ユーザ入力が異物の存在を示す場合、前記寄生電力損失検出動作の適応を開始しないように構成されるコントローラとを有し、前記適応は前記寄生電力損失検出動作のパラメータの修正を有する、装置。

請求項8

前記適応を実行するためのアダプタをさらに有し、当該アダプタが複数の開始された適応に基づいて前記電力損失検出動作に対するパラメータをセットするように構成される、請求項7に記載の装置。

請求項9

前記アダプタが複数の開始された適応に基づいて前記寄生電力損失推定を決定するためのモデル及び前記範囲の少なくとも一つを適応させるように構成される、請求項8に記載の装置。

請求項10

前記アダプタが、前記複数の開始された適応に対する総寄生損失推定を前記範囲内の既定位置へ向かってバイアスするように、前記寄生電力損失推定を決定するためのモデル及び前記範囲の少なくとも一つを修正するように構成される、請求項9に記載の装置。

請求項11

前記アダプタが前記送電器に対する送信電力推定を決定するためのモデル、前記受電器に対する受信電力推定を決定するためのモデル、及び前記範囲の少なくとも一つの端点、のうちの少なくとも一つを適応させるように構成される、請求項9又は10に記載の装置。

請求項12

前記アダプタが送電器及び受電器の個別ペアリングに対して前記寄生電力損失検出動作のためのパラメータをセットするように構成される、請求項8に記載の装置。

請求項13

前記装置が前記送電器であり、前記アダプタが複数の受電器について開始された適応に基づいて前記寄生電力損失検出動作のためのパラメータの少なくとも一つの補正パラメータを決定するように構成される、請求項8に記載の装置。

請求項14

前記装置が前記受電器であり、前記アダプタが複数の送電器について開始された適応に基づいて前記寄生電力損失検出のためのパラメータの少なくとも一つのパラメータを決定するように構成される、請求項8に記載の装置。

請求項15

前記コントローラは、前記ユーザ入力が電力伝送のための前記受電器の適切な位置決めのユーザ確認の表示を有する場合のみ、前記適応を開始するように構成される、請求項7又は8に記載の装置。

請求項16

前記装置が前記受電器である、請求項7に記載の装置。

請求項17

前記寄生電力損失検出器が前記送電器から受信される電力損失インジケータに基づいて前記寄生電力損失検出を生成するように構成される、請求項16に記載の装置。

請求項18

前記寄生電力損失検出器が前記受電器によって前記送電器へ送信されるメッセージに対する承認欠如に応答して前記寄生電力損失検出を生成するように構成される、請求項16又は17に記載の装置。

請求項19

前記寄生電力損失検出器が前記送電器から受信される送信電力測定及び前記受電器によって前記電力信号から抽出される電力を示す受信電力推定の比較に基づいて前記寄生電力損失検出を生成するように構成される、請求項16に記載の装置。

請求項20

前記コントローラは異物の不在を示すユーザ入力が受信されることに応答して前記送電器へ適応要求メッセージを送信するように構成される、請求項16に記載の装置。

請求項21

前記装置が前記送電器である、請求項7に記載の装置。

請求項22

前記ユーザインジケータが前記受電器へユーザアラート要求メッセージを送信することによって前記ユーザアラートを初期化するように構成され、前記ユーザアラート要求メッセージは前記受電器がユーザアラートを生成することを要求する、請求項21に記載の装置。

請求項23

前記入力が前記受電器から前記ユーザ入力の表示を受信するための受信器を有する、請求項21又は22に記載の装置。

請求項24

前記適応を実行するためのアダプタをさらに有し、当該アダプタは前記寄生電力損失推定を決定するためのモデル及び前記範囲の少なくとも一つを適応させるように構成される、請求項21に記載の装置。

請求項25

前記送電器が前記寄生電力損失の検出に応答して前記受電器へ寄生電力損失検出の表示を送信するように構成される、請求項21に記載の装置。

請求項26

前記送電器が前記受電器から受信されるメッセージに対する少なくとも一つの承認メッセージを与えないでおくことによって前記受電器へ前記寄生電力損失検出の表示を送信するように構成される、請求項25に記載の装置。

請求項27

無線電力伝送システムのための送電器であって、無線誘導電力信号を介して受電器へ電力伝送を供給するように構成される電力伝送ユニットと、前記電力伝送に対する寄生電力損失インジケータを決定するように構成される寄生電力損失検出器と、前記受電器へ前記寄生電力損失インジケータを送信するための送信器とを有する、送電器。

請求項28

前記寄生電力損失インジケータが、送信電力推定と、前記受電器によって前記電力信号から抽出される電力を示す受信電力推定との電力差を示す、請求項27に記載の送電器。

請求項29

前記寄生電力損失インジケータが送信電力推定を示す、請求項27に記載の送電器。

請求項30

前記寄生電力損失インジケータが前記送電器による寄生電力損失検出を示し、当該寄生電力損失検出は寄生電力損失推定が範囲外であることを示す、請求項27に記載の送電器。

請求項31

前記送電器が前記受電器から受信されるメッセージに対する少なくとも一つの承認メッセージを与えないでおくことによって前記受電器へ前記電力損失インジケータを送信するように構成される、請求項30に記載の送電器。

請求項32

無線誘導電力信号を介して受電器へ電力伝送を供給するように構成される送電器を含む無線電力伝送システムのための動作方法であって、寄生電力損失推定が範囲外である場合に前記電力伝送に対する寄生電力損失検出を生成するステップと、前記寄生電力損失検出に応答してユーザアラートを初期化するステップと、前記寄生電力損失検出に応答してユーザ入力を受信するステップであって、当該ユーザ入力は異物の存在若しくは異物の不在を示す、ステップと、前記ユーザ入力が異物の不在を示す場合、寄生電力損失を生成する寄生電力損失検出アルゴリズムの適応を開始し、前記ユーザ入力が異物の存在を示す場合、前記寄生電力損失検出動作の適応を開始しないステップとを有し、前記適応が前記寄生電力損失検出動作のパラメータの修正を有する、方法。

技術分野

0001

本発明は誘導電力伝送に関し、特に、限定されないが、Qi無線電力伝送規格対応誘導電力伝送システムに関する。

背景技術

0002

利用されているポータブルデバイス及びモバイルデバイスの数と種類はこの10年で爆発的に増加した。例えば、携帯電話タブレットメディアプレーヤなどの使用は当たり前になっている。こうしたデバイスは一般的に内蔵バッテリによって給電され、典型的な使用シナリオバッテリ充電若しくは外部電源からのデバイスの直接配線給電を要することが多い。

0003

ほとんどの今日のシステムは外部電源から給電されるために配線及び/又は明示的な電気接点を要する。しかしながら、これは非実用的な傾向があり、ユーザがコネクタ物理的に挿入するか若しくはそうでなければ物理的電気接点を確立することを要する。これはまた、ワイヤの長さを導入することによりユーザにとって不都合な傾向もある。典型的には、電力要求も著しく異なり、現在ほとんどのデバイスはその専用電源を備え、典型的なユーザは各電源特定デバイス専用である多数の異なる電源を持つことになる。内蔵バッテリの使用は使用中に電源への配線接続の必要性を防止し得るが、これはバッテリが充電(若しくは費用のかかる交換)を必要とすることになるので部分的な解決法を提供するに過ぎない。バッテリの使用はデバイスの重量を、潜在的にコストとサイズを大幅に増す可能性もある。

0004

著しく改善されたユーザ経験を提供するために、電力送電デバイス内の送電コイルから個々のデバイス内の受電コイル誘導伝送される無線電源を使用することが提案されている。

0005

磁気誘導を介した送電は、一次送電コイル二次受電コイルの間に密結合を持つ変圧器において主に適用される、周知の概念である。一次送電コイルと二次受電コイルを二つのデバイス間に分離することによって、疎結合変圧器の原理に基づいてこれらのデバイス間の無線電力伝送が可能になる。

0006

こうした構成はいかなる配線若しくは物理的電気接続が作られることも要することなくデバイスへの無線電力伝送を可能にする。実際、これはデバイスが充電されるか若しくは外部から給電されるために送電コイルに隣接して、若しくはその上に置かれることを容易く可能にし得る。例えば、送電デバイスは水平面を備えることができ、その上にデバイスが給電されるために容易く置かれることができる。

0007

さらに、こうした無線電力伝送装置は送電デバイスが様々な受電デバイスと使用されることができるように都合よく設計され得る。特に、Qi規格として知られる無線電力伝送規格が規定されており、現在さらに開発が進んでいる。この規格はQi規格に適合する送電デバイスが同様にQi規格に適合する受電デバイスと使用されることを、これらが同じ製造業者のものであるか若しくは相互に専用品である必要なしに可能にする。Qi規格はさらに(例えば特定電力ドレインに依存して)動作を特定受電デバイスに適応させるための何らかの機能を含む。

0008

Qi規格はワイヤレスパワーコンソーシアムによって策定され、詳細は例えばそのウェブサイト:http://www.wirelesspowerconsortium.com/index.htmlで見られ、ここで特に既定規格文書が見られる。

0009

Qi無線電力規格は送電器受電器保証電力を供給することができなければならないと記述する。必要な特定電力レベルは受電器の設計によって決まる。保証電力を指定するために、条件の各々に対する保証電力レベルを記述するテスト受電器及び負荷条件のセットが定義される。

0010

Qiは元来5W未満の電力ドレインを持つデバイスとみなされるローパワーデバイスのための無線電力伝送を規定した。この規格の範囲内に含まれるシステムは送電器から受電器へ電力を伝送するために二つの平面コイル間の誘導結合を使用する。二つのコイル間の距離は典型的には5mmである。この距離を少なくとも40mmまで拡張することが可能である。

0011

しかしながら、有能電力を増加する作業が進行中であり、特に規格は5Wを超える電力ドレインを持つデバイスであるミッドパワーデバイスに拡張されている。

0012

Qi規格は互換デバイスが満たさなければならない様々な技術的要件パラメータ、及び操作手順を規定する。

0013

通信
Qi規格は受電器から送電器への通信をサポートし、それによって、送電器が特定受電器に適応することを可能にし得る情報を受電器が提供することを可能にする。現在の規格では、受電器から送電器への一方向通信リンクが規定されており、アプローチは受電器が制御素子であるという原理に基づく。送電器と受電器間の電力伝送を準備し制御するために、受電器は特に送電器へ情報を通信する。

0014

一方向通信は受電器が負荷変調を実行することによって達成され、受電器によって二次受電コイルに印加される負荷電力信号変調をもたらすように変更される。得られる電気特性の変化(例えば電流引き込みの変動)は送電器によって検出され、復号復調)され得る。

0015

従って、物理層において、受電器から送電器への通信チャネルデータキャリアとして電力信号を使用する。受電器は負荷を変調し、これは送電コイル電流若しくは電圧振幅及び/又は位相の変化によって検出される。データはバイト及びパケットフォーマットされる。

0016

より詳しくはQi無線電力仕様バージョン1.0)パートチャプタ6を参照のこと。

0017

Qiは一方向通信リンクを使用するが、送電器から受電器への通信を導入することが提案されている。しかしながら、このような双方向リンクを含むことは平凡ではなく、多数の困難や課題にさらされる。例えば、得られるシステムは依然として後方互換性である必要があり、例えば双方向通信対応でない送電器と受電器が依然としてサポートされる必要がある。さらに、例えば変調オプション電力変動、送電オプションなどに関する技術的要件は、既存のパラメータに適合する必要があるため非常に制限的である。コストと複雑性が低く抑えられることも重要であり、例えば追加ハードウェアの要求が最小化されること、検出が容易で信頼できることなどが望ましい。送電器から受電器への通信が受電器から送電器への通信に影響しない、低下させない、若しくは干渉しないことも重要である。さらに、極めて重要な要件通信リンクがシステムの電力伝送能を許容できないほど低下させないことである。

0018

従って、双方向通信を含むようにQiなどの電力伝送システムを改良することには多くの課題と困難が伴う。

0019

システム制御
無線電力伝送システムを制御するために、Qi規格はシステムが動作の異なる時間においてとり得る複数のフェーズ若しくはモードを規定する。より詳しくはQi無線電力仕様(バージョン1.0)パート1チャプタ5を参照のこと。

0020

システムは以下のフェーズにあり得る:
選択フェーズ
このフェーズはシステムが使用されないとき、すなわち送電器と受電器の間に結合がない(すなわち受電器が送電器の近くにない)ときの典型的なフェーズである。

0021

選択フェーズにおいて、送電器はスタンバイモードにあり得るが、オブジェクトが存在する可能性を検出するために感知する。同様に、受電器は電力信号の存在を待機する。

0022

ピンフェーズ
例えば容量変化により、オブジェクトが存在する可能性を送電器が検出する場合、システムは送電器が(少なくとも断続的に)電力信号を供給するピンフェーズへ移る。この電力信号は受電器によって検出され、受電器は送電器への初期パッケージの送信に移る。特に、受電器が送電器のインターフェース上に存在する場合、受電器は初期信号強度パケットを送電器へ通信する。信号強度パケットは送電コイルと受電コイル間の結合度指標を与える。信号強度パケットは送電器によって検出される。

0023

識別及び構成フェーズ
そして送電器と受電器は、受電器が少なくとも識別子と所要電力を通信する識別及び構成フェーズに移る。情報は負荷変調によりマルチデータパケットで通信される。送電器は負荷変調が検出されることを可能にするために識別及び構成フェーズ中一定電力信号を維持する。特に、送電器はこの目的で(負荷変調によって生じる変化を除き)一定振幅周波数、及び位相で電力信号を供給する。

0024

実際の電力伝送の準備において、受電器はその電子機器起動するために受信信号を適用し得るが、その出力負荷を切断したままにする。受電器はパケットを送電器へ通信する。これらのパケットは識別及び構成パケットなどの必須メッセージを含むか、又は拡張識別パケット若しくはパワーホールドオフパケットなど何らかの定義済みオプションメッセージを含み得る。

0025

送電器は受電器から受信した情報に従って電力信号の構成へと移る。

0026

電力伝送フェーズ
そしてシステムは、送電器が所要電力信号を供給し、受電器が出力負荷を接続してそれに受信電力を供給する電力伝送フェーズへと移る。

0027

このフェーズ中、受電器は出力負荷条件をモニタリングし、特に所定動作点の実際の値と所望の値との間の制御誤差を測定する。これはこれらの制御誤差を制御誤差メッセージにおいて例えば250m秒毎の最低レートで送電器へ通信する。これは送電器へ受電器の継続的な存在の表示を与える。加えて制御誤差メッセージは、送電器が報告された誤差を最小化するように電力信号を適応させる閉ループ電力制御を実施するために使用される。特に、動作点の実際の値が所望の値に等しい場合、受電器は値ゼロの制御誤差を通信し、電力信号に変化を生じない。受電器がゼロと異なる制御誤差を通信する場合、送電器は電力信号を然るべく調節する。

0028

無線電力伝送に伴う潜在的問題は、例えば金属性物体に電力が非意図的に伝送され得ることである。例えばコイン、鍵、リングなどといった異物が、受電器を受けるように配置される送電器プラットフォーム上に置かれる場合、送電コイルによって生成される磁束が金属性物体に渦電流誘導し、これはその物体を加熱させる。温度上昇は非常に大きくなる可能性があり、実際に後でその物体を手に取る人に痛みと損傷のリスクをもたらし得る。

0029

実験の結果、送電器の表面に位置する金属性物体は、物体内の電力散逸が500mWと低い場合でも、通常環境温度(20℃)において望ましくない高温(60℃より高い)に達し得ることがわかっている。比較のため、熱い物体との接触によって生じる皮膚火傷は約65℃の温度で始まる。典型的な異物における500mW若しくはそれ以上の電力吸収はその温度を許容できないレベルに上昇させることが実験で示されている。

0030

このようなシナリオを防ぐために、送電器が異物の存在を検出して送信電力を減少させることができる異物検出を導入することが提案されている。例えば、Qiシステムは異物を検出し、異物が検出される場合に電力を減少させるための機能を含む。

0031

異物における電力散逸は送信電力と受信電力との差から推定され得る。異物において過剰な電力が散逸することを防ぐために、送電器は電力損失閾値を超える場合に電力伝送を終了し得る。

0032

現在のQi規格において好適なアプローチは、異物における損失を決定するために送電器と受電器の間のインターフェースにかかる電力損失を決定することである。この目的で、受電器はそのインターフェース面に入る電力の量、すなわち受信電力を推定する。推定値を生成するために、受電器は負荷に供給される電力の量を測定し、コイル、共振コンデンサ整流器などの部品における損失、並びにユーザにさらされない金属部品など、デバイスの導体素子における損失の推定値を加える。受電器は決定される受信電力推定値を送電器へ一定間隔で通信する。

0033

送電器は電力信号から抽出される電力の量、すなわち送信電力を推定する。そして送電器は送信電力と受信電力の差を計算することができ、差が所定レベルを超える場合、送電器は許容できない電力が異物において散逸し得る状況が起きたと決定し得る。例えば、異物は送電器の上若しくは近くに位置する可能性があり、これが電力信号によって加熱されることになる。電力損失が所定閾値を超える場合、送電器は物体が熱くなり過ぎるのを防ぐために電力伝送を終了する。より詳しくはQi規格、無線送電システム説明を参照のこと。

0034

この電力損失検出を実行するとき、異物の存在が検出されることを確実にするために十分な精度で電力損失が決定されることが重要である。まず、磁場からかなりの電力を吸収する異物が検出されることが保証されなければならない。これを保証するために、送信及び受信電力から計算される電力損失を推定する際のいかなる誤差も、異物における電力吸収に対する許容可能なレベルよりも低くなければならない。同様に、誤検出を防ぐために、電力損失計算の精度は、異物が存在しないときに高過ぎる推定電力損失値をもたらさないよう、十分に正確でなければならない。

0035

低電力レベルよりも高電力レベルにおいて十分に正確に送信及び受信電力推定を決定する方が実質的に難しい。例えば、送信及び受信電力の推定の不確実性が±3%であると仮定すると、これは
5Wの送信及び受信電力において±150mW
50Wの送信及び受信電力において±1.5W
の誤差につながり得る。

0036

従って、この精度は低電力伝送動作にとっては許容可能であり得るが、高電力伝送動作にとっては許容できない。

0037

典型的に、送電器はたった350mW若しくはもっと低い異物の電力消費を検出することができなければならないことが要求される。これは受信電力と送信電力の非常に正確な推定を要する。これは高電力レベルにおいて特に困難であり、受電器が十分に正確な推定を生成することは困難であることが多い。しかしながら、受電器が受信電力を過大評価する場合、これは異物による電力消費が検出されないという結果になり得る。逆に、受電器が受信電力を過小評価する場合、これは異物が存在しないにもかかわらず送電器が電力伝送を終了する誤検出につながり得る。

0038

所望の精度を得るために、少なくともより高レベルで電力伝送が実行される前に送電器と受電器が相互にキャリブレーションされることが提案されている。しかしながら、かかるアプローチは多くのシナリオにおいて望ましいかもしれないが、かかるアプローチはよくても電力伝送を遅延させ、多くのシナリオにおいて電力伝送が進行し得る前にユーザ関与を要し得るので、ユーザにとって不都合ともみなされ得る。

0039

改良された電力伝送システムが有利であり得る。特に、使いやすいアプローチを維持しながら改良された動作を可能にするアプローチが有利であり得る。とりわけ、特に高電力レベルにおいて安全な動作を保証しながらより容易なユーザ動作を可能にするアプローチが有利であり得る。柔軟性の増大、実施容易化、動作容易化、より安全な動作、異物加熱のリスク軽減、精度増加及び/又は改良された性能を可能にする改良された電力伝送システムが有利であり得る。

発明が解決しようとする課題

0040

従って、本発明は好適には上述の欠点の一つ以上を単独で若しくは任意の組み合わせで軽減、緩和若しくは除去しようとする。

課題を解決するための手段

0041

本発明の一態様によれば、無線誘導電力信号を介して受電器へ電力伝送を供給するように構成される送電器を含む無線電力伝送システムが提供され、無線電力伝送システムは、寄生電力損失推定が範囲外である場合に電力伝送に対する寄生電力損失検出を生成するように構成される寄生電力損失検出器と;寄生電力損失検出に応答してユーザアラートを初期化するためのユーザインジケータと;寄生電力損失検出に応答して異物の存在若しくは異物の不在を示すユーザ入力を受信するための入力と;ユーザ入力が異物の不在を示す場合、寄生電力損失検出を生成する寄生電力損失検出器によって実行される寄生電力損失検出動作の適応を開始し、ユーザ入力が異物の存在を示す場合、寄生電力損失検出動作の適応を開始しないように構成されるコントローラとを有し、適応は寄生電力損失検出動作のパラメータの修正を有する。

0042

アプローチは多くのシナリオにおいて改良された動作を提供し得る。特に、多くの実施形態においてこれは改良されたユーザ経験を可能にし、実際、多くの実施形態において、これは異物の許容できない加熱のリスクを非常に低く維持しながら不要な電力伝送終了のリスク軽減を可能にし得る。寄生電力損失若しくは異物検出を改良するために必要なユーザ関与は多くの実施形態で軽減され得る。本発明は特に多くのシナリオにおいて、ユーザが根底にある技術的問題のいかなる技術的理解を持つことも要することなく、適応がユーザ入力依存であることによって改良された性能を可能にし得る。それどころか、ユーザは例えば異物が存在するかどうかにはい若しくはいいえで答えるなど、単に単純なバイナリ入力を提供し得る。

0043

本発明は特に寄生電力損失検出動作の適応を、寄生電力損失検出動作が不適切な結果を生成した確率が高い状況に制限し得る。特に、寄生電力損失推定が範囲を超えるが異物が存在しないときは適応を実行するが、寄生電力損失推定が範囲を超え、かつ異物が存在するときは実行しないことにより、適応は不正確な検出(例えば誤検出)が生じたという仮定に基づいて進行することができ、従って適応はこのような検出の確率を削減し得る。

0044

寄生電力損失検出はユーザアラートの生成をトリガし得る。寄生電力損失検出に応答するユーザの受信は、ユーザ入力が受信され得る時間間隔を寄生電力損失検出がトリガすることに対応し得る。寄生電力損失検出及び異物が存在しないことを示すユーザ入力の受信は適応をトリガし得るが、寄生電力損失検出及び異物が存在することを示すユーザ入力の受信は適応をトリガし得ない。

0045

寄生電力損失は受電器によって散逸されない、電力信号から散逸される任意の電力であり得る。

0046

寄生電力損失の検出は特に(例えば送信電力推定及び受信電力推定から推定される)寄生電力損失が閾値(特に範囲の上限)を超えるという検出であり得る。寄生電力損失検出器は従って決定された寄生電力損失が閾値を超える場合に寄生電力損失検出を生成し得る。これは例えば寄生電力損失が高過ぎることを示す寄生電力損失検出が生成されるが、異物が存在しない"フォールスポジティブ"を少なくするよう検出の感度を低下させるために使用され得る。

0047

代替的に若しくは付加的に、寄生電力損失の検出は特に(例えば送信電力推定及び受信電力推定から推定される)寄生電力損失が閾値(特に範囲の下限)を下回るという検出であり得る。寄生電力損失検出器は従って決定された寄生電力損失が閾値を下回る場合に寄生電力損失検出を生成し得る。これは例えば異物によって生じる寄生電力損失が検出されない検出の見逃しを防止するよう検出の感度を増加させるために使用され得る。

0048

寄生電力損失検出を生成する寄生電力損失検出器によって実行される寄生電力損失検出動作の適応は、特に寄生電力損失検出を生成するために使用される寄生電力損失検出アルゴリズムの適応であり得る。寄生電力損失検出を生成する寄生電力損失検出器によって実行される寄生電力損失検出動作の適応は、特に寄生電力損失を検出するための寄生電力損失検出アルゴリズムの適応であり得る。寄生電力損失検出を生成する寄生電力損失検出器によって実行される寄生電力損失検出動作の適応は、特に寄生電力損失推定を計算するための関数の適応/修正及び/又は範囲の適応/修正であり得る。

0049

適応はユーザ入力に応答して、検出確率が削減されるように、寄生電力損失を検出する寄生電力損失検出器によって実行される寄生電力損失検出動作を適応させ得る。これは異物が存在しないことを示すユーザ入力に応答して、検出確率が削減されるように、寄生電力損失検出を生成する寄生電力損失検出動作の適応のパラメータを変更し得る。特に、誤検出確率が削減される。これは特に寄生電力損失推定が閾値を超えることを検出することによって実現され得る。

0050

代替的に若しくは付加的に、適応はユーザ入力に応答して、検出確率が増加されるように、寄生電力損失を検出する寄生電力損失検出器によって実行される寄生電力損失検出動作を適応させ得る。これは異物が存在しないことを示すユーザ入力に応答して、検出確率が増加されるように、寄生電力損失検出を生成する寄生電力損失検出動作の適応のパラメータを変更し得る。特に、過剰電力損失の検出を見逃す確率が削減され得る。これは特に寄生電力損失推定が閾値を下回ることを検出することによって実現され得る。

0051

パラメータは特に寄生電力損失推定を計算するための関数、モデル、若しくはアルゴリズムのパラメータであり得るか、及び/又は範囲の端点(特に上限若しくは下限など)であり得る。

0052

寄生電力損失検出器は連続的に電力伝送フェーズ中に寄生電力損失検出アルゴリズムを実行するように構成され得る。適応は将来の電力伝送のために寄生電力損失検出アルゴリズムを適応させ得る。

0053

異物が存在しないこと(及び従って寄生電力損失が生じない可能性が高いこと)を示すユーザ入力は、ユーザが検出を誤検出であるとみなすことを示し得る。

0054

異物が存在することを示すユーザ入力は、顕著な寄生電力損失が生じている、及びユーザが検出を正確な検出であるとみなすという表示とみなされ得る。

0055

検出基準を満たすユーザ入力が受信されない場合及び/又は異物が存在しないことを示すユーザ入力が(例えば所定時間間隔内に)受信されない場合、コントローラは電力信号の電力を制限し得る。コントローラは電力信号の電力レベルを閾値未満になるように直接若しくは間接的に制御することによって電力信号の電力を制限し得る。閾値は既定閾値であり得るか、又は一部の実施形態では、寄生電力損失推定が所定閾値を下回ることになる閾値など、動的に決定される閾値であり得る。一部の実施形態において、コントローラは電力伝送を終了すること若しくは開始しないことによって電力を制限し得る、すなわちコントローラはゼロの値に電力を制限し得る。

0056

一部の実施形態において、電力信号の電力は寄生電力損失が閾値を超えることの検出時及びユーザ入力の受信前に制限され得る。正しい検出に対応するユーザ入力が受信される場合、適応コントローラ213は、例えば低下させた電力レベルを維持すること又は電力伝送の初期化を防ぐ若しくは控えることによって、既に導入された制限を継続し得る。

0057

適応は寄生電力損失推定が範囲の上限値を超える検出確率の低下へ向かって寄生電力損失検出動作をバイアスし得る。特に、適応は範囲を超える寄生電力損失が検出されるための要件を増加し得る。従って、適応は寄生電力損失/異物を検出する可能性を下げるようなものであり得る。

0058

適応は寄生電力損失推定が範囲の下限値を下回る検出確率の増加へ向かって寄生電力損失検出動作をバイアスし得る。特に、適応は範囲を超える寄生電力損失が検出されるための要件を軽減し得る。従って、適応は寄生電力損失/異物を検出する可能性を増すようなものであり得る。

0059

コントローラは例えば、代替ユーザ入力が受信される場合若しくは所要時間間隔内に入力が受信されない場合に、異物が存在することを示すユーザ入力が受信されると決定し得る。

0060

適応は受電器及び送電器ペアリングに特異的であり得る。

0061

異なる実施形態において、機能エンティティは送電器、受電器、若しくは実際には他のエンティティ間に異なって分散され得る。

0062

例えば、寄生電力損失検出器は例えば受電器、送電器の一部であり得るか、又は受電器及び送電器間に分散され得る。独立して、ユーザインジケータは例えば受電器、送電器の一部であり得るか、又は受電器及び送電器間に分散され得る。独立して、入力は例えば受電器、送電器の一部であり得るか、又は受電器及び送電器間に分散され得る。独立して、コントローラは例えば受電器、送電器の一部であり得るか、又は受電器及び送電器間に分散され得る。

0063

一部の実施形態において、範囲は上限値を持つのみであり得、寄生電力損失検出は閾値/上限値を超える寄生電力損失推定の検出であり得る。

0064

一部の実施形態において、範囲は下限値を持つのみであり得(典型的には上限値が無限であることに相当)、寄生電力損失検出は閾値/下限値を下回る寄生電力損失推定の検出であり得る。

0065

一部の実施形態において、範囲は下限値と上限値の両方を持ち得、寄生電力損失検出は閾値/下限値を下回る寄生電力損失推定若しくは異なる閾値/上限値を上回る寄生電力損失推定いずれかの検出であり得る。

0066

コントローラは特に、ユーザ入力が異物の不在を示す場合に寄生電力損失検出を生成する寄生電力損失検出器によって実行される寄生電力損失検出動作のパラメータの修正を開始し、ユーザ入力が異物の存在を示す場合に寄生電力損失検出動作のパラメータの修正を開始しないように構成され得る。

0067

異物の不在を示すユーザ入力は、異物が存在しないことを示すユーザ入力に均等/同一であるとみなされ得る。

0068

本発明のオプション機能によれば、寄生電力損失検出器は寄生電力損失推定が範囲の上限値を上回る値を持つ場合に寄生電力損失検出を生成するように構成される。

0069

これは特に有利なシステムを提供し得、例えばいかなる異物も存在しないのに電力損失が検出されるフォールスポジティブの確率を低下させる有利な適応を提供し得る。

0070

本発明のオプション機能によれば、寄生電力損失検出器は電力損失推定モデルから寄生電力損失推定を生成し、それを範囲に比較するように構成され、無線電力伝送システムは適応を実行するためのアダプタをさらに有し、アダプタは寄生電力損失推定を決定するためのモデルと範囲の少なくとも一方を適応させるように構成される。

0071

これは信頼できる動作を提供しながら実施容易化を提供し得る。

0072

適応は特に寄生電力損失推定を決定するために使用される送信電力推定及び/又は受信電力推定の決定を修正することによってモデルを修正し得る。適応は特に送信電力推定及び/又は寄生電力損失推定をより低い値へ向かってバイアスする、並びに/或いは(特に範囲の上限値を超える寄生電力損失推定の検出の場合)受信電力推定及び/又は検出閾値をより高い値へ向かってバイアスするようなものであり得る。

0073

適応は特に送信電力推定及び/又は寄生電力損失推定をより高い値へ向かってバイアスする、並びに/或いは(特に範囲の下限値を下回る寄生電力損失推定の検出の場合)受信電力推定及び/又は検出閾値をより低い値へ向かってバイアスするようなものであり得る。

0074

アダプタは特に寄生電力損失推定を決定/計算するための関数を修正するように構成され得る。寄生電力損失推定を決定するためのモデルは特に入力パラメータのセットの関数として寄生電力損失推定を決定するための関数であり得る。適応は関数を修正し得る。入力パラメータは例えば受信電力推定、及び/又は送信電力推定を含み得る。

0075

本発明のオプション機能によれば、入力は受電器に少なくとも部分的に含まれる。

0076

これは多くの実施形態においてより簡便なユーザインタラクションを提供し得、例えば多くの受電器が典型的な送電器よりも良いユーザインターフェースを持つという事実を利用し得る。

0077

本発明のオプション機能によれば、寄生電力損失検出器は送電器に少なくとも部分的に含まれる。

0078

これは多くの実施形態において実施及び/又は動作を容易にし得る。これは多くのシナリオにおいて動作を改良し、例えば異物の検出が電力信号を生成するエンティティによることを保証し得る。

0079

本発明のオプション機能によれば、寄生電力損失検出器は受電器に少なくとも部分的に含まれ、送電器は電力信号に対する送信電力推定を生成するための電力推定器と、受電器に送信電力推定を送信するための送信器とを有し、受電器は送信電力推定を受信するための受信器を有し、寄生電力損失検出器は送信電力推定に基づいて寄生電力損失検出を生成するように構成される。

0080

これは多くの実施形態において特に有利な機能分散を可能にし得る。特に、これは送電器が寄生電力損失検出のための関連パラメータをかかる検出を実行する受電器へ効率的に通信することを可能にし得る。

0081

寄生電力損失検出器は特に、送信電力推定とローカルで生成された受信電力推定との差として、寄生電力損失推定を決定し得る。

0082

本発明の一態様によれば、無線誘導電力信号を介して受電器へ電力伝送を提供するように構成される送電器を含む無線電力伝送システムのための装置が提供され、装置は、寄生電力損失推定が範囲外である場合に電力伝送に対する寄生電力損失検出を生成するように構成される寄生電力損失検出器と;寄生電力損失検出に応答してユーザアラートを初期化するためのユーザインジケータと;寄生電力損失検出に応答して異物の存在若しくは異物の不在を示すユーザ入力を受信するための入力と;ユーザ入力が異物の不在を示す場合、寄生電力損失検出を生成する寄生電力損失検出器によって実行される寄生電力損失検出動作の適応を開始し、ユーザ入力が異物の存在を示す場合、寄生電力損失検出動作の適応を開始しないように構成されるコントローラとを有し、適応は寄生電力損失検出動作のパラメータの修正を有する。

0083

アプローチは信頼性の高い寄生電力損失/異物セーフガードが装置によって実施されることを可能にし得る。装置は特にデバイスであり得る。

0084

当然のことながら前記システムに関して提供されたコメントは装置に準用する。

0085

本発明のオプション機能によれば、装置は適応を実行するためのアダプタをさらに有し、アダプタは複数の開始された適応に基づいて電力損失検出動作に対するパラメータをセットするように構成される。

0086

アプローチは、改良された動作と、例えば典型的には誤検出が少なく及び/又は異物の検出を見逃すリスクが低下した異物検出を提供し得る。アプローチは特に送電器に対する受電器の位置の変動に対する感受性の低下を提供し得る。実際、典型的なシナリオにおいて、給電する送電器を有するデバイスに対する受電器を有するデバイスの位置は、電力伝送動作によっていくらか異なり得る。例えば、携帯電話を無線充電プラットフォーム上に位置付けるユーザは、典型的には毎回わずかに異なる位置及び配向にそれを位置付ける。これは送電コイルと受電コイルの相対位置が電力動作間で異なることになり、従ってコイル間の結合が変動することになる。例えば受電デバイスの導電部(例えば金属部品)の影響も変動することになる。従って、特定の測定に基づいて寄生電力損失検出をキャリブレーションすること(適応させること)は、全く偶然普通でない若しくは通常でないかもしれない特定の相対的位置付けを反映するキャリブレーションをもたらし得る。複数の開始された適応に基づいてパラメータをセットするアプローチは、キャリブレーションが可能性の低いシナリオ(すなわち外れ値)を反映するリスクを低減し得る。

0087

適応される(複数の)パラメータは電力損失推定を決定するためのモデル若しくはアプローチに関連し得るか、又は例えば決定された寄生電力損失推定が電力損失検出に対応するか否かを評価するために使用される範囲に関連し得る。

0088

装置は従って繰り返し寄生電力損失推定を決定し、それを範囲に比較し得る。これが(例えば高過ぎる若しくは低過ぎることによって)範囲を超える場合、電力損失検出が生じており、適切なユーザ入力が受信される場合、適応プロセスが開始される。これは何度も起こる可能性があり、適応は現在の開始のみならず複数の開始に基づき得る。例えば、(複数の)パラメータの決定は複数の適応プロセスにわたる少なくとも一つの値、計算、若しくはパラメータの平均化を含み得る。

0089

本発明のオプション機能によれば、アダプタは複数の開始された適応に基づいて寄生電力損失推定を決定するためのモデル及び範囲の少なくとも一つを適応させるように構成される。

0090

これは改良された性能を提供し、及び/又は実施と動作を容易にし得る。

0091

本発明のオプション機能によれば、アダプタは、複数の開始された適応に対する総寄生損失推定を範囲における既定位置へ向かってバイアスするよう、寄生電力損失推定を決定するためのモデル及び範囲の少なくとも一つを修正するように構成される。

0092

これは改良された性能を提供し、並びに/或いは実施及び/又は動作を容易にし得る。アダプタは、得られる寄生電力損失推定が既定位置に(修正がなされなかった場合よりも)より近くなるように、寄生電力損失推定を決定するためのモデルのパラメータを修正するように構成され得る。代替的に若しくは付加的に、アダプタは、複数の開始された適応の総寄生電力損失推定が既定位置により近くなるように、範囲の一方若しくは両方の端点(すなわち最小値及び/又は最大値)を修正するように構成され得る。総寄生電力損失推定は特に異なる適応に対する寄生電力損失推定の(場合により加重)平均であり得る。一実施例として、総寄生電力損失推定は異なる適応の寄生電力損失推定の(ローパスフィルタリングから得られる寄生電力損失推定であり得る。

0093

一実施例として、寄生電力損失推定は送信電力推定と受信電力推定との差としてN回の適応について決定され得る。寄生電力損失推定は単一の平均総寄生電力損失推定を提供するように平均化され得る。この総寄生電力損失推定は範囲と比較され得、修正された(オフセット電力推定を用いて計算されるN回の適応に対する総寄生電力損失推定が既定点により近くなるように、送信電力推定及び/又は受信電力推定を計算するためのモデルにオフセットが導入され得る。例えば、範囲の中点に実質的に等しいN回の反復に対して計算された寄生電力損失推定の平均をもたらすように、送信電力推定(若しくは均等に受信電力推定)の決定にオフセットが導入され得る。別の実施例として、N回の適応に対する平均寄生電力損失推定が計算され得、この総寄生電力損失推定に対して範囲端点が決定され得、例えば平均寄生電力損失推定は、端点が計算された平均寄生電力損失推定まわりに対称所定値であることによって、範囲の中点にセットされ得る。

0094

本発明のオプション機能によれば、アダプタは送電器の送信電力に対する送信電力推定を決定するためのモデル、受電器に対する受信電力推定を決定するためのモデル、及び範囲の端点の少なくとも一つを適応させるように構成される。

0095

これは改良された及び/又は容易にされた動作、性能及び/又は実施を提供し得る。特に、これは多くの実施形態とシナリオにおいて効率的な低複雑性適応を可能にし得る。

0096

本発明のオプション機能によれば、アダプタは送電器と受電器の個別ペアリングに対して電力損失検出動作のためのパラメータをセットするように構成される。

0097

これは多くの実施形態において改良された性能を提供し得、多くのシナリオにおいて特に正確な電力損失検出を可能にし得る。送電器と受電器の所定ペアリングに対するパラメータはその送電器からその受電器への電力伝送中に開始される複数の適応に応じて決定され得る。

0098

本発明のオプション機能によれば、装置は送電器であり、アダプタは複数の受電器に対して開始された適応に基づいて電力損失検出動作のためのパラメータの少なくとも一つのパラメータを決定するように構成される。

0099

これは多くの実施形態において改良された性能を提供し得、多くのシナリオにおいて特に正確な電力損失検出を可能にし得る。所定の送電器に対するパラメータはその送電器から異なる受電器への電力伝送中に開始された複数の適応に応じて決定され得る。アプローチは特にシステムが(例えば部品公差測定バイアスなどに起因する)送電器における変動に対するより正確な補正を提供することを可能にし得る。このように、アプローチは例えば送電器と、以前に送電器と併用されていなかった受電器との間の電力伝送動作にとって、電力損失検出精度を改良し得る。多くのシナリオにおいて、新たな受電器について適応若しくはキャリブレーションが必要である確率が多くのシナリオで低減され得る。

0100

異なる受電器に対する複数の適応は特に範囲若しくは送信電力推定を決定するためのモデルを適応させるために使用され得る。

0101

本発明のオプション機能によれば、装置は受電器であり、アダプタは複数の送電器に対して開始された適応に基づいて電力損失検出のためのパラメータの少なくとも一つのパラメータを決定するように構成される。

0102

これは多くの実施形態において改良された性能を提供し得、多くのシナリオにおいて特に正確な電力損失検出を可能にし得る。所定の受電器に対するパラメータは異なる送電器からの電力伝送中に開始される複数の適応に応じて決定され得る。アプローチは特にシステムが(例えば部品公差、測定バイアスなどに起因する)受電器における変動に対するより正確な補正を提供することを可能にし得る。このように、アプローチは例えば受電器と、以前に受電器と併用されていなかった送電器との間の電力伝送動作にとって、電力損失検出精度を改良し得る。多くのシナリオにおいて、新たな送電器について適応若しくはキャリブレーションが必要である確率が多くのシナリオで低減され得る。

0103

異なる送電器に対する複数の適応は特に範囲若しくは受信電力推定を決定するためのモデルを適応させるために使用され得る。

0104

本発明のオプション機能によれば、コントローラはユーザ入力が電力伝送のための受電器の正確な位置付けの表示を有する場合のみ適応を開始するように構成される。

0105

これは適応が典型的な若しくは所望の使用シナリオを反映する確率を増加し得る。

0106

本発明のオプション機能によれば、装置は受電器である。

0107

アプローチは信頼性の高い寄生電力損失/異物セーフガードが受電器によって実現されることを可能にし得る。

0108

当然のことながら前記システムに関して提供されたコメントは受電器に準用する。

0109

本発明のオプション機能によれば、寄生電力損失検出器は送電器から受信される電力損失インジケータに基づいて寄生電力損失検出を生成するように構成される。

0110

これは多くの実施形態において有利な動作を提供し得、特に改良された機能分散を可能にし得る。

0111

一部の実施形態において電力損失インジケータは(電力信号の電力を示す)送信電力推定と受電器によって電力信号から抽出される電力を示す受信電力推定との電力差を示し得る。

0112

一部の実施形態において、電力損失インジケータは寄生電力損失推定が範囲外であることを送電器が検出することを示し得る。

0113

本発明のオプション機能によれば、寄生電力損失検出器は受電器によって送電器へ送信されるメッセージに対する承認欠如に応答して寄生電力損失検出を生成するように構成される。

0114

これは有利な動作を提供し得、特に追加メッセージングを要することなく、非常に低い通信リソースオーバーヘッドで、送電器による寄生電力損失検出の通信を提供し得る。

0115

承認の欠如は寄生電力損失が範囲外であることを送電器101が検出することを示し得る。

0116

本発明のオプション機能によれば、寄生電力損失検出器は送電器から受信される送信電力測定と受電器によって電力信号から抽出される電力を示す受信電力推定との比較に基づいて寄生電力損失検出を生成するように構成される。

0117

これは多くの実施形態において有利な動作と実施を提供し得る。

0118

本発明のオプション機能によれば、コントローラは基準を満たすユーザ入力が受信されることに応答して送電器へ適応要求メッセージを送信するように構成される。

0119

これは受電器が送電器の適応を制御することを可能にし得る。適応要求メッセージは特にキャリブレーション要求メッセージであり得る。

0120

一部の実施形態において、コントローラは寄生電力損失の検出に応答して送電器へ少なくとも一つの電力低下要求を送信するように構成され得る。

0121

これは寄生電力損失検出の場合に受電器が電力信号を制御することを可能にし得る。

0122

電力低下メッセージは例えば電力伝送を終了する要求であり得るか、又は例えば電力制御ループ電力低下メッセージであり得る。

0123

例えば、一部の実施形態において少なくとも一つの電力低下要求は少なくとも一つの電力ループ電力低下要求を有する。

0124

一部の実施形態において、コントローラは寄生電力損失が第二の基準を満たすまで第一の基準を満たす寄生電力損失の検出に応答して送電器へ電力制御ループ電力低下要求を送信するように構成される。

0125

一部の実施形態において、装置は基準を満たすユーザ入力を受信しないことに応答して寄生電力損失推定を決定するためのモデル及び範囲の少なくとも一つを適応させるためのアダプタを有し得る。

0126

多くの実施形態において、適応は受電器及び送電器ペアリングに特異的である。

0127

一部の実施形態において、受電器は送電器からユーザアラート要求を受信することに応答してユーザアラートを生成するように構成され得る。

0128

本発明のオプション機能によれば、装置は送電器である。

0129

アプローチは信頼性の高い寄生電力損失/異物予防措置が送電器によって実現されることを可能にし得る。

0130

当然のことながら前記システムに関して提供されたコメントは送電器に準用する。

0131

一部の実施形態において、寄生電力損失検出器は(電力信号の電力を示す)送信電力推定と受電器から受信される受信電力推定との比較に応答して寄生電力損失を検出するように構成され得、受信電力推定は受電器によって電力信号から抽出される電力を示す。

0132

本発明のオプション機能によれば、ユーザインジケータは受電器へユーザアラート要求メッセージを送信することによってユーザアラートを初期化するように構成され、ユーザアラート要求メッセージは受電器がユーザアラートを生成することを要求する。

0133

これは多くの実施形態において特に有利な動作を提供し得る。

0134

本発明のオプション機能によれば、入力は受電器からユーザ入力の表示を受信するための受信器を有する。

0135

これは多くの実施形態において特に有利な動作を提供し得る。

0136

一部の実施形態において、ユーザ入力の表示は(特に基準を満たすユーザ入力が受信されない場合)適応/キャリブレーションの要求を有するメッセージであり得る。メッセージは所要キャリブレーション期間を含み得る。

0137

本発明のオプション機能によれば、装置は適応を実行するためのアダプタをさらに有し、アダプタは寄生電力損失推定を決定するためのモデル及び範囲の少なくとも一つを適応させるように構成される。

0138

これは多くの実施形態において動作の複雑性と信頼性との間で改良されたトレードオフを可能にし得る。

0139

本発明のオプション機能によれば、送電器は寄生電力損失の検出に応答して受電器へ寄生電力損失検出の表示を送信するように構成される。

0140

これは多くの実施形態において効率的で信頼できる動作を可能にし得る。

0141

本発明のオプション機能によれば、送電器は受電器から受信されるメッセージに対する少なくとも一つの承認メッセージを与えないでおくことによって受電器へ寄生電力損失検出の表示を送信するように構成される。

0142

これは多くの実施形態において効率的で信頼できる動作を可能にし得、特に計算要件を軽減し得る。

0143

本発明の一態様によれば、無線電力伝送システムのための送電器が提供され、送電器は、無線誘導電力信号を介して受電器へ電力伝送を提供するように構成される電力伝送ユニットと、電力伝送に対する寄生電力損失インジケータを決定するように構成される寄生電力損失検出器と、受電器へ寄生電力損失インジケータを送信するための送信器とを有する。

0144

これは多くの実施形態において非常に有利な動作を提供し得、特に受電器における寄生電力損失動作の効率的なサポートを可能にし得る。

0145

本発明のオプション機能によれば、電力損失インジケータは電力信号の電力と受電器によって電力信号から抽出される電力を示す受信電力推定との電力差を示す。

0146

本発明のオプション機能によれば、寄生電力損失インジケータは送信電力推定を示す。

0147

本発明のオプション機能によれば、電力損失インジケータは過剰電力損失基準を満たす寄生電力損失の検出を示す。

0148

本発明のオプション機能によれば、送電器は受電器から受信されるメッセージに対する少なくとも一つの承認メッセージを与えないでおくことによって受電器へ電力損失インジケータを送信するように構成される。

0149

本発明の一態様によれば、無線誘導電力信号を介して受電器へ電力伝送を提供するように構成される送電器を含む無線電力伝送システムのための動作方法が提供され、方法は、寄生電力損失推定が範囲外である場合に電力伝送に対する寄生電力損失検出を生成するステップと;寄生電力損失検出に応答してユーザアラートを初期化するステップと;寄生電力損失検出に応答してユーザ入力を受信するステップであって、ユーザ入力は異物の存在若しくは異物の不在を示すステップと;ユーザ入力が異物の不在を示す場合、寄生電力損失を生成する寄生電力損失検出アルゴリズムの適応を開始し、ユーザ入力が異物の存在を示す場合、寄生電力損失検出動作の適応を開始しないステップとを有し、適応は寄生電力損失検出動作のパラメータの修正を有する。

0150

本発明のこれらの及び他の態様、特徴及び利点は下記実施形態から明らかとなり、それらを参照して解明される。

0151

本発明の実施形態は、ほんの一例として、図面を参照して記載される。

図面の簡単な説明

0152

本発明の一部の実施形態にかかる電力伝送システムの一実施例を図示する。
本発明の一部の実施形態にかかる電力伝送システムの一実施例を図示する。
本発明の一部の実施形態にかかる送電器のためのハーフブリッジインバータ素子の一実施例を図示する。
本発明の一部の実施形態にかかる送電器のためのフルブリッジインバータの素子の一実施例を図示する。
本発明の一部の実施形態にかかる送電器の一実施例を図示する。
本発明の一部の実施形態にかかる受電器の一実施例を図示する。
本発明の一部の実施形態にかかる送電器の一実施例を図示する。
本発明の一部の実施形態にかかる電力伝送システムにおける寄生電力損失検出のために使用される範囲の一実施例を図示する。
可能な送電デバイスの二つのビューを図示する。
可能な送電デバイスの二つのビューを図示する。
給電のために送電デバイス上に受電デバイスが位置付けられる電力伝送システムのビューを図示する。
給電のために送電デバイス上に受電デバイスが位置付けられる電力伝送システムのビューを図示する。
給電のために送電デバイス上に受電デバイスが位置付けられる電力伝送システムのビューを図示する。

実施例

0153

図1は本発明の一部の実施形態にかかる電力伝送システムの一実施例を図示する。電力伝送システムは送電コイル/インダクタ103を含む(若しくはそれに結合される)送電器101を有する。システムはさらに受電コイル/インダクタ107を含む(若しくはそれに結合される)受電器105を有する。

0154

システムは送電器101から受電器105へ無線誘導電力伝送を提供する。特に、送電器101は送電コイル103による磁束として伝播される電力信号を生成する。電力信号は典型的には約100kHz〜200kHzの周波数を持ち得る。送電コイル103と受電コイル107は疎結合であり、従って受電コイルは送電器101から電力信号(の少なくとも一部)をピックアップする。従って、送電コイル103から受電コイル107への無線誘導結合を介して送電器101から受電器105へ電力が伝送される。電力信号という語は主に送電コイル103と受電コイル107の間の誘導信号磁束信号)をあらわすために使用されるが、当然のことながら均等によりこれは送電コイル103に供給される電気信号、若しくは実に受電コイル107の電気信号への参照としても考慮され使用され得る。

0155

以下、送電器101と受電器105の動作がQi規格に従って一実施形態を特に参照して記載される(本明細書に記載の(若しくは結果として生じる)修正及び改良を除く)。特に、送電器101と受電器105は実質的にQi規格バージョン1.0若しくは1.1に適合し得る(本明細書に記載の(若しくは結果として生じる)修正及び改良を除く)。

0156

無線電力伝送システムにおける送電器101と受電器105の間の電力伝送を準備し制御するために、受電器105は送電器101へ情報を通信する。かかる通信はQi規格バージョン1.0及び1.1において標準化されている。

0157

物理レベルで、受電器105から送電器101への通信チャネルは電力信号をキャリアとして使用することによって実現される。受電器105は受電コイル107の負荷を変調する。これは送電器側における電力信号の対応する変動をもたらす。負荷変調は送電コイル103電流の振幅及び/又は位相の変化によって、又は代替的に若しくは付加的に送電コイル103の電圧の変化によって検出され得る。この原理に基づいて、受電器105は送電器101が復調するデータを変調し得る。このデータはバイト及びパケットでフォーマットされる。より詳しくは、Qi無線電力仕様ともよばれる、http://www.wirelesspowerconsotrium.com/downloads/wirelss-power-specification-part-1.htmlから利用可能な"System description, Wireless Power Transfer, Volume I:Low Power, Part 1:Interface Definition Version 1.0 July 2010, published by the Wireless Power Consortium"、特にチャプタ6:通信インターフェースを参照のこと。

0158

電力伝送を制御するために、システムは異なるフェーズ、特に選択フェーズ、ピンフェーズ、識別及び構成フェーズ、電力伝送フェーズを介して進行し得る。より詳しくはQi無線電力仕様パート1チャプタ5を参照のこと。

0159

最初に、送電器101は単に受電器の潜在的存在をモニタリングする選択フェーズにある。送電器101はこの目的で例えばQi無線電力仕様に記載のような様々な方法を使用し得る。こうした潜在的存在が検出される場合、送電器101は電力信号が一時的に生成されるピンフェーズに入る。受電器105はその電子機器を起動するために受信信号を適用し得る。電力信号を受信後、受電器105は初期パケットを送電器101へ通信する。特に、送電器と受電器の間の結合度を示す信号強度パケットが送信される。より詳しくはQi無線電力仕様パート1チャプタ6.3.1を参照のこと。従って、ピンフェーズにおいて受電器105が送電器101のインターフェースに存在するかどうかが決定される。

0160

信号強度メッセージの受信により、送電器101は識別及び構成フェーズに移る。このフェーズにおいて、受電器105はその出力負荷を切断したままにし、負荷変調を用いて送電器101へ通信する。送電器はこの目的で一定振幅、周波数及び位相の電力信号を供給する(負荷変調によって生じる変化を除く)。メッセージは受電器105の要請を受けて自身を構成するために送電器101によって使用される。

0161

識別及び構成フェーズの後、システムは実際の電力伝送が行われる電力伝送フェーズに移る。特に、その電力要求を通信した後、受電器105は出力負荷を接続してそれに受信電力を供給する。受電器105は出力負荷をモニタリングして所定動作点の実際の値と所望の値との制御誤差を測定する。これは電力信号の変更若しくは変更不要の要望とともにこれらの誤差を送電器101に示すために、例えば250m秒毎の最低レートで送電器101へかかる制御誤差を通信する。

0162

電力伝送動作は、無線磁束電力信号が送電器101によって生成され、受電器105によってキャプチャされることに基づく。従って、電力信号は受電コイル107において電圧と電流を誘導する。しかしながら、電力信号は例えば受電器105若しくは送電器101の金属部品を含む任意の他の導電体においても電流を誘導する。さらに、異物として知られる他の物体が送電コイル103の十分近くに位置する場合、かかる物体の導電部においてかなりの電流が誘導され得る。例えば、かなりの渦電流が誘導される可能性があり、これは物体の加熱をもたらし得る。過剰電力が異物において誘導される場合、これは大幅に加熱し得る。従って、望ましくない電力損失に加えて、異物における誘導電力は望ましくない、おそらくほとんど危険でさえある状況をももたらし得る。一例として、ユーザは不注意で送電器によって充電されている携帯電話の隣に鍵一組を置くかもしれない。これは鍵一組が大幅に、潜在的には鍵を手に取るときにユーザを火傷させるのに十分なほど、加熱することになり得る。問題は高電力の場合に悪化し、例えばQi電力伝送アプローチにとってこれが高電力レベルに拡張されているとき、より重大になっている。

0163

このようなリスクに対処するために、Qi規格はこのようなシナリオを検出し、検出に応答して電力伝送を終了するための機能を含む。特に、送電器101は寄生電力損失(すなわち送電器101によって電力信号に供給される電力と受電器105によって消費される電力との差)を推定し得る。これが所定レベルを超える場合、これは異物が存在することに起因する可能性があるとみなされ、従って送電器101は電力伝送の終了へと進む。このように、送電器101は異物検出機能を含む。

0164

Qi電力伝送規格において、受電器は例えば整流電圧及び電流を測定し、それらを乗じて、受電器における内部電力損失の推定(例えば整流器、受電コイル、受電器の一部である金属部品の損失など)を加えることによって、その受信電力を推定する。受電器は決定される受信電力を例えば4秒毎の最低レートで送電器へ報告する。

0165

送電器は例えばインバータDC入力電圧と電流を測定し、それらを乗じて、送電器における内部電力損失の推定、例えばインバータ、一次コイル及び送電器の一部である金属部品における推定電力損失などを減じることによって結果を修正することによって、その送信電力を推定する。

0166

送電器101は報告された受信電力を送信電力から減じることによって電力損失を推定し得る。結果として得られる寄生電力損失推定が検出閾値を超える場合、送電器101は過剰電力が異物において散逸されると仮定し、そして電力伝送の終了へと進み得る。

0167

特に、寄生電力損失推定PT−PRが閾値より大きいときに電力伝送が終了し、PTは送信電力推定でありPRは受信電力推定である。

0168

測定は受電器と送電器の間で同期され得る。これを達成するために、受電器は構成中に時間窓のパラメータを送電器へ通信し得る。この時間窓は受電器が受信電力の平均を決定する期間を示す。時間窓は受信電力パケットの第一ビットが受電器から送電器へ通信されるときである基準時間に対して定義される。この時間窓に対する構成パラメータは窓の持続期間と基準時間に対する開始時間から成る。

0169

この電力損失検出を実行するとき、異物の存在が検出されることを確実にするために十分な精度で電力損失が決定されることが重要である。

0170

まず、磁場から大幅な電力を吸収する異物が検出されることが保証されなければならない。これを確実にするために、送信及び受信電力から計算される電力損失の推定におけるいかなる誤差も、異物における電力吸収に対する許容可能レベルよりも低くなければならない。同様に、誤検出を回避するために、電力損失計算の精度は異物が存在しないときに高過ぎる推定電力損失値をもたらさないように十分に正確でなければならない。

0171

低電力レベルよりも高電力レベルにおいて十分に正確に送信及び受信電力推定を決定する方が実質的に難しい。例えば、送信及び受信電力の推定の不確実性が±3%であると仮定すると、これは
5Wの送信及び受信電力において±150mW
50Wの送信及び受信電力において±1.5W
の誤差につながり得る。

0172

従って、かかる精度は低電力伝送動作にとっては許容可能であり得るが、高電力伝送動作にとっては許容可能でない。

0173

典型的に、送電器はたった350mW若しくはもっと低い異物の電力消費を検出することができなければならないことが要求される。これは受信電力と送信電力の非常に正確な推定を要する。これは高電力レベルにおいて特に困難であり、受電器が十分に正確な推定を生成することは困難であることが多い。しかしながら、受電器が受信電力を過大評価する場合、これは異物による電力消費が検出されないという結果になり得る。逆に、受電器が受信電力を過小評価する場合、これは異物が存在しないにもかかわらず送電器が電力伝送を終了する誤検出につながり得る。

0174

従って、受信電力を単純に過大評価すること(これは低過ぎる電力損失が感知されることになり得る)は、異物が検出されない(フォールスネガティブ)可能性の増大のために、容認できない。受信電力を過小評価することはポジティブの感知された電力損失をもたらし、これはいかなる異物も存在しないにもかかわらず異物が存在することを示す検出(フォールスポジティブ)につながり得るので、容認できない。従って、推定におけるいかなる不確実性についても、狭い帯域しか利用できない。

0175

明らかに、多数のフォールスポジティブの発生は電力伝送システム及び規格の需要にとって有害である。例えば、平均的消費者はなぜ自分のデバイスが充電されていないのか、又は例えばなぜ自分のデバイスがある送電器上では完璧に充電するが別の送電器上では充電を拒むのか、わからない。しかしながら、フォールスネガティブは最悪のケースとして重大な問題を生じ得る程度まで異物が加熱されることになり得るので、さらにいっそう不都合である可能性があり得る。

0176

この問題に対処し、より正確な異物検出を提供するために、個々の受電器及び送電器の固有特性が異物検出に反映されるように、送電器と受電器が互いにキャリブレーションされることが提案されている。この一例は欧州特許出願EP12188672.5で提供され、これは事前に互いにキャリブレーションされていない送電器と受電器ペアリング間では低電力レベルについてのみ電力伝送が許可されるシステムを開示する。しかしながら、より正確な異物検出をもたらす送電器と受電器ペアリングのキャリブレーションをユーザが実行する場合、システムは高電力レベルにおいて電力伝送を許可する。

0177

しかしながら、このようなアプローチは多くの実施形態において望ましい動作を提供し得るが、これは一部のシナリオでは準最適であり得る。実際、アプローチはそのようなキャリブレーションが必要ない場合であっても、高電力レベル電力伝送が実行されることができる前に全ての送電器と受電器ペアリングについてキャリブレーションが実行されなければならないことを要する。例えば、多くの受電器と送電器の組み合わせにとって、結果として得られる送信電力及び受信電力推定は非常に正確であり得、高電力レベルにおいても、いかなるキャリブレーションも伴わずに、十分に信頼できる異物検出をもたらす。キャリブレーションはユーザにとって不都合であることが多く、マニュアル入力と専用キャリブレーションモードを要することが多い。

0178

しかしながら、図1のシステムは固有特性へのシステムの選択的適応を可能にする異なるアプローチを使用する。実際、送電器と受電器の組み合わせに対してキャリブレーションが実行されることを常に要求するのではなく、システムは寄生電力損失の推定をモニタリングしてこれが高過ぎるかどうかを検出しながら電力伝送が進行することを可能にする。かかる電力損失が検出される場合、システムはユーザに警告し(及び潜在的には電力を下げ)、ユーザに異物が存在するか否かの入力を与えるよう要求する。異物が実際に存在するという表示である場合、これは次に電力信号の電力を安全レベルに制限する(例えば寄生電力損失が安全閾値未満になることを要する)。しかしながら、異物が存在しないとユーザが示す場合、システムは高電力レベルで電力伝送を継続し得る。加えて、これは次に寄生電力損失の検出の適応を開始する。適応は(例えば推定寄生電力損失に対する検出閾値を容認できないとみなされるまで増加することによって)寄生電力損失検出の可能性が低減される、すなわち寄生電力損失検出器が寄生電力損失を検出する可能性が低くなるようなものである。

0179

従って、アプローチにおいて、ユーザインタラクションは潜在的な問題が生じるシナリオに限られる。さらに、アプローチはシステムがより正確な検出へ向かって適応されることを可能にし、これは誤検出確率を低減し得る。

0180

さらに、ユーザとの非常に単純なインタラクションのみが要される。実際、ユーザは異物が存在するか否かについて聞かれ、そこに異物がある若しくはないとみなすかどうかを単に示すバイナリユーザ入力で単純に応答することができる。実際、単純なはい/いいえ入力がユーザによって与えられ得る。ユーザは例えば単に異物がある若しくはないと示すボタンを押すことができる。アプローチは従ってシステムが自身をより正確になるよう適応させキャリブレーションすることを可能にする。キャリブレーションはユーザ入力に基づくが、これはどのように異物検出が実行されるか、どのパラメータが含まれるかなどのいかなる理解を持つこともユーザに要求しない。実際、ユーザはユーザ入力が異物検出のキャリブレーションのために使用されることを知る若しくは理解する必要すらない。ユーザが例えば異物検出動作のパラメータを直接制御若しくはセットし得るアプローチと対照的に、現在のアプローチはユーザによる技術的理解を必要とせず、従ってシステムが消費者市場において広く応用されることを可能にする。

0181

アプローチは寄生電力損失検出を生成するために実行される寄生電力損失検出動作を適応させようとする。従って、アプローチは寄生電力損失を検出するためのアルゴリズム/アプローチが適応され得る方法に向けられる。適応は特に寄生電力損失検出を生成するための検出アルゴリズムのパラメータを修正することを有する。

0182

アプローチは寄生電力損失検出を生成するための寄生電力損失検出動作(検出アルゴリズム)の修正を寄生電力損失の実際の検出に及び単純なユーザ入力に結び付ける。

0183

実際、アプローチにおいて、検出アルゴリズムの修正は検出アルゴリズム自体によって生成される寄生電力損失検出によってトリガされる。従って寄生電力損失の検出のイベントは適応の初期化をトリガし、これは検出を生成した検出アルゴリズムのパラメータを修正する。加えて、検出による適応のトリガはユーザ入力を条件としてなされる。ユーザ入力は実際に異物が存在するか否かの表示を与える。後者の場合のみ適応が進行することを許される。

0184

従って、検出アルゴリズムの適応をトリガするための特定アプローチが提供される。特に、適応は多くの実施形態において(ユーザ入力に従って)異物が存在しないにもかかわらず寄生電力損失検出が生じる結果として初期化/トリガされるのみであり得る。検出アルゴリズムの修正は従って特に誤検出に応答してトリガされ得、修正は例えばこの事実を考慮し得る。

0185

検出アルゴリズムの適応は、非常に特定の一連の状況が生じるとき、すなわち寄生電力損失推定が範囲外であり異物が存在しないことを示すユーザ入力が受信されるときに、実行される。適応は従って特定の一連のイベントが生じるときのみトリガされる。すなわち、検出アルゴリズムは寄生電力損失が検出され異物が存在しないことを示すユーザ入力が受信される結果として修正される。これは特に"誤トリガ"に対応し得る。

0186

非常に特定のシナリオにおける適応のトリガは検出性能の改良された適応を可能にする。特に、これは検出アルゴリズムの望ましくない性能の可能性が高いとき、例えば特に誤検出が生じている可能性が高いときなどを検出することによってシステムがアルゴリズムを適応させることを可能にする、すなわちこれはアルゴリズムが誤っていることを効果的に検出し、そして次にこれが再発するチャンスを減らすようにアルゴリズムを適応させ得る。

0187

実際、システムの特定の利点は、アルゴリズムが誤りを犯さない限り(異物が存在しないときに寄生電力損失推定が範囲内であることに対応)適応がトリガされ得ないことである。従って、システムが期待通り機能しているとき、適応はトリガされず、その結果複雑性、リソース需要を減らし、さらにより重要なことにシステムが現在の最適設定/性能から変更されることを防ぐ。

0188

採用される特定の適応は個々の実施形態及びアプリケーションの特定の選好と要件によって決まる。実際、非常に特定の状況において適応を実行することによって提供される利点は特定の適応若しくは適応アプローチに限定されない。異なる可能な適応例が以下に記載されるが、多くの他の実施例が可能であり、本発明から差し引かれることなく採用され得る。適応アプローチの選択は特定のアプリケーションシナリオに依存する実施決定である。

0189

アプローチはかなり改良されたユーザ経験を可能にする。実際、検出アルゴリズムをキャリブレーション若しくはセットアップするためにユーザインタラクション若しくは入力を常に要するのではなく、アプローチは必要なユーザインタラクションを寄生電力損失が実際に検出されるときのみ生じるように制限し得る。これはかなりまれにしか生じない可能性が高く、従ってユーザはまれにしか、実際典型的には寄生電力損失検出アルゴリズムが誤った検出を生成する場合しか不便を被ることがない。さらに、アプローチは検出アルゴリズムが公称パラメータで初期化され、そしてその後これらのパラメータが適切でない若しくはあまりに多くの誤検出を生成する場合に自身を適応させることを可能にし得る。

0190

加えて、ユーザは異物が存在するか否かを示す単純なバイナリ入力を与えることを要求されるのみである。これはユーザから最低限のインタラクションを要するのみならず、ユーザによる提供が非常に容易な入力でもある。適応プロセス、寄生電力損失検出アルゴリズム、若しくは実に無線電力伝送システムそれ自体について、技術的知識若しくは理解はユーザによって要求されない。実際、ユーザは入力が寄生電力損失検出動作と関連して使用されることを知っている必要すらない。高電力伝送が可能になる前にユーザ支援を典型的に要する予防措置にフォーカスする多くの以前のアプローチと対照的に、図1のシステムは潜在的問題を検出し、そしてこれが実際に起こる場合に問題に対処しようとする是正措置にフォーカスする。これは必要なユーザインタラクションを大幅に減らし、多くのシナリオにおいていかなる事前のユーザ活動も要することなく高電力レベル伝送を可能にし得る。

0191

例えば、高レベル電力伝送はQi規格で規定される通り受電器の要求で開始され得る。電力伝送はシステムが推定寄生電力損失をチェックして進行し得る。容認できない寄生電力損失が検出される場合、システムは電力伝送を終了し、実際に異物が存在するか否かをユーザが示すことを要求し得る。そうであれば、システムは電力伝送を終了する。そうでなければ、システムは誤検出が生じたことを反映する適応の実行へと進む。特に、これは送電器101と受電器105の(潜在的にはマニュアル若しくはセミマニュアル)キャリブレーションを開始し得る。

0192

従って、実施例において、ユーザ入力は感知された潜在的に危険な状況を送電器101及び/又は受電器105が検出する場合のみ要求される。異常な状況がない(例えば送電器面上に異物がない)ことをユーザが示す場合、フル電力伝送が継続する。送電器101及び/又は受電器105はそれらの推定を再キャリブレーションするためにユーザ入力を使用し得る。ユーザが所定時間内に入力を与えない場合、感知された危険な状況が解決されるよう、電力伝送は終了されるか、若しくは低レベルで継続される。従って、この実施例において、ユーザ入力の欠如は異物が存在することを示すユーザ入力に相当するとみなされる。

0193

最後に、ユーザは実際に危険な状況があったが、問題を解決する措置をとった(例えば送電器面から異物を除去した)こと、及びフル電力伝送が安全に継続されることができることを示すこともできる。

0194

アプローチは従って多くのシナリオと実施形態において、信頼できる例えば異物検出機能を依然提供しながら、例えばマニュアルユーザキャリブレーションのための要件を減らして、改良されたユーザ経験を提供し得る。単純なユーザインタラクションのみが利用され、ユーザによるいかなる技術的理解のための要件もない。

0195

図2図1のシステムをより詳細に図示する。特に図2は異物/寄生電力損失検出及び動作と関連する様々な機能素子を図示する。

0196

図2は送電コイル103に結合され、電力信号を生成してこれを送電コイル103へ供給するドライバ201を図示する。従って、電力伝送中、ドライバ201は送電コイル103(及び受電コイル107)を介して受電器へ電力信号を供給する。

0197

ドライバ201は従って送電コイル103へ供給される電流と電圧を生成する。ドライバ201は典型的にはDC電圧から交流信号を生成するインバータの形の駆動回路である。図3はハーフブリッジインバータを示す。スイッチS1とS2は決して同時に閉じられないように制御される。交互にS1が閉じられる間にS2が開かれ、S2が閉じられる間にS1が開かれる。スイッチは所望の周波数で開閉され、それによって出力において交流信号を生成する。典型的にインバータの出力は共振コンデンサを介して送電コイルへ接続される。図4はフルブリッジインバータを示す。スイッチS1とS2は決して同時に閉じられないように制御される。スイッチS3とS4は決して同時に閉じられないように制御される。交互にスイッチS1とS4が閉じられる間にS2とS3が開かれ、そしてS2とS3が閉じられる間にS1とS4が開かれ、それによって出力において方形波信号を生成する。スイッチは所望の周波数で開閉される。

0198

ドライバ201は電力伝送機能を操作するための制御機能も有し、特にQi規格に従って送電器101を操作するように構成されるコントローラを有し得る。例えば、コントローラはQi規格の識別及び構成フェーズ並びに電力伝送フェーズを実行するように構成され得る。

0199

受電コイル107は受電器コントローラ203に結合され、これは電力伝送機能を操作するための様々な機能を有し、特定の実施例ではQi規格に従って受電器105を操作するように構成される。例えば、受電器105はQi規格の識別及び構成フェーズ並びに電力伝送フェーズを実行するように構成され得る。

0200

受電器コントローラ203は電力伝送フェーズ中に電力信号を受信し電力を抽出するように構成される。受電器コントローラ203は電力伝送フェーズ中に送電器101から給電される負荷である電力負荷205に結合される。電力負荷205は外部電力負荷であり得るが、受電器のバッテリ、ディスプレイ若しくは他の機能など、受電デバイスの一部であることが多い(例えばスマートフォンの場合電力負荷はスマートフォンの複合機能に対応し得る)。

0201

システムはさらに寄生電力損失検出器207を有し、これは寄生電力損失推定が範囲外であることに応答して電力伝送に対する寄生電力損失検出を生成するように構成される。特に、寄生電力損失検出器207は送電器101に対する送信電力推定と受電器105に対する受信電力推定の電力差を示す電力損失推定を生成し、これらの間の差が範囲外であるかどうかを検出し得る。

0202

例えば、寄生電力損失検出器207は送電器101によって生成される送信電力推定を考慮し得る。

0203

単純な実施例として、送信電力推定は送電コイル103へ供給される電力として決定され得るか、又は例えばドライバ201のインバータステージへの入力電力として決定され得る。例えば、送電器101は送電コイル103を通る電流、送電コイル103にかかる電圧、及び電圧と電流間の位相差を測定し得る。そしてこれはこれらの値に基づいて対応する(時間平均)電力を決定することができる。別の実施例として、インバータの供給電圧は典型的に一定であり、送電器101はインバータによって引き込まれる電流を測定し、これに一定電圧を乗じてインバータへの入力電力を決定し得る。この電力は送信電力推定として使用され得る。

0204

多くの実施形態において、わずかにより複雑な送信電力推定が生成される。特に、アプローチは送電器101自体における損失について計算された電力を補正し得る。特に、送電コイル103自体における損失が計算され得、入力電力はこの値によって補正されて、電力の改良された表示を提供し、これは送電コイル103から送信される。

0205

送電コイル103における電力損失は次式の通り計算され得る:
Plosscoil=R・Icoil2
Icoilは送電コイル103を通るrms電流であり、Rは送電コイル103の等価抵抗である。抵抗既知であると仮定して、送信電力は次式によって推定され得る:
Ptx=Vcoil・Icoil・cos(φ)−R・Icoil2
Vcoilは送電コイル103にかかる電圧でありφはVcoilとIcoilの間の位相である。

0206

Rは例えばR=Rb+Rf・fなどの関数に従って送電コイル電流の周波数に依存し、Rbは等価抵抗の周波数独立部であり、Rfは等価抵抗の周波数依存部であり、fは周波数である。

0207

さらに、寄生電力損失検出器207は受電器105によって生成される受信電力推定を考慮し得る。

0208

受信電力推定は受電器105の負荷に供給される電力として直接推定され得る。しかしながら、多くの実施形態において、受電器105は受電器105自体における電力損失/散逸も含む受信電力推定を生成する。従って、報告される受信電力表示は負荷に供給される電力及び受電器105における電力損失の両方を含み得る。例えば、これは整流回路及び/又は受電コイルにおける測定若しくは推定電力損失を含み得る。多くの実施形態において、受信電力推定は例えば受電器筐体の導電部において散逸される電力の推定も含み得る。

0209

典型的には時間平均値が使用され、例えば電力値は適切な時間間隔における平均値として決定され、時間間隔は好適には送電器101と受電器105の間で同期される。

0210

寄生電力損失検出器207は寄生電力損失推定を決定するために送信電力推定から受信電力推定を減算し得る。寄生電力損失推定は受電器105によって散逸若しくは消費されない電力量(負荷205へ供給される電力を含む)の推定である。従って、寄生電力損失推定は受電器105(若しくは送電器101)以外のデバイスによって消費される電力の推定であるとみなされ得る。従って寄生電力損失推定は送電コイル103付近に位置する異物など、他のエンティティにおいて生じ得る損失の推定である。寄生電力損失推定は特に異物推定であり得る。

0211

寄生電力損失検出器207は、寄生電力損失推定が範囲外であることに対応する寄生電力損失基準を寄生電力損失推定が満たすかどうかを評価することによって寄生電力損失を生成するように構成される。多くの実施形態において、基準は寄生電力損失推定が既定閾値であり得る所定検出閾値を超えることであり得る。従って、一部の実施形態において、寄生電力損失検出器207は単純に送信電力推定と受信電力推定の差を所定閾値に比較し、閾値が超えられる場合、寄生電力損失が検出されていることを示し得る。これは異物における損失が高過ぎる可能性があること、及び異物の不要な加熱の潜在的リスクがあることを示し得る。

0212

下記は範囲が上限のみを持つ、すなわち寄生電力損失検出が、寄生電力損失推定が所定閾値を超えることを反映する検出である実施形態にフォーカスする。しかしながら、後述される通り、一部の実施形態において、範囲は下限も、若しくは下限のみを持ち得る。従って、かかる実施形態では、寄生電力損失推定が閾値未満であることが検出され得、これは寄生電力損失検出の感度が低過ぎ、増加されるべきであるという表示であり得る。

0213

寄生電力損失推定が閾値を超えるという決定を寄生電力損失検出が反映するシナリオにおいて、システムは寄生電力損失が検出される場合瞬時に送信電力を減らし、例えば電力伝送を終了し得るか又は許容できる寄生電力損失値をもたらすとみなされる電力レベルにこれを低減し得る。しかしながら、付加的に、システムは次に寄生電力損失検出が真の検出であったか若しくはフォールスポジティブであったかどうかをさらに評価する。一部の実施形態において、電力伝送はこの評価中元の電力レベルで継続され得るが、ほとんどの実施形態では評価中電力レベルが削減されるか若しくは電力伝送が完全に一時中断されることが好ましい。

0214

検出が正確な若しくは真の検出であるかどうかの評価はユーザを関与させることによって実行される。

0215

従って、システムは寄生電力損失検出器207に結合される、寄生電力損失の検出に応答してユーザアラートを初期化するように構成されるユーザインジケータユニット209を有する。従って、寄生電力損失検出器207が寄生電力損失を検出すると、制御信号がユーザインジケータユニット209へ供給され、そしてこれは次にユーザアラートを生成する。ユーザアラートは例えば視覚手段(例えば点滅若しくは着色光)、聴覚手段(例えばビープ若しくはブザー音)による、及び/又はより複雑なテキスト若しくはグラフィカルユーザインターフェースによるものであり得る。

0216

システムはさらにユーザ入力を受信することができる入力ユニット211を有する。ユーザ入力は例えばユーザが専用ボタンを押すことによって、所定時間内に入力を供給すること若しくは供給しないことによって、又は例えばこれもユーザアラートを供給し得る適切なタッチセンサスクリーン上でタッチ入力を供給することなど、より複雑な手段によって、供給され得る。

0217

ユーザアラートは異物の存在若しくは異物の不在を示すユーザ入力を供給するようユーザへの要求も供給する。従って、ユーザアラートが生成されるとき、これは異物が存在するか否かを示す単純なユーザ入力を供給しなければならないことをユーザに示す。従ってユーザは潜在的異物検出を知らされ、実際に異物が存在するか否かを示すバイナリユーザ入力を供給するよう要求される。

0218

入力ユニット211は従って異物の存在若しくは異物の不在を示すユーザ入力を受信するように構成される、すなわちこれは(ユーザの意見において)異物が存在するか否かを示す。単純なバイナリ入力のみがユーザによって供給される必要がある。

0219

実施形態において、異物検出は従ってユーザに検出を警告するだけでなく、実際に異物が存在するか否かを示すユーザ入力の要求とモニタリングのプロセスも開始する。

0220

ユーザアラートの生成とシステムがユーザ入力を受信することはその結果として密接に相関する。特に、ユーザアラートの生成とユーザ入力の受信は異物検出の直接の結果として起こる。異物検出が起こったということは事実であり、これはユーザアラートが生成されることと、入力ユニット211によってユーザ入力が受信されることの両方をもたらす。ユーザアラートはさらに異物検出発生の直接表示である。同様に、入力ユニット211は異物が存在するか否かを示すユーザ入力を異物検出イベントの直接の結果として受信するように構成される。結果として、供給されるユーザ入力は原則的に他の時に、若しくは異物検出の前でも適用され得る一般的ユーザ入力であるのみならず、むしろちょうど起こった異物検出イベントに特に関連するユーザ入力である。その結果として、実際に異物が存在するか否かについての入力は、異物検出が実際に正確な検出であったかどうか若しくはフォールスポジティブ検出であったかどうかの非常に強力な表示を提供する。

0221

一部の実施形態において、入力ユニット211は異物検出に応答してユーザ入力を受信するための時間間隔を開始するように構成され得る。従って、特に、寄生電力損失検出器207が寄生電力損失検出を生成するとき、このイベントはユーザ入力が入力ユニット211へ供給され得るタイマーをセットし、ユーザ入力は異物が存在するか否かを示す。このアプローチはユーザ入力が実際の検出イベントに密接に相関することを保証し、従って表示が非常に高確率で寄生電力損失検出中の状況を反映することを保証し得る。

0222

多くの実施形態において、入力ユニット211は異物なしという表示に対応する入力が間隔の終了前に受信されていない限り、異物が存在することを示すようにユーザ入力をセットするように構成され得る。従って、初期設定は、テストを正確とみなし、異物が存在しないとユーザが明示的に示していない限り実際にそのような異物が存在するとみなすものである。これは多くのシナリオにおいてより信頼できるより安全なアプローチをもたらし得る。

0223

例えば、寄生電力損失検出器207が異物を検出する場合、これは警告灯を点滅させ、例えば異物が存在しない場合ユーザがボタンを押すべきことを示すメッセージをハイライトし得る。ユーザが次にボタンを押す場合、これは異物が存在しないことを示すユーザ入力に対応する。ユーザが例えば既定間隔内にボタンを押さない場合、これは実際に異物が存在することを示す。入力ユニット211は適応コントローラ213に結合され、これは入力ユニット211へ供給されるユーザ入力を受信する。適応コントローラ213は誤検出基準を満たすユーザ入力が受信されるか否かを評価するように構成され、すなわち適応コントローラ213は誤検出である寄生電力損失検出を示すユーザ入力が受信されることに対応する基準を満たすユーザ入力が受信されるかどうかを評価し得る。誤検出表示は典型的には異物が存在しないことをユーザが示すことに対応し得る。従って、ユーザアラートに応答して、ユーザは次に送電コイル103付近に異物が存在するか否かを示す入力を供給し得る。異物がなく検出が誤検出であったことを入力が示す場合、誤検出基準が満たされる。実際に異物があり検出が正確な検出であることを入力が示す場合、誤検出閾値は満たされない。正確な若しくは誤検出を示すユーザ入力が受信されない場合、誤検出基準は満たされない、すなわち関連ユーザアクティベーションがない場合、検出は典型的には正確であるとみなされる。

0224

適応コントローラ213は送電器101の動作を制御することができ、特に電力信号及び電力伝送を制御することができる。

0225

適応コントローラ213は検出が誤検出であるという表示に対応する所定ユーザ入力基準を満たさないユーザ入力を受信する場合、すなわち異物がないことを示すユーザ入力が受信される場合、適応コントローラ213は検出を正確な検出であるとみなし、すなわち寄生電力損失が実際に高過ぎ、異物における過剰電力散逸に起因する可能性があるとみなす。従って、これは次に電力信号の電力が安全レベルに制限されるモードで動作するように送電器101を制御する。

0226

一部の実施形態において、検出が正しいとみなされる場合であっても電力伝送が継続し得るが、適応コントローラ213は、寄生電力損失が異物において散逸されても許容可能とみなされるほど十分に低い値に電力信号の電力が制限されるように、送電器101を制御する。限度は一部の実施形態において、過剰加熱をもたらさないと安全に仮定され得る電力レベルなど、既定限度であり得る。他の実施形態において、電力信号の電力の制限は実際の動作条件と推定に依存し得る。例えば、適応コントローラ213は寄生電力損失推定が許容できるレベルに削減されるまで電力を削減し得る。一部の実施形態において、制限は電力信号が供給されない、すなわち電力伝送が完全に終了され得ることである(例えば限度は実質的にゼロであり得る)。

0227

検出が誤検出であることをユーザが示す場合、すなわち異物が存在しないことを示すユーザ入力が受信される場合、適応コントローラ213は次に寄生電力損失を検出するための検出アルゴリズムの適応/キャリブレーションを実行する。特に、適応コントローラ213は寄生電力損失推定を決定するためのアプローチ及び/又はこれが許容できるか否かを決定するための基準の適応を開始し得る。適応は、特に寄生電力損失推定を計算するためのモデルのパラメータ及び(寄生電力損失推定が許容可能とみなされる)範囲の端点の少なくとも一つを変更するなど、寄生電力損失検出動作の少なくとも一つのパラメータを変更することを含む。

0228

従って、異物が存在しない、従って検出が誤検出であることをユーザ入力が示すとき、適応コントローラ213はかかる誤検出の可能性を減らすために検出プロセスの適応/修正へと進む。例えば、寄生電力損失推定のための閾値が増加され得る。

0229

適応/キャリブレーションは従って検出プロセスの適応であり、変更された検出性能をもたらす。特に、適応は誤検出の数を減らすものであり得、すなわち異物検出の確率は適応後に削減される。従って、適応は寄生電力損失検出動作のパラメータの適応であり、特に修正された電力散逸素子性能/確率をもたらすパラメータの変更を含む。

0230

このような寄生電力損失検出動作のパラメータの適応は検出性能における変化をもたらすことが留意されるべきである。従って、これは検出アルゴリズムを変更し、寄生電力損失検出器207の感度が高くなる若しくは低くなる結果となる。従って、適応は検出の確率を増加若しくは減少する。この寄生電力損失検出動作の適応は従って寄生電力損失検出に対するシステムの実際の反応、すなわちシステムが電力伝送動作を継続するか、電力伝送動作を終了するかどうかなどから独立している。従って、寄生電力損失検出動作の適応は寄生電力損失検出を生成する動作の適応であり、すなわちこれは検出アルゴリズムの適応であり、所与の寄生電力損失検出にシステムがどう反応するか、例えば電力伝送を継続するか否かとは独立しており、関係がない。

0231

従って、適応は寄生電力損失検出を生成する寄生電力損失検出動作のパラメータの修正を含み、この修正は将来の検出性能における変化をもたらす。従って、寄生電力損失検出イベントはシステムの電力伝送動作における反応(例えば電力伝送が終了若しくは低減され得る)をもたらし得るだけでなく、加えて寄生電力損失を検出するための実際のアルゴリズムが将来の検出のために修正されることになり得る。

0232

従って、適応コントローラ213は検出性能が変更されるように寄生電力損失検出動作のパラメータを修正するように構成される。この適応は典型的には実際の電力伝送動作に影響する寄生電力損失検出へのシステムのいかなる反応からも独立している。実際には、当然のことながら一部の実施形態において、寄生電力損失検出へのシステム反応の何らかの適応が本発明からそれることなく付加的に実行され得る。

0233

記載の特定システムにおいて、無線電力伝送は異物が存在するか否かを示すユーザ入力が受信されるかどうかに依存して電力を供給するか否かに進行し得る。加えて、適応コントローラ213は異物が存在するか否かを示すユーザ入力が受信されるかどうかに依存して実際の検出アルゴリズムの修正を実行するようにも構成される。二つの態様は両方とも寄生電力損失検出及びユーザ入力の結果であるが、独立するとみなされ得る。特に、一部のシステムでは検出アルゴリズムの修正のみが実行され得、例えば電力伝送の終了は例えばいかなるユーザ入力も考慮することなく常に寄生電力損失検出の結果であり得る。

0234

検出が誤検出であることをユーザが示す場合、適応コントローラ213は特に検出前の通り電力伝送を継続するように送電器101を続けて制御し得る。例えば、評価中に電力伝送が継続されるシナリオにおいて、送電器101は単純に中断なく電力伝送を継続し得る。電力伝送が評価中に終了若しくは一時中断されるシナリオにおいて、適応コントローラ213は誤検出を示すポジティブなユーザ入力の受信時に電力伝送を再スタート若しくは再開させ得る。両シナリオにおいて、システムは次に寄生電力損失検出動作/アルゴリズムのパラメータを修正し得る。

0235

一部の実施形態において、適応コントローラ213は電力伝送を自動的に再スタート若しくは再開せず、例えば送電器101から受電器105を除去し、その後受電器105を送電器101の上に戻して新たな電力伝送を開始するようユーザに要求することによって、マニュアル再スタートを要し得る。このようなアプローチは例えばユーザが一時的に受電器105を除去することを要し、その結果受電器105によって隠されているかもしれない異物を検出しやすくするという利点を持ち得る。

0236

多くの実施形態において、寄生電力損失検出は前述の通り寄生電力損失推定を決定しこれを検出閾値に比較することによって実行される。図2の実施例において、適応コントローラ213はドライバ201に結合され、例えば電力を制限すること、電力閾値を終了すること、又は実際に電力伝送を再スタート若しくは再開すること(ユーザ入力が誤検出であると示す場合)によって、ユーザ入力に応答してこれを制御し得る。加えて、適応コントローラ213は適応ユニット215に結合され、これは寄生電力損失推定の生成、検出閾値若しくは両方を変更することによって適応を実行し得る。従って、特に、これは寄生電力損失推定を計算するための関数若しくはアルゴリズムのパラメータを変更し得るか、及び/又は検出閾値を修正し得る。

0237

例えば、適応ユニット215は異物が存在しないとユーザが示すときに検出閾値を増大するように構成され得る。従って、誤検出が起こった後、適応ユニット215は寄生電力損失検出があるとみなされるために寄生電力損失推定が超えなければならない検出閾値を増大し得る。このように、システムは誤検出の可能性を減らすように動作を適応させる。従って、システムは寄生電力損失の検出から離れる追加バイアスを導入する。従って、実際の検出確率が変化する。

0238

一部の実施形態において、閾値は例えば固定既定量だけ変更され得る。他の実施形態において、適応の量は特定動作特性によって決まり、例えば寄生電力損失推定が前の閾値を超える程度などに依存し得る。

0239

従って、寄生電力損失検出器207が複数の誤検出を生成する場合、システムは誤検出に対する要件を増すことによってその動作を適応させ、その結果誤検出の数を削減し得る。プロセスは例えば許容できる頻度の誤検出が起こるまで繰り返され得る。

0240

一部の実施形態において、システムは例えば比較的低レベルに、実に低過ぎると予想されるレベルにセットされる検出閾値で開始され得る。かかる実施形態において、システムは妥当な頻度の誤検出が実現されるまで誤検出のたびに漸増させることによって適切な検出閾値に適応する。

0241

一部の実施形態において、適応は代替的に若しくは付加的に寄生電力損失推定を決定するために使用されるモデル(例えば関数/方程式)の適応によるものであり得る。従って、適応コントローラ213はかかる実施形態において寄生電力損失推定を計算するための関数若しくはアルゴリズムを修正し得る。特に、異物が存在しないことを示すユーザ入力が受信されるとき、適応コントローラ213は次に寄生電力損失推定を提供するモデルのパラメータを修正する。従って、適応コントローラ213は、同じ測定入力値が、修正/適応後に修正前の場合と異なる生成された寄生電力損失推定をもたらすように動作を修正する。

0242

例えば、一部の実施形態において、適応ユニット215は送信電力推定を決定するためのアプローチを修正するように構成され得る。特に、これは送信電力推定を計算する関数若しくはアルゴリズムのパラメータを修正し得る。例えば、誤検出が検出されるとき、電力推定を削減する送信電力推定へのオフセットが導入(若しくは増加)され得る。例えば、誤検出ごとに、送信電力推定の計算への補正因子若しくはオフセットが追加若しくは修正され得る。このような補正は従って推定送信電力が削減されるように計算された送信電力推定を将来の補正のために適応させ得る。この削減は例えば送電コイル103に供給される電圧若しくは電流の決定における測定バイアス、送信電力推定を決定するための元のモデルにおけるバイアス誤差、又は、電力信号の生成の一部(例えば送電コイル103における抵抗損失)として、若しくは送電器101自体の素子(例えば送電器101を含むデバイスの金属部品)における誘導によって被る損失としてであろうと、送電器101自体における不明な電力散逸の影響を反映し得る。

0243

一部の実施形態において、適応ユニット215は従って送信電力推定をより低い値へ向かってバイアス/修正し得る。このような修正は異物検出の確率を低下させる。

0244

他の実施形態において、適応ユニット215は受信電力推定を決定するためのアプローチを修正するように構成され得る。特に、これは受信電力推定を計算する関数若しくはアルゴリズムのパラメータを修正し得る。例えば、誤検出が検出されるとき、電力推定を増加する受信電力推定へのオフセットが導入(若しくは増加)され得る。例えば、誤検出毎に、受信電力推定の計算への補正因子若しくはオフセットが追加若しくは修正され得る。このような補正は従って、推定受信電力が増加されるよう、計算された受信電力推定を将来の補正のために適応させ得る。この増加は例えば受電コイル107の受信電圧若しくは電流の計算における測定バイアス、受信電力推定を決定するための元のモデルにおけるバイアス誤差、又は、電力信号からの電力の抽出の一部(例えば受電コイル107における抵抗損失)、若しくは受電器105自体の素子(例えば受電器105を含むデバイスの金属部品)における誘導によって被る損失としてであろうと、受電器105自体における不明な電力散逸の影響を反映し得る。

0245

一部の実施形態において、適応ユニット215は従って受信電力推定をより高い値へ向かってバイアス/修正し得る。

0246

一部の実施形態において、適応ユニット215は従って寄生電力損失推定をより低い値へ向かってバイアス/修正し得る。

0247

一部の実施形態において、適応ユニット215は検出閾値をより高い値へ向かってバイアス/修正し得る。

0248

一部の実施形態では、送信電力推定と受信電力推定の一方のみが適応/修正され得るが、他の実施形態では送信電力推定と受信電力推定の両方が適応/修正され得る。同様に、一部の実施形態では寄生電力損失推定と検出閾値の一方のみが適応され得るが、他の実施形態では両方が適応され得る。

0249

一部の実施形態において、検出閾値(すなわち範囲の上限値)はゼロにセットされ得、適応は(例えば送信電力推定若しくは受信電力推定をバイアスすることによって)寄生電力損失推定をバイアスし得る。

0250

例えば、受電器が受信電力レベルを過小評価しないという要件があり得る。従って、不確実性に対するマージンを導入するために、受電器は典型的には受信電力を過大評価する。その送信電力を過小評価しない送電器と組み合わせて、結果として得られる寄生電力損失推定は通常は負である。正の寄生電力損失推定は従って異物の存在の表示とみなされ得る。

0251

アプローチは、受電器がその受信電力を過小評価することを許される場合、送電器がこの潜在的過小評価をその閾値に含まなければならないという問題に対処する。閾値はこの場合受電器の不確実性に依存し得る。可能性がある不確実性は規格の異なるバージョンによって異なり得るので、送電器が異なるバージョンに対して異なる閾値を使用することを要する可能性がある。

0252

多くの実施形態において、適応コントローラ213は送電器101及び受電器105ペアリングのキャリブレーションを初期化するように構成され得る。例えば、異なる電力レベルの範囲に対して寄生電力損失推定にとって適切なオフセットが決定され保存され得る。

0253

他の物体が存在しないことをユーザが確認したら、受電器105と送電器101のみが存在するという仮定の下でこのキャリブレーションが実行され得る。特定の実施例として、仮定はこの場合寄生電力損失推定がゼロであるべきであるとの考察につながり得るので、寄生電力損失検出器207は所定電力レベルについて寄生電力損失推定を決定し得る。寄生電力損失推定がゼロと異なる場合、計算された寄生電力損失推定に対応する補正オフセットが電力レベルについて保存され得る。これは電力レベルの範囲について繰り返され得、補正因子のセットがこの送電器101と受電器105のペアリングについて保存されることになる。

0254

通常の電力伝送中に寄生電力損失検出器207によって適用される検出アルゴリズムはその後この補正因子を適用し得る。特に、所定電力信号値について、寄生電力損失検出器207は最も近い電力レベルについて保存された補正因子を読み出し得る(又は異なる値の間を補間し得る)。そしてこれは次に寄生電力損失推定を計算するときにこのオフセットを適用し得る。理想的な場合において、寄生電力損失推定は従って異物が存在しない限りゼロである。

0255

寄生電力損失検出に導入される適応は多くの実施形態において送電器101及び受電器105の組み合わせに特異的であり得る、すなわち適応された検出アルゴリズムは特定の送電器101と受電器105の間の電力伝送に適用され得るが、他のペアリングには適用されない。従って、特定デバイスへの個別適応が使用され得る。これは多くの実施形態においてより信頼できる正確な検出性能を提供し得る。

0256

図2のシステムは送電コイル103付近に位置する異物と典型的に関連するような寄生電力損失を検出するための機能の動作の一実施例をあらわす。アプローチは、特に異物の検出を見逃すリスクを容認できないほど増すことなく誤検出の数が削減されることができるように、寄生電力損失の検出の適応と修正を可能にする。アプローチは非常に使いやすく、特に前のキャリブレーション及びマニュアルユーザ介入を要することなく高電力レベルであっても電力伝送が続行され得るアプローチを提供し得る。それどころか、アプローチは誤検出が起こる特定の状況へのユーザ入力要件を軽減し得る。さらに、他の物体が近くにあるかどうかという問いに対して単純なはい/いいえの答えのみが要求される。アプローチはユーザのいかなる技術的理解も必要としない。従って、ずっと容易でより実用的なユーザ経験が実現され得、特に消費者市場に適したアプローチが実現され得る。

0257

図2に関して記載された機能は異なる実施形態において送電器101と受電器105の間で異なって分散されてもよい(及び一部の機能は第三のエンティティにおいて実現されることもできる)。実際、機能のほとんどは一部の実施形態では送電器101の一部であり、他の実施形態では受電器105の一部であり、さらに他の実施形態では送電器101と受電器105の両方にわたって分散され得る。

0258

例えば、寄生電力損失検出器207は送電器101、受電器105において実現され得るか、又はこれらにわたって分散され得る。同様に、ユーザインジケータユニット209は送電器101、受電器105において実現され得るか、又はこれらにわたって分散され得、入力ユニット211は送電器101、受電器105において実現され得るか、又はこれらにわたって分散され得る。一部の実施形態において、適応コントローラ213は送電器101に含まれ、他の実施形態では受電器105に含まれ、さらにまた他の実施形態では受電器105と送電器101にわたって分散され得る。実際、適応ユニット215も一部の実施形態では送電器101内にあり得、他の実施形態では受電器105内にあり得、さらにまた他の実施形態では受電器105と送電器101にわたって分散され得る。

0259

多くの実施形態において、機能は有利に送電器101に含まれ得る。このような送電器101の実施例は図5に図示され、その中で図2と同じ機能は同じ参照符号で示される。

0260

図5の送電器101は適切な場合Qi規格に従って動作することを含む、送電器101の動作を制御する送電コントローラ501を含む。送電コントローラ501はドライバ201に結合され、所望の電力レベルを持つ電力信号を含む、所望の電力信号を供給するようにこれを制御するように構成される。送電コントローラ501はドライバ201からコイル電流及び電圧などの測定データも受信する。

0261

送電コントローラ501はさらに寄生電力損失検出器207に結合され、これは実施例において送信電力推定と受信電力推定の差として寄生電力損失推定を生成する。

0262

実施例において、送信電力推定はコイル電流及び電圧の測定に基づいて寄生電力損失検出器207によって生成される。送信電力推定は特にローカルに利用可能な測定に基づいて、例えば前述のような送信電力推定にとって適切なモデルを用いて生成され得る。

0263

実施例において、受信電力推定は送電器101によって計算されるのではなく、受電器105から送電器101へ送信される受信電力推定として生成される。従って、図5の送電器101は受電器105からデータメッセージを受信するように構成される負荷変調受信器503を有する。データメッセージは特に例えばQi規格から知られる通り負荷変調によって電力信号について変調され得る。実際、受電器105によって生成され送電器101へ送信されることを要する受信電力値が受信電力推定として直接使用され得る。

0264

特に、Qi規格などの電力伝送システムにおいて、受電器105は送電器101へ受信電力値を通信することを要求される。受信電力値は受電器105によって受信される電力を示す。

0265

一部の実施形態において、受電器105は受電器105の負荷に供給される電力に直接対応する受信電力値を報告し得る。しかしながら、多くの実施形態において、受電器105は受電器105自体における電力損失/散逸も含む受信電力値を生成する。従って報告される受信電力表示は負荷に供給される電力及び受電器105自体における電力損失の両方を含み得る。例えば、これは整流回路及び/又は受電コイルにおける測定若しくは推定電力損失を含み得る。

0266

多くの実施形態において、受信電力表示は電力値として直接供給され得る。しかし当然のことながら他の実施形態では電流及び/又は電圧など他の表示が供給され得る。例えば、一部の実施形態において、受信電力表示は受電コイル107において誘導される電流若しくは電圧として供給され得る。このようなシナリオにおいて、寄生電力損失検出器207は受信値に基づいて受信電力推定を計算し得る。

0267

寄生電力損失検出器207は従って寄生電力損失推定を生成しこれを検出閾値に比較し得る。閾値が超えられる場合、ユーザインジケータユニット209は例えばオーディオアラートを発したり光を点滅させたりすることによってユーザアラートを生成する。

0268

さらに、閾値が超えられる場合、入力ユニット211は異物が存在するか否かを示すユーザからの入力をモニタリングするように構成される。従って、閾値が超えられることは異物検出に対応し、このイベントが起こるとき、ユーザアラートが生成されユーザ入力が受信される。

0269

特定の実施例として、寄生電力損失検出器207は寄生電力損失検出に応答して入力ユニット211及びユーザインジケータ209へ与えられるトリガ信号を生成し得る。トリガ信号の受信に応答して、ユーザインジケータ(209)はユーザアラートの生成へと進む。加えて、トリガ信号に応答して、入力ユニット211はユーザ入力のモニタリングへと進む。例えば、トリガ信号の受信に応答して入力ユニット211は、例えばユーザ入力が受信され得る5秒及び2分の間の持続期間を持つタイマーをスタートさせ得る。異物が存在しないとの表示に対応するユーザアクティベーションが時間間隔内に受信される場合、異物が存在しないことを示すユーザ入力が受信されている。実際に異物が存在することを示すユーザアクティベーションが検出される場合、又はタイマーが切れる前にユーザアクティベーションが検出されない場合、システムは進行し異物が存在することを示すユーザ入力が受信されているとみなす。

0270

入力ユニット211はユーザがユーザアラートに応答してアクティブにすることができるボタンなどの物理的ユーザ入力手段を有し得る。例えば、ユーザが第一のボタンを押す場合、これは異物が存在しないことを示し、ユーザが第二のボタンを押す(若しくは第一のボタンを押すことを怠る)場合、これは異物が実際に存在する(存在した)ことを示し得る。

0271

物理的ユーザアラートを供給するための手段及び物理的ユーザ入力を受信するための手段は特定の実施例において送電器101の一部である。例えば、それらは送電器101の筐体の表にあるライト及びボタンを含み得る。

0272

ユーザ入力に依存して、適応コントローラ213は次に寄生電力損失検出の適応を開始する。実施例において、適応は典型的には送信電力推定、寄生電力損失推定全体、受信電力推定を計算するための関数に対するパラメータの修正/変更であり得る。これは特に(例えばオフセットを導入することによる)受信した受信電力推定から寄生電力損失推定を計算するための関数の修正であり得る。多くの実施形態において、適応コントローラ213は送電器101及び受電器105ペアリングのフルキャリブレーションの初期化へと進行し得る。

0273

また、適応コントローラ213は送電コントローラ501に結合され、適応コントローラ213が送電器101の動作を付加的に制御することを可能にするためにこれに制御入力を供給し得る。特に、適応コントローラ213は必要に応じて電力伝送を終了するように、電力信号の電力レベルを減らすように、電力伝送を再スタート若しくは再開するように、送電コントローラ501を制御し得る。特に、異物が検出されることを示すユーザ入力が受信される場合、適応コントローラ213は異物が除去されるまで(例えば受電器105が送電器101から除去され、その後新たな電力伝送動作を開始するために戻されることによって示される)電力を制限するように送電コントローラ501を制御し得る。

0274

機能が主に送電器にある実施形態の特定の実施例として、送電器101は現在進行中の電力伝送を継続し得る。しかしながら、寄生電力損失推定が閾値を上回ること(これは異物が加熱されていることを示し得る)を検出することによって電力伝送が危険かもしれないことを送電器が知覚する場合、これは例えば視覚手段(例えば点滅若しくは着色光)、聴覚手段(例えばビープ若しくはブザー音)、又はより複雑なテキスト若しくはグラフィカルユーザインターフェースによってユーザに警告する。ユーザが例えば危険な状況がないことを示す(物理的若しくは仮想)ボタンを押すことによって所定時間内に応答する場合、送電器は電力伝送が進行することを許可する。そうでなければ、送電器は電力伝送を終了するか、若しくは電力損失が閾値レベルを下回るまでその送信電力を減らす。危険な状況がないことをユーザが送電器に知らせた場合、送電器は検出された電力損失とユーザ入力とに基づいて、この特定の受電器について閾値を更新し得る。代替的に若しくは付加的に、送電器は再度この特定の受電器についてその送信電力を推定するためのそのモデルを更新し得る。このような更新の利点は、次回ユーザがこの受電器を送電器上に置くとき、送電器がユーザ支援を要求しなければならない可能性が(かなり)低いことである。送電器は潜在的に危険な状況を検出後、受電器を除去して、(例えばボタンを押すことによって)危険な状況がないことをユーザが示すことを可能にする前にそれを元に戻すことをユーザに要求し得る。これはユーザが送電器と受電器の間に隠される可能性がある異物を配置する確率を増加する。

0275

機能が主に送電器101にあるアプローチは多くの実施形態において有利であり得る。例えば、これは送電器101において機能と知能を可能な限り多く持つことが望ましい例えばQi規格の一般設計理念とアプローチに適合する。これはまた簡略化されたインターフェース、軽減された通信要件、及び低複雑性受電器も可能にし得る。

0276

しかしながら、他の実施形態では、機能の一部が受電器105に含まれることが有利であり得る。例えば、ユーザへの物理的インターフェースは一部の実施形態において受電器105によって有利に提供され得る。例えば、受電器105がスマートフォン(の一部)である場合、これは現在のアプローチによって活用されることができる高度なユーザインターフェース機能(ディスプレイ及びタッチスクリーン)を既に有し得る。このようなアプローチは、ユーザが精通しているユーザインターフェース及びユーザインターフェースデバイスを用いてユーザがシステムとインタラクションするので、ユーザインタラクションがユーザにとってより便利に感じることも可能にし得る。このようなアプローチにおいて、ユーザが自分のデバイスを充電するために現在使用されている特定送電器とインターフェースするための要件はない。

0277

一部の実施形態において、ユーザアラートを供給するための手段は受電器に少なくとも部分的に含まれ得るか、又は均等にユーザ入力を生成するための送電器101の手段が受電器105へユーザアラート要求メッセージを送信することによってユーザ入力を生成し得る。ユーザアラート要求メッセージは受電器がユーザアラートを生成する要求を与える。

0278

受電器105がかかるメッセージを受信すると、これはそれに従ってユーザアラートの生成へと進み得る。例えば、受電器105がメッセージを受信すると、これはそれに従って例えばディスプレイ上に警告を表示すること及びアラームを発することによってユーザアラートの生成へと進み得る。例えば受電器105がスマートフォンの一部である場合、スマートフォンのディスプレイはスピーカー警告音を発する間警告メッセージの点滅を開始し得る。

0279

ユーザアラート要求メッセージは特に、寄生電力損失が寄生電力損失検出器207によって検出されていることを示す寄生電力損失検出メッセージであり得る。ユーザアラートは異物の存在若しくは異物の不在を示すユーザ入力を要求し得る。従って、特に、ユーザインジケータユニット209は寄生電力損失の検出の表示を、これが寄生電力損失検出器207によって検出されるときに受電器105へ送信するように構成され得る。表示は特にユーザアラート要求メッセージとして送信され得るが、当然のことながら寄生電力損失検出が起こったことを示す送電器101から受電器105へのいかなる通信もユーザアラート要求メッセージであるとみなされ得る。

0280

システムにおいて、受電器105は送電器からのユーザアラート要求メッセージの受信に応答してそれに従ってユーザアラートを生成し得る。

0281

多くの実施形態において、ユーザ入力が受電器105を介して供給されることがさらに有利であり得る。これはユーザアラートが送電器101若しくは受電器105(若しくは両方)によって生成されるかどうかと無関係であり得る。

0282

一部の実施形態において、送電器101は受電器105からユーザ入力を受信するための機能を有し、特に入力ユニット211は受電器105からユーザ入力の表示を受信することができる受信器を有し、送電器101は表示を送信するための送信器を有し得る。

0283

一部の実施形態において、受電器105は例えばユーザが所望の入力を与えるために手動でインタラクションすることができるタッチスクリーンなど、ユーザ入力を受信することができるユーザインターフェースを有し得る。受電器105はさらに送電器101へデータメッセージを送信することができる送信器を有し得る。送信器は特に負荷変調器を有し、従ってユーザ入力は例えば負荷変調受信器503がかかるユーザ入力メッセージを受信するために再利用されることを可能にする、負荷変調を用いる送信器であり得る。

0284

かかる実施形態において、異物が存在しないこと、若しくは異物が除去されていることをユーザが受電器105に確認する場合、受電器105は次に、ユーザによれば異物が存在しないこと、及び送電器が寄生電力損失推定の生成若しくは検出閾値を適応させるべきであることを示す送電器101へのメッセージを送信し得る。特に、このような表示は適応の、特に送電器101及び受電器105ペアリングの(再)キャリブレーションの要求であるとみなされることができる。当然のことながら任意の適切なキャリブレーションアプローチが使用され得る。実施例は例えば欧州特許出願EP12188672.5に見られ得る。

0285

このようなアプローチは例えば、典型的な受電器、例えば携帯電話が、典型的な送電器よりもずっと豊富なユーザインターフェースの可能性を持つという事実を活用し得る。従って送電器ではなく受電器が知覚した危険な状況をユーザに知らせることができる場合有利であることが多い。これはテーブル、デスクトップナイトテーブル若しくは他の種類の家具に(ほとんど)目に見えないように組み込まれる送電器に特に当てはまる。しかしながら、特定のアプローチにおいてこれは送電器が受電器に潜在的に危険な状況の存在を知らせることができることを要する。しかしながら、例えば現在のQi規格によれば、送電器のみがインターフェースにかかる電力損失を正確に推定するために、すなわち寄生電力損失推定を生成するために十分なデータにアクセスする。

0286

従って、システムが送電器101から受電器105へ効率的に寄生電力損失の表示を通信することができることが望ましい。

0287

一部の実施形態において、これは受電器105によって受信されるときに送電器101が寄生電力損失を検出していることを示す専用データパケットの導入によって実現され得る。受電器105はそれに従ってユーザアラートの生成及び/又はユーザ入力の受信へと進み得る。

0288

一部の実施形態において、特に効率的な通信は何らかの他のメッセージの動作及び意義を修正することによって実現され得る。特に、一部の実施形態において、送電器101は応答メッセージに対して異なるコードを使用することによって、又は受電器から受信されるメッセージに対する少なくとも一つの応答メッセージを与えないでおくことによって、受電器へ寄生電力損失検出の発生の表示を送信するように構成され得る。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ