図面 (/)

技術 疾患に対する免疫反応を誘導するための併用療法

出願人 アイビーシーファーマスーティカルズ,インコーポレイテッド
発明者 チャン,チェン‐シンゴールデンバーグ,デイヴィッド,エム.ロッシ,エドマンド,エー.ロッシ,ダイアン
出願日 2013年12月14日 (6年2ヶ月経過) 出願番号 2016-506307
公開日 2016年7月14日 (3年7ヶ月経過) 公開番号 2016-520548
状態 不明
技術分野
  • -
主要キーワード モジュラー的 ドッキングステ 最短寸法 Al複合体 回転二次 調節モジュール 最終プロセス 例示的実施
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2016年7月14日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題・解決手段

本発明は、がん又は感染性疾患に対する免疫反応誘導するための2種以上の薬剤の組み合わせに関する。薬剤は、白血球指向複合物、抗体−薬物複合体インターフェロン(好ましくはインターフェロン−a)、及び/又はチェックポイント阻害剤抗体を含んでもよい。白血球再指向複合物は、白血球抗原に対する少なくとも1つの結合部位と、疾患細胞又は病原体上の抗原に対する少なくとも1つの結合部位とを有する。好ましくは、複合物は、DNL商標)複合物である。より好ましくは、複合物は、二重特異性抗体(bsAb)を含む。最も好ましくは、bsAbは、抗CD3×抗CD19二重特異性抗体であるが、他の白血球抗原及び/又は疾患関連抗原に対する抗体が使用されてもよい。複合物は、エフェクター細胞NK細胞単球又は好中球を標的化して、がん又は感染性疾患に関連した細胞の白血球媒介細胞毒性を誘導することができる。細胞毒性免疫反応は、インターフェロン、チェックポイント阻害剤抗体及び/又はADC同時投与により高められる。

概要

背景

腫瘍細胞の標的化された死滅に向けてエフェクター細胞を再指向させるための二重特異性抗体(bsAb)の使用は、臨床前及び臨床の両方において顕著な有望性を示している(例えば、Topp et al.,2012,Blood120:5185−87;Bargou et al.,2008,Science321:974−77を参照されたい)。現在まで開発されている二重特異性抗体は、T細胞動員及び活性化のためのCD3に特異的な第1の結合部位と、CD19等の標的疾患関連抗原に対する第2の結合部位とを含有する(Bassan,2012,Blood120:5094−95)。二重特異性抗体は、CD3+T細胞を標的疾患細胞直接接触させ、細胞媒介細胞毒性誘導する(Bassan,2012)。抗CD3×抗CD19二重特異性抗体は、MRD+ALL罹患した成人患者の約70%において、非常に低濃度で完全で耐久性のある分子寛解を生成することが報告されている(Topp et al.,2012,Blood120:5185−87)。神経膠腫及びT細胞上のCD3エピトープを認識する二重特異性抗体は、ヒト患者での脳腫瘍治療における使用に成功している(Nitta,et al.Lancet1990;355:368−371)。

白血球再指向bsAbは、T細胞に限定されない。NK細胞抗原CD16及び腫瘍関連抗原(例えば、CD19、CD22、CD33)に対するscFvsを備える二重特異性キラーエンゲージャー(BiKE)もまた、強力な抗がん活性を有することが示されている(例えば、Miller,Hematology Soc Hematol Educ Pogram2013:247−53)。他の代替例は、抗CD16×抗CD19×抗CD22等の三重特異性キラーエンゲージャー(TriKEs)を含む(Miller,2013;Gleason et al.,2012,Mol Cancer Ther11:2674−84)。抗CD16×抗CD33BiKEは、AML及び骨髄異形成症候群の治療に使用された(Miller,2013;Wiernik et al.,2013,Clin Cancer Res19:3844−55)。不応性AMLにおいて、CD16×CD33BiKEは、NK細胞による強力な腫瘍細胞死滅及びサイトカイン産生をもたらした。ADAM17の阻害は、CD16×CD33BiKE反応を高めた(Miller,2013)。例えばCD16/CD19/HLA−DRに対する他の三重特異性三価コンストラクトが報告されている(Schubert et al.,2012,mAbs4:45−56)。

二重特異性抗体を生成する数々の方法が知られている(例えば、米国特許第7,405,320号を参照されたい)。二重特異性抗体は、それぞれ異なる抗原部位を認識するモノクローナル抗体を生成する2つの異なるハイブリドーマの融合が関与する、クアドローマ法により生成することができる(Milstein and Cuello,Nature1983;305:537−540)。融合したハイブリドーマは、2つの異なる重鎖及び2つの異なる軽鎖を合成することができ、これは、無作為に関連して、10個の異なる抗体構造の不均一集団を生成し、全抗体分子の1/8を占めるそのうちの1つだけが二重特異性となり、したがって他の形態からさらに精製されなければならない。融合したハイブリドーマは、多くの場合、細胞遺伝学的に親ハイブリドーマよりも不安定であり、産生細胞株の生成をより問題のあるものとする。

二重特異性抗体を生成するための別の方法は、得られるハイブリッド複合体が2つの異なる標的に結合するように、ヘテロ二機能性架橋剤を使用して2つの異なるモノクローナル抗体を化学的に連結させる(Staerz,et al.Nature1985;314:628−631;Perez,et al.Nature1985;316:354−356)。このアプローチにより生成された二重特異性抗体は、本質的に2つのIgG分子のヘテロ複合体であり、これは、組織内に徐々に拡散し、循環から急速に除去される。二重特異性抗体はまた、2つの親モノクローナル抗体のそれぞれの各半分子への還元により生成され得、これは、次いで混合され、ハイブリッド構造を得るために再び酸化される(Staerz and Bevan.Proc Natl Acad Sci USA1986;83:1453−1457)。代替のアプローチは、適切なリンカーを使用して2つ又は3つの別個に精製されたFab’断片を化学的に架橋することを含む。全てのこれらの化学的方法は、高い製造コスト、煩雑な生成プロセス広範囲に及ぶ精製ステップ、低い収率(<20%)、及び不均一な生成物に起因して、商業的開発には望ましくない。

組換えDNA技術により生成される抗体の個別のVH及びVLドメインは、互いに対合して、結合能力を有する二量体組換えFv断片)を形成し得る(米国特許第4,642,334号)。しかしながら、そのような非共有結合分子は、生理学的条件下において、任意の実用的な用途を有するには十分安定ではない。同種VH及びVLドメインは、適切な組成及び長さ(通常、12を超えるアミノ酸残基からなる)のペプチドリンカーにより連結されて、結合活性を有する単鎖Fv(scFv)を形成することができる。リンカーの長さを変化させることにより多価性及び多特異性を有するscFv系薬剤を製造する方法が、米国特許第5,844,094号、米国特許第5,837,242号及びWO98/44001において開示されている。多価性及び多特異性を有するscFv系薬剤の生成にしばしば関連している一般的な問題は、低い発現レベル、不均一な生成物、凝集をもたらす溶液中の不安定性血清中の不安定性、及び低い親和性である。

CD3及びCD19を標的化するいくつかの二重特異性抗体が臨床開発中である。BITE登録商標)(二重特異性T細胞エンゲージャー)として知られるscFv系二重特異性抗体コンストラクトは、柔軟性リンカーを介して一列に連結した同種VH及びVLによりそれぞれ寄与される、2つの抗原結合特異性を含有する単鎖ポリペプチドを使用する(例えば、Nagorsen et al.,2009,Leukemia&Lymphoma50:886−91;Amann et al.,2009,J Immunother32:453−64;Baeuerle and Reinhardt,2009,Cancer Res69:4941−44を参照されたい)。DART(登録商標)(二重親和性再標的化(Dual−Affinity Re−Targeting))と呼ばれる別の二重特異性抗体は、ジスルフィド安定化ジアボディ設計を使用する(例えば、Moore et al.,2011,Blood117:4542−51;Veri et al.,2010,Arthritis Rheum62:1933−43を参照されたい)。BITE(登録商標)及びDART(登録商標)は共に、それらの微小なサイズ(約55kDa)に起因して急速な血中クリアランスを示し、これにより、二重特異性抗体の治療レベルを維持するために、頻繁な投与が必要となる。

インターフェロンは、抗腫瘍及び抗菌宿主防御において重要な役割を果たすものであり、がん及び感染性疾患に対する治療薬剤として広範囲に研究されている(Billiau et al.,2006,Cytokine Growth Factor Rev17:381−409;Pestka et al.,2004,Immunol Rev202:8−32)。I型及びII型インターフェロン(IFN−α/β及びγ)に関する相当な研究にもかかわらず、患者における短い循環半減期全身毒性、及び最適に満たない反応により、臨床の現場におけるそれらの使用は限られている(Pestka et al.,2004,Immunol Rev202:8−32;Miller et al.,2009,Ann N Y Acad Sci1182:69−79)。2003年初期のIFN−λファミリー発見は、これらの満たされていない臨床的適応のための代替のIFN薬剤を開発する刺激的な新たな機会をもたらした(Kotenko et al.,2003,Nat Immunol4:69−77;Sheppard et al.,2003,Nat Immunol4:63−8)。

IFNの治療有効性は、現在まで、ヘアリー細胞白血病慢性骨髄性白血病悪性黒色腫濾胞性リンパ腫尖圭コンジロームAIDs関連カポジ肉腫、及び慢性B型及びC型肝炎の治療のためのIFN−α2、多発性硬化症処置のためのIFN−β、並びに慢性肉芽腫症及び悪性大理石骨病の治療のためのIFN−γの承認により検証されている。自己分泌及び傍分泌サイトカインのこの群に関する膨大な文献にもかかわらず、臨床的に導入されているより効果的及び新規な形態を含めて、健康及び疾患におけるそれらの機能はまだ解明中である(Pestka,2007,J.Biol.Chem282:20047−51;Vilcek,2006,Immunity25:343−48)。様々なインターフェロンと抗体系治療薬との組み合わせの効果もまた、未だに調査中である。

抗体−薬物複合体ADC)は、がん細胞等の標的細胞への細胞毒性薬剤標的化送達を可能とする、強力なクラスの治療コンストラクトである。標的化機能のために、これらの化合物は、同じ全身送達薬剤と比較してはるかに高い治療指数を示す。ADCは、無傷抗体又は抗体断片、例えばscFvとして開発された。抗体又は抗体断片は、生理学的条件下で安定であるが標的細胞内に入ると切断され得るリンカーを介して、薬物の1つ以上のコピーに連結する。治療用途に承認されたADCは、AMLに対するゲムツズマブオゾガマイシン(後に市場から回収された)、ALCL及びホジキンリンパ腫に対するブレツキシマブベドチン、並びにHER2陽性転移乳がんに対するトラスツズマブエムタンシンを含む(Verma et al.,2012,N Engl J Med367:1783−91;Bross et al.,2001,Clin Cancer Res7:1490−96;Francisco et al.,2003,Blood102:1458−65)。イノツズマブオゾガマイシン(Pfizer)、グレムツモマブベドチン(Celldex Therapeutics)、SAR3419(Sanofi−Aventis)、SAR56658(Sanofi−Aventis)、AMG−172(Amgen)、AMG−595(Amgen)、BAY−94−9343(Bayer)、BIIB015(Biogen Idec)、BT062(Biotest)、SGN−75(Seattle Genetics)、SGN−CD19A(Seattle Genetics)、ボルセツズマブマホドチン(Seattle Genetics)、ABT−414(AbbVie)、ASG−5ME(Agensys)、ASG−22ME(Agensys)、ASG−16M8F(Agensys)、IMGN−529(ImmunoGen)、IMGN−853(ImmunoGen)、MDX−1203(Medarex)、MLN−0264(Millenium)、RG−7450(Roche/Genentech)、RG−7458(Roche/Genentech)、RG−7593(Roche/Genentech)、RG−7596(Roche/Genentech)、RG−7598(Roche/Genentech)、RG−7599(Roche/Genentech)、RG−7600(Roche/Genentech)、RG−7636(Roche/Genentech)、抗PSMA ADC(Progenics)、ロルボツズマブメルタンシン(ImmunoGen)、ミラツズマブ−ドキソルビシン(Immunomedics)、IMMU−130(Immunomedics)、IMMU−132(Immunomedics)及びpro−2−ピロリノドキソルビシンの抗体複合体等の、他の多くの候補ADCが現在臨床試験中である。(例えば、Li et al.,2013,Drug Disc Ther7:178−84;Firer&Gellerman,J Hematol Oncol 5:70;Beck et al.,2010,Discov Med10:329−39;Mullard,2013,Nature Rev Drug Discovery12:329、米国仮特許出願第61/761,845号を参照されたい。)低減された全身毒性で強力な抗がん剤として作用するADCの可能性のために、それらは、全身腫瘍組織量を低減するために単独で、又は補助療法として使用され得る。

免疫治療の別の有望なアプローチは、免疫チェックポイントタンパク質に対するアンタゴニスト抗体の使用に関する(例えば、Pardoll,2012,Nature Reviews Cancer12:252−64)。免疫チェックポイントは、自己寛容を維持する、並びに抗原刺激に対する免疫反応の期間及び程度を調整するように作用する、免疫系機能外因性阻害経路として機能する(Pardoll,2012)。しかしながら、腫瘍組織、及びおそらくはある特定の病原体が、チェックポイント系を共選択(co−opt)して、宿主免疫反応の有効性を低減し、腫瘍成長及び/又は慢性感染症をもたらすと思われる(例えば、Pardoll,2012,Nature Reviews Cancer12:252−64;Nirschl&Drake,2013,Clin Cancer Res19:4917−24を参照されたい)。チェックポイント分子は、CTLA4(細胞毒性Tリンパ球抗原−4)、PD1(プログラム細胞死タンパク質1)、PD−L1(プログラム細胞死リガンド1)、LAG−3(リンパ球活性化遺伝子−3)、TIM−3(T細胞免疫グロブリン及びムチンタンパク質−3)並びに他のいくつかを含む(Pardoll,2012,Nature Reviews Cancer12:252−64;Nirschl&Drake,2013,Clin Cancer Res19:4917−24)。チェックポイントタンパク質のいくつか(CTLA4、PD1、PD−L1)に対する抗体が臨床試験中であり、標準治療に対し耐性を有していた腫瘍に対する予想外効力を示した。

より長いT1/2、より良好な薬物動態特性、増加したin vivo安定性、及び/又は改善されたin vivo効力を有する改善された二重特異性抗体複合物を生成するための方法及び組成物が必要とされている。さらに、がん又は感染性疾患等の様々な疾患に対する免疫反応を誘導することを目的とした治療の効力を改善するための併用療法が必要とされている。

概要

本発明は、がん又は感染性疾患に対する免疫反応を誘導するための2種以上の薬剤の組み合わせに関する。薬剤は、白血球再指向複合物、抗体−薬物複合体、インターフェロン(好ましくはインターフェロン−a)、及び/又はチェックポイント阻害剤抗体を含んでもよい。白血球再指向複合物は、白血球抗原に対する少なくとも1つの結合部位と、疾患細胞又は病原体上の抗原に対する少なくとも1つの結合部位とを有する。好ましくは、複合物は、DNL(商標)複合物である。より好ましくは、複合物は、二重特異性抗体(bsAb)を含む。最も好ましくは、bsAbは、抗CD3×抗CD19二重特異性抗体であるが、他の白血球抗原及び/又は疾患関連抗原に対する抗体が使用されてもよい。複合物は、エフェクターT細胞、NK細胞、単球又は好中球を標的化して、がん又は感染性疾患に関連した細胞の白血球媒介細胞毒性を誘導することができる。細胞毒性免疫反応は、インターフェロン、チェックポイント阻害剤抗体及び/又はADCの同時投与により高められる。

目的

さらに、がん又は感染性疾患等の様々な疾患に対する免疫反応を誘導することを目的とした

効果

実績

技術文献被引用数
- 件
牽制数
- 件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

該当するデータがありません

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

がん又は感染性疾患に対する免疫反応誘導する方法であって、がん又は感染性疾患を有する対象に、(i)白血球指向二重特異性抗体;(ii)インターフェロン−α、インターフェロン−β、インターフェロン−λ1、インターフェロン−λ2及びインターフェロン−λ3からなる群から選択されるインターフェロン;(iii)チェックポイント阻害剤抗体;並びに(iv)抗体−薬物複合体ADC)からなる群から選択される2種以上の薬剤の組み合わせを投与することを含み;前記2種以上の薬剤の投与は、前記がん又は感染性疾患に対する白血球媒介免疫反応を誘導する、方法。

請求項2

前記白血球再指向二重特異性抗体は、a)ADAM17、CD2、CD3、CD4、CD5、CD6、CD8、CD11a、CD11b、CD14、CD16、CD16b、CD25、CD28、CD30、CD32a、CD40、CD40L、CD44、CD45、CD56、CD57、CD64、CD69、CD74、CD89、CD90、CD137、CD177、CEACAM6、CEACAM8、HLA−DRアルファ鎖、KIR及びSLC44A2からなる群から選択される白血球抗原に結合する第1の抗体又はその抗原結合断片と;b)炭酸脱水酵素IX、アルファフェトプロテインα−アクチニン−4、A3、A33抗体に特異的な抗原ART−4、B7、Ba733、BAGE、BrE3−抗原、CA125、CAMEL、CAP−1、CASP−8/m、CCCL19、CCCL21、CD1、CD1a、CD2、CD3、CD4、CD5、CD8、CD11A、CD14、CD15、CD16、CD18、CD19、CD20、CD21、CD22、CD23、CD25、CD29、CD30、CD32b、CD33、CD37、CD38、CD40、CD40L、CD45、CD46、CD52、CD54、CD55、CD59、CD64、CD66a−e、CD67、CD70、CD70L、CD74、CD79a、CD79b、CD80、CD83、CD95、CD126、CD132、CD133、CD138、CD147、CD154、CDC27、CDK−4/m、CDKN2A、CXCR4、CXCR7、CXCL12、HIF−1α、結腸特異的抗原−p(CSAp)、CEA(CEACAM5)、CEACAM6、c−met、DAM、EGFR、EGFRvIII、EGP−1、EGP−2、ELF2−M、Ep−CAM、Flt−1、Flt−3、葉酸受容体、G250抗原、GAGE、gp100、GROB、HLA−DR、HM1.24、ヒト絨毛性ゴナドトロピンHCG)及びそのサブユニットHER2/neu、HMGB−1、低酸素誘導因子(HIF−1)、HSP70−2M、HST−2、Ia、IGF−1R、IFN−γ、IFN−α、IFN−β、IL−2、IL−4R、IL−6R、IL−13R、IL−15R、IL−17R、IL−18R、IL−6、IL−8、IL−12、IL−15、IL−17、IL−18、IL−23、IL−25、インスリン様成長因子−1(IGF−1)、KC4−抗原、KS−1−抗原、KS1−4、Le−Y、LDR/FUTマクロファージ遊走阻止因子MIF)、MAGE、MAGE−3、MART−1、MART−2、NY−ESO−1、TRAG−3、mCRPMCP−1、MIP−1A、MIP−1B、MIF、MUC1、MUC2、MUC3、MUC4、MUC5ac、MUC13、MUC16、MUM−1/2、MUM−3、NCA66、NCA95、NCA90、膵臓がんムチン胎盤成長因子、p53、PLAGL2、前立腺酸性フォスファターゼ、PSA、PRAME、PSMA、PlGF、ILGF、ILGF−1R、IL−6、IL−25、RS5、RANTES、T101、SAGE、S100、スルビビン、スルビビン−2B、TAC、TAG−72、テネイシン、TRAI受容体、TNF−α、Tn抗原、Thomson−Friedenreich抗原、腫瘍壊死抗原、TROP−2、VEGFR、ED−Bフィブロネクチン、WT−1、17−1A−抗原、補体因子C3、C3a、C3b、C5a、C5、血管形成マーカー、bcl−2、bcl−6、Kras、cMET、がん遺伝子産物、HIVウイルス結核菌(Mycobacteriumtuberculosis)、ストレプトコッカス・アガラチア(Streptococcusagalactiae)、メチシリン耐性黄色ブドウ球菌(Staphylococcusaureus)、レジオネラニューフィリア(Legionellapneumophilia)、ストレプトコッカス・ピオゲネス(Streptococcuspyogenes)、大腸菌(Escherichiacoli)、ナイセリアゴノレー(Neisseriagonorrhoeae)、ナイセリア・メニンギティディス(Neisseriameningitidis)、肺炎球菌(Pneumococcus)、クリプトコックスネオフォルマンス(Cryptococcusneoformans)、ヒストプラスマ・カプスラツム(Histoplasmacapsulatum)、ヘモフィリスインフルエンザB(HemophilisinfluenzaeB)、梅毒トレポネーマ(Treponemapallidum)、ライム病スピロヘータ緑膿菌(Pseudomonasaeruginosa)、らい菌(Mycobacteriumleprae)、ウシ流産菌(Brucellaabortus)、狂犬病ウイルスインフルエンザウイルスサイトメガロウイルス単純ヘルペスウイルスI、単純ヘルペスウイルスII、ヒト血清パル様ウイルス呼吸器合胞体ウイルス水痘帯状疱疹ウイルスB型肝炎ウイルスC型肝炎ウイルス麻疹ウイルスアデノウイルスヒトT細胞白血病ウイルス、Epstein−Barrウイルスマウス白血病ウイルスムンプスウイルス水疱性口内炎ウイルスシンドビスウイルスリンパ球性脈絡髄膜炎ウイルスウイルス、ブルータングウイルスセンダイウイルスネコ白血病ウイルスレオウイルスポリオウイルスシミアンウイルス40マウス乳がんウイルスデングウイルス風疹ウイルス西ナイルウイルス熱帯熱マラリア原虫(Plasmodiumfalciparum)、三日熱マラリア原虫(Plasmodiumvivax)、トキソプラズマ原虫(Toxoplasmagondii)、ランゲトリパノソーマ(Trypanosomarangeli)、クルーズトリパノソーマ(Trypanosomacruzi)、ローデシアトリパノソーマ(Trypanosomarhodesiensei)、ブルーストリパノソーマ(Trypanosomabrucei)、マンソン住血吸虫(Schistosomamansoni)、日本住血吸虫(Schistosomajaponicum)、ウシバベシア(Babesiabovis)、鶏盲腸コクシジウム(Elmeriatenella)、回旋糸状虫(Onchocercavolvulus)、熱帯リーシュマニア(Leishmaniatropica)、旋毛虫(Trichinellaspiralis)、タイレリア・パルバ(Theileriaparva)、胞状条虫(Taeniahydatigena)、ヒツジ条虫(Taeniaovis)、無鉤条虫(Taeniasaginata)、単包条虫(Echinococcusgranulosus)、メソセストイドコルチ(Mesocestoidescorti)、マイコプラズマアルスリチジス(Mycoplasmaarthritidis)、マイコプラズマ・ヒオルニス(M.hyorhinis)、マイコプラズマ・オラレ(M.orale)、マイコプラズマ・アルギニニ(M.arginini)、アコレプラズマ・ライドウィー(Acholeplasmalaidlawii)、マイコプラズマ・サリバリウム(M.salivarium)並びに肺炎マイコプラズマ(M.pneumoniae)からなる群から選択される標的抗原又は病原体に結合する第2の抗体又はその抗原結合断片とを含む、請求項1に記載の方法。

請求項3

前記第1の抗体又はその断片は、CD3又はCD16に結合する、請求項2に記載の方法。

請求項4

前記第2の抗体又はその断片は、CD19、CD20、CD22、CD74、HLA−DR、TROP−2、MUC5ac、CEACAM5、CEACAM6、アルファ−フェトプロテイン(AFP)及びIGF−1Rからなる群から選択される抗原に結合する、請求項2に記載の方法。

請求項5

前記第2の抗体は、hR1(抗IGF−1R)、hPAM4(抗ムチン)、KC4(抗ムチン)、hA20(抗CD20)、hA19(抗CD19)、hIMMU31(抗AFP)、hLL1(抗CD74)、hLL2(抗CD22)、RFB4(抗CD22)、hMu−9(抗CSAp)、hL243(抗HLA−DR)、hMN−14(抗CEACAM5)、hMN−15(抗CEACAM6)、hRS7(抗TROP−2)、hMN−3(抗CEACAM6)、CC49(抗TAG−72)、J591(抗PSMA)、D2/B(抗PSMA)、G250(抗炭酸脱水酵素IX)、インフリキシマブ(抗TNF−α)、セルトリズマブペゴル(抗TNF−α)、アダリムマブ(抗TNF−α)、アレムツズマブ(抗CD52)、ベバシズマブ(抗VEGF)、セツキシマブ(抗EGFR)、ゲムツズマブ(抗CD33)、イブツモブチウキセタン(抗CD20)、パニツムマブ(抗EGFR)、リツキシマブ(抗CD20)、トシツモマブ(抗CD20)、GA101(抗CD20)、トラスツズマブ(抗HER2/neu)、トシリズマブ(抗IL−6受容体)、バシリキシマブ(抗CD25)、ダクリズマブ(抗CD25)、エファリズマブ(抗CD11a)、ムロモナブ−CD3(抗CD3受容体)、ナタリズマブ(抗α4インテグリン)、BWA−3(抗ヒストンH2A/H4)、LG2−1(抗ヒストンH3)、MRA12(抗ヒストンH1)、PR1−1(抗ヒストンH2B)、LG11−2(抗ヒストンH2B)、LG2−2(抗ヒストンH2B)、P4/D10(抗gp120)及びオマリズマブ(抗IgE)からなる群から選択される、請求項2に記載の方法。

請求項6

前記第2の抗体は、hA19、hR1、hPAM4、hA20(ベルツズマブ)、hIMMU31、hLL1(ミラツズマブ)、hLL2(エプラツズマブ)、hMu−9、hL243、hMN−14、hMN−15、hRS7及びhMN−3からなる群から選択される、請求項2に記載の方法。

請求項7

前記白血球再指向bsAbは、ブリナツモマブ、MT110、カツマキソマブ、エルツマキソマブ、FBTA05及びTRBS07からなる群から選択される、請求項1に記載の方法。

請求項8

前記インターフェロンは、インターフェロン−αである、請求項1に記載の方法。

請求項9

前記チェックポイント阻害剤抗体は、ラムブロリズマブ(MK−3475)、ニボルマブ(BMS−936558)、ピジリズマブ(CT−011)、AMP−224、MDX−1105、MEDI4736、MPDL3280A、BMS−936559、イピリムマブリルルマブ、IPH2101及びトレリムマブからなる群から選択される、請求項1に記載の方法。

請求項10

前記チェックポイント阻害剤抗体は、CTLA4、PD1、PD−L1、LAG3、B7−H3、B7−H4、KIR及びTIM3からなる群から選択される抗原に結合する、請求項1に記載の方法。

請求項11

前記抗体−薬物複合体は、hLL1−ドキソルビシン、hRS7−SN−38、hMN−14−SN−38、hLL2−SN−38、hA20−SN−38、hPAM4−SN−38、hLL1−SN−38、hRS7−Pro−2−P−Dox、hMN−14−Pro−2−P−Dox、hLL2−Pro−2−P−Dox、hA20−Pro−2−P−Dox、hPAM4−Pro−2−P−Dox、hLL1−Pro−2−P−Dox、P4/D10−ドキソルビシン、ゲムツズマブオゾガマイシンブレツキシマブベドチン、トラスツズマブエムタンシン、イノツズマブオゾガマイシン、グレムバツモマブベドチン、SAR3419、SAR566658、BIIB015、BT062、SGN−75、SGN−CD19A、AMG−172、AMG−595、BAY−94−9343、ASG−5ME、ASG−22ME、ASG−16M8F、MDX−1203、MLN−0264、抗PSMAADC、RG−7450、RG−7458、RG−7593、RG−7596、RG−7598、RG−7599、RG−7600、RG−7636、ABT−414、IMGN−853、IMGN−529、ボルセツズマブマホドチン、及びロルボツズマブメルタンシンからなる群から選択される、請求項1に記載の方法。

請求項12

前記組み合わせは、(i)白血球再指向二重特異性抗体;(ii)インターフェロン−α;及び(iii)チェックポイント阻害剤抗体からなる群から選択される2種以上の薬剤を含む、請求項1に記載の方法。

請求項13

前記組み合わせは、白血球再指向二重特異性抗体(bsAb)及びIFN−α;白血球再指向bsAb及びチェックポイント阻害剤抗体;白血球再指向bsAb及びIFN−α及びチェックポイント阻害剤抗体;抗体−薬物複合体(ADC)及びチェックポイント阻害剤抗体;ADC及び白血球再指向bsAb;ADC及びIFN−α及びチェックポイント阻害剤抗体;ADC及びIFN−α及び白血球再指向bsAb;ADC及び白血球再指向bsAb及びチェックポイント阻害剤抗体;並びにADC及び白血球再指向bsAb及びIFN−α及びチェックポイント阻害剤抗体からなる群から選択される、請求項1に記載の方法。

請求項14

前記2種以上の薬剤は、同時又は逐次的に投与される、請求項1に記載の方法。

請求項15

ADCは、他のあらゆる薬剤の前に投与される、請求項1に記載の方法。

請求項16

前記インターフェロンは、遊離インターフェロン、PEG化インターフェロン、インターフェロン融合タンパク質又は抗体に複合化したインターフェロンとして投与される、請求項1に記載の方法。

請求項17

前記第1及び第2の抗体断片は、scFv、Fab及びdAbからなる群から選択される、請求項2に記載の方法。

請求項18

前記白血球再指向二重特異性抗体は、a)AD(アンカリングドメイン)部分に複合した第1の抗体又はその抗原結合断片であって、前記AD部分のアミノ酸配列は、AKAPタンパク質由来である、第1の抗体又はその抗原結合断片と;b)DDD(二量体化及びドッキングドメイン)部分に複合した第2の抗体又はその抗原結合断片であって、前記DDD部分のアミノ酸配列は、タンパク質キナーゼA(PKA)調節サブユニットRIα、RIβ、RIIα又はRIIβ由来である、第2の抗体又はその抗原断片と;を含み、前記DDD部分の2つのコピーは、前記AD部分の1つのコピーに結合して複合物を形成する二量体を形成する、請求項1に記載の方法。

請求項19

前記DDD部分の前記アミノ酸配列は、RIIαの1〜44、RIIβの1〜44、RIαの12〜61、及びRIβの13〜66の残基からなる群から選択される、請求項18に記載の方法。

請求項20

請求項21

前記感染性疾患は、小胞子菌種(Microsporumspp.)、白癬菌種(Trichophytonspp.)、表皮菌種(Epidermophytonspp.)、スポロトリクス・シェンキィ(Sporothrixschenckii)、クリプトコックス・ネオフォルマンス(Cryptococcusneoformans)、コクシジオイデス・イミチス(Coccidioidesimmitis)、ヒストプラズマ・カプスラタム(Histoplasmacapsulatum)、ブラストミセス・デルマティティディス(Blastomycesdermatitidis)、カンジダアルビカンス(Candidaalbican)、ヒト免疫不全ウイルスHIV)、ヘルペスウイルス、サイトメガロウイルス、狂犬病ウイルス、インフルエンザウイルス、ヒト乳頭腫ウイルス、B型肝炎ウイルス、C型肝炎ウイルス、センダイウイルス、ネコ白血病ウイルス、レオウイルス、ポリオウイルス、ヒト血清パルボ様ウイルス、シミアンウイルス40、呼吸器合胞体ウイルス、マウス乳がんウイルス、Varicella−Zosterウイルス、デングウイルス、風疹ウイルス、麻疹ウイルス、アデノウイルス、ヒトT細胞白血病ウイルス、Epstein−Barrウイルス、マウス白血病ウイルス、ムンプスウイルス、水疱性口内炎ウイルス、シンドビスウイルス、リンパ球性脈絡髄膜炎ウイルス、ブルータングウイルス、炭疽菌(Bacillusanthracis)、ストレプトコッカス・アガラクチア(Streptococcusagalactiae)、レジオネラ・ニューモフィリア(Legionellapneumophilia)、ストレプトコッカス・ピオゲネス(Streptococcuspyogenes)、大腸菌(Escherichiacoli)、ナイセリア・ゴノレー(Neisseriagonorrhoeae)、ナイセリア・メニンギティディス(Neisseriameningitidis)、肺炎球菌種(Pneumococcusspp.)、ヘモフィリスインフルエンザB(HemophilisinfluenzaeB)、梅毒トレポネーマ(Treponemapallidum)、ライム病スピロヘータ、緑膿菌(Pseudomonasaeruginosa)、らい菌(Mycobacteriumleprae)、ウシ流産菌(Brucellaabortus)、結核菌(Mycobacteriumtuberculosis)及びマイコプラズマ種(Mycoplasmaspp.)からなる群から選択される病原体による感染症である、請求項1に記載の方法。

請求項22

前記対象に治療薬剤を投与することをさらに含む、請求項1に記載の方法。

請求項23

前記治療薬剤は、抗体、抗体断片、薬物、毒素酵素細胞毒性薬剤抗血管形成薬剤、プロアポトーシス薬剤、抗生物質ホルモン免疫賦活剤サイトカインケモカインアンチセンスオリゴヌクレオチド、小分子干渉RNA(siRNA)、ホウ素化合物及び放射性同位体からなる群から選択される、請求項22に記載の方法。

請求項24

前記薬物は、5−フルオロウラシル、アファニブアプリジンアザリビンアナストロゾールアントラサイクリンアキシチニブ,AVL−101、AVL−291、ベンダムスチンブレオマイシン、ボルテゾミ、ボスチニブ、ブリオスタチン−1、ブスルファ、カリケアミシンカンプトテシンカルボプラチン、10−ヒドロキシカンプトテシンカルムスチン、セレブレックスクロランブシルシスプラチン(CDDP)、Cox−2阻害剤、イリノテカン(CPT−11)、SN−38、カルボプラチン、クラドリビンカンプトテカン、クリゾチニブシクロホスファミドシタラビンダカルバジンダサチニブ、ジナシクリブドセタキセルダクチノマイシンダウノルビシン、ドキソルビシン、2−ピロリノドキソルビシン(2P−DOX)、シアノ−モルホリノドキソルビシン、ドキソルビシングルクロニドエピルビシングルクロニド、エルロチニブエストラムスチンエピドフィロトキシン、エルロチニブ、エンチノスタットエストロゲン受容体結合剤エトポシド(VP16)、エトポシドグルクロニド、リン酸エトポシド、エキセメスタンフィンゴリモドフロクスウリジン(FUdR)、3’,5’−O−ジオレイル−FudR(FUdR−dO)、フルダラビンフルタミドファルネシルタンパク質トランスフェラーゼ阻害剤、フラボピリドールホスタマチニブ、ガネテスピブ、GDC−0834、GS−1101、ゲフェチニブ、ゲムシタビンヒドロキシ尿素、イブルチニブ、イダルビシン、イデラリシブ、イホスファミドイマチニブL−アスパラギナーゼラパチニブレノリダミド、ロイコボリンLFM−A13、ロムスチン、メクロレタミン、メルファランメルカプトプリン、6−メルカプトプリン、メトトレキセートミトキサントロンミトラマイシンマイトマイシンミトタンナベルビンネラチニブニロチニブニトロソ尿素、オラパリブプリコマイシン、プロカルバジンパクリタキセルPCI−32765、ペントスタチン、Pro−2−P−Dox、PSI−341、ラロキシフェンセムスチン、ソレフェニブ、ストレプトゾシン、SU11248、スニチニブタモキシフェン、テマゾロミド(DTICの水性形態)、トランス白金サリドマイドチオグアニンチオテパ、テニポシド、トポテカンウラシルマスタードバタラニブ、ビノレルビンビンブラスチンビンクリスチンビンカアルカノイド及びZD1839からなる群から選択される、請求項23に記載の方法。

請求項25

前記ケモカインは、RANTES、MCAF、MIP1−アルファ、MIP1−ベータ及びIP−10からなる群から選択される、請求項23に記載の方法。

請求項26

前記免疫賦活剤は、サイトカイン、幹細胞成長因子、リンホトキシン造血因子コロニー刺激因子CSF)、インターフェロン(IFN)、エリスロポエチン及びトロンボポエチンからなる群から選択される、請求項23に記載の方法。

請求項27

ヒト成長ホルモン、N−メチオニルヒト成長ホルモン、ウシ成長ホルモン副甲状腺ホルモンチロキシンインスリンプロインスリンリラキシンプロリラキシン卵胞刺激ホルモンFSH)、甲状腺刺激ホルモンTSH)、黄体形成ホルモンLH)、肝臓成長因子、プロスタグランジン線維芽細胞成長因子プロラクチン胎盤性ラクトゲンOBタンパク質腫瘍壊死因子−α、腫瘍壊死因子−β、ミュラー管抑制物質、マウスゴナドトロピン関連ペプチドインヒビンアクチビン血管内皮成長因子、インテグリン、トロンボポエチン(TPO)、神経成長因子(NGF)、NGF−β、血小板成長因子、形質転換成長因子(TGF)、TGF−α、TGF−β、インスリン様成長因子−I、インスリン様成長因子−II、エリスロポエチン(EPO)、骨誘導因子、インターフェロン、インターフェロン−α、インターフェロン−β、インターフェロン−λ、コロニー刺激因子(CSF)、マクロファージ−CSF(M−CSF)、顆粒球−マクロファージ−CSF(GM−CSF)、顆粒球−CSF(G−CSF)、インターロイキン−1(IL−1)、IL−1α、IL−2、IL−3、IL−4、IL−5、IL−6、IL−7、IL−8、IL−9、IL−10、IL−11、IL−12、IL−13、IL−14、IL−15、IL−16、IL−17、IL−18、IL−21、LIF、kit−リガンドFLT−3、アンギオスタチントロンボスポンジンエンドスタチン、腫瘍壊死因子及びLT(リンホトキシン)からなる群から選択される、請求項23に記載の方法。

請求項28

がん又は感染性疾患を治療する方法であって、がん又は感染性疾患を有する対象に、(i)白血球再指向二重特異性抗体;(ii)インターフェロン−α、インターフェロン−β、インターフェロン−λ1、インターフェロン−λ2及びインターフェロン−λ3からなる群から選択されるインターフェロン;(iii)チェックポイント阻害剤抗体;並びに(iv)抗体−薬物複合体(ADC)からなる群から選択される2種以上の薬剤の組み合わせを投与することを含み;前記2種以上の薬剤の投与は、前記疾患に対する白血球媒介免疫反応を誘導する、方法。0

請求項29

前記がんは、非ホジキンリンパ腫、B細胞リンパ腫、B細胞白血病、T細胞リンパ腫、T細胞白血病、急性リンパ性白血病、慢性リンパ性白血病、バーキットリンパ腫、ホジキンリンパ腫、ヘアリー細胞白血病、急性骨髄性白血病、慢性骨髄性白血病、多発性骨髄腫、神経膠腫、ワルデンシュトレームマクログロブリン血症、癌腫、黒色腫、肉腫、神経膠腫、皮膚がん、口腔がん、消化管がん、結腸がん、胃がん、肺気道がん、肺がん、乳がん、卵巣がん、前立腺癌、子宮がん、子宮内膜がん、子宮頸がん、膀胱がん、膵臓がん、骨がん、肝臓がん、胆嚢がん、腎臓がん、及び精巣がんからなる群から選択される、請求項28に記載の方法。

請求項30

前記感染性疾患は、小胞子菌種(Microsporumspp.)、白癬菌種(Trichophytonspp.)、表皮菌種(Epidermophytonspp.)、スポロトリクス・シェンキィ(Sporothrixschenckii)、クリプトコックス・ネオフォルマンス(Cryptococcusneoformans)、コクシジオイデス・イミチス(Coccidioidesimmitis)、ヒストプラズマ・カプスラタム(Histoplasmacapsulatum)、ブラストミセス・デルマティティディス(Blastomycesdermatitidis)、カンジダ・アルビカンス(Candidaalbican)、ヒト免疫不全ウイルス(HIV)、ヘルペスウイルス、サイトメガロウイルス、狂犬病ウイルス、インフルエンザウイルス、ヒト乳頭腫ウイルス、B型肝炎ウイルス、C型肝炎ウイルス、センダイウイルス、ネコ白血病ウイルス、レオウイルス、ポリオウイルス、ヒト血清パルボ様ウイルス、シミアンウイルス40、呼吸器合胞体ウイルス、マウス乳がんウイルス、Varicella−Zosterウイルス、デングウイルス、風疹ウイルス、麻疹ウイルス、アデノウイルス、ヒトT細胞白血病ウイルス、Epstein−Barrウイルス、マウス白血病ウイルス、ムンプスウイルス、水疱性口内炎ウイルス、シンドビスウイルス、リンパ球性脈絡髄膜炎ウイルス、ブルータングウイルス、炭疽菌(Bacillusanthracis)、ストレプトコッカス・アガラクチア(Streptococcusagalactiae)、レジオネラ・ニューモフィリア(Legionellapneumophilia)、ストレプトコッカス・ピオゲネス(Streptococcuspyogenes)、大腸菌(Escherichiacoli)、ナイセリア・ゴノレー(Neisseriagonorrhoeae)、ナイセリア・メニンギティディス(Neisseriameningitidis)、肺炎球菌種(Pneumococcusspp.)、ヘモフィリスインフルエンザB(HemophilisinfluenzaeB)、梅毒トレポネーマ(Treponemapallidum)、ライム病スピロヘータ、緑膿菌(Pseudomonasaeruginosa)、らい菌(Mycobacteriumleprae)、ウシ流産菌(Brucellaabortus)、結核菌(Mycobacteriumtuberculosis)及びマイコプラズマ種(Mycoplasmaspp.)からなる群から選択される病原体による感染症である、請求項28に記載の方法。

請求項31

前記対象に治療薬剤を投与することをさらに含む、請求項28に記載の方法。

請求項32

前記治療薬剤は、抗体、抗体断片、薬物、毒素、酵素、細胞毒性薬剤、抗血管形成薬剤、プロアポトーシス薬剤、抗生物質、ホルモン、免疫賦活剤、サイトカイン、ケモカイン、アンチセンスオリゴヌクレオチド、小分子干渉RNA(siRNA)、ホウ素化合物及び放射性同位体からなる群から選択される、請求項31に記載の方法。

請求項33

前記対象に、(a)第1のペプチドリンカーによりVL−CL免疫グロブリンドメインのCLに連結した第1の単鎖Fv結合部位(scFv)を含む第1のポリペプチドと;(b)第2のペプチドリンカーによりVH−CH1免疫グロブリンドメインのCH1に連結した第2の単鎖Fv結合部位(scFv)を含む第2のポリペプチドであって、前記CH1は、ヒトIgG1CH1である、第2のポリペプチドと;を含む標的結合タンパク質を投与することをさらに含み、前記第1及び第2のscFvのそれぞれは、独立して標的結合部位を形成し、VL領域及びVH領域は、関連して標的結合部位を形成し;前記第2のペプチドリンカーにおけるシステイン残基は、CL領域とジスルフィド結合を形成し;3つの標的結合部位は、腫瘍関連抗原、病原体発現抗体、及びエフェクターT細胞、NK細胞単球又は好中球により発現される抗原からなる群から選択される抗原に結合する、請求項28に記載の方法。

請求項34

(i)白血球再指向二重特異性抗体;(ii)インターフェロン−α、インターフェロン−β、インターフェロン−λ1、インターフェロン−λ2及びインターフェロン−λ3からなる群から選択されるインターフェロン;(iii)チェックポイント阻害剤抗体;並びに(iv)抗体−薬物複合体(ADC)からなる群から選択される2種以上の薬剤を含む組成物であって;前記組成物の投与は、疾患に対する白血球媒介免疫反応を誘導する、組成物。

請求項35

前記白血球再指向二重特異性抗体は、a)ADAM17、CD2、CD3、CD4、CD5、CD6、CD8、CD11a、CD11b、CD14、CD16、CD16b、CD25、CD28、CD30、CD32a、CD40、CD40L、CD44、CD45、CD56、CD57、CD64、CD69、CD74、CD89、CD90、CD137、CD177、CEACAM6、CEACAM8、HLA−DRアルファ鎖、KIR及びSLC44A2からなる群から選択される白血球抗原に結合する第1の抗体又はその抗原結合断片と;b)炭酸脱水酵素IX、アルファ−フェトプロテイン、α−アクチニン−4、A3、A33抗体に特異的な抗原、ART−4、B7、Ba733、BAGE、BrE3−抗原、CA125、CAMEL、CAP−1、CASP−8/m、CCCL19、CCCL21、CD1、CD1a、CD2、CD3、CD4、CD5、CD8、CD11A、CD14、CD15、CD16、CD18、CD19、CD20、CD21、CD22、CD23、CD25、CD29、CD30、CD32b、CD33、CD37、CD38、CD40、CD40L、CD45、CD46、CD52、CD54、CD55、CD59、CD64、CD66a−e、CD67、CD70、CD70L、CD74、CD79a、CD80、CD83、CD95、CD126、CD132、CD133、CD138、CD147、CD154、CDC27、CDK−4/m、CDKN2A、CXCR4、CXCR7、CXCL12、HIF−1α、結腸特異的抗原−p(CSAp)、CEA(CEACAM5)、CEACAM6、c−met、DAM、EGFR、EGFRvIII、EGP−1、EGP−2、ELF2−M、Ep−CAM、Flt−1、Flt−3、葉酸受容体、G250抗原、GAGE、gp100、GROB、HLA−DR、HM1.24、ヒト絨毛性ゴナドトロピン(HCG)及びそのサブユニット、HER2/neu、HMGB−1、低酸素誘導因子(HIF−1)、HSP70−2M、HST−2、Ia、IGF−1R、IFN−γ、IFN−α、IFN−β、IL−2、IL−4R、IL−6R、IL−13R、IL−15R、IL−17R、IL−18R、IL−6、IL−8、IL−12、IL−15、IL−17、IL−18、IL−23、IL−25、インスリン様成長因子−1(IGF−1)、KC4−抗原、KS−1−抗原、KS1−4、Le−Y、LDR/FUT、マクロファージ遊走阻止因子(MIF)、MAGE、MAGE−3、MART−1、MART−2、NY−ESO−1、TRAG−3、mCRP、MCP−1、MIP−1A、MIP−1B、MIF、MUC1、MUC2、MUC3、MUC4、MUC5ac、MUC13、MUC16、MUM−1/2、MUM−3、NCA66、NCA95、NCA90、膵臓がんムチン、胎盤成長因子、p53、PLAGL2、前立腺酸性フォスファターゼ、PSA、PRAME、PSMA、PlGF、ILGF、ILGF−1R、IL−6、IL−25、RS5、RANTES、T101、SAGE、S100、スルビビン、スルビビン−2B、TAC、TAG−72、テネイシン、TRAIL受容体、TNF−α、Tn抗原、Thomson−Friedenreich抗原、腫瘍壊死抗原、TROP−2、VEGFR、ED−Bフィブロネクチン、WT−1、17−1A−抗原、補体因子C3、C3a、C3b、C5a、C5、血管形成マーカー、bcl−2、bcl−6、Kras、cMET、がん遺伝子産物、HIVウイルス、結核菌(Mycobacteriumtuberculosis)、ストレプトコッカス・アガラクチア(Streptococcusagalactiae)、メチシリン耐性黄色ブドウ球菌(Staphylococcusaureus)、レジオネラ・ニューモフィリア(Legionellapneumophilia)、ストレプトコッカス・ピオゲネス(Streptococcuspyogenes)、大腸菌(Escherichiacoli)、ナイセリア・ゴノレー(Neisseriagonorrhoeae)、ナイセリア・メニンギティディス(Neisseriameningitidis)、肺炎球菌(Pneumococcus)、クリプトコックス・ネオフォルマンス(Cryptococcusneoformans)、ヒストプラスマ・カプスラーツム(Histoplasmacapsulatum)、ヘモフィリスインフルエンザB(HemophilisinfluenzaeB)、梅毒トレポネーマ(Treponemapallidum),ライム病スピロヘータ、緑膿菌(Pseudomonasaeruginosa)、らい菌(Mycobacteriumleprae)、ウシ流産菌(Brucellaabortus)、狂犬病ウイルス、インフルエンザウイルス、サイトメガロウイルス、単純ヘルペスウイルスI、単純ヘルペスウイルスII、ヒト血清パルボ様ウイルス、呼吸器合胞体ウイルス、水痘帯状疱疹ウイルス、B型肝炎ウイルス、C型肝炎ウイルス、麻疹ウイルス、アデノウイルス、ヒトT細胞白血病ウイルス、Epstein−Barrウイルス、マウス白血病ウイルス、ムンプスウイルス、水疱性口内炎ウイルス、シンドビスウイルス、リンパ球性脈絡髄膜炎ウイルス、疣ウイルス、ブルータングウイルス、センダイウイルス、ネコ白血病ウイルス、レオウイルス、ポリオウイルス、シミアンウイルス40、マウス乳がんウイルス、デングウイルス、風疹ウイルス、西ナイルウイルス、熱帯熱マラリア原虫(Plasmodiumfalciparum)、三日熱マラリア原虫(Plasmodiumvivax)、トキソプラズマ原虫(Toxoplasmagondii)、ランゲルトリパノソーマ(Trypanosomarangeli)、クルーズトリパノソーマ(Trypanosomacruzi)、ローデシアトリパノソーマ(Trypanosomarhodesiensei)、ブルーストリパノソーマ(Trypanosomabrucei)、マンソン住血吸虫(Schistosomamansoni)、日本住血吸虫(Schistosomajaponicum)、ウシバベシア(Babesiabovis)、鶏盲腸コクシジウム(Elmeriatenella)、回旋糸状虫(Onchocercavolvulus)、熱帯リーシュマニア(Leishmaniatropica)、旋毛虫(Trichinellaspiralis)、タイレリア・パルバ(Theileriaparva)、胞状条虫(Taeniahydatigena)、ヒツジ条虫(Taeniaovis)、無鉤条虫(Taeniasaginata)、単包条虫(Echinococcusgranulosus)、メソセストイドコルチ(Mesocestoidescorti)、マイコプラズマ・アルスリチジス(Mycoplasmaarthritidis)、マイコプラズマ・ヒオルヒニス(M.hyorhinis)、マイコプラズマ・オラレ(M.orale)、マイコプラズマ・アルギニニ(M.arginini)、アコレプラズマ・ライドラウィー(Acholeplasmalaidlawii)、マイコプラズマ・サリバリウム(M.salivarium)並びに肺炎マイコプラズマ(M.pneumoniae)からなる群から選択される標的抗原又は病原体に結合する第2の抗体又はその抗原結合断片とを含む、請求項34に記載の組成物。

請求項36

前記第1の抗体又はその断片は、CD3に結合する、請求項35に記載の組成物。

請求項37

前記第2の抗体又はその断片は、CD19、CD20、CD22、CD74、HLA−DR、TROP−2、MUC5ac、CEACAM5、CEACAM6、アルファ−フェトプロテイン(AFP)及びIGF−1Rからなる群から選択される抗原に結合する、請求項35に記載の組成物。

請求項38

前記第2の抗体は、hR1(抗IGF−1R)、hPAM4(抗ムチン)、KC4(抗ムチン)、hA20(抗CD20)、hA19(抗CD19)、hIMMU31(抗AFP)、hLL1(抗CD74)、hLL2(抗CD22)、RFB4(抗CD22)、hMu−9(抗CSAp)、hL243(抗HLA−DR)、hMN−14(抗CEACAM5)、hMN−15(抗CEACAM6)、hRS7(抗TROP−2)、hMN−3(抗CEACAM6)、CC49(抗TAG−72)、J591(抗PSMA)、D2/B(抗PSMA)、G250(抗炭酸脱水酵素IX)、インフリキシマブ(抗TNF−α)、セルトリズマブペゴル(抗TNF−α)、アダリムマブ(抗TNF−α)、アレムツズマブ(抗CD52)、ベバシズマブ(抗VEGF)、セツキシマブ(抗EGFR)、ゲムツズマブ(抗CD33)、イブリツモマブチウキセタン(抗CD20)、パニツムマブ(抗EGFR)、リツキシマブ(抗CD20)、トシツモマブ(抗CD20)、GA101(抗CD20)、トラスツズマブ(抗HER2/neu)、トシリズマブ(抗IL−6受容体)、バシリキシマブ(抗CD25)、ダクリズマブ(抗CD25)、エファリズマブ(抗CD11a)、ムロモナブ−CD3(抗CD3受容体)、ナタリズマブ(抗α4インテグリン)、P4/D10(抗gp120)及びオマリズマブ(抗IgE)からなる群から選択される、請求項35に記載の組成物。

請求項39

前記第2の抗体は、hA19、hR1、hPAM4、hA20(ベルツズマブ)、hIMMU31、hLL1(ミラツズマブ)、hLL2(エプラツズマブ)、hMu−9、hL243、hMN−14、hMN−15、hRS7及びhMN−3からなる群から選択される、請求項35に記載の組成物。

請求項40

前記インターフェロンは、インターフェロン−αである、請求項34に記載の組成物。

請求項41

前記チェックポイント阻害剤抗体は、ラムブロリズマブ(MK−3475)、ニボルマブ(BMS−936558)、AMP−224、MDX−1105、MEDI4736、MPDL3280A、BMS−936559、イピリムマブ、リルルマブ、IPH2101(InnatePharma)及びトレメリムマブからなる群から選択される、請求項34に記載の組成物。

請求項42

前記チェックポイント阻害剤抗体は、CTLA4、PD1、PD−L1、LAG3、B7−H3、B7−H4、KIR及びTIM3からなる群から選択される抗原に結合する、請求項34に記載の組成物。

請求項43

前記抗体−薬物複合体は、hLL1−ドキソルビシン、hRS7−SN−38、hMN−14−SN−38、hLL2−SN−38、hA20−SN−38、hPAM4−SN−38、hLL1−SN−38、hRS7−Pro−2−P−Dox、hMN−14−Pro−2−P−Dox、hLL2−Pro−2−P−Dox、hA20−Pro−2−P−Dox、hPAM4−Pro−2−P−Dox、hLL1−Pro−2−P−Dox、P4/D10−ドキソルビシン、ゲムツズマブオゾガマイシン、ブレンツキシマブベドチン、トラスツズマブエムタンシン、イノツズマブオゾガマイシン、グレムバツモマブベドチン、SAR3419、SAR566658、BIIB015、BT062、SGN−75、SGN−CD19A、AMG−172、AMG−595、BAY−94−9343、ASG−5ME、ASG−22ME、ASG−16M8F、MDX−1203、MLN−0264、抗PSMAADC、RG−7450、RG−7458、RG−7593、RG−7596、RG−7598、RG−7599、RG−7600、RG−7636、ABT−414、IMGN−853、IMGN−529、ボルセツズマブマホドチン、及びロルボツズマブメルタンシンからなる群から選択される、請求項34に記載の組成物。

請求項44

(i)白血球再指向二重特異性抗体;(ii)インターフェロン−α;及び(iii)チェックポイント阻害剤抗体からなる群から選択される2種以上の薬剤を含む、請求項34に記載の組成物。

請求項45

白血球再指向二重特異性抗体(bsAb)及びIFN−α;白血球再指向bsAb及びチェックポイント阻害剤抗体;白血球再指向bsAb及びIFN−α及びチェックポイント阻害剤抗体;抗体−薬物複合体(ADC)及びチェックポイント阻害剤抗体;ADC及び白血球再指向bsAb;ADC及びIFN−α及びチェックポイント阻害剤抗体;ADC及びIFN−α及び白血球再指向bsAb;ADC及び白血球再指向bsAb及びチェックポイント阻害剤抗体;並びにADC及び白血球再指向bsAb及びIFN−α及びチェックポイント阻害剤抗体からなる群から選択される、請求項34に記載の組成物。

請求項46

前記白血球再指向二重特異性抗体は、a)AD(アンカリングドメイン)部分に複合した第1の抗体又はその抗原結合断片であって、前記AD部分のアミノ酸配列は、AKAPタンパク質由来である、第1の抗体又はその抗原結合断片と;b)DDD(二量体化及びドッキングドメイン)部分に複合した第2の抗体又はその抗原結合断片であって、前記DDD部分のアミノ酸配列は、タンパク質キナーゼA(PKA)調節サブユニットRIα、RIβ、RIIα又はRIIβ由来である、第2の抗体又はその抗原断片と;を含み、前記DDD部分の2つのコピーは、前記AD部分の1つのコピーに結合して複合物を形成する二量体を形成する、請求項34に記載の組成物。

請求項47

前記DDD部分の前記アミノ酸配列は、RIIαの1〜44、RIIβの1〜44、RIαの12〜61、及びRIβの13〜66の残基からなる群から選択される、請求項46に記載の組成物。

関連出願の相互参照

0001

本出願は、2013年4月3日に出願された米国仮特許出願第61/807,998号の35U.S.C.119(e)に基づく利益を主張する、2013年8月14日に出願された米国特許出願第13/966,450号の一部継続出願であり、それぞれの優先出願は、参照によりその全体が本明細書に組み込まれる。
配列表
本出願は、EFS−WebによりASCII形式提出された配列表を含有し、参照によりその全体が本明細書に組み込まれる。2013年12月10日に作成された前記ASCIIコピーは、IBC138WO2_SL.txtという名前であり、49,084バイトのサイズである。

技術分野

0002

本発明は、がん又は感染性疾患等の疾患に対する免疫反応誘導するための2種以上の薬剤の組み合わせに関する。例示的な薬剤は、(i)白血球指向二重特異性抗体、(ii)抗体−薬物複合体、(iii)インターフェロン−α、インターフェロン−β又はインターフェロン−λ等のインターフェロン(最も好ましくはインターフェロン−α)、並びに/又は(iv)チェックポイント阻害剤抗体を含んでもよい。2種以上のそのような薬剤の任意の組み合わせが、主題の方法及び組成物において使用され得る。組み合わせは、同時又は逐次的に投与され得る。そのような組み合わせは、任意の2種の薬剤、任意の3種の薬剤、又は4種全ての薬剤を含んでもよい。

0003

ある特定の実施形態において、本発明は、白血球再指向複合物の組成物及び使用方法に関する。有用な白血球は、T細胞NK細胞単球、及び好中球を含み得る。好ましくは、複合物は、T細胞、NK細胞、単球、又は好中球上に発現する抗原に対する1つの結合部位と、疾患細胞又は病原体上に発現する抗原に対する別の結合部位とを有する二重特異性抗体を含む。より好ましい実施形態において、複合物は、DOCK−AND−LOCK(商標)複合物として作製され、成分は、ヒトタンパク質キナーゼA(PKA)調節サブユニットからの二量体化及びドッキングドメインDDD)部分と、AKAP(A−キナーゼアンカータンパク質)からのアンカードメイン(AD)部分との間の結合相互作用を使用して、互いに結合する。しかしながら、二重特異性抗体複合物を作製する他の方法が知られており、使用され得る。主題の複合物は、CD2、CD3、CD4、CD5、CD6、CD8、CD25、CD28、CD30、CD40、CD40L、CD44、CD45、CD69又はCD90(最も好ましくはCD3)等のT細胞上に発現する抗原に結合する1種以上の抗体又は抗原結合抗体断片と、CD19、CD20、CD22、CD33、CD66e(CEACAM5)、CEACAM6、EpCAM、HER2/neu、EGF受容体、Trop−2、MUC5ac、又は別の腫瘍関連抗原(TAA)、又は異なる疾患細胞若しくは病原微生物上に発現する抗原等の標的細胞上の抗原に結合する1種以上の抗体又は抗体断片とを含み得る。有用な特異的標的抗原は、以下でより詳細に議論される。二重特異性抗体は、エフェクターT細胞、単球、NK細胞、又は好中球を、疾患細胞、組織又は病原体を標的化するように再指向させ、標的に対する免疫反応を誘導する。

0004

他の実施形態は、インターフェロン−α、インターフェロン−β又はインターフェロン−λ等のインターフェロン(最も好ましくはインターフェロン−α)の使用に関する。インターフェロンは、NK細胞及びマクロファージ活性化することにより免疫系機能を高めることができるサイトカイン免疫賦活剤である。インターフェロンはまた、抗病原性薬剤としての直接的効果を有し、1つには標的抗原又は他のエフェクタータンパク質の発現を誘導することにより作用する。

0005

チェックポイント阻害剤抗体は、主にがん治療において使用されている。免疫チェックポイントは、自己寛容の維持、及び末梢組織損傷を最小限化するための免疫系反応度合いの調整を担う、免疫系における阻害経路を指す。しかしながら、腫瘍細胞もまた免疫系チェックポイントを活性化して、腫瘍組織に対する免疫反応の有効性を低下させ得る。細胞毒性Tリンパ球抗原4(CTLA4、CD152としても知られる)、プログラム細胞死タンパク質1(PD1、CD279としても知られる)及びプログラム細胞死1リガンド1(PD−L1、CD274としても知られる)に対する例示的チェックポイント阻害剤抗体は、以下に記載されるが、疾患細胞、組織又は病原体に対する免疫反応の有効性を高めるために、1種以上の他の薬剤と組み合わせて使用されてもよい。

0006

疾患治療における免疫系誘導の効用は、例えば、免疫賦活剤の投与前全身腫瘍組織量を低減する、又は死滅した腫瘍細胞から免疫原性抗原を放出する他の薬剤との組み合わせにより高めることができる。抗体−薬物複合体(ADC)は、多くの種類のがんにおいて全身腫瘍組織量を効果的に低減することができる。3に後述されるように、当該技術分野において、IMMU−130(ラベツズマブ−SN−38)、IMMU−132(hRS7−SN−38)及びミラツズマブ−ドキソルビシン又はpro−2−ピロリノドキソルビシン(Pro2PDox)の抗体複合体等の数々の例示的ADCが知られている。そのような知られたADCはいずれも、本明細書に記載のように、1種、2種又は3種の免疫賦活剤と組み合わせて使用され得る。

0007

有用な異なる組合せは、白血球再指向二重特異性抗体(bsAb)及びインターフェロン(例えば、インターフェロン−α);白血球再指向bsAb及びチェックポイント阻害剤抗体;白血球再指向bsAb及びIFN及びチェックポイント阻害剤抗体;ADC及びチェックポイント阻害剤抗体;ADC及びIFN及びチェックポイント阻害剤抗体;ADC及び白血球再指向bsAb及びチェックポイント阻害剤抗体;又はADC及び白血球再指向bsAb及びIFN及びチェックポイント阻害剤抗体を含み得る。上述のように、本明細書において開示される異なる種類の薬剤の任意の組み合わせが、疾患治療に使用され得る。

背景技術

0008

腫瘍細胞の標的化された死滅に向けてエフェクターT細胞を再指向させるための二重特異性抗体(bsAb)の使用は、臨床前及び臨床の両方において顕著な有望性を示している(例えば、Topp et al.,2012,Blood120:5185−87;Bargou et al.,2008,Science321:974−77を参照されたい)。現在まで開発されている二重特異性抗体は、T細胞動員及び活性化のためのCD3に特異的な第1の結合部位と、CD19等の標的疾患関連抗原に対する第2の結合部位とを含有する(Bassan,2012,Blood120:5094−95)。二重特異性抗体は、CD3+T細胞を標的疾患細胞と直接接触させ、細胞媒介細胞毒性を誘導する(Bassan,2012)。抗CD3×抗CD19二重特異性抗体は、MRD+ALL罹患した成人患者の約70%において、非常に低濃度で完全で耐久性のある分子寛解を生成することが報告されている(Topp et al.,2012,Blood120:5185−87)。神経膠腫及びT細胞上のCD3エピトープを認識する二重特異性抗体は、ヒト患者での脳腫瘍の治療における使用に成功している(Nitta,et al.Lancet1990;355:368−371)。

0009

白血球再指向bsAbは、T細胞に限定されない。NK細胞抗原CD16及び腫瘍関連抗原(例えば、CD19、CD22、CD33)に対するscFvsを備える二重特異性キラーエンゲージャー(BiKE)もまた、強力な抗がん活性を有することが示されている(例えば、Miller,Hematology Soc Hematol Educ Pogram2013:247−53)。他の代替例は、抗CD16×抗CD19×抗CD22等の三重特異性キラーエンゲージャー(TriKEs)を含む(Miller,2013;Gleason et al.,2012,Mol Cancer Ther11:2674−84)。抗CD16×抗CD33BiKEは、AML及び骨髄異形成症候群の治療に使用された(Miller,2013;Wiernik et al.,2013,Clin Cancer Res19:3844−55)。不応性AMLにおいて、CD16×CD33BiKEは、NK細胞による強力な腫瘍細胞死滅及びサイトカイン産生をもたらした。ADAM17の阻害は、CD16×CD33BiKE反応を高めた(Miller,2013)。例えばCD16/CD19/HLA−DRに対する他の三重特異性三価コンストラクトが報告されている(Schubert et al.,2012,mAbs4:45−56)。

0010

二重特異性抗体を生成する数々の方法が知られている(例えば、米国特許第7,405,320号を参照されたい)。二重特異性抗体は、それぞれ異なる抗原部位を認識するモノクローナル抗体を生成する2つの異なるハイブリドーマの融合が関与する、クアドローマ法により生成することができる(Milstein and Cuello,Nature1983;305:537−540)。融合したハイブリドーマは、2つの異なる重鎖及び2つの異なる軽鎖を合成することができ、これは、無作為に関連して、10個の異なる抗体構造の不均一集団を生成し、全抗体分子の1/8を占めるそのうちの1つだけが二重特異性となり、したがって他の形態からさらに精製されなければならない。融合したハイブリドーマは、多くの場合、細胞遺伝学的に親ハイブリドーマよりも不安定であり、産生細胞株の生成をより問題のあるものとする。

0011

二重特異性抗体を生成するための別の方法は、得られるハイブリッド複合体が2つの異なる標的に結合するように、ヘテロ二機能性架橋剤を使用して2つの異なるモノクローナル抗体を化学的に連結させる(Staerz,et al.Nature1985;314:628−631;Perez,et al.Nature1985;316:354−356)。このアプローチにより生成された二重特異性抗体は、本質的に2つのIgG分子のヘテロ複合体であり、これは、組織内に徐々に拡散し、循環から急速に除去される。二重特異性抗体はまた、2つの親モノクローナル抗体のそれぞれの各半分子への還元により生成され得、これは、次いで混合され、ハイブリッド構造を得るために再び酸化される(Staerz and Bevan.Proc Natl Acad Sci USA1986;83:1453−1457)。代替のアプローチは、適切なリンカーを使用して2つ又は3つの別個に精製されたFab’断片を化学的に架橋することを含む。全てのこれらの化学的方法は、高い製造コスト、煩雑な生成プロセス広範囲に及ぶ精製ステップ、低い収率(<20%)、及び不均一な生成物に起因して、商業的開発には望ましくない。

0012

組換えDNA技術により生成される抗体の個別のVH及びVLドメインは、互いに対合して、結合能力を有する二量体組換えFv断片)を形成し得る(米国特許第4,642,334号)。しかしながら、そのような非共有結合分子は、生理学的条件下において、任意の実用的な用途を有するには十分安定ではない。同種VH及びVLドメインは、適切な組成及び長さ(通常、12を超えるアミノ酸残基からなる)のペプチドリンカーにより連結されて、結合活性を有する単鎖Fv(scFv)を形成することができる。リンカーの長さを変化させることにより多価性及び多特異性を有するscFv系薬剤を製造する方法が、米国特許第5,844,094号、米国特許第5,837,242号及びWO98/44001において開示されている。多価性及び多特異性を有するscFv系薬剤の生成にしばしば関連している一般的な問題は、低い発現レベル、不均一な生成物、凝集をもたらす溶液中の不安定性血清中の不安定性、及び低い親和性である。

0013

CD3及びCD19を標的化するいくつかの二重特異性抗体が臨床開発中である。BITE登録商標)(二重特異性T細胞エンゲージャー)として知られるscFv系二重特異性抗体コンストラクトは、柔軟性リンカーを介して一列に連結した同種VH及びVLによりそれぞれ寄与される、2つの抗原結合特異性を含有する単鎖ポリペプチドを使用する(例えば、Nagorsen et al.,2009,Leukemia&Lymphoma50:886−91;Amann et al.,2009,J Immunother32:453−64;Baeuerle and Reinhardt,2009,Cancer Res69:4941−44を参照されたい)。DART(登録商標)(二重親和性再標的化(Dual−Affinity Re−Targeting))と呼ばれる別の二重特異性抗体は、ジスルフィド安定化ジアボディ設計を使用する(例えば、Moore et al.,2011,Blood117:4542−51;Veri et al.,2010,Arthritis Rheum62:1933−43を参照されたい)。BITE(登録商標)及びDART(登録商標)は共に、それらの微小なサイズ(約55kDa)に起因して急速な血中クリアランスを示し、これにより、二重特異性抗体の治療レベルを維持するために、頻繁な投与が必要となる。

0014

インターフェロンは、抗腫瘍及び抗菌宿主防御において重要な役割を果たすものであり、がん及び感染性疾患に対する治療薬剤として広範囲に研究されている(Billiau et al.,2006,Cytokine Growth Factor Rev17:381−409;Pestka et al.,2004,Immunol Rev202:8−32)。I型及びII型インターフェロン(IFN−α/β及びγ)に関する相当な研究にもかかわらず、患者における短い循環半減期全身毒性、及び最適に満たない反応により、臨床の現場におけるそれらの使用は限られている(Pestka et al.,2004,Immunol Rev202:8−32;Miller et al.,2009,Ann N Y Acad Sci1182:69−79)。2003年初期のIFN−λファミリー発見は、これらの満たされていない臨床的適応のための代替のIFN薬剤を開発する刺激的な新たな機会をもたらした(Kotenko et al.,2003,Nat Immunol4:69−77;Sheppard et al.,2003,Nat Immunol4:63−8)。

0015

IFNの治療有効性は、現在まで、ヘアリー細胞白血病慢性骨髄性白血病悪性黒色腫濾胞性リンパ腫尖圭コンジロームAIDs関連カポジ肉腫、及び慢性B型及びC型肝炎の治療のためのIFN−α2、多発性硬化症処置のためのIFN−β、並びに慢性肉芽腫症及び悪性大理石骨病の治療のためのIFN−γの承認により検証されている。自己分泌及び傍分泌サイトカインのこの群に関する膨大な文献にもかかわらず、臨床的に導入されているより効果的及び新規な形態を含めて、健康及び疾患におけるそれらの機能はまだ解明中である(Pestka,2007,J.Biol.Chem282:20047−51;Vilcek,2006,Immunity25:343−48)。様々なインターフェロンと抗体系治療薬との組み合わせの効果もまた、未だに調査中である。

0016

抗体−薬物複合体(ADC)は、がん細胞等の標的細胞への細胞毒性薬剤標的化送達を可能とする、強力なクラスの治療コンストラクトである。標的化機能のために、これらの化合物は、同じ全身送達薬剤と比較してはるかに高い治療指数を示す。ADCは、無傷抗体又は抗体断片、例えばscFvとして開発された。抗体又は抗体断片は、生理学的条件下で安定であるが標的細胞内に入ると切断され得るリンカーを介して、薬物の1つ以上のコピーに連結する。治療用途に承認されたADCは、AMLに対するゲムツズマブオゾガマイシン(後に市場から回収された)、ALCL及びホジキンリンパ腫に対するブレツキシマブベドチン、並びにHER2陽性転移乳がんに対するトラスツズマブエムタンシンを含む(Verma et al.,2012,N Engl J Med367:1783−91;Bross et al.,2001,Clin Cancer Res7:1490−96;Francisco et al.,2003,Blood102:1458−65)。イノツズマブオゾガマイシン(Pfizer)、グレムツモマブベドチン(Celldex Therapeutics)、SAR3419(Sanofi−Aventis)、SAR56658(Sanofi−Aventis)、AMG−172(Amgen)、AMG−595(Amgen)、BAY−94−9343(Bayer)、BIIB015(Biogen Idec)、BT062(Biotest)、SGN−75(Seattle Genetics)、SGN−CD19A(Seattle Genetics)、ボルセツズマブマホドチン(Seattle Genetics)、ABT−414(AbbVie)、ASG−5ME(Agensys)、ASG−22ME(Agensys)、ASG−16M8F(Agensys)、IMGN−529(ImmunoGen)、IMGN−853(ImmunoGen)、MDX−1203(Medarex)、MLN−0264(Millenium)、RG−7450(Roche/Genentech)、RG−7458(Roche/Genentech)、RG−7593(Roche/Genentech)、RG−7596(Roche/Genentech)、RG−7598(Roche/Genentech)、RG−7599(Roche/Genentech)、RG−7600(Roche/Genentech)、RG−7636(Roche/Genentech)、抗PSMA ADC(Progenics)、ロルボツズマブメルタンシン(ImmunoGen)、ミラツズマブ−ドキソルビシン(Immunomedics)、IMMU−130(Immunomedics)、IMMU−132(Immunomedics)及びpro−2−ピロリノドキソルビシンの抗体複合体等の、他の多くの候補ADCが現在臨床試験中である。(例えば、Li et al.,2013,Drug Disc Ther7:178−84;Firer&Gellerman,J Hematol Oncol 5:70;Beck et al.,2010,Discov Med10:329−39;Mullard,2013,Nature Rev Drug Discovery12:329、米国仮特許出願第61/761,845号を参照されたい。)低減された全身毒性で強力な抗がん剤として作用するADCの可能性のために、それらは、全身腫瘍組織量を低減するために単独で、又は補助療法として使用され得る。

0017

免疫治療の別の有望なアプローチは、免疫チェックポイントタンパク質に対するアンタゴニスト抗体の使用に関する(例えば、Pardoll,2012,Nature Reviews Cancer12:252−64)。免疫チェックポイントは、自己寛容を維持する、並びに抗原刺激に対する免疫反応の期間及び程度を調整するように作用する、免疫系機能の外因性阻害経路として機能する(Pardoll,2012)。しかしながら、腫瘍組織、及びおそらくはある特定の病原体が、チェックポイント系を共選択(co−opt)して、宿主免疫反応の有効性を低減し、腫瘍成長及び/又は慢性感染症をもたらすと思われる(例えば、Pardoll,2012,Nature Reviews Cancer12:252−64;Nirschl&Drake,2013,Clin Cancer Res19:4917−24を参照されたい)。チェックポイント分子は、CTLA4(細胞毒性Tリンパ球抗原−4)、PD1(プログラム細胞死タンパク質1)、PD−L1(プログラム細胞死リガンド1)、LAG−3(リンパ球活性化遺伝子−3)、TIM−3(T細胞免疫グロブリン及びムチンタンパク質−3)並びに他のいくつかを含む(Pardoll,2012,Nature Reviews Cancer12:252−64;Nirschl&Drake,2013,Clin Cancer Res19:4917−24)。チェックポイントタンパク質のいくつか(CTLA4、PD1、PD−L1)に対する抗体が臨床試験中であり、標準治療に対し耐性を有していた腫瘍に対する予想外効力を示した。

0018

より長いT1/2、より良好な薬物動態特性、増加したin vivo安定性、及び/又は改善されたin vivo効力を有する改善された二重特異性抗体複合物を生成するための方法及び組成物が必要とされている。さらに、がん又は感染性疾患等の様々な疾患に対する免疫反応を誘導することを目的とした治療の効力を改善するための併用療法が必要とされている。

0019

本発明は、白血球再指向複合物、インターフェロン、チェックポイント阻害剤抗体、及び抗体−薬物複合体(ADC)からなる群から選択される2種以上の薬剤との併用療法に関する。最初の3種類の薬剤は、腫瘍関連抗原(TAA)又は病原体(微生物)発現抗原等の疾患関連抗原に対する免疫反応を誘導する、又は高めるために使用され得る。ADCは、全身腫瘍組織量を低減し、治療の全体的な効力を高めるために、免疫賦活剤のいずれか又は全てと組み合わせて使用されてもよい。

0020

白血球再指向複合物を使用する実施形態において、複合物は、好ましくは、白血球発現抗原に対する1つの結合部位と、腫瘍細胞又は病原体(すなわち微生物)上の標的抗原に結合する第2の結合部位を有する、二重特異性抗体(bsAb)である。例示的なT細胞抗原は、CD2、CD3、CD4、CD5、CD6、CD8、CD25、CD28、CD30、CD40、CD40L、CD44、CD45、CD69及びCD90からなる群から選択される。NK細胞上に発現する例示的な抗原は、CD8、CD16、CD56、CD57、ADAM17、KIR及びCD137からなる群から選択される。例示的な単球抗原は、CD74、HLA−DRアルファ鎖、CD14、CD16、CD64及びCD89からなる群から選択される。例示的な好中球抗原は、CEACAM6、CEACAM8、CD16b、CD32a、CD89、CD177、CD11a、CD11b及びSLC44A2からなる群から選択される。好ましくは、T細胞抗原はCD3であり、又は、NK細胞抗原はCD16である。第2の抗体の標的抗原は、アルファフェトプロテインAFP)、α4インテグリン、B7、炭酸脱水酵素IX、補体因子C1q、C1r、C1s、C2a、C2b、C3、C3a、C3b、C4、C4a、C4b、C5a、C5aR、C5b、C5、C6、C7、C8、C9n、CCCL19、CCCL21、CD1、CD1a、CD2、CD3R、CD4、CD5、CD8、CD11A、CD14、CD15、CD16、CD18、CD19、CD20、CD21、CD22、CD23、CD25、CD29、CD30、CD32b、CD33、CD37、CD38、CD40、CD40L、CD44、CD45、CD46、CD52、CD54、CD55、CD59、CD64、CD66a−e、CD67、CD70、CD74、CD79a、CD79b、CD80、CD83、CD86、CD95、CD126、CD133、CD138、CD147、CD154、CEACAM−5、CEACAM−6、CSAp、フィブロネクチンのED−B、EGFR、EGP−1(TROP−2)、EGP−2、ErbB2、H因子、FHL−1、フィブリン、Flt−3、葉酸受容体糖タンパク質IIb/IIIa、gp41、gp120、GRO−β、HLA−DR、HM1.24、HM1.24、HMGB−1、低酸素誘導因子(HIF)、Ia、ICAM−1、IFN−α、IFN−β、IFN−γ、IFN−λ、IgE、IGF−1R、IL−1、IL−1Ra、IL−2、IL−4R、IL−6、IL−6R、IL−8、IL−13R、IL−15R、IL−15、IL−17、IL−17R、IL−18、IL−18R、IL−6、IL−8、IL−12、IL−15、IL−17、IL−18、IL−25、インスリン様成長因子−1(ILGF−1)、IP−10、KIR、Le(y)、リポ多糖体LPS)、MAGE、MCP−1、mCRPMIFMIP−1A、MIP−1B、MUC1、MUC2、MUC3、MUC4、MUC5ac、NCA−90、NCA−95、NF−κB、PlGF、PSMA、RANTES、T101、TAC、TAG−72、テネイシン、Thomson−Friedenreich抗原、トロンビン組織因子、Tn抗原TNF−α、TRAIL受容体(R1及びR2)、腫瘍壊死抗原、VEGF、VEGFR並びにがん遺伝子産物からなる群から選択され得る。

0021

以下の実施例において開示される白血球再指向bsAbの例示的な設計は、抗CD3scFvを抗CD19F(ab)2と組み合わせ、(19)−3sと指定されるコンストラクトを形成したが、これはB細胞を特異的に標的化した。抗CD3を他の腫瘍関連抗原に対する抗体断片と組み合わせた他のbsAbは、以下でより詳細に議論されるが、様々な固形腫瘍の標的化白血球免疫治療において有用である。この設計の利点は、腫瘍細胞に対する二価結合、急速な腎クリアランスを不可能とするより大きなサイズ(約130kDa)、及び強力な白血球媒介細胞毒性を含む。bsAbは、白血球と同種標的細胞との間の免疫学的シナプスの形成を媒介し、標的細胞の存在下で白血球活性化及び増殖を誘導し、in vitroにおいて強力な白血球媒介標的細胞死滅を再指向し、in vivoにおいてヒト腫瘍成長を阻害する。

0022

好ましい実施形態は、より長いT1/2、より良好な薬物動態特性及び増加したin vivo安定性を有する、三価DNL(商標)複合物として生成された白血球再指向二重特異性抗体に関する。AKAPからのAD部分に結合したヒトPKA調節サブユニットRIα,RIβ,RIIα又はRIIβからのDDD部分の二量体を含むDNL(商標)複合物の生成及び使用のための方法は、周知である(例えば、米国特許第7,550,143号;米国特許第7,521,056号;米国特許第7,534,866号;米国特許第7,527,787号;米国特許第7,666,400号;米国特許第7,906,118号;米国特許第7,901,680号;米国特許第8,003,111号及び米国特許第8,034,352号を参照されたく、それぞれの実施例の項は、参照により本明細書に組み込まれる)。抗体又は抗体断片等の異なるエフェクター部分をDDD及びAD部分に結合させることにより、事実上エフェクターの任意の組み合わせを含むDNL(商標)複合物が構築及び使用され得る。

0023

有用な抗体は、様々なアイソタイプのもの、好ましくは、ヒトIgG1、IgG2、IgG3又はIgG4、より好ましくはヒトIgG1ヒンジ及び定常領域配列を含むものであってもよい。抗体又はその断片は、van der Neut Kolfschotenら(Science2007;317:1554−1557)により説明されたように、キメラヒト−マウスヒト化(ヒトフレームワーク及びマウス超可変CDR)領域)、又は完全ヒト並びにそれが変化したもの、例えば半−IgG4抗体(「ユニボディ」と呼ばれる)であってもよい。より好ましくは、抗体又はその断片は、ヒト対象に投与された場合に低減された免疫原性をもたらし得る、特定のアロタイプに属するヒト定常領域配列を含むように設計又は選択されてもよい。投与に好ましいアロタイプは、G1m3、G1m3,1、G1m3,2又はG1m3,1,2等の非G1m1アロタイプ(nG1m1)を含む。より好ましくは、アロタイプは、nG1m1、G1m3、nG1m1,2及びKm3アロタイプからなる群から選択される。

0024

他の好ましい実施形態は、1種以上のチェックポイント阻害剤抗体と組み合わせた白血球再指向複合物の組成物及び/又は使用に関する。そのような抗体は、チェックポイント阻害剤機能に関して拮抗する。ラムブロリズマブ(MK−3475、Merck)、ニボルマブ(BMS−936558、Bristol−Myers Squibb)、ピジリズマブ(CT−011、CureTech Ltd.)、AMP−224(Merck)、MDX−1105(Medarex)、MEDI4736(MedImmune)、MPDL3280A(Genentech)、BMS−936559(Bristol−Myers Squibb)、イピリムマブ(Bristol−Myers Squibb)及びトレリムマブ(Pfizer)等の多くのそのような抗体が、当該技術分野において知られている。リルルマブ(Innate Pharma)及びIPH2101(Innate Pharma)等の抗KIR抗体は、NK細胞において同様の機能を行うことができる。いかなる既知のチェックポイント阻害剤抗体も、他の薬剤の1種以上と組み合わせて使用され得る。

0025

組み合わせて使用され得る別の薬剤は、インターフェロンである。有用なインターフェロンは、当該技術分野において知られており、インターフェロン−α、インターフェロン−β、インターフェロン−λ1、インターフェロン−λ2又はインターフェロン−λ3を含み得る。好ましくは、インターフェロンは、インターフェロン−αである。主題のインターフェロンは、遊離インターフェロン、PEG化インターフェロン、インターフェロン融合タンパク質又は抗体に複合化したインターフェロンとして投与され得る。

0026

代替の実施形態において、上述の免疫賦活剤の1種以上が、抗体−薬物複合体(ADC)と組み合わせて使用されてもよい。ADCは、著しい全身毒性を示さずに全身腫瘍組織量を低減するのに特に効果的であり、白血球再標的化bsAb、インターフェロン及び/又はチェックポイント阻害剤抗体により誘導される免疫反応の有効性を改善するように作用し得る。例示的な有用なADCは、AMLに対するゲムツズマブオゾガマイシン(後に市場から回収された)、ALCL及びホジキンリンパ腫に対するブレンツキシマブベドチン、並びにHER2陽性転移乳がんに対するトラスツズマブエムタンシンを含む(Verma et al.,2012,N Engl J Med367:1783−91;Bross et al.,2001,Clin Cancer Res7:1490−96;Francisco et al.,2003,Blood102:1458−65)治療用途に承認されたADCを含み得る。イノツズマブオゾガマイシン(Pfizer)、グレムバツモマブベドチン(Celldex Therapeutics)、SAR3419(Sanofi−Aventis)、SAR56658(Sanofi−Aventis)、AMG−172(Amgen)、AMG−595(Amgen)、BAY−94−9343(Bayer)、BIIB015(Biogen Idec)、BT062(Biotest)、SGN−75(Seattle Genetics)、SGN−CD19A(Seattle Genetics)、ボルセツズマブマホドチン(Seattle Genetics)、ABT−414(AbbVie)、ASG−5ME(Agensys)、ASG−22ME(Agensys)、ASG−16M8F(Agensys)、IMGN−529(ImmunoGen)、IMGN−853(ImmunoGen)、MDX−1203(Medarex)、MLN−0264(Millenium)、RG−7450(Roche/Genentech)、RG−7458(Roche/Genentech)、RG−7593(Roche/Genentech)、RG−7596(Roche/Genentech)、RG−7598(Roche/Genentech)、RG−7599(Roche/Genentech)、RG−7600(Roche/Genentech)、RG−7636(Roche/Genentech)、抗PSMA ADC(Progenics)、ロルボツズマブメルタンシン(ImmunoGen)、ミラツズマブ−ドキソルビシン(Immunomedics)、IMMU−130(Immunomedics)及びIMMU−132(Immunomedics)等の、他の多くの候補ADCが現在臨床試験中である。(例えば、Li et al.,2013,Drug Disc Ther7:178−84;Firer&Gellerman,J Hematol Oncol5:70;Beck et al.,2010,Discov Med10:329−39;Mullard,2013,Nature Rev Drug Discovery12:329を参照されたい。)好ましくは、ADCが免疫賦活剤と組み合わせて使用される場合、ADCは、免疫賦活剤の前に投与される。

0027

ある特定の実施形態において、主題の併用療法は、がんの治療に有用となり得る。任意の種類の腫瘍及び任意の種類の腫瘍抗原も標的化され得ると予測される。標的化され得るがんの例示的な種類は、急性リンパ芽球性白血病急性骨髄性白血病胆嚢がん、乳がん、子宮頸がん慢性リンパ球性白血病、慢性骨髄性白血病、結腸直腸がん子宮内膜がん食道頭頸部がん、ホジキンリンパ腫、肺がん甲状腺髄様がん非ホジキンリンパ腫多発性骨髄腫腎臓がん、卵巣がん膵臓がん、神経膠腫、黒色腫肝臓がん前立腺がん、及び膀胱がんを含む。しかしながら、当業者には、事実上任意の種類のがんに対して腫瘍関連抗原が知られていることが理解される。

0028

白血球再指向bsAb及び/又はADCにより標的化され得る腫瘍関連抗原は、アルファ−フェトプロテイン(AFP)、α−アクチニン−4、A3、A33抗体に特異的な抗原、ART−4、B7、Ba733、BAGE、BrE3−抗原、CA125、CAMEL、CAP−1、炭酸脱水酵素IX、CASP−8/m、CCCL19、CCCL21、CD1、CD1a、CD2、CD3、CD4、CD5、CD8、CD11A、CD14、CD15、CD16、CD18、CD19、CD20、CD21、CD22、CD23、CD25、CD29、CD30、CD32b、CD33、CD37、CD38、CD40、CD40L、CD44、CD45、CD46、CD52、CD54、CD55、CD59、CD64、CD66a−e、CD67、CD70、CD70L、CD74、CD79a、CD79b、CD80、CD83、CD95、CD126、CD132、CD133、CD138、CD147、CD154、CDC27、CDK−4/m、CDKN2A、CTLA4、CXCR4、CXCR7、CXCL12、HIF−1α、結腸特異的抗原−p(CSAp)、CEA(CEACAM5)、CEACAM6、c−Met、DAM、EGFR、EGFRvIII、EGP−1(TROP−2)、EGP−2、ELF2−M、Ep−CAM、線維芽細胞成長因子(FGF)、Flt−1、Flt−3、葉酸受容体、G250抗原、GAGE、gp100、GRO−β、HLA−DR、HM1.24、ヒト絨毛性ゴナドトロピンHCG)及びそのサブユニット、HER2/neu、HMGB−1、低酸素誘導因子(HIF−1)、HSP70−2M、HST−2、Ia、IGF−1R、IFN−γ、IFN−α、IFN−β、IFN−λ、IL−4R、IL−6R、IL−13R、IL−15R、IL−17R、IL−18R、IL−2、IL−6、IL−8、IL−12、IL−15、IL−17、IL−18、IL−23、IL−25、インスリン様成長因子−1(IGF−1)、KC4−抗原、KS−1−抗原、KS1−4、Le−Y、LDR/FUTマクロファージ遊走阻止因子(MIF)、MAGE、MAGE−3、MART−1、MART−2、NY−ESO−1、TRAG−3、mCRP、MCP−1、MIP−1A、MIP−1B、MIF、MUC1、MUC2、MUC3、MUC4、MUC5ac、MUC13、MUC16、MUM−1/2、MUM−3、NCA66、NCA95、NCA90、PAM4抗原、膵臓がんムチン、PD1受容体、胎盤成長因子、p53、PLAGL2、前立腺酸性フォスファターゼ、PSA、PRAME、PSMA、PlGF、ILGF、ILGF−1R、IL−6、IL−25、RS5、RANTES、T101、SAGE、S100、スルビビン、スルビビン−2B、TAC、TAG−72、テネイシン、TRAIL受容体、TNF−α、Tn抗原、Thomson−Friedenreich抗原、腫瘍壊死抗原、VEGFR、ED−Bフィブロネクチン、WT−1、17−1A−抗原、補体因子C3、C3a、C3b、C5a、C5、血管形成マーカー、bcl−2、bcl−6、Kras、がん遺伝子マーカー並びにがん遺伝子産物を含むが、これらに限定されない(例えば、Sensi et al.,Clin Cancer Res2006,12:5023−32;Parmiani et al.,J Immunol2007,178:1975−79;Novellino et al.Cancer Immunol Immunother2005,54:187−207を参照されたい)。

0029

がん治療に使用され得る例示的な抗体は、hA19(抗CD19、米国特許第7,109,304号)、hR1(抗IGF−1R、米国特許出願第12/722,645号、3/12/10出願)、hPAM4(抗MUC5ac、米国特許第7,282,567号)、hA20(抗CD20、米国特許第7,251,164号)、hIMMU31(抗AFP、米国特許第7,300,655号)、hLL1(抗CD74、米国特許第7,312,318号)、hLL2(抗CD22、米国特許第7,074,403号)、hMu−9(抗CSAp、米国特許第7,387,773号)、hL243(抗HLA−DR、米国特許第7,612,180号)、hMN−14(抗CEACAM5、米国特許第6,676,924号)、hMN−15(抗CEACAM6、米国特許第7,541,440号)、hRS7(抗EGP−1、米国特許第7,238,785号)、hMN−3(抗CEACAM6、米国特許第7,541,440号)、Ab124及びAb125(抗CXCR4、米国特許第7,138,496号)を含むがこれらに限定されず、それぞれの引用された特許又は特許出願の実施例の項は、参照により本明細書に組み込まれる。

0030

免疫刺激抗体との併用療法は、例えば腫瘍細胞に対する効力を高めることが報告されている。Morales−Kastresanaら(2013,Clin Cancer Res19:6151−62)は、抗PD−L1(10B5)抗体と抗CD137(1D8)及び抗OX40(OX86)抗体との組み合わせが、肝細胞癌トランスジェニックマウスモデルにおいて効力の向上を提供することを示した。抗CTLA4及び抗PD1抗体の組み合わせもまた、極めて有効であることが報告されている(Wolchok et al.,2013,N Engl J Med369:122−33)。リツキシマブとリルルマブ(Innate Pharma)又はIPH2101(Innate Pharma)等の抗KIR抗体との組み合わせもまた、造血器腫瘍に対してより有効であった(Kohrt et al.,2012)。当業者には、主題の併用療法が、免疫刺激、抗腫瘍又は抗感染薬剤である複数の抗体との組み合わせを含んでもよいことが理解される。

0031

様々な疾患状態の治療に使用され得る代替の抗体は、アブシキシマブ(抗糖タンパク質IIb/IIIa)、アレムツズマブ(抗CD52)、ベバシズマブ(抗VEGF)、セツキシマブ(抗EGFR)、ゲムツズマブ(抗CD33)、イブリツモマブ(抗CD20)、パニツムマブ(抗EGFR)、リツキシマブ(抗CD20)、トシツモマブ(抗CD20)、トラスツズマブ(抗ErbB2)、ラムブロリズマブ(抗PD1受容体)、ニボルマブ(抗PD1受容体)、イピリムマブ(抗CTLA4)、アバゴボマブ(抗CA−125)、アデカツムマブ(抗EpCAM)、アトリズマブ(抗IL−6受容体)、ベンラリズマブ(抗CD125)、オビヌツズマブ(GA101、抗CD20)、CC49(抗TAG−72)、AB−PG1−XG1−026(抗PSMA、米国特許出願第11/983,372号、ATCCPTA−4405及びPTA−4406として寄託)、D2/B(抗PSMA、WO2009/130575)、トシリズマブ(抗IL−6受容体)、バシリキシマブ(抗CD25)、ダクリズマブ(抗CD25)、エファリズマブ(抗CD11a)、GA101(抗CD20;Glycart Roche)、アタリズマブ(抗α4インテグリン)、オマリズマブ(抗IgE);抗TNF−α抗体、例えばCDP571(Ofei et al.、2011、Diabetes45:881−85)、MTFAI、M2TNFAI、M3TNFAI、M3TNFABI、M302B、M303(Thermo Scientific、Rockford、IL)、インフリキシマブ(Centocor、Malvern、PA)、セルトリズマブペゴル(UCB、Brussels、Belgium)、抗CD40L(UCB、Brussels、Belgium)、アダリムマブ(Abbott、Abbott Park、IL)、BENLYSTA(登録商標)(Human Genome Sciences);抗CD38抗体、例えばMOR03087(MorphoSys AG)、MOR202(Celgene)、HuMax−CD38(Genmab)又はダラツムマブ(Johnson&Johnson);抗HIV抗体、例えばP4/D10(米国特許第8,333,971号)、Ab75、Ab76、Ab77(Paulik et al.,1999,Biochem Pharmacol58:1781−90)、さらに、Polymun(Vienna,Austria)により説明及び販売されている、また米国特許第5,831,034号、米国特許第5,911,989号、並びにVcelar et al.,AIDS2007;21(16):2161−2170及びJoos et al.,Antimicrob.Agents Chemother.2006;50(5):1773−9にも記載されている抗HIV抗体を含むが、これらに限定されない。

0032

他の実施形態において、主題の併用療法は、細菌、ウイルス又は真菌等の病原生物に感染した対象を治療するために有用となり得る。治療され得る例示的な真菌は、小胞子菌(Microsporum)、白癬菌(Trichophyton)、表皮菌(Epidermophyton)、スポロトリクス・シェンキィ(Sporothrix schenckii)、クリプトコックスネオフォルマンス(Cryptococcus neoformans)、コクシジオイデス・イミチス(Coccidioides immitis)、ヒストプラズマ・カプスラタム(Histoplasma capsulatum)、ブラストミセス・デルマティティディス(Blastomyces dermatitidis)又はカンジダアルビカンス(Candida albican)を含む。例示的なウイルスは、ヒト免疫不全ウイルスHIV)、ヘルペスウイルスサイトメガロウイルス狂犬病ウイルスインフルエンザウイルスヒト乳頭腫ウイルスB型肝炎ウイルスC型肝炎ウイルスセンダイウイルスネコ白血病ウイルスレオウイルスポリオウイルスヒト血清パル様ウイルスシミアンウイルス40呼吸器合胞体ウイルス、マウス乳がんウイルス、Varicella−Zosterウイルス、デングウイルス風疹ウイルス麻疹ウイルスアデノウイルスヒトT細胞白血病ウイルス、Epstein−Barrウイルス、マウス白血病ウイルスムンプスウイルス水疱性口内炎ウイルスシンドビスウイルスリンパ球性脈絡髄膜炎ウイルス又はブルータングウイルスを含む。例示的な細菌は、炭疽菌(Bacillus anthracis)、ストレプトコッカス・アガラチア(Streptococcus agalactiae)、レジオネラニューフィリア(Legionella pneumophilia)、ストレプトコッカス・ピオゲネス(Streptococcus pyogenes)、大腸菌(Escherichia coli)、ナイセリアゴノレー(Neisseria gonorrhoeae)、ナイセリア・メニンギティディス(Neisseria meningitidis)、肺炎球菌種(Pneumococcus spp.)、ヘモフィリスインフルエンザB(Hemophilis influenzae B)、梅毒トレポネーマ(Treponema pallidum)、ライム病スピロヘータ緑膿菌(Pseudomonas aeruginosa)、らい菌(Mycobacterium leprae)、ウシ流産菌(Brucella abortus)、結核菌(Mycobacterium tuberculosis)又はマイコプラズマ(Mycoplasma)を含む。感染性物質に対するADCの例示的な使用は、Johannson et al.(2006,AIDS20:1911−15)及びChang et al.,2012,PLos One7:e41235において開示されている。

0033

病原体に対する既知の抗体は、P4D10(抗HIV)、CR6261(抗インフルエンザ)、エクスビルマブ(抗B型肝炎)、フェルビズマブ(抗呼吸器合胞体ウイルス)、フォラビルマブ(抗狂犬病ウイルス)、モタビズマブ(抗呼吸器合胞体ウイルス)、パリビズマブ(抗呼吸器合胞体ウイルス)、パノバクマブ(抗シュードモナス菌)、ラフィビルマブ(抗狂犬病ウイルス)、レガビルマブ(抗サイトメガロウイルス)、セビルマブ(抗サイトメガロウイルス)、チビルマブ(抗B型肝炎)、及びウルトキサズマブ(抗大腸菌)を含むが、これらに限定されない。

0034

主題の薬剤は、免疫反応を高めるために、1種以上の他の免疫賦活剤と組み合わせて投与されてもよい。免疫賦活剤は、サイトカイン、ケモカイン幹細胞成長因子、リンホトキシン造血因子コロニー刺激因子CSF)、エリスロポエチントロンボポエチン腫瘍壊死因子−α(TNF)、TNF−β、顆粒球−コロニー刺激因子(G−CSF)、顆粒球マクロファージ−コロニー刺激因子(GM−CSF)、インターフェロン−α、インターフェロン−β、インターフェロン−γ、インターフェロン−λ、「S1因子」と指定される幹細胞成長因子、ヒト成長ホルモン、N−メチオニルヒト成長ホルモン、ウシ成長ホルモン副甲状腺ホルモンチロキシンインスリンプロインスリンリラキシンプロリラキシン卵胞刺激ホルモンFSH)、甲状腺刺激ホルモンTSH)、黄体形成ホルモンLH)、肝臓成長因子、プロスタグランジン、線維芽細胞成長因子、プロラクチン胎盤性ラクトゲンOBタンパク質ミュラー管抑制物質、マウスゴナドトロピン関連ペプチドインヒビンアクチビン血管内皮成長因子、インテグリン、NGF−β、血小板成長因子、TGF−α、TGF−β、インスリン様成長因子−I、インスリン様成長因子−II、マクロファージ−CSF(M−CSF)、IL−1、IL−1α、IL−2、IL−3、IL−4、IL−5、IL−6、IL−7、IL−8、IL−9、IL−10、IL−11、IL−12、IL−13、IL−14、IL−15、IL−16、IL−17、IL−18、IL−21、IL−25、LIF、FLT−3、アンギオスタチントロンボスポンジンエンドスタチン、又はリンホトキシンを含み得るが、これらに限定されない。ある特定の実施形態において、白血球再指向二重特異性抗体又は抗体断片は、サイトカイン等の免疫賦活剤に結合し得る。サイトカイン複合物は、例えば、米国特許第7,906,118号及び米国特許第8,034,3522号において開示されており、それぞれの実施例の項は、参照により本明細書に組み込まれる。

0035

好ましい実施形態において、白血球再指向bsAbのT細胞結合成分は、CD3抗原に結合するが、エフェクターT細胞上に発現する他の抗原が知られており、白血球再指向複合物により標的化され得る。例示的なT細胞抗原は、CD2、CD3、CD4、CD5、CD6、CD8、CD25、CD28、CD30、CD40、CD40L、CD44、CD45、CD69及びCD90を含むが、これらに限定されない。他の例示的な抗原は、NK細胞に対するCD8、CD16、CD56、CD57、ADAM17、及びCD137;単球に対するCD74、HLA−DRアルファ鎖、CD14、CD16、CD64及びCD89;並びに好中球に対するCEACAM6、CEACAM8、CD16b、CD32a、CD89、CD177、CD11a、CD11b及びSLC44A2から選択され得る。

0036

以下の図面は、本明細書の一部を成し、本発明のある特定の実施形態をさらに示すために含まれる。実施形態は、本明細書に示される具体的実施形態の詳細な説明と組み合わせてこれらの図面の1つ以上を参照することにより、より良く理解され得る。

図面の簡単な説明

0037

抗CD19F(ab)2×抗CD3scFvを含むDOCK−AND−LOCK(商標)複合物の形成を示す概略図である。
図2A:(19)−3sにより媒介される、Daudi Burkittリンパ腫とT細胞との間の免疫シナプス形成を示す図である。新しく単離されたT細胞を、2.5:1のE:T比でDaudi細胞と組み合わせた。細胞を0、1又は5μg/mLの(19)−3sで室温で30分間処理してから、フローサイトメトリーにより分析した。抗CD20−FITC及び抗CD7−APCを使用して、それぞれDaudi及びT細胞を特定した。同時結合は、CD20+/CD7+イベントの%として示された。(19)−3sでの処理後、フローイベントの45.5%がCD20/CD7二重陽性であり、シナプス形成したDaudi及びT細胞を示していた。図2B:条件は図2(A)の場合と同様であったが、但し(19)−3s抗体は存在しなかった。図2(A)と比較して、フローイベントのわずか2%が、抗体なしでCD20/CD7二重陽性であった。図2C:(19)−3sを添加することにより、Daudiの90%超がT細胞と結合した。
図3A:Jurkat(T細胞)及びDaudi(B細胞)を1:1の比で組み合わせ、0.1μg/mLの(19)−3sで30分間処理し、抗CD20−FITCで染色してから、蛍光顕微鏡により分析した。図3B:Jurkat(T細胞)及びDaudi(B細胞)を1:1の比で組み合わせ、0.1μg/mLの(19)−3sで30分間処理し、抗CD20−FITC及び抗CD3−PEで染色してから、蛍光顕微鏡により分析した。図3C:図3A及び3Bの合成画像は、緑色に染色されたDaudi細胞と赤色に染色されたJurkat細胞との間のシナプス形成を明らかに示している。図3D:(19)−3sが存在しない場合、シナプス形成は明らかではなかった。
(19)−3sの増加する濃度の関数としての、Daudi及びJurkat細胞の(19)−3s媒介細胞間結合用量反応分析を示す図である。
図5A:BITE(登録商標)及びDART(商標)により媒介された細胞間結合の比較を示す図である。BITE(登録商標)及びDART(商標)のデータは、Mooreら(2011,Blood117:4542−4551)から採用した。図5B:(19)−3sにより媒介された細胞間結合の比較を示す図である。
図6A:(19)−3s対照bsAbにより媒介された、T細胞とCapan−1膵臓がん細胞との間のシナプス形成を示す図である。CFSE標識化Capan−1細胞は、bsAbの存在下でPKH26標識化Jurkatと共インキュベートされた。図6B:(M1)−3sMUC5AC bsAbにより媒介された、T細胞とCapan−1膵臓がん細胞との間のシナプス形成を示す図である。CFSE標識化Capan−1細胞は、bsAbの存在下でPKH26標識化Jurkatと共インキュベートされた。図6C:(E1)−3s TROP−2標的化bsAbにより媒介された、T細胞とCapan−1膵臓がん細胞との間のシナプス形成を示す図である。CFSE標識化Capan−1細胞は、bsAbの存在下でPKH26標識化Jurkatと共インキュベートされた。
図7A:(19)−3sによるT細胞活性化を示す図である。CD69発現の上方制御は、T細胞活性化における早期のイベントである。PBMCと組み合わされたDaudi細胞を、示された抗体で一晩処理し、抗CD3−PE及び抗CD69−APCで染色してから、フローサイトメトリーにより分析した。CD69発現は、前方対側方散乱及び抗CD3染色により、T細胞のゲーティング後に評価した。Daudi細胞と、同数のPBMCとの組み合わせは、1.6%のCD69+T細胞をもたらした。3ng/mLの(19)−3sの添加は、27%のCD69+T細胞を誘導した。非標的化F(ab)2と融合したOkt3−scFv−AD2モジュールを含む対照コンストラクト[(M1)−3s]も、hA19−Fab−DDD2モジュールも、T細胞活性化を誘導しなかった。図7B:(19)−3sによるT細胞活性化を示す図である。精製されたT細胞と組み合わされたDaudi細胞を、示された抗体で一晩処理し、抗CD3−PE及び抗CD69−APCで染色してから、フローサイトメトリーにより分析した。CD69発現は、前方対側方散乱及び抗CD3染色により、T細胞のゲーティング後に評価した。(M1)−3s又はhA19−Fab−DDD2によるDaudi及び精製されたT細胞の処理は、未処理細胞合物と比較して、CD69+T細胞の数を増加させなかった(<4%)。代替的に、(19)−3sは、確実なT細胞活性化を誘導し、80%のCD69+細胞を生成した。図7C:(19)−3sによるT細胞活性化を示す図である。精製されたT細胞のみを、示された抗体で一晩処理し、抗CD3−PE及び抗CD69−APCで染色してから、フローサイトメトリーにより分析した。CD69発現は、前方対側方散乱及び抗CD3染色により、T細胞のゲーティング後に評価した。Daudi(標的)細胞を添加しないと、(19)−3sはCD69発現及びT細胞活性化を誘導しなかった。これらの結果は、T細胞活性化には、T細胞と標的細胞との間の(19)−3s媒介シナプス形成が必要であると共に十分であることを示している。
図8A:(19)−3sによるT細胞増殖の誘導を示す図である。PBMCを、3nM又は30pMの(19)−3sと共にインキュベートし、IL−2/PHA陽性対照及び(14)−3s(非標的結合対照)と比較した。図8B:(19)−3sによるT細胞増殖の誘導を示す図である。B細胞がないPBMCにおいてはT細胞増殖が観察されず、T細胞活性化及び増殖には標的細胞(B細胞)が必要であることを示していた。
図9A:(19)−3s T細胞再指向bsAbのin vitro細胞毒性を示す図である。Nalm−6、Raji、Ramos及びNamalwaがん細胞に対する細胞毒性の用量−反応曲線を、(19)−3s DNL(商標)bsAb複合物に対して決定した。図9B:(19)−3s T細胞再指向bsAbのin vitro細胞毒性を示す図である。Nalm−6、Raji、Ramos及びNamalwaがん細胞に対する細胞毒性の用量−反応曲線を、(14)−3s(非標的化)DNL(商標)bsAb複合物に対して決定した。図9C:2つの異なるドナー及びNalm−6がん細胞から得られたPBMC又はT細胞を使用して、一貫した結果が観察された。
図10A:(20)−3s、(22)−3s及び(C2)−3s T細胞再指向bsAbsのin vitro細胞毒性を示す図である。(20)−3s、(22)−3s及び(C2)−3s T細胞再指向bsAbsにより誘導されたNamalwa細胞に対する細胞毒性の用量−反応曲線が決定された。図10B:(20)−3s、(22)−3s及び(C2)−3s T細胞再指向bsAbのin vitro細胞毒性を示す図である。(20)−3s、(22)−3s及び(C2)−3s T細胞再指向bsAbにより誘導されたJeko細胞に対する細胞毒性の用量−反応曲線が決定された。図10C:(20)−3s、(22)−3s及び(C2)−3s T細胞再指向bsAbのin vitro細胞毒性を示す図である。(20)−3s、(22)−3s及び(C2)−3s T細胞再指向bsAbにより誘導されたDaudi細胞に対する細胞毒性の用量−反応曲線が決定された。
図11A:固形腫瘍細胞株におけるT細胞再指向bsAbのin vitro細胞毒性を示す図である。非標的化(19)−3s bsAbと比較した、(14)−3s bsAbのLS174T結腸腺癌細胞株に対する細胞毒性の用量−反応曲線が決定された。図11B:固形腫瘍細胞株におけるT細胞再指向bsAbのin vitro細胞毒性を示す図である。非標的化(19)−3s bsAbと比較した、(E1)−3s bsAbのCapan−1膵臓腺癌細胞株に対する細胞毒性の用量−反応曲線が決定された。図11C:固形腫瘍細胞株におけるT細胞再指向bsAbのin vitro細胞毒性を示す図である。非標的化(19)−3s bsAbと比較した、(E1)−3s及び(15)−3s bsAbのNCI−N87胃癌細胞株に対する細胞毒性の用量−反応曲線が決定された。
がん細胞株におけるT細胞再指向bsAbのin vitro細胞毒性の概要を示す図である。
図13A:(19)−3s bsAbを使用したRajiリンパ腫異種移植片のin vivo再標的化を示す図である。Raji Burkittリンパ腫(1×106細胞)異種移植片を有するNOD/SCIDマウスを、ヒトPBMC(5×106細胞)で再構成し、(19)−3sで1週間だけ処理し、矢印により示されるように投与した。対照は、未処理細胞によるものである。図13B:(19)−3s bsAbを使用したRajiリンパ腫異種移植片のin vivo再標的化を示す図である。Raji Burkittリンパ腫(1×106細胞)異種移植片を有するNOD/SCIDマウスを、ヒトPBMC(5×106細胞)で再構成し、(19)−3sで1週間だけ処理し、矢印により示されるように投与した。細胞は、130μgの単回投薬で処理した。図13C:(19)−3s bsAbを使用したRajiリンパ腫異種移植片のin vivo再標的化を示す図である。Raji Burkittリンパ腫(1×106細胞)異種移植片を有するNOD/SCIDマウスを、ヒトPBMC(5×106細胞)で再構成し、(19)−3sで1週間だけ処理し、矢印により示されるように投与した。細胞は、投薬当たり43μgで3回処理した。図13D:(19)−3s bsAbを使用したRajiリンパ腫異種移植片のin vivo再標的化を示す図である。Raji Burkittリンパ腫(1×106細胞)異種移植片を有するNOD/SCIDマウスを、ヒトPBMC(5×106細胞)で再構成し、(19)−3sで1週間だけ処理し、矢印により示されるように投与した。細胞は、投薬当たり26μgで5回処理した。
図14A:(19)−3s bsAbを使用したRajiリンパ腫異種移植片のin vivo再標的化に対する反復投薬の効果を示す図である。NOD/SCIDマウス異種移植片は、図13に対する説明文に示されるように調製した。(19)−3sは、矢印により示されるように投与した。図14Aは、未処理対照を示す。図14B:(19)−3s bsAbを使用したRajiリンパ腫異種移植片のin vivo再標的化に対する反復投薬の効果を示す図である。(19)−3sは、矢印により示されるように投与した。細胞は、静脈内投与による投薬当たり130μgの(19)−3sで2回処理した。図14C:(19)−3s bsAbを使用したRajiリンパ腫異種移植片のin vivo再標的化に対する反復投薬の効果を示す図である。(19)−3sは、矢印により示されるように投与した。細胞は、皮下投与による投薬当たり130μgの(19)−3sで2回処理した。図14D:(19)−3s bsAbを使用したRajiリンパ腫異種移植片のin vivo再標的化に対する反復投薬の効果を示す図である。(19)−3sは、矢印により示されるように投与した。細胞は、静脈内投与による投薬当たり65μgの(19)−3sで4回処理した。図14E:(19)−3s bsAbを使用したRajiリンパ腫異種移植片のin vivo再標的化に対する反復投薬の効果を示す図である。(19)−3sは、矢印により示されるように投与した。細胞は、静脈内投与による投薬当たり43μgの(19)−3sで6回処理した。図14F:(19)−3s bsAbを使用したRajiリンパ腫異種移植片のin vivo再標的化に対する反復投薬の効果を示す図である。(19)−3sは、矢印により示されるように投与した。細胞は、静脈内投与による投薬当たり43μgの対照(M1)−3sで6回処理した。
図15A:固形腫瘍異種移植片におけるT細胞再標的化bsAbのin vivo効力を示すグラフである。LS174T結腸腺癌を有するNOD/SCIDマウス異種移植片を調製した。マウスには、bsAbを含まないT細胞のみを投与した。図15B:固形腫瘍異種移植片におけるT細胞再標的化bsAbのin vivo効力を示すグラフである。LS174T結腸腺癌を有するNOD/SCIDマウス異種移植片を調製した。マウスは、示されるような(E1)−3s bsAbで処理した。図15C:固形腫瘍異種移植片におけるT細胞再標的化bsAbのin vivo効力を示すグラフである。Capan−1膵臓癌を有するNOD/SCIDマウス異種移植片を調製した。マウスには、bsAbを含まないPBMCのみを投与した。図15D:固形腫瘍異種移植片におけるT細胞再標的化bsAbのin vivo効力を示すグラフである。Capan−1膵臓癌を有するNOD/SCIDマウス異種移植片を調製した。マウスは、示されるような(14)−3s bsAbで処理した。
図16A:インターフェロン−αの存在下又は非存在下での(E1)−3s DNL(商標)複合物による腫瘍成長のin vivo阻害を示す図である。NOD/SCIDマウスにおけるCapan−1膵臓癌異種移植片を、インターフェロン−αの添加あり、又はなしで抗TROP−2×抗CD3bsAbにより処理した。インターフェロン−αは、TROP−2標的化DNL(商標)複合物の形態で添加された。図16B:インターフェロン−αの存在下又は非存在下での(E1)−3s DNL(商標)複合物による腫瘍成長のin vivo阻害を示す図である。NOD/SCIDマウスにおけるCapan−1膵臓癌異種移植片を、インターフェロン−αの添加あり、又はなしで抗TROP−2×抗CD3bsAbにより処理した。インターフェロン−αは、市販のPEGASYS(登録商標)(ペグインターフェロンアルファ−2a)として添加された。
インターフェロン−αあり、又はなしで(E1)−3sで処理されたNOD/SCIDマウスの生存曲線を示す図である。対照は、未処理、又はインターフェロン−αのみで処理された。
TF12対照と比較した、インターフェロン−αの存在下又は非存在下での(E1)−3s DNL(商標)複合物による腫瘍成長のin vivo阻害を示す図である。NOD/SCIDマウスにおけるCapan−1膵臓癌異種移植片を、PEGASYS(登録商標)として添加されるインターフェロン−αの添加あり、又はなしで抗TROP−2×抗CD3bsAbで処理し、未処理対照、TF12対照又はPEGASYS(登録商標)のみと比較した。
インターフェロン−α(PEGASYS(登録商標))あり、又はなしで(E1)−3sで処理されたNOD/SCIDマウスの生存曲線を示す図である。対照は、未処理、又はPEGASYS(登録商標)のみ又はTF12のみで処理された。
TF12対照と比較した、インターフェロン−αの存在下又は非存在下での(E1)−3s DNL(商標)複合物による腫瘍成長のin vivo阻害を示す図である。NOD/SCIDマウスにおけるNCI−N87ヒト胃がん異種移植片を、PEGASYS(登録商標)として添加されるインターフェロン−αの添加あり、又はなしで抗TROP−2×抗CD3bsAbで処理し、未処理対照、TF12対照又はPEGASYS(登録商標)のみと比較した。
インターフェロン−α(PEGASYS(登録商標))あり、又はなしで(E1)−3sで処理された、NCI−N87胃がん異種移植片を有するNOD/SCIDマウスの生存曲線を示す図である。対照は、未処理、又はPEGASYS(登録商標)のみ若しくはTF12のみで処理された。

0038

定義
別段に指定されない限り、「a」又は「an」は、「1つ以上」を意味する。

0039

本明細書で使用される場合、「及び」及び「又は」という用語は、接続語又は離接語のいずれかを意味するように使用され得る。つまり、両方の用語は、別段に指定されない限り、「及び/又は」と同等として理解されるべきである。

0040

「治療薬剤」は、疾患の治療において有用である原子、分子、又は化合物である。治療薬剤の例は、抗体、抗体断片、ペプチド、薬物、毒素酵素ヌクレアーゼホルモン、免疫賦活剤、アンチセンスオリゴヌクレオチド、小分子干渉RNA(siRNA)、キレート剤ホウ素化合物光活性薬剤、染料、及び放射性同位体を含む。

0041

「抗体」は、本明細書で使用される場合、全長(すなわち、自然発生的である、又は正常な免疫グロブリン遺伝子断片組換えプロセスにより形成される)免疫グロブリン分子(例えば、IgG抗体)、又は免疫グロブリン分子の免疫学的に活性な(すなわち、特異的結合)部分、例えば抗体断片を指す。「抗体」は、モノクローナルポリクローナル、二重特異性、多重特異性、マウス、キメラ、ヒト化及びヒト抗体を含む。

0042

の抗体」は、治療又は診断薬剤に結合していない抗体又はその抗原結合断片である。無傷の裸の抗体のFc部分は、補体結合及びADCC等のエフェクター機能を提供し得る(例えば、Markrides,Pharmacol Rev50:59−87,1998を参照されたい)。裸の抗体が細胞死を誘導する他の機構は、アポトーシスを含み得る。(Vaswani and Hamilton,Ann Allergy Asthma Immunol81:105−119,1998。)

0043

「抗体断片」は、例えばF(ab’)2、F(ab)2、Fab’、Fab、Fv、scFv、dAb等の無傷抗体の一部である。構造に関わらず、抗体断片は、全長抗体により認識される同じ抗原と結合する。例えば、抗体断片は、可変領域からなる単離された断片、例えば重鎖及び軽鎖の可変領域からなる「Fv」断片、又は軽鎖及び重鎖可変領域がペプチドリンカーにより接続された組換え単鎖ポリペプチド分子(「scFvタンパク質」)を含む。しばしば「scFv」と省略される「単鎖抗体」は、相互作用して抗原結合部位を形成するVH及びVLドメインの両方を含むポリペプチド鎖からなる。VH及びVLドメインは、通常、1〜25アミノ酸残基のペプチドにより連結される。抗体断片はまた、ジアボディ、トリアボディ及び単一ドメイン抗体(dAb)を含む。

0044

キメラ抗体」は、1つの種、好ましくはげ歯類抗体から得られる抗体の相補性決定領域(CDR)を含む可変ドメインを含有する組換えタンパク質であり、一方抗体分子の定常ドメインは、ヒト抗体の定常ドメインから得られる。獣医学的用途において、キメラ抗体の定常ドメインは、ネコ又はイヌ等の他の種の定常ドメインから得られてもよい。

0045

ヒト化抗体」は、1つの種からの抗体、例えばげっ歯類抗体からのCDRが、げっ歯類抗体の可変重鎖及び軽鎖から、ヒトフレームワーク領域(FR)配列を含むヒト重鎖及び軽鎖可変ドメインに移された組換えタンパク質である。抗体分子の定常領域は、ヒト抗体の定常領域から得られる。結合活性を維持するために、親(例えばマウス)抗体からの限定された数のFRアミノ酸残基が、対応するヒトFR残基に置換され得る。

0046

「ヒト抗体」は、抗原負荷応答して特定のヒト抗体を生成するように遺伝子操作されたトランスジェニックマウスから得られる抗体である。この技術において、ヒト重鎖及び軽鎖遺伝子座の要素は、内在性重鎖及び軽鎖遺伝子座の標的化された断絶を含有する胚幹細胞株から得られたマウスの株に導入される。トランスジェニックマウスは、ヒト抗原に特異的なヒト抗体を合成することができ、マウスを使用して、ヒト抗体分泌ハイブリドーマを生成することができる。トランスジェニックマウスからヒト抗体を得るための方法は、Green et al.,Nature Genet.7:13(1994)、Lonberg et al.,Nature368:856(1994)、及びTaylor et al.,Int.Immun.6:579(1994)により説明されている。ヒト抗体はまた、遺伝子又は染色体トランスフェクション法、及びファージディスプレイ技術により構築することができ、これらは全て、当該技術分野において知られている。(例えば、非免疫化ドナーからの免疫グロブリン可変ドメイン遺伝子レパートリーからの、in vitroでのヒト抗体及びその断片の生成に関して、McCafferty et al.,1990,Nature348:552−553を参照されたい)。この技術において、抗体可変ドメイン遺伝子は、繊維状バクテリオファージの主要又は微量外被タンパク質遺伝子にインフレームクローニングされ、ファージ粒子の表面上に機能性抗体断片として表示される。繊維状粒子ファージゲノム一本鎖DNAコピーを含有するため、抗体の機能的特性に基づく選択はまた、それらの特性を示す抗体をコードする遺伝子の選択をもたらす。このようにして、ファージは、B細胞の特性のいくつかを模倣する。ファージディスプレイは、様々な形式で行うことができるが、それらの検討については、例えば、Johnson and Chiswell,Current Opinion in Structural Biology3:5564−571(1993)を参照されたい。ヒト抗体はまた、in vitro活性化B細胞により生成されてもよい。(米国特許第5,567,610号及び米国特許第5,229,275号を参照されたい。)

0047

本明細書で使用される場合、「抗体融合タンパク質」という用語は、抗体又は抗体断片が別のタンパク質又はペプチド、例えば同じ又は異なる抗体若しくは抗体断片又はDDD若しくはADペプチドに連結した、組換えにより生成された抗原結合分子である。融合タンパク質は、単一の抗体成分、多価若しくは多重特異性の異なる抗体成分の組み合わせ、又は同じ抗体成分の複数のコピーを含んでもよい。融合タンパク質は、抗体又は抗体断片及び治療薬剤を追加的に含んでもよい。そのような融合タンパク質に好適な治療薬剤の例は、免疫賦活剤及び毒素を含む。1つの好ましい毒素は、リボヌクレアーゼRNase)、好ましくは組換えRNaseを含む。好ましい免疫賦活剤は、インターフェロン−α、インターフェロン−β又はインターフェロン−λ等のインターフェロンであってもよい。

0048

「多重特異性抗体」は、異なる構造の少なくとも2つの標的、例えば2つの異なる抗原、同じ抗原上の2つの異なるエピトープ、又はハプテン及び/若しくは抗原若しくはエピトープに同時に結合することができる抗体である。「多価抗体」は、同じ又は異なる構造の少なくとも2つの標的に同時に結合することができる抗体である。価数は、単一の抗原又はエピトープに対して抗体がいくつの結合手又は部位を有するか、すなわち一価二価、三価又は多価を示す。抗体の多価性は、抗原への結合において複数の相互作用を利用することができることを意味し、したがって抗原への結合の親和性を増加させる。特異性は、抗体がいくつの抗原又はエピトープに結合することができるか、すなわち単一特異性、二重特異性、三重特異性、多重特異性を示す。これらの定義を使用して、天然抗体、例えばIgGは、2つの結合手を有するため二価であるが、1つのエピトープに結合するため単一特異性である。多重特異性多価抗体は、異なる特異性の2つ以上の結合部位を有するコンストラクトである。

0049

「二重特異性抗体」は、異なる構造の2つの標的に同時に結合することができる抗体である。二重特異性抗体(bsAb)及び二重特異性抗体断片(bsFab)は、例えば、T細胞、NK細胞、単球又は好中球に特異的に結合する少なくとも1つの手と、疾患細胞、組織、器官又は病原体により生成された、又はそれと関連した抗原、例えば腫瘍関連抗原に特異的に結合する少なくとも1つの他の手とを有し得る。分子工学を使用して、様々な二重特異性抗体を生成することができる。

0050

本明細書に記載の抗体調製物又は組成物は、投与される量が生理学的に重要である場合、「治療上効果的な量」で投与されると言われる。薬剤は、その存在が受容対象の生理学に検出可能な変化をもたらす場合、生理学的に重要である。具体的実施形態において、抗体調製物は、その存在が抗腫瘍反応を惹起する、又は感染性疾患状態の兆候及び症状を軽減する場合、生理学的に重要である。生理学的に重要な効果はまた、標的細胞の成長阻害又は死滅をもたらす、受容対象における体液性及び/又は細胞性免疫反応誘起であってもよい。

0051

白血球再指向二重特異性抗体複合物
様々な実施形態が、疾患関連抗原に対する抗体又はその断片に結合した抗白血球抗体又はその断片を含むbsAbに関する。例示的なT細胞抗原は、CD2、CD3、CD4、CD5、CD6、CD8、CD25、CD28、CD30、CD40、CD40L、CD44、CD45、CD69及びCD90を含む。他の例示的な抗原は、NK細胞に対するCD8、CD16、CD56、CD57、ADAM17、及びCD137;単球に対するCD74、HLA−DRアルファ鎖、CD14、CD16、CD64及びCD89;並びに好中球に対するCEACAM6、CEACAM8、CD16b、CD32a、CD89、CD177、CD11a、CD11b及びSLC44A2から選択され得る。好ましい実施形態において、抗T細胞抗体はCD3に結合し、又は抗NK抗体はCD16に結合する。後述のように、腫瘍関連抗原(TAA)又は病原体発現抗原等の疾患関連抗原の多くの例が知られている。例示的な好ましいTAAは、CD19である。

0052

BITE(登録商標)(二重特異性T細胞エンゲージャー)(例えば、Nagorsen et al.,2009,Leukemia&Lymphoma50:886−91;Amann et al.,2009,J Immunother32:453−64;Baeuerle and Reinhardt,2009,Cancer Res 69:4941−44)及びDART(登録商標)(例えば、Moore et al.,2011,Blood117:4542−51;Veri et al.,2010,Arthritis Rheum62:1933−43を参照されたい)等、様々な二重特異性抗CD3×抗CD19抗体が当該技術分野において知られており、現在臨床開発中である。ブリナツモマブは、5アミノ酸リンカーにより接続され、自身にアニールして抗原結合部位を形成する単一ポリペプチド鎖として発現する、抗CD3及び抗CD19抗体断片のVH及びVLドメインを含むBITE(登録商標)抗体である。ブリナツモマブは、T細胞特異的CD3及びB細胞特異的CD19抗原を密接させ、がん細胞に対するT細胞特異性を必要としない、並んで位置するB細胞に対するT細胞毒性反応を開始させることにより作用すると考えられている(例えば、Portell et al.,2013,Clin Pharmacol5(Suppl1):5−11)。その短い半減期に起因して、ブリナツモマブは、効果的となるには継続的な静脈内注入を必要とする(Portell et al.,2013)。持続性又は再発性微小残存病変を有するB細胞ALL患者の第II相試験では、約80%の完全寛解率が報告された(Portell et al.,2013)。

0053

非ホジキンリンパ腫患者におけるがん細胞を排除するために、0.005mg/m2/日という低いブリナツモマブ用量が効果的であると報告された(Bargou et al.,2008,Science321:974−77)。0.015mgの用量レベルで開始して、部分又は完全寛解が観察され、また、0.06mgの用量で試験された6名全ての患者が腫瘍退縮を経験した(Bargou et al.,2008)。In vitroでは、ブリナツモマブは、10pg/mLの濃度で、MEC−1細胞の50%細胞溶解を誘導した(Topp et al.,2012,Blood120:5185−87;Bassan et al.,2012,Blood120:5094−95)。

0054

ブリナツモマブの抗CD19部分は、HD37ハイブリドーマから得られており(例えば、米国特許第7,575,923号を参照されたく、この実施例の項は、参照により本明細書に組み込まれる)、公的に入手可能である(例えば、Santa Cruz Biotechnologyカタログ番号sc−18894)。ブリナツモマブの抗CD3部分は、TR66ハイブリドーマから得られており(米国特許第7,575,923号;Traunecker et al.,1991,EMBO J.10:3655−59)、同じく公的に入手可能である(例えば、Enzo Life Sciences、カタログ番号ALX−804−822−C100)。

0055

請求される方法及び組成物において使用され得るCD3に対する様々な抗体が公知であり、並びに/又は、例えばLSBio(カタログ番号LS−B6698、LS−B8669;LS−B8765、LS−C96311、LS−C58677等);ABCAM(登録商標)(カタログ番号ab5690、ab16669、ab699、ab828、ab8671等);Santa Cruz Biotechnology(カタログ番号sc−20047、sc−20080、sc−19590、sc−59008、sc−101442等);及び多くの他の供給業者から市販されている。

0056

好ましい実施形態において、DNL(商標)複合物の一部として使用される抗CD3部分のアミノ酸配列は、以下で配列番号96から配列番号101に開示されている。しかしながら、当業者には、請求される方法及び組成物において任意の知られた抗CD3抗体を使用することができることが理解される。好ましくは、有用な抗体部分は、ヒト化又はヒトである。

0057

請求される方法及び組成物において使用され得るCD19に対する様々な抗体が公知であり、並びに/又は、例えばSanta Cruz Biotechnology(カタログ番号sc−390244、sc−373897、sc−18894、sc−18896等);ABCAM(登録商標)(カタログ番号ab25232、ab134114、ab140981、ab1255等);ABBIOTEC(商標)(カタログ番号252262、252248、250585、251063等)及び多くの他の販売会社から市販されている。

0058

好ましい実施形態において、抗CD19抗体部分は、軽鎖CDR配列CDR1KASQSVDYDGDSYLN(配列番号90);CDR2DASNLVS(配列番号91);及びCDR3QQSTEDPWT(配列番号92)、並びに重鎖CDR配列CDR1SYWMN(配列番号93);CDR2QIWPGDGDTNYNGKFKG(配列番号94)及びCDR3RETTTVGRYYYAMDY(配列番号95)を含む、ヒト化A19抗体である。

0059

他の抗CD3×抗CD19二重特異性抗体、例えばHD37の抗CD19Fv配列及びTR66の抗CD3Fv配列も組み込むDART(登録商標)が知られている(Moore et al.,2011,Blood117:4542−51;Veri et al.,2010,Arthritis Rheum62:1933−43)。Mooreら(2011)は、DART(登録商標)二重特異性抗体が、B細胞溶解の誘導において、同一の抗CD19及び抗CD3可変領域配列を保持する単鎖二重特異性抗体(BITE(登録商標))よりも強力であり、EC50値がpg/mL範囲であることを報告した(Moore et al.,2011)。DART(登録商標)及びBITE(登録商標)以外の他の抗CD3×抗CD19二重特異性抗体が報告されている(例えば、Wei et al.,2012,Cell Oncol35:423−34;Portner et al.,2012,Cancer Immunol Immunother61:1869−75;Zhou et al.,2012,Biotechnol Lett.34:1183−91を参照されたい)。ある特定の実施形態において、任意の既知の抗CD3×抗CD19二重特異性抗体を使用して、疾患関連細胞又は病原体に対する免疫反応を誘導することができる。

0060

カツマキソマブは、欧州において転移がんに関連した悪性腹水の治療に承認されている抗CD3×抗EpCAM二重特異性抗体である(Chames&Baty,2009,MAbs1:539−47)。マウスモデル系において、カツマキソマブは、10pMの濃度範囲で腫瘍細胞を死滅させることができ、黒色腫腫瘍の全滅をもたらすことが報告された(Chames&Baty,2009)。また、悪性腹水を有する卵巣がん患者に対する人間での臨床試験では、統計的に有意な効用が示された(Chames&Baty,2009)。しかしながら、ラット/マウスハイブリッドbsAbの高い免疫原性が、抗体の静脈内投与を制限し得る(Chames&Baty,2009)。抗腫瘍bsAbの使用は、抗CD3×抗CD19に限定されず、抗HER2×抗CD64(MDX−210、MDX−H210)、抗EGFR×抗CD64(MDX−447)、抗CD30×抗CD16(HRS−3/A9)、抗HER2×抗CD3(Her2Bi)、抗CD20×抗CD3(CD20Bi、Bi20)、抗EpCAM×抗CD3(カツマキソマブ、MT110)、抗HER2×抗CD3(エルツマキソマブ)、及び抗NG2×抗CD28(rM28)も含んでいる(Chames&Baty,2009)。

0061

最も好ましい実施形態において、抗CD3×抗CD19二重特異性抗体又は他の白血球再指向bsAbは、以下の実施例1において開示されるように、DNL(商標)コンストラクトとして作製される。当業者には、主題の白血球再指向二重特異性抗体が、抗CD3×抗CD19コンストラクトに限定されず、抗CD3抗体部分に結合した任意の知られた疾患関連抗原に対する抗体を含み得ることが理解される。代替として、CD3以外の他のT細胞抗原、又はNK細胞、単球若しくは好中球上に発現する他の抗原に対する抗体もまた使用され得る。例示的なT細胞抗原は、CD2、CD3、CD4、CD5、CD6、CD8、CD25、CD28、CD30、CD40、CD40L、CD44、CD45、CD69及びCD90を含むが、これらに限定されない。他の例示的な抗原は、NK細胞に対するCD8、CD16、CD56、CD57、ADAM17、KIR及びCD137;単球に対するCD74、HLA−DRアルファ鎖、CD14、CD16、CD64及びCD89;並びに好中球に対するCEACAM6、CEACAM8、CD16b、CD32a、CD89、CD177、CD11a、CD11b及びSLC44A2から選択され得る。白血球抗原のそれぞれに対する抗体は公知であり、及び/又は市販されている(例えば、ABCAM(登録商標)カタログ番号ab131276、ab139266、ab8360、ab51312、ab846、ab133616、ab75877、ab133255、ab109217、ab93278、ab17147、ab115851、ab128955、ab13463、ab85986;Santa Cruz Biotechnologyカタログ番号sc−46683、sc−59047;Enzo Life Sciences、Inc.カタログ番号ALX−805−037−C100;Sino Biological Inc.カタログ番号12211−RP02、11150−R074;Milliporeカタログ番号04−1102、04−1102、MAB1406を参照されたい)。これらの、及び数々の他の抗白血球抗体は、公的に利用可能であり、主題の白血球再指向bsAbにおいて使用され得ただろう。後述のように、広範な疾患関連抗原に対する数々の抗体が公知であり、及び/又は市販されており、主題の白血球再指向二重特異性抗体において使用され得ただろう。有用となり得る他の例示的な白血球再指向bsAbは、FBTA05(抗CD20×抗CD3)及びTRBS07(抗GD2×抗CD3)を含む。

0062

インターフェロン療法
様々な実施形態において、白血球再指向bsAb、抗体−薬物複合体及び/又はチェックポイント阻害剤抗体は、インターフェロン−α、インターフェロン−β又はインターフェロン−λ等の1種以上のインターフェロンと組み合わせて使用され得る。ヒトインターフェロンは、当該技術分野において周知であり、ヒトインターフェロンのアミノ酸配列は、公開データベース(例えば、GenBankAccession Nos.AAA52716.1;AAA52724;AAC41702.1;EAW56871.1;EAW56870.1;EAW56869.1)から容易に入手することができる。ヒトインターフェロンはまた、様々な販売会社(例えば、Cell Signaling Technology,Inc.、Danvers、MA;Genentech、South San Francisco、CA;EMD Millipore、Billerica、MA)から商業的に入手することができる。

0063

インターフェロン−α(IFNα)は、がんの動物モデル(Ferrantini et al.,1994,J Immunol153:4604−15)及びヒトがん患者(Gutterman et al.,1980,Ann Intern Med93:399−406)において抗腫瘍活性を有することが報告されている。IFNαは、がん遺伝子の下方制御腫瘍抑制因子の上方制御、腫瘍表面MHCクラスIタンパク質の発現の増加による免疫認識の向上、アポトーシスの増強、及び化学療法薬に対する感作を含む、様々な直接的抗腫瘍効果を発揮することができる(Gutterman et al.,1994,PNAS USA91:1198−205;Matarrese et al.,2002,Am J Pathol160:1507−20;Mecchia et al.,2000,Gene Ther7:167−79;Sabaawy et al.,1999,Int J Oncol14:1143−51;Takaoka et al,2003,Nature424:516−23)。いくつかの腫瘍に対しては、IFNαは、STAT1の活性化による直接的及び強力な抗増殖効果を有し得る(Grimley et al.,1998Blood91:3017−27)。インターフェロン−α2bは、hL243抗HLA−DR抗体等の抗腫瘍抗体に複合化されており、in vitro及びin vivoでリンパ腫及び黒色腫細胞枯渇させる(Rossi et al.,2011,Blood118:1877−84)。

0064

間接的には、IFNαは血管形成を阻害し得(Sidky and Borden,1987,Cancer Res47:5155−61)、宿主免疫細胞刺激し得るが、これは、全体的な抗腫瘍反応に不可欠となり得るがほとんど正当に評価されていない(Belardelli et al.,1996,Immunol Today17:369−72)。IFNαは、骨髄細胞(Raefsky et al,1985,J Immunol135:2507−12;Luft et al,1998,J Immunol161:1947−53)、T細胞(Carrero et al,2006,J Exp Med203:933−40;Pilling et al.,1999,Eur J Immunol29:1041−50)、及びB細胞(Le et al,2001,Immunity14:461−70)に対する効果を通して、免疫反応に対し多面的な影響を有する。自然免疫系の重要な調整因子として、IFNαは、樹状細胞の急速な分化及び活性化を誘導し(Belardelli et al,2004,Cancer Res64:6827−30;Paquette et al.,1998,J Leukoc Biol64:358−67;Santini et al.,2000,J Exp Med191:1777−88)、NK細胞の細胞毒性、遊走、サイトカイン産生及び抗体依存性細胞毒性(ADCC)を高める(Biron et al.,1999,Ann Rev Immunol17:189−220;Brunda et al.1984,Cancer Res44:597−601)。

0065

インターフェロン−βは、様々な固形腫瘍の治療に有効であることが報告されている。HCV関連肝臓がんを有する患者における原発腫瘍の完全切除又はアブレーション後、600万単位のIFN−βで週2回36ヶ月間治療された患者は、肝細胞癌の再発の低下を示した(Ikeda et al.,2000,Hepatology32:228−32)。インターフェロン−βによる遺伝子治療は、神経膠腫、黒色腫及び腎細胞癌のアポトーシスを誘導した(Yoshida et al.,2004,Cancer Sci95:858−65)。内因性のIFN−βは、in vivoで血管形成を阻害することにより、腫瘍成長を阻害することが観察されている(Jablonska et al.,2010,J Clin Invest.120:1151−64)。

0066

III型インターフェロンと指定されるIFN−λは、IFN−λ1、2、3からなるサイトカイン(それぞれインターロイキン−29、28A、及び28Bとも呼ばれる)の新しく説明された群であり、それらは染色体19上に位置する3つの異なる遺伝子により遺伝的にコードされている(Kotenko et al.,2003,Nat Immunol4:69−77;Sheppard et al.,2003,Nat Immunol4:63−8)。タンパク質レベルでは、IFN−λ2及びIFN−λ3は極めて相同性であり、96%のアミノ酸同一性を有し、一方IFN−λ1は、IFN−λ2及びIFN−λ3と約81%の相同性を共有している(Sheppard et al.,2003,Nat Immunol4:63−8)。IFN−λは、JAK1及びTYK2キナーゼの活性化、STATタンパク質のリン酸化、並びにIFN刺激遺伝子因子3(ISGF3)の転写複合物の活性化を含む、I型IFNにより誘導されるものと同様のJAK/STAT経路を介してシグナル伝達を活性化する(Witte et al.,2010,Cytokine Growth Factor Rev21:237−51;Zhou et al.,2007,J Virol81:7749−58)。

0067

III型IFN系とI型IFN系との間の大きな違いは、それぞれの受容体複合物の分布である。IFN−α/βは、2つの広範囲に発現したI型インターフェロン受容体を介してシグナル伝達し、IFN−α/β投与に関連した結果的な全身毒性が、その治療薬剤としての使用を制限している(Pestka et al.,2007,J Biol Chem282:20047−51)。対照的に、IFN−λは、固有のIFN−λ受容体1(IFN−λR1)及びIL−10受容体2(IL−10R2)からなるヘテロ二量体受容体複合物を介してシグナル伝達する。以前に報告されたように(Witte et al.,2009,Genes Immun10:702−14)、IFN−λR1は、非常に制限された発現パターンを有し、上皮細胞メラニン細胞、及び肝細胞において最も高いレベルであり、原発中枢神経系(CNS)細胞において最も低いレベルである。血液免疫系細胞は、IFN−λ作用を阻害する、高レベルの短いIFN−λ受容体スプライス変異(sIFN−λR1)を発現する。神経細胞及び免疫細胞の制限された反応性は、IFN−α療法に関連することの多い重度の毒性が、IFN−λにより存在しない、又は大幅に低減され得ることを示唆している(Witte et al.,2009,Genes Immun10:702−14;Witte et al.,2010,Cytokine Growth Factor Rev21:237−51)。最近の出版物によれば、IFN−α及びIFN−λは肝細胞においてISG(インターフェロン刺激遺伝子)の共通の組の発現を誘導するが、IFN−αとは異なり、IFN−λの投与は、精製されたリンパ球又は単球において、STAT活性化又はISG発現を誘導しないことが報告されている(Dickensheets et al.,2013,J Leukoc Biol.93、12/20/12にオンライン公開)。IFN−λは、IFN−α療法に関連することの多い白血球減少症を誘導する可能性が低いため、慢性HCV感染の治療においてIFN−αよりも優れている可能性があることが示唆された(Dickensheets et al.,2013)。

0068

IFN−λは、IL−10関連サイトカインに類似した構造的特徴を示すが、機能的にはI型IFN様抗ウイルス及び抗増殖活性を有する(Witte et al.,2009,Genes Immun10:702−14;Ank et al.,2006,J Virol80:4501−9;Robek et al.,2005,J Virol79:3851−4)。IFN−λ1及びIFN−λ2は、DNAウイルス(B型肝炎ウイルス(Robek et al.,2005,J Virol79:3851−4、Doyle et al.,2006,Hepatology44:896−906)及び単純ヘルペスウイルス2型(Ank et al.,2008,J Immunol180:2474−85))、ss(+)RNAウイルスEMCV;Sheppard et al.,2003,Nat Immunol4:63−8)及びC型肝炎ウイルス(Robek et al.,2005,J Virol79:3851−4、Doyle et al.,2006,Hepatology44:896−906;Marcello et al.,2006,Gastroenterol131:1887−98;Pagliaccetti et al.,2008,J Biol Chem283:30079−89)、ss(−)RNAウイルス(水疱性口内炎ウイルス;Pagliaccetti et al.,2008,J Biol Chem283:30079−89)及びインフルエンザAウイルス(Jewell et al.,2010,J Virol84:11515−22)及び二本鎖RNAウイルス、例えばロタウイルス(Pott et al.,2011,PNAS USA108:7944049)を含む、様々なウイルスのウイルス複製又は細胞変性効果を低減することが実証されている。IFN−λ3は、遺伝子研究から、HCV感染における重要なサイトカインとして同定されており(Ge et al.,2009,Nature461:399−401)、またEMCVに対する強力な活性を示している(Dellgren et al.,2009,Genes Immun10:125−31)。ライノウイルス誘導IFN−λ産生の欠如が、ライノウイルス誘導喘息増悪重症度と極めて相関することが報告され(Contoli et al.,2006,Nature Med12:1023−26)、IFN−λ療法は、アレルギー性喘息の治療の新たなアプローチとして示唆されている(Edwardsand Johnston,2011,EMBO Mol Med3:306−8;Koltsida et al.,2011,EMBO Mol Med3:348−61)。

0069

IFN−λの抗増殖活性が、神経内分泌癌BON1(Zitzmann et al.,2006,Biochem Biophys Res Commun344:1334−41)、膠芽腫LN319(Meager et al.,2005,Cytokine31:109−18)、不死化ケラチノサイトHaCaT(Maher et al.,2008,Cancer Biol Ther7:1109−15)、黒色腫F01(Guenterberg et al.,2010,Mol Cancer Ther9:510−20)、及び食道癌TE−11(Li et al.,2010,Eur J Cancer46:180−90)を含むいくつかのヒトがん細胞株において確立されている。動物モデルにおいて、IFN−λは、自然及び適応免疫反応を通して腫瘍のアポトーシスと破壊の両方を誘導し、IFN−λの局所送達がヒト悪性腫瘍の治療において有用な付加的戦略となり得ることが示唆されている(Numasaki et al.,2007,J Immunol178:5086−98)。Fab連結インターフェロン−λは、標的細胞において強力な抗腫瘍及び抗ウイルス活性を有することが実証されている(Liu et al.,2013,PLoS One8:e63940)。

0070

臨床設定において、PEG化IFN−λ1(PEG−IFN−λ1)は、慢性C型肝炎ウイルス感染患者に対して暫定的に使用されている。第Ib相試験(n=56)において、IFN−α療法後に再発した遺伝子型1型HCV患者にPEG−IFN−λ1を投与すると、抗ウイルス活性が、全ての用量レベル(0.5〜3.0μg/kg)で観察され、ウイルス量が2.3logから4.0logに低下した(Muir et al.,2010,Hepatology52:822−32)。第IIb相試験(n=526)では、HCV遺伝子型1及び4型の患者が、PEG−IFN−αと比較して、PEG−IFN−λ1による治療に対する大幅に高い反応率を有することが示された。同時に、I型インターフェロン治療に一般的に関連する有害事象の割合が、PEG−IFN−αよりもPEG−IFN−λ1において低かった。好中球減少症及び血小板減少症は稀にしか観察されず、インフルエンザ様症状貧血、及び骨格筋症状の割合が、PEG−IFN−α処理で観察された割合の約1/3に減少した。しかしながら、重篤な有害事象、うつ病及び他の一般的な有害事象の割合(≧10%)は、PEG−IFN−λ1とPEG−IFN−αとの間で同様であった。PEG−IFN−αと比較して、より高い割合の肝毒性が、最高用量のPEG−IFN−λ1で観察された(”Investigational Compound PEG−Interferon Lambda Achieved Higher Response Rates with Fewer Flu−like and Musculoskeletal Symptoms and Cytopenias Than PEG−Interferon Alfa in Phase IIb Study of526Treatment−Naive Hepatitis C Patients,”April2,2011,Press Release from Bristol−Myers Squibb)。

0071

様々な実施形態において、白血球再指向二重特異性抗体、ADC及び/又はチェックポイント阻害剤mAbは、インターフェロン−α、インターフェロン−β、インターフェロン−λ1、インターフェロン−λ2、又はインターフェロン−λ3等の1種以上のインターフェロンと組み合わせて使用され得る。他の薬剤と使用される場合、インターフェロンは、他の薬剤の前に、それと同時に、又はその後に投与され得る。同時に投与される場合、インターフェロンは、他の薬剤に複合化していてもよく、又はそれとは別個であってもよい。

0072

チェックポイント阻害剤抗体
がん治療のためのチェックポイント阻害剤抗体に関する研究は、以前はがん治療に抵抗性であると考えられていたがんにおいて、前例のない反応率をもたらした(例えば、Ott&Bhardwaj,2013,Frontiers in Immunology4:346;Menzies&Long,2013,Ther Adv Med Oncol5:278−85;Pardoll,2012,Nature Reviews Cancer12:252−64;Mavilio&Lugliを参照されたい)。CTLA4、PD1及びPD−L1等の免疫系チェックポイントに対するアンタゴニストチェックポイント遮断抗体による治療は、がん及び他の疾患に対する、最も有望な新しい免疫治療手段の1つである。抗がん剤の大部分と対照的に、チェックポイント阻害剤は、腫瘍細胞を直接的には標的化しないが、むしろ免疫系の内因性抗がん活性を高めるために、リンパ球受容体又はそのリガンドを標的化する。(Pardoll,2012,Nature Reviews Cancer12:252−264。)そのような抗体は、主に疾患細胞、組織又は病原体に対する免疫反応を制御することにより作用するため、それらは、他の治療法、例えば主題の白血球再指向二重特異性抗体、ADC及び/又はインターフェロンと組み合わせて使用されて、そのような薬剤の抗腫瘍効果を高めることができる。チェックポイント活性化はまた、慢性感染症とも関連し得るため(Nirschl&Drake,2013,Clin Cancer Res19:4917−24)、そのような併用療法はまた、感染性疾患の治療に有用となり得る。

0073

現在、腫瘍は、特に腫瘍抗原に特異的なT細胞において、ある特定の免疫チェックポイント経路を共選択(co−opt)することにより免疫学的監視を回避することができることが明らかである(Pardoll,2012,Nature Reviews Cancer12:252−264)。多くのそのような免疫チェックポイントは、リガンド−受容体相互作用により開始されるため、それらは、リガンド及び/又はそれらの受容体に対する抗体により容易にブロックされ得る(Pardoll,2012,Nature Reviews Cancer12:252−264)。CTLA4、PD1及びPD−L1に対するチェックポイント阻害剤抗体が最も臨床的に進んでいるが、LAG3、B7−H3、B7−H4及びTIM3等の他の潜在的なチェックポイント抗原が知られており、治療抗体の標的として使用され得る(Pardoll,2012,Nature Reviews Cancer12:252−264)。

0074

プログラム細胞死タンパク質1(PD1、CD279としても知られる)は、B細胞及びNK細胞上に発現する、免疫グロブリンスーパーファミリーの細胞表面膜タンパク質をコードする(Shinohara et al.,1995,Genomics23:704−6;Blank et al.,2007,Cancer Immunol Immunother56:739−45;Finger et al.,1997,Gene197:177−87;Pardoll,2012,Nature Reviews Cancer12:252−264)。PD1の主要な役割は、感染に応答した炎症中の周辺組織におけるT細胞の活性を制限すること、及び自己免疫を制限することである(Pardoll,2012,Nature Reviews Cancer12:252−264)。PD1発現は、活性化されたT細胞において誘導され、その内因性リガンドの1つに対するPD1の結合は、刺激性キナーゼを阻害することによりT細胞活性化を阻害するように作用する(Pardoll,2012,Nature Reviews Cancer12:252−264)。PD1はまた、TCR「停止シグナル」を阻害するように作用する(Pardoll,2012,Nature Reviews Cancer12:252−264)。PD1は、Treg細胞上に高度に発現し、リガンドの存在下でその増殖を増強し得る(Pardoll,2012,Nature Reviews Cancer12:252−264)。

0075

抗PD1抗体は、黒色腫、非小細胞肺がん、膀胱がん、前立腺癌、結腸直腸がん、頭頸部がん、トリプルネガティブ乳がん白血病、リンパ腫及び腎細胞がんの治療に使用されている(Topalian et al.,2012,N Engl J Med366:2443−54;Lipson et al.,2013,Clin Cancer Res19:462−8;Berger et al.,2008,Clin Cancer Res14:3044−51;Gildener−Leapman et al.,2013,Oral Oncol49:1089−96;Menzies&Long,2013,Ther Adv Med Oncol5:278−85)。PD1/PD−L1及びCTLA4は、異なる経路により作用するため、それぞれに対するチェックポイント阻害剤抗体との併用療法が、免疫反応の向上を提供し得ることが可能である。

0076

例示的な抗PD1抗体は、ラムブロリズマブ(MK−3475、MERCK)、ニボルマブ(BMS−936558、BRISTOL−MYERSSQUIBB)、AMP−224(MERCK)、及びピジリズマブ(CT−011、CURETECHLTD.)を含む。抗PD1抗体は、例えば、ABCAM(登録商標)(AB137132)、BIOLEGEND(登録商標)(EH12.2H7、RMP1−14)及びAFFYMETRIX EBIOSCIENCE(J105、J116、MIH4)から市販されている。

0077

プログラム細胞死1リガンド1(PD−L1、CD274及びB7−H1としても知られる)は、活性化されたT細胞、B細胞、骨髄細胞及びマクロファージ上に見られるPD1のリガンドである。PD1には2つの内因性リガンド、PD−L1及びPD−L2が存在するが、抗腫瘍療法は、抗PD−L1抗体に重点を置いている。PD1及びPD−L1の複合物は、CD8+T細胞の増殖を阻害し、免疫反応を低減させる(Topalian et al.,2012,N Engl J Med366:2443−54;Brahmer et al.,2012,N Eng J Med366:2455−65)。抗PD−L1抗体は、非小細胞肺がん、黒色腫、結腸直腸がん、腎細胞がん、膵臓がん、胃がん、卵巣がん、乳がん、及び血液悪性腫瘍の治療に使用されている(Brahmer et al.,N Eng J Med366:2455−65;Ott et al.,2013,Clin Cancer Res19:5300−9;Radvanyi et al.,2013,Clin Cancer Res19:5541;Menzies&Long,2013,Ther Adv Med Oncol5:278−85;Berger et al.,2008,Clin Cancer Res14:13044−51)。

0078

例示的な抗PD−L1抗体は、MDX−1105(MEDAREX)、MEDI4736(MEDIMMUNE)MPDL3280A(GENENTECH)及びBMS−936559(BRISTOL−MYERSSQUIBB)を含む。抗PD−L1抗体はまた、例えばAFFYMETRIX EBIOSCIENCE(MIH1)から市販されている。

0079

細胞毒性Tリンパ球抗原4(CTLA4、CD152としても知られる)もまた、T細胞上にのみ発現する免疫グロブリンスーパーファミリーのメンバーである。CTLA4は、T細胞活性化を阻害するように作用し、ヘルパーT細胞活性を阻害し、調節性T細胞免疫抑制活性を高めることが報告されている(Pardoll,2012,Nature Reviews Cancer12:252−264)。CTL4−Aの正確な作用機序は未だ調査中であるが、CD80及びCD86への結合においてCD28を打ち負かすことにより、並びにT細胞に阻害剤シグナルを活発に送達することによりT細胞活性化を阻害することが示唆されている(Pardoll,2012,Nature Reviews Cancer12:252−264)。抗CTL4A抗体は、黒色腫、前立腺癌、小細胞肺がん、非小細胞肺がんの治療のための臨床試験において使用されている(Robert&Ghiringhelli,2009,Oncologist14:848−61;Ott et al.,2013,Clin Cancer Res19:5300;Weber,2007,Oncologist12:864−72;Wada et al.,2013,J Transl Med11:89)。抗CTL4Aの顕著な特徴は、抗腫瘍効果の反応速度論であり、生理学的反応に必要な最初の処理後6ヶ月までの遅延期間を有する(Pardoll,2012,Nature Reviews Cancer12:252−264)。いくつかの場合において、腫瘍は、治療開始後、減少が見られる前に実際にはサイズが増加し得る(Pardoll,2012,Nature Reviews Cancer12:252−264)。

0080

例示的な抗CTLA4抗体は、イピリムマブ(Bristol−Myers Squibb)及びトレメリムマブ(PFIZER)を含む。抗PD1抗体は、例えば、ABCAM(登録商標)(AB134090)、SINO BIOLOGICALINC.(11159−H03H、11159−H08H)、及びTHERMO SCIENTIFIC PIERCE(PA5−29572、PA5−23967、PA5−26465、MA1−12205、MA1−35914)から市販されている。イピリムマブは、最近、FDAにより転移黒色腫の治療に対する認可を受けた(Wada et al.,2013,J Transl Med11:89)。

0081

当業者には、それを必要とする患者に、単独で、又は1種以上の他の薬剤と組み合わせて投与するチェックポイント阻害剤抗体の最適な用量を決定する方法が、当該技術分野において周知である標準的な用量−反応及び毒性試験により決定され得ることが理解される。例示的実施形態において、チェックポイント阻害剤抗体は、好ましくは、約3週間毎又は約6週間毎の投与により、約0.3〜10mg/kgで、又は最大耐量で投与され得る。代替として、チェックポイント阻害剤抗体は、約3mg/kgの第1の用量、約5mg/kgの第2の用量、及び約9mg/kgの第3の用量での投与を含む増量投薬計画により投与され得る。代替として、増量投薬計画は、チェックポイント阻害剤抗体の約5mg/kgの第1の用量及び約9mg/kgの第2の用量での投与を含む。別の段階的増量投薬計画は、チェックポイント阻害剤抗体の約3mg/kgの第1の用量、約3mg/kgの第2の用量、約5mg/kgの第3の用量、約5mg/kgの第4の用量、及び約9mg/kgの第5の用量での投与を含んでもよい。別の態様において、段階的増量投薬計画は、5mg/kgの第1の用量、5mg/kgの第2の用量、及び9mg/kgの第3の用量での投与を含んでもよい。チェックポイント阻害剤mAbの例示的な報告されている用量は、4回の投薬にわたる3週間毎に投与される3mg/kgのイピリムマブ;8サイクルにわたる3週間毎の10mg/kgのイピリムマブ;4サイクルにわたる3週間毎の、次いで合計3年にわたる12週間毎の10mg/kg;2週間又は3週間毎の10mg/kgのMK−3475;3週間毎の2mg/kgのMK−3475;3ヶ月毎の15mg/kgのトレメリムマブ;96週間までの2週間毎の0.1、0.3、1、3又は10mg/kgのニボルマブ;96週間までの2週間毎の0.3、1、3、又は10mg/kgのBMS−936559を含む(Kyi&Postow,October23,2013,FEBSLett [Epub ahead of print];Callahan&Wolchok,2013,J Leukoc Biol94:41−53)。

0082

腫瘍及び/又は病原体に対する免疫反応を刺激するこれらの、及び他の既知の薬剤は、改善されたがん治療のために、白血球再指向二重特異性抗体のみと組み合わせて、又はさらにインターフェロン−α等のインターフェロン、及び/若しくは抗体−薬物複合体と組み合わせて使用され得る。組み合わせて使用され得る他の既知の共刺激経路調整因子は、アガトリモド、ベラセプト、ブリナツモマブ、CD40リガンド、抗B7−1抗体、抗B7−2抗体、抗B7−H4抗体、AG4263、エリトラン、抗OX40抗体、ISF−154、及びSGN−70;B7−1、B7−2、ICAM−1、ICAM−2、ICAM−3、CD48、LFA−3、CD30リガンド、CD40リガンド、熱安定性抗原、B7h、OX40リガンド、LIGHT、CD70及びCD24を含むが、これらに限定されない。

0083

ある特定の実施形態において、抗KIR抗体はまた、白血球再指向bsAb、インターフェロン、ADC及び/又はチェックポイント阻害剤抗体と組み合わせて使用され得る。NK細胞は、自然の細胞毒性により、及び抗体により活性された場合のADCCにより、抗腫瘍及び抗感染薬剤活性を媒介する(Kohrt et al.,2013,Blood,[Epub ahead of print12/10/13])。細胞毒性反応の程度は、NK細胞により受容される阻害及び活性化シグナルバランスにより決定される(Kohrt et al.,2013)。キラー細胞免疫グロブリン様受容体(KIR)は、NK細胞反応を減少させる阻害シグナルを媒介する。リルルマブ(Innate Pharma)及びIPH2101(Innate Pharma)等の抗KIR抗体は、多発性骨髄腫における抗腫瘍活性を示している(Benson et al.,2012,Blood120:4324−33)。In vitroにおいて、抗KIR抗体は、NK細胞と標的細胞との寛容原性相互作用を防止し、腫瘍細胞に対するNK細胞の細胞毒性反応を強化する(Kohrt et al.,2013)。In vivoにおいて、リツキシマブ(抗CD20)と組み合わせると、抗KIR抗体は、0.5mg/kgの用量で、リンパ腫腫瘍に対するNK細胞媒介性のリツキシマブ依存性細胞毒性の向上を誘導した(Kohrt et al.,2013)。抗KIR mAbは、腫瘍細胞又は病原生物に対する細胞毒性を増強するために、ADC、白血球再指向bsAb、インターフェロン及び/又はチェックポイント阻害剤抗体と組み合わされてもよい。

0084

一般的な抗体技術
事実上任意の標的抗原に対するモノクローナル抗体を調製するための技術は周知である。例えば、Kohler and Milstein,Nature256:495(1975)、及びColigan et al.(eds.),CURRENTPROTOCOLS INIMMUNOLOGY,VOL.1,pages2.5.1−2.6.7(John Wiley&Sons1991)を参照されたい。簡潔に説明すると、モノクローナル抗体は、抗原を含む組成物をマウスに注射し、脾臓を取り出してBリンパ球を得、Bリンパ球を骨髄腫細胞と融合させてハイブリドーマを生成し、ハイブリドーマをクローニングし、抗原に対する抗体を生成する陽性クローンを選択し、抗原に対する抗体を生成するクローンを培養し、ハイブリドーマ培養物から抗体を単離することにより得ることができる。

0085

MAbは、十分に確立された様々な技術により、ハイブリドーマ培養物から単離及び精製され得る。そのような単離技術は、タンパク質−Aセファロースによる親和性クロマトグラフィーサイズ排除クロマトグラフィー、及びイオン交換クロマトグラフィーを含む。例えば、Coliganの2.7.1〜2.7.12ページ及び2.9.1〜2.9.3ページを参照されたい。また、Baines et al.,“Purification of Immunoglobulin G(IgG),”in METHODS IN MOLECULAR BIOLOGY,VOL.10,pages79−104(The Humana Press,Inc.1992)を参照されたい。

0086

免疫原に対する抗体の最初の惹起後、抗体を配列決定し、続いて組み換え技術により調製することができる。マウス抗体及び抗体断片のヒト化及びキメラ化は、当業者に周知である。ヒト化、キメラ又はヒト抗体から得られる抗体成分の使用は、マウス定常領域の免疫原性と関連した潜在的問題を排除する。

0087

キメラ抗体
キメラ抗体は、ヒト抗体の可変領域が、例えばマウス抗体の相補性決定領域(CDR)を含むマウス抗体の可変領域により置き換えられている組換えタンパク質である。キメラ抗体は、対象に投与されると、減少した免疫原性及び増加した安定性を示す。マウス免疫グロブリン可変ドメインをクローニングするための一般的技術は、例えば、Orlandi et al.,Proc.Nat’l Acad.Sci.USA86:3833(1989)において開示されている。キメラ抗体を構築するための技術は、当業者に周知である。一例として、Leung et al.,Hybridoma13:469(1994)は、抗CD22モノクローナル抗体であるマウスLL2のVκ及びVHドメインをコードするDNA配列を、それぞれのヒトκ及びIgG1定常領域ドメインに組み合わせることにより、LL2キメラを生成した。

0088

ヒト化抗体
ヒト化MAbを生成するための技術は、当該技術分野において周知である(例えば、Jones et al.,Nature321:522(1986)、Riechmann et al.,Nature332:323(1988)、Verhoeyen et al.,Science239:1534(1988)、Carter et al.,Proc.Nat’l Acad.Sci.USA89:4285(1992)、Sandhu,Crit.Rev.Biotech.12:437(1992)、及びSinger et al.,J.Immun.150:2844(1993)を参照されたい)。キメラ又はマウスモノクローナル抗体は、マウス免疫グロブリンからの可変重鎖又は軽鎖から、対応するヒト抗体の可変ドメインにマウスCDRを移入することによりヒト化され得る。キメラモノクローナル抗体内のマウスフレームワーク領域(FR)もまた、ヒトFR配列で置き換えられる。ヒトFRへのマウスCDRの移入だけでは、多くの場合抗体親和性の低減又はさらに損失がもたらされるため、マウス抗体の元の親和性を修復するために、追加的な改質が必要となり得る。これは、そのエピトープへの良好な結合親和性を有する抗体を得るための、FR領域における1つ以上のヒト残基のそれらのマウス相当物での置き換えにより達成され得る。例えば、Tempest et al.,Biotechnology9:266(1991)及びVerhoeyen et al.,Science239:1534(1988)を参照されたい。一般的に、そのマウス相当物と異なり、また1つ以上のCDRアミノ酸残基に近接して、又は接触して位置するそれらのヒトFRアミノ酸残基が、置換の候補となる。

0089

ヒト抗体
組み合わせアプローチ又はヒト免疫グロブリン遺伝子座により形質転換されたトランスジェニック動物を使用して完全ヒト抗体を生成するための方法は、当該技術分野において知られている(例えば、Mancini et al.,2004,New Microbiol.27:315−28;Conrad and Scheller,2005,Comb.Chem.High Throughput Screen.8:117−26;Brekke and Loset,2003,Curr.Opin.Phamacol.3:544−50)。完全ヒト抗体はまた、遺伝子又は染色体トランスフェクション法、及びファージディスプレイ技術により構築することができ、これらは全て当該技術分野において知られている。例えば、McCafferty et al.,Nature348:552−553(1990)を参照されたい。そのような完全ヒト抗体は、キメラ又はヒト化抗体よりもさらに少ない副作用を示し、またin vivoで本質的に内因性のヒト抗体として機能することが予測される。ある特定の実施形態において、請求される方法及び手順は、そのような技術により生成されたヒト抗体を利用することができる。

0090

一代替例において、ファージディスプレイ技術を使用してヒト抗体が生成され得る(例えば、Dantas−Barbosa et al.,2005,Genet.Mol.Res.4:126−40)。ヒト抗体は、正常なヒトから、又はがん等の特定の疾患状態を示すヒトから生成され得る(Dantas−Barbosa et al.,2005)。疾患を有する個人からヒト抗体を構築することの利点は、循環抗体レパートリーが、疾患関連抗原に対する抗体に向けてバイアスされ得ることである。

0091

この方法の1つの限定されない例において、Dantas−Barbosaら(2005)は、骨肉腫患者からヒトFab抗体断片のファージディスプレイライブラリを構築した。一般に、全RNAが循環血液リンパ球から得られた(同上)。組換えFabは、μ、γ及びκ鎖抗体レパートリーからクローニングされ、ファージディスプレイに挿入された(同上)。RNAは、cDNAに変換され、重鎖及び軽鎖免疫グロブリン配列に対する特定のプライマーを使用してFab cDNAライブラリを作製するために使用された(Marks et al.,1991,J.Mol.Biol.222:581−97)。ライブラリ構築は、Andris−Widhopf et al.(2000,In:PHAGE DISPLAY LABORATORYMANUAL,Barbas et al.(eds),1stedition,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,NY pp.9.1to9.22)に従って行われた。最終Fab断片は、制限エンドヌクレアーゼ消化され、バクテリオファージゲノムに挿入されて、ファージディスプレイライブラリが作製された。そのようなライブラリは、当該技術分野において知られているように、標準的ファージディスプレイ法によりスクリーニングされ得る(例えば、Pasqualini and Ruoslahti,1996,Nature380:364−366;Pasqualini,1999,The Quart.J.Nucl.Med.43:159−162を参照されたい)。

0092

ファージディスプレイは、様々な形式で行うことができるが、それらの検討については、例えば、Johnson and Chiswell,Current Opinion in Structural Biology3:5564−571(1993)を参照されたい。ヒト抗体はまた、in vitro活性化B細胞により生成されてもよい。参照によりその全体が本明細書に組み込まれる、米国特許第5,567,610号及び米国特許第5,229,275号を参照されたい。当業者には、これらの技術が例示的であり、ヒト抗体又は抗体断片を作製及びスクリーニングするための任意の既知の方法が使用され得ることが理解される。

0093

別の代替例において、標準的免疫化プロトコルを使用して、本質的に任意の免疫原性標的に対する抗体を生成するために、ヒト抗体を生成するように遺伝子操作されたトランスジェニック動物を使用することができる。トランスジェニックマウスからヒト抗体を得るための方法は、Green et al.,Nature Genet.7:13(1994)、Lonberg et al.,Nature368:856(1994)、及びTaylor et al.,Int.Immun.6:579(1994)により開示されている。そのような系の限定されない例は、Abgenix(Fremont、CA)からのXENOMOUSE(登録商標)(例えば、Green et al.,1999,J.Immunol.Methods231:11−23)である。XENOMOUSE(登録商標)及び同様の動物において、マウス抗体遺伝子は不活性化され、機能性ヒト抗体遺伝子により置き換えられており、一方マウス免疫系の残りは無傷のままである。

0094

XENOMOUSE(登録商標)は、アクセサリー遺伝子及び調節配列に沿って、可変領域配列の大部分を含むヒトIgH及びIgκ遺伝子座の一部を含有する生殖細胞系列構成YAC(酵母人工染色体)で形質転換された。ヒト可変領域レパートリーを使用して、既知の技術によりハイブリドーマに処理されていてもよい抗体生成B細胞を生成することができる。標的抗原により免疫化されたXENOMOUSE(登録商標)は、正常な免疫反応によりヒト抗体を生成し、これは、上述の標準的技術により採取及び/又は生成され得る。XENOMOUSE(登録商標)の様々な株が利用可能であり、そのそれぞれは、異なるクラスの抗体を生成することができる。トランスジェニック動物により生成されたヒト抗体は、正常ヒト抗体の薬物動態特性を保持する一方で、治療可能性を有することが示されている(Green et al.,1999)。当業者には、請求される組成物及び方法がXENOMOUSE(登録商標)系の使用に限定されず、ヒト抗体を生成するように遺伝子操作された任意のトランスジェニック動物を使用してもよいことが理解される。

0095

抗体のクローニング及び生成
キメラ又はヒト化抗体の生成等の様々な技術は、抗体のクローニング及び構築の手順を含み得る。対象となる抗体の抗原結合Vκ(可変軽鎖)及びVH(可変重鎖)配列は、RTPCR、5’−RACE、及びcDNAライブラリスクリーニング等の様々な分子クローニング手順により得ることができる。マウス抗体を発現する細胞からの抗体のV遺伝子は、PCR増幅によりクローニング及び配列決定され得る。それらの信頼性を確実とするために、クローニングされたVL及びVH遺伝子は、Orlandiら(Proc.Natl.Acad.Sci.USA,86:3833(1989))により説明されているように、キメラAbとして細胞培養物中で発現され得る。V遺伝子配列に基づいて、ヒト化抗体は、次いでLeungら(Mol.Immunol.,32:1413(1995))により説明されるように設計及び構築され得る。

0096

cDNAは、一般的な分子クローニング技術により、任意の既知のハイブリドーマ株又はマウス抗体を生成するトランスフェクトされた細胞株から調製され得る(Sambrook et al.,Molecular Cloning,A laboratory manual,2ndEd(1989))。抗体のVκ配列は、プライマーVK1BACK及びVK1FOR(Orlandi et al.,1989)、又はLeungら(BioTechniques,15:286(1993))により説明される拡張プライマーセットを使用して増幅され得る。VH配列は、プライマー対VH1BACK/VH1FOR(Orlandi et al.,1989)又はLeungら(Hybridoma,13:469(1994))により説明されるマウスIgGの定常領域にアニールするプライマーを使用して増幅され得る。ヒト化V遺伝子は、Leungら(Mol.Immunol.,32:1413(1995))により説明されるような長鎖オリゴヌクレオチド鋳型合成及びPCR増幅の組み合わせにより構築され得る。

0097

VκのPCR産物は、Igプロモーターシグナルペプチド配列及び好都合制限部位を含有するpBR327系段階化ベクターVKpBR等の段階化ベクターにサブクローニングされ得る。VHのPCR産物は、pBluescript系VHpBS等の同様の段階化ベクターにサブクローニングされ得る。プロモーター及びシグナルペプチド配列と共にVκ及びVH配列を含有する発現カセットは、VKpBR及びVHpBSから切り出され、それぞれpKh及びpG1g等の適切な発現ベクターライゲーションされ得る(Leung et al.,Hybridoma,13:469(1994))。発現ベクターは、適切な細胞に共トランスフェクトされ得、上澄み液が、キメラ、ヒト化又はヒト抗体の生成について監視され得る。代替として、Vκ及びVH発現カセットが切り出され、Gillies et al.(J.Immunol.Methods125:191(1989)、またLosman et al.,Cancer,80:2660(1997)にも示されている)により説明されるように、pdHL2等の単一発現ベクターにサブクローニングされ得る。

0098

代替の実施形態において、発現ベクターは、無血清培地中でトランスフェクション、成長及び発現に対し事前に適応された宿主細胞にトランスフェクトされ得る。使用され得る例示的細胞株は、Sp/EEE、Sp/ESF及びSp/ESF−X細胞株を含む(例えば、米国特許第7,531,327号;米国特許第7,537,930号及び米国特許第7,608,425号を参照されたく;それらのそれぞれの実施例の項は、参照により本明細書に組み込まれる)。これらの例示的細胞株は、Sp2/0骨髄腫細胞株に基づき、突然変異Bcl−EEE遺伝でトランスフェクトされ、トランスフェクトされた遺伝子配列を増幅するためにメトトレキセート曝露され、タンパク質発現のために無血清細胞株に対して事前に適応される。

0099

抗体断片
特定のエピトープを認識する抗体断片は、既知の技術により生成され得る。抗体断片は、例えばF(ab’)2、Fab’、F(ab)2、Fab、Fv、scFv等の抗体の抗原結合部分である。F(ab’)2断片は、抗体分子のペプシン消化により生成され得、Fab’断片は、F(ab’)2断片のジスルフィド架橋を還元することにより生成され得る。代替として、Fab’発現ライブラリを構築して(Huse et al.,1989,Science,246:1274−1281)、所望の特異性を有するモノクローナルFab’断片の迅速及び容易な同定を可能とすることができる。F(ab)2断片は、抗体のパパイン消化により生成され得る。

0100

単鎖Fv分子(scFv)は、VLドメイン及びVHドメインを含む。VL及びVHドメインは、結合して標的結合部位を形成する。これらの2つのドメインは、ペプチドリンカー(L)によりさらに共有結合する。scFv分子を作製するため、及び好適なペプチドリンカーを消化させるための方法は、米国特許第4,704,692号;米国特許第4,946,778号;Raag and Whitlow,FASEB9:73−80(1995)及びBird and Walker,TIBTECH,9:132−137(1991)に記載されている。

0101

単一ドメイン抗体(DAB又はVHH)を生成するための技術もまた、例えば参照により本明細書に組み込まれるCossinsら(2006,Prot Express Purif51:253−259)において開示されるように、当該技術分野において知られている。単一ドメイン抗体は、標準的な免疫化技術により、例えばラクダアルパカ又はラマから得ることができる。(例えば、Muyldermans et al.,TIBS26:230−235,2001;Yau et al.,J Immunol Methods281:161−75,2003;Maass et al.,J Immunol Methods324:13−25,2007を参照されたい。)VHHは、強力な抗原結合能力を有することができ、従来のVH−VL対にアクセス不可能な新規エピトープと相互作用し得る。(Muyldermans et al.,2001。)アルパカ血清IgGは、約50%のラクダ科重鎖のみのIgG抗体(HCAb)を含有する(Maass et al.,2007)。アルパカは、TNF−α等の既知の抗原で免疫化され得、標的抗原に結合して中性化するVHHが単離され得る(Maass et al.,2007)。事実上全てのアルパカVHHコード配列を増幅するPCRプライマーが同定されており、当該技術分野において周知の標準的バイオパニング技術による抗体断片単離に使用され得る、アルパカVHHファージディスプレイライブラリを構築するために使用され得る(Maass et al.,2007)。ある特定の実施形態において、抗膵臓がんVHH抗体断片が、請求される組成物及び方法において使用され得る。

0102

抗体断片は、全長抗体のタンパク質分解的加水分解により、又は大腸菌若しくは断片のDNAコードの別の宿主における発現により調製され得る。抗体断片は、従来の方法による全長抗体のペプシン又はパパイン消化により得ることができる。これらの方法は、例えば、Goldenberg、米国特許第4,036,945号及び米国特許第4,331,647号、並びにそれらに含まれる参考文献により説明されている。また、Nisonoff et al.,Arch Biochem.Biophys.89:230(1960);Porter,Biochem.J.73:119(1959)、Edelman et al.,in METHODS IN ENZYMOLOGY VOL.1,page422(Academic Press1967)、並びにColiganの2.8.1〜2.8.10ページ及び2.10.〜2.10.4ページを参照されたい。

0103

抗体アロタイプ
治療抗体の免疫原性は、注入反応リスクの増加、及び治療反応の期間の減少に関連する(Baert et al.,2003,N Engl J Med348:602−08)。治療抗体が宿主における免疫反応を誘導する程度は、1つには、抗体のアロタイプにより決定され得る(Stickler et al.,2011,Genes and Immunity12:213−21)。抗体アロタイプは、抗体の定常領域配列における特定の位置でのアミノ酸配列変異に関連する。重鎖γ型定常領域を含有するIgG抗体のアロタイプは、Gmアロタイプと指定される(1976,J Immunol117:1056−59)。

0104

一般的なIgG1ヒト抗体において、最も支配的なアロタイプはG1m1である(Stickler et al.,2011,Genes and Immunity12:213−21)。しかしながら、白人においてはG1m3アロタイプもまた頻繁に存在する(Stickler et al.,2011)。G1m1抗体は、G1m3患者等の非G1m1(nG1m1)受容者に投与された場合、免疫反応を誘導する傾向があるアロタイプ配列を含有することが報告されている(Stickler et al.,2011)。非G1m1アロタイプ抗体は、G1m1患者に投与された場合、それほど免疫原性ではない(Stickler et al.,2011).

0105

ヒトG1m1アロタイプは、重鎖IgG1のCH3配列におけるKabat位置356にアミノ酸であるアスパラギン酸を、またKabat位置358にロイシンを含む。nG1m1アロタイプは、Kabat位置356にグルタミン酸を、またKabat位置358にメチオニンを含む。G1ml及びnG1mlアロタイプは共に、Kabat位置357にグルタミン酸残基を含み、アロタイプは時折、DEL及びEEMアロタイプと呼ばれる。G1m1及びnG1m1アロタイプ抗体の重鎖定常領域配列の限定されない例を、例示的抗体リツキシマブ(配列番号85)及びベルツズマブ(配列番号86)に対して示す。

0106

Jefferis及びLefranc(2009,mAbs1:1−7)は、IgGアロタイプの配列変異特性及びその免疫原性に対する効果を検討した。彼らは、G1m3アロタイプが、G1m17アロタイプのKabat214におけるリシン残基と比較して、Kabat位置214におけるアルギニン残基により特徴付けられることを報告した。nG1m1,2アロタイプは、Kabat位置356におけるグルタミン酸、Kabat位置358におけるメチオニン、及びKabat位置431におけるアラニンにより特徴付けられた。G1m1,2アロタイプは、Kabat位置356におけるアスパラギン酸、Kabat位置358におけるロイシン、及びKabat位置431におけるグリシンにより特徴付けられた。重鎖定常領域配列変異に加えて、Jefferis及びLefranc(2009)は、カッパ軽鎖定常領域におけるアロタイプ変異を報告したが、Km1アロタイプはKabat位置153におけるバリン、及びKabat位置191におけるロイシンにより特徴付けられ、Km1,2アロタイプは、Kabat位置153におけるアラニン、及びKabat位置191におけるロイシンにより特徴付けられ、Km3アロタイプは、Kabat位置153におけるアラニン、及びKabat位置191におけるバリンにより特徴付けられた。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

該当するデータがありません

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

該当するデータがありません

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

この 技術と関連性が強い技術

該当するデータがありません

この 技術と関連性が強い法人

該当するデータがありません

この 技術と関連性が強い人物

該当するデータがありません

この 技術と関連する社会課題

該当するデータがありません

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ