図面 (/)

この項目の情報は公開日時点(2016年4月21日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題・解決手段

血管評価のための方法が開示される。この方法は、いくつかの実施形態において、被験者の血管系の一部の複数の2−D血管造影画像を受信することと、画像を処理して血管系に対する狭窄モデルを生成することとを備え、狭窄モデルは血管系の血管に沿った1つまたは複数の位置で血管系の測定結果を有する。この方法は、いくつかの実施形態において、狭窄モデルの流動特性を取得することと、少なくとも一部は狭窄モデルにおける流動特性に基づき、血管機能を示す指数を算出することとをさらに備える。

概要

背景

本発明は、それらのいくつかの実施形態において、血管モデリングに関係し、より具体的には、限定することなく、血管の機能と診断とに関係する指数リアルタイムで−たとえば、カテーテル挿入撮像法(catheterized imaging procedure)の実行中に−生成するための血管モデルの使用に関係する。

動脈狭窄症は、動脈疾患の最も深刻な形態の1つである。臨床業務において、狭窄重症度は、狭窄の直径の割合を決定することなどの、単純な幾何学的パラメータを使用すること、または圧力ベース心筋血流予備量比(FFR)などの、血行動態ベースパラメータを測定することのいずれかによって推定される。FFRは、冠状動脈狭窄の機能的重症度の侵襲的測定である。FFR測定技術は、動脈狭窄上にまたがって配置される小型圧力トランスデューサ装備した0.014”ガイドワイヤの挿入を伴う。これは、狭窄の領域内の最大血流量と狭窄のない同じ領域内の最大血流量との比を表す。以前の研究から、FFR<0.75は、虚血の正確な予測因子であることがわかっており、FFR≧0.75である病変に対する経皮冠動脈インターベンション遅れは安全であるように見えた。

0.8のFFRカットオフ値は、典型的には、長期転帰データによって裏付けられている、血管再生誘導するために臨床業務において使用されている。典型的には、0.75〜0.8の範囲内のFFR値は、臨床的有意性が不確実である「グレイゾーン」と考えられる。

血流のモデリングおよび血流の評価については、たとえば、患者に対する心臓血管情報を決定するためのシステムを含む実施形態を説明している、「Method And System For Patient−Specific Modeling Of Blood Flow」への、Taylorの米国公開特許出願第2012/0059246号において説明されている。システムは、患者の解剖学的構造の少なくとも一部の幾何学的形状に関する患者特有のデータを受信するように構成されている少なくとも1つのコンピュータシステムを含み得る。解剖学的構造の一部は、患者の大動脈の少なくとも一部と大動脈の一部から出る複数の冠状動脈の少なくとも一部とを含み得る。少なくとも1つのコンピュータシステムは、患者特有のデータに基づき解剖学的構造の一部を表す三次元モデルを作成し、解剖学的構造の一部の中の血流特性に関係する物理学ベースモデルを作成し、三次元モデルと物理学ベースのモデルとに基づき解剖学的構造の一部の中の血流予備量比を決定するようにも構成され得る。

追加の背景技術は以下を含む。

Taylorの米国公開特許出願第2012/053918号、
Sharmaらの米国公開特許出願第2012/0072190号、
Taylorの米国公開特許出願第2012/0053921号、
Steinbergらの米国公開特許出願第2010/0220917号、
Steinbergらの米国公開特許出願第2010/0160764号、
Sharmaらの米国公開特許出願第2012/0072190号、
Steinbergらの米国公開特許出願第2012/0230565号、
Kangらの米国公開特許出願第2012/0150048号、
Edicらの米国公開特許出願第2013/0226003号、
Kassabらの米国公開特許出願第2013/0060133号、
Mittalらの米国公開特許出願第2013/0324842号、
SuriおよびJasjitの米国公開特許出願第2012/0177275号、
Taylorらの米国特許第6,236,878号、
Taylorの米国特許第8,311,750号、
Hizengaらの米国特許第7,657,299号、
Bullittらの米国特許第8,090,164号、
Tangらの米国特許第8,554,490号、
Weeseらの米国特許第7,738,626号、
Hartらの米国特許第8,548,778号、
Jerry T. WongおよびSabee Molloiによる論文名称「Determination of fractional flow reserve (FFR) based on scaling laws: a simulation study」、Phys. Med. Biol. 53(2008年)3995〜4011頁、
Weickertによる論文、名称「A Scheme for Coherence−Enhancing Diffusion Filtering with Optimized Rotation Invariance」、Journal of Visual Communication and Image Representation、第13巻、1−2号、2002年3月、103〜118頁(2002年)、
J. Weickertによる書籍「Anisotropic Diffusion in Image Processing」、B. G. Teubner (Stuttgart)、1998年の論説、
A.F Frangi、W.J. Niessen、K.L. Vincken、M.A. Viergeverによる論文、名称「Multiscale vessel enhancement filtering」、Medical Image Computing and Computer−Assisted Intervention−MICCA’98、
Jerry T WongおよびSabee Molloiによる論文、名称「Determination of fractional flow reserve (FFR) based on scaling laws: a simulation study」、Phys. Med. Biol. 53(2008年)3995〜4011頁、
S. Molloi、J.T. Wong、D. A. Chalyan、およびH. Leによる論文、名称「Quantification of Fractional Flow Reserve Using Angiographic Image Data」、O. Doessel and W.C. Schlegel (Eds.): WC 2009, IFMBE Proceedings 25/II, 901〜904頁、2009年、
Jerry T. Wong、Huy Le、William M. Suh、David A. Chalyan、Toufan Mehraien、Morton J. Kern、Ghassan S. Kassab、およびSabee Molloiによる論文、名称「Quantification of fractional flow reserve based on angiographic image data」、Int J Cardiovasc Imaging (2012年) 28:13〜22頁、
Shigeho Takarada、Zhang Zhang、およびSabee Molloiによる論文、名称「An angiographic technique for coronary fractional flow reserve measurement: in vivo validation」、2012年8月31日にInt J Cardiovasc Imagingにてオンライン公開、
A. M. Seifalian、D. J. Hawkes、A. C. Colchester、およびK. E. Hobbsによる論文、名称「A new algorithm for deriving pulsatile blood flow waveforms tested using stimulated dynamic angiographic data」、Neuroradiology、第31巻、263〜269頁、1989年、
A. M. Seifalian、D. J. Hawkes、C. R. Hardingham、A. C. Colchester、およびJ. F. Reidyによる論文、名称「Validation of a quantitative radiographic technique to estimate pulsatile blood flow waveforms using digital subtraction angiographic data」、J. Biomed. Eng.、第13巻、第3号、225〜233頁、1991年5月、
D. J. Hawkes、A. M. Seifalian、A. C. Colchester、N. Iqbal、C. R. Hardingham、C. F. Bladin、およびK. E. Hobbsによる論文、名称「Validation of volume blood flow measurements using three dimensional distance−concentration functions derived from digital X−ray angiograms」、Invest. Radiol、第29巻、第4号、434〜442頁、1994年4月、
A. M. Seifalian、D. J. Hawkes、C. Bladin、A. C. F. Colchester、およびK. E. F. Hobbsによる論文、名称「Blood flow measurements using 3D distance−concentration functions derived from digital X−ray angiograms」、Cardiovascular Imaging, J. H. C. Reiber and E. E. van der Wall, Eds. Norwell, MA, The Netherlands: Kluwer Academic、1996年、425〜442頁、
K. R. Hoffmann、K. Doi、およびL. E. Fencilによる論文、名称「Determination of instantaneous and average blood flow rates from digital angiograms of vessel phantoms using distance−density curves」、Invest. Radiol、第26巻、第3号、207212頁、1991年3月、
S. D. Shpilfoygel、R. Jahan、R. A. Close、G. R. Duckwiler、およびD. J. Valentinoによる論文、名称「Comparison of methods for instantaneous angiographic blood flow measurement」、Med. Phys.、第26巻、第6号、862〜871頁、1999年6月、
D. W. Holdsworth、M. Drangova、およびA. Fensterによる論文、名称「Quantitative angiographic blood flow measurement using pulsed intra−arterial injection」、Med. Phys.、第26巻、第10号、2168〜2175頁、1999年10月、
Joan C. Tuinenburg、Gerhard Koning、Andrei Rares、Johannes P. Janssen、Alexandra J. Lansky、Johan H. C. Reiberによる論文、名称「Dedicated bifurcation analysis:basicprinciples」、Int J Cardiovasc Imaging (2011年) 27:167〜174頁、
Salvatore Davide Tomasello、Luca Costanzo、およびAlfredo Ruggero Galassiによる論文、名称「Quantitative Coronary Angiography in the Interventional Cardiology」、Advances in the Diagnosis of Coronary Atherosclerosis、
Johannes P. Janssen、Andrei Rares、Joan C. Tuinenburg、Gerhard Koning、Alexandra J. Lansky、Johan H. C. Reiberによる論文、名称「New approaches for the assessment of vessel sizes in quantitative (cardio−)vascular X−ray analysis」、Int J Cardiovasc Imaging (2010年) 26:259〜271頁、
Kirkeeide R L.編集Reiber J H CおよびSerruys P Wによる論文、名称「Coronary obstructions, morphology and physiologic significance Quantitative Coronary Arteriography」、The Netherlands: Kluwer、1991年、229〜244頁、
Kevin Sprague、Maria Drangova、Glen Lehmann、Piotr Slomka、David Levin、Benjamin Chow、およびRobert deKempによる論文、名称「Coronary x−ray angiographic reconstruction and image orientation」、Med Phys、2006年3月、33(3):707〜718頁、
Adamantios Andriotis、Ali Zifan、Manolis Gavaises、Panos Liatsis、Ioannis Pantos、Andreas Theodorakakos、Efstathios P. Efstathopoulos、およびDemosthenes Katritsisによる論文、名称「A New Method of Three−dimensional Coronary Artery Reconstruction From X−Ray Angiography: Validation Against a Virtual Phantom and Multislice Computed Tomography」、Catheter Cardiovasc Interv、2008年1月1日、71(1):28〜43頁、
Kenji Fusejima, MDによる論文、名称「Noninvasive Measurement of Coronary Artery Blood Flow Using Combined Two−Dimensional and Doppler Echocardiography」、JACC第10巻、第5号、1987年11月、1024〜31頁、
Carlo Caiati、Cristiana Montaldo、Norma Zedda、Alessandro Bina、およびSabino Ilicetoによる論文、名称「New Noninvasive Method for Coronary Flow Reserve Assessment: Contrast−Enhanced Transthoracic Second Harmonic Echo Doppler」、Circulation、the American Heart Association、1999年、99:771〜778頁、
Harald Lethena、Hans P Triesa、Stefan Kerstinga、およびHeinz Lambertzaによる論文、名称「Validation of noninvasive assessment of coronary flow velocity reserve in the right coronary artery−A comparison of transthoracic echocardiographic results with intracoronary Doppler flow wire measurements」、European Heart Journal (2003年) 24、1567〜1575頁、
Paolo Vocia、Francesco Pizzutoa、およびFrancesco Romeobによる論文、名称「Coronary flow: a new asset for the echo lab?」、European Heart Journal (2004年) 25、1867〜1879頁、
Siogkasらによる論文要録、名称「Quantification of the effect of Percutaneous Coronary Angioplasty on a stenosed Right Coronary Artery」、Information Technology and Applications in Biomedicine (ITAB)、2010年第10回IEEE International Conference on、
Patrick MeimounおよびChristophe Tribouilloyによるレビュー論文、名称「Non−invasive assessment of coronary flow and coronary flow reserve by transthoracic Doppler echocardiography: a magic tool for the real world」、European Journal of Echocardiography (2008年) 9、449〜457頁、
Carlo Caiati、Norma Zedda、Mauro Cadeddu、Lijun Chen、Cristiana Montaldo、Sabino Iliceto、Mario Erminio Lepera、およびStefano Favaleによる論文、名称「Detection, location, and severity assessment of left anterior descending coronary artery stenoses by means of contrast−enhanced transthoracic harmonic echo Doppler」、European Heart Journal (2009年) 30、1797〜1806頁、
Bullittらの論文、名称「Determining malignancy of brain tumors by analysis of vessel shape」、Medical Image Computing and Computer−Assisted Intervention−MICCAI2004。

上述の、および本明細書全体を通しての、すべての文献の開示、さらにはこれらの文献において言及されているすべての文献の開示は、参照により本明細書に組み込まれている。

概要

血管評価のための方法が開示される。この方法は、いくつかの実施形態において、被験者の血管系の一部の複数の2−D血管造影画像を受信することと、画像を処理して血管系に対する狭窄モデルを生成することとを備え、狭窄モデルは血管系の血管に沿った1つまたは複数の位置で血管系の測定結果を有する。この方法は、いくつかの実施形態において、狭窄モデルの流動特性を取得することと、少なくとも一部は狭窄モデルにおける流動特性に基づき、血管機能を示す指数を算出することとをさらに備える。

目的

本発明のいくつかの実施形態の広い態様は、被験者に対するカテーテル挿入手技が進行中である期間に臨床診断情報を提供する

効果

実績

技術文献被引用数
1件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

心臓血管系の第1の血管モデルを受信することと、前記血管系の狭窄セグメントを通る流れを表す前記第1の血管モデルに基づき少なくとも1つの特性を決定することと、第2の血管モデルを生成することと、前記第1の血管モデルに対応する要素と、流れの少なくとも1つの特性の差異を含む少なくとも1つの修正形態とを備える、前記第1のモデルと前記第2のモデルとを比較する流動指数を算出することとを備える、血管評価のための方法。

請求項2

流れの少なくとも1つの特性の前記差異は、狭窄セグメントを通る流れの少なくとも1つの特性と、前記第2のモデルの対応するセグメントの中の流れの特性との間の差異を備える請求項1に記載の方法。

請求項3

前記第1の血管モデルは、複数の2−D血管造影画像に基づき算出される請求項1に記載の方法。

請求項4

前記血管造影画像は、主要なヒト冠状動脈からの少なくとも第3の分岐点に従って血管セグメントに対して10%以内で血管幅の決定を行うことを可能にする十分な解像度を有している請求項3に記載の方法。

請求項5

前記流動指数は、前記狭窄セグメントから狭窄を取り除くためにインターベンションによって達成可能である流動増加の予測を備える請求項1に記載の方法。

請求項6

前記比較流動指数は、前記第1の血管モデルと前記第2の血管モデルとの対応する流動特性の比に基づき算出される請求項1乃至5のいずれか一項に記載の方法。

請求項7

前記比較流動指数は、前記狭窄セグメントと非狭窄セグメントとの対応する流動特性の比に基づき算出される請求項1乃至6のいずれか一項に記載の方法。

請求項8

狭窄部1カ所当たりの単一の数として前記比較流動指数を報告することを備える請求項1乃至7のいずれか一項に記載の方法。

請求項9

流れの前記少なくとも1つの特性は、流量を備える請求項1乃至8のいずれか一項に記載の方法。

請求項10

前記比較流動指数は、狭窄血管を通る前記最大の流れと前記狭窄が取り除かれた前記狭窄血管を通る前記最大の流れとの比を備える血流予備量指数を表す指数を備える請求項9に記載の方法。

請求項11

前記比較流動指数は、血管再生推奨を決定する際に使用される請求項9乃至10のいずれか一項に記載の方法。

請求項12

前記比較流動指数は、狭窄を取り除くことによって流れを復元するため容量を示す値を備える請求項10に記載の方法。

請求項13

前記第1の血管モデルおよび前記第2の血管モデルは、血管セグメントデータの接続された枝を備え、それぞれの前記枝は流れに対する対応する血管抵抗に関連付けられる請求項1乃至12のいずれか一項に記載の方法。

請求項14

前記第1の血管モデルは、血管壁径方向に詳細な3−D記述を含まない請求項13に記載の方法。

請求項15

前記第2の血管モデルは、前記第1の血管モデルにおける狭窄血管を置き換える比較的大きな直径を有する血管を備える、通常モデルである請求項1乃至13のいずれか一項に記載の方法。

請求項16

前記第2の血管モデルは、隣接する非狭窄血管の特性に基づき狭窄血管を正常化することによって得られる正常化された血管を備える、通常モデルである請求項1乃至13のいずれか一項に記載の方法。

請求項17

流れの前記少なくとも1つの特性は、前記狭窄セグメントと流れで接続する複数の血管セグメントの特性に基づき算出される請求項1乃至13のいずれか一項に記載の方法。

請求項18

流れの前記特性は、流体流に対する抵抗を備える請求項1乃至17のいずれか一項に記載の方法。

請求項19

前記第1の血管モデルにおいて、狭窄血管と、前記狭窄血管の下流にある血管枝冠部とを識別することと、前記冠部内の流体流れに対する前記抵抗を算出することとをさらに備え、ここにおいて、前記流動指数は、前記冠部の容積に基づき、また流体流に対する前記抵抗への前記狭窄血管の寄与分に基づき算出される請求項18に記載の方法。

請求項20

前記第1の血管モデルは、三次元空間内の血管位置表現を備える請求項1から19のいずれか一項に記載の方法。

請求項21

それぞれの血管モデルは、血管系の2つの連続する分岐部の間にある前記血管系の一部に対応する請求項1乃至20のいずれか一項に記載の方法。

請求項22

それぞれの血管モデルは、前記血管系の分岐部を含む前記血管系の一部に対応する請求項1乃至20のいずれか一項に記載の方法。

請求項23

それぞれの血管モデルは、前記血管系の少なくとも1つの分岐部を前記狭窄セグメントを超えて拡張する前記血管系の一部に対応する請求項1乃至20のいずれか一項に記載の方法。

請求項24

それぞれの血管モデルは、前記血管系の少なくとも3つの分岐部を前記狭窄セグメントを超えて拡張する前記血管系の一部に対応する請求項23に記載の方法。

請求項25

前記血管モデルは、血管セグメントに沿った経路を備え、前記経路のそれぞれは前記複数の2−D画像内の位置までのその広がりに沿ってマッピングされる請求項3に記載の方法。

請求項26

前記心臓血管系の画像を取得することと、その第1の血管モデルを構築することとをさらに備える請求項1に記載の方法。

請求項27

それぞれの血管モデルは、前記画像の解像度が正しい値の10%以内で血管幅の決定を可能にする限り遠位に拡張する前記血管系の一部に対応する請求項26に記載の方法。

請求項28

前記第1の血管モデルおよび前記第2の血管モデルのうちの少なくとも一方は、前記少なくとも1つの血管モデルを生成するために使用される画像の取得時に人工的に拡張されている血管系のモデルである請求項1に記載の方法。

請求項29

プログラム命令が格納され、前記命令コンピュータによって読み込まれると被験者の血管系の複数の2−D画像を受信して請求項1に記載の方法を実行することをコンピュータに行わせる、コンピュータ可読媒体を備える、コンピュータソフトウェア製品

請求項30

血管系の一部の複数の2−D画像を受信し、前記複数の2−Dを前記血管系の第1の血管モデルに変換し、前記血管系の狭窄セグメントを通る流れを表す前記第1の血管モデルに基づき少なくとも1つの特性を決定し、前記第1の血管モデルに対応する要素と、狭窄セグメントを通る流れの前記少なくとも1つの特性を、狭窄の効果が低減される対応するセグメントを通るかのように流れの特性に変えることを含む少なくとも1つの修正形態とを備える第2の血管モデルを生成し、前記第1のモデルと前記第2のモデルとを比較する流動指数を算出するように構成されたコンピュータを備える血管評価のためのシステム

請求項31

前記コンピュータは、前記第1の血管モデルを受信する5分以内に前記流動指数を算出するように構成される請求項30に記載のシステム。

請求項32

前記コンピュータは、前記2−D画像の取得の5分以内に前記流動指数を算出するように構成される請求項30に記載のシステム。

請求項33

前記コンピュータは、前記撮像デバイスからリモートの位置に配置される請求項30に記載のシステム。

請求項34

心臓血管系の血管モデルを受信することと、前記血管系の狭窄セグメントと前記狭窄セグメントへの冠部血管とを通る流れを表す前記血管モデルに基づき少なくとも第1の流動特性を決定することと、前記狭窄セグメントによる前記流れの制限を受けることなく、前記冠部血管を通る流れを表す前記血管モデルに基づき少なくとも第2の流動特性を決定することと、前記第1の流動特性と前記第2の流動特性とを比較する流動指数を算出することとを備える血管評価のための方法。

技術分野

0001

関連出願の相互参照
本出願は、参照により内容全体が本明細書に組み込まれている、2013年1月15日に出願した米国仮特許出願第61/752,526号、2013年9月29日に出願した米国仮特許出願第14/040,688号、および2013年10月24日に出願した国際特許出願第PCT/IL2013/050869号の優先権の利益を主張するものである。

0002

本出願は、3つの同時提出出願、代理人整理番号58285、58286、および58287のうちの1つを含む。

背景技術

0003

本発明は、それらのいくつかの実施形態において、血管モデリングに関係し、より具体的には、限定することなく、血管の機能と診断とに関係する指数リアルタイムで−たとえば、カテーテル挿入撮像法(catheterized imaging procedure)の実行中に−生成するための血管モデルの使用に関係する。

0004

動脈狭窄症は、動脈疾患の最も深刻な形態の1つである。臨床業務において、狭窄重症度は、狭窄の直径の割合を決定することなどの、単純な幾何学的パラメータを使用すること、または圧力ベース心筋血流予備量比(FFR)などの、血行動態ベースパラメータを測定することのいずれかによって推定される。FFRは、冠状動脈狭窄の機能的重症度の侵襲的測定である。FFR測定技術は、動脈狭窄上にまたがって配置される小型圧力トランスデューサ装備した0.014”ガイドワイヤの挿入を伴う。これは、狭窄の領域内の最大血流量と狭窄のない同じ領域内の最大血流量との比を表す。以前の研究から、FFR<0.75は、虚血の正確な予測因子であることがわかっており、FFR≧0.75である病変に対する経皮冠動脈インターベンション遅れは安全であるように見えた。

0005

0.8のFFRカットオフ値は、典型的には、長期転帰データによって裏付けられている、血管再生誘導するために臨床業務において使用されている。典型的には、0.75〜0.8の範囲内のFFR値は、臨床的有意性が不確実である「グレイゾーン」と考えられる。

0006

血流のモデリングおよび血流の評価については、たとえば、患者に対する心臓血管情報を決定するためのシステムを含む実施形態を説明している、「Method And System For Patient−Specific Modeling Of Blood Flow」への、Taylorの米国公開特許出願第2012/0059246号において説明されている。システムは、患者の解剖学的構造の少なくとも一部の幾何学的形状に関する患者特有のデータを受信するように構成されている少なくとも1つのコンピュータシステムを含み得る。解剖学的構造の一部は、患者の大動脈の少なくとも一部と大動脈の一部から出る複数の冠状動脈の少なくとも一部とを含み得る。少なくとも1つのコンピュータシステムは、患者特有のデータに基づき解剖学的構造の一部を表す三次元モデルを作成し、解剖学的構造の一部の中の血流特性に関係する物理学ベースモデルを作成し、三次元モデルと物理学ベースのモデルとに基づき解剖学的構造の一部の中の血流予備量比を決定するようにも構成され得る。

0007

追加の背景技術は以下を含む。

0008

Taylorの米国公開特許出願第2012/053918号、
Sharmaらの米国公開特許出願第2012/0072190号、
Taylorの米国公開特許出願第2012/0053921号、
Steinbergらの米国公開特許出願第2010/0220917号、
Steinbergらの米国公開特許出願第2010/0160764号、
Sharmaらの米国公開特許出願第2012/0072190号、
Steinbergらの米国公開特許出願第2012/0230565号、
Kangらの米国公開特許出願第2012/0150048号、
Edicらの米国公開特許出願第2013/0226003号、
Kassabらの米国公開特許出願第2013/0060133号、
Mittalらの米国公開特許出願第2013/0324842号、
SuriおよびJasjitの米国公開特許出願第2012/0177275号、
Taylorらの米国特許第6,236,878号、
Taylorの米国特許第8,311,750号、
Hizengaらの米国特許第7,657,299号、
Bullittらの米国特許第8,090,164号、
Tangらの米国特許第8,554,490号、
Weeseらの米国特許第7,738,626号、
Hartらの米国特許第8,548,778号、
Jerry T. WongおよびSabee Molloiによる論文名称「Determination of fractional flow reserve (FFR) based on scaling laws: a simulation study」、Phys. Med. Biol. 53(2008年)3995〜4011頁、
Weickertによる論文、名称「A Scheme for Coherence−Enhancing Diffusion Filtering with Optimized Rotation Invariance」、Journal of Visual Communication and Image Representation、第13巻、1−2号、2002年3月、103〜118頁(2002年)、
J. Weickertによる書籍「Anisotropic Diffusion in Image Processing」、B. G. Teubner (Stuttgart)、1998年の論説、
A.F Frangi、W.J. Niessen、K.L. Vincken、M.A. Viergeverによる論文、名称「Multiscale vessel enhancement filtering」、Medical Image Computing and Computer−Assisted Intervention−MICCA’98、
Jerry T WongおよびSabee Molloiによる論文、名称「Determination of fractional flow reserve (FFR) based on scaling laws: a simulation study」、Phys. Med. Biol. 53(2008年)3995〜4011頁、
S. Molloi、J.T. Wong、D. A. Chalyan、およびH. Leによる論文、名称「Quantification of Fractional Flow Reserve Using Angiographic Image Data」、O. Doessel and W.C. Schlegel (Eds.): WC 2009, IFMBE Proceedings 25/II, 901〜904頁、2009年、
Jerry T. Wong、Huy Le、William M. Suh、David A. Chalyan、Toufan Mehraien、Morton J. Kern、Ghassan S. Kassab、およびSabee Molloiによる論文、名称「Quantification of fractional flow reserve based on angiographic image data」、Int J Cardiovasc Imaging (2012年) 28:13〜22頁、
Shigeho Takarada、Zhang Zhang、およびSabee Molloiによる論文、名称「An angiographic technique for coronary fractional flow reserve measurement: in vivo validation」、2012年8月31日にInt J Cardiovasc Imagingにてオンライン公開、
A. M. Seifalian、D. J. Hawkes、A. C. Colchester、およびK. E. Hobbsによる論文、名称「A new algorithm for deriving pulsatile blood flow waveforms tested using stimulated dynamic angiographic data」、Neuroradiology、第31巻、263〜269頁、1989年、
A. M. Seifalian、D. J. Hawkes、C. R. Hardingham、A. C. Colchester、およびJ. F. Reidyによる論文、名称「Validation of a quantitative radiographic technique to estimate pulsatile blood flow waveforms using digital subtraction angiographic data」、J. Biomed. Eng.、第13巻、第3号、225〜233頁、1991年5月、
D. J. Hawkes、A. M. Seifalian、A. C. Colchester、N. Iqbal、C. R. Hardingham、C. F. Bladin、およびK. E. Hobbsによる論文、名称「Validation of volume blood flow measurements using three dimensional distance−concentration functions derived from digital X−ray angiograms」、Invest. Radiol、第29巻、第4号、434〜442頁、1994年4月、
A. M. Seifalian、D. J. Hawkes、C. Bladin、A. C. F. Colchester、およびK. E. F. Hobbsによる論文、名称「Blood flow measurements using 3D distance−concentration functions derived from digital X−ray angiograms」、Cardiovascular Imaging, J. H. C. Reiber and E. E. van der Wall, Eds. Norwell, MA, The Netherlands: Kluwer Academic、1996年、425〜442頁、
K. R. Hoffmann、K. Doi、およびL. E. Fencilによる論文、名称「Determination of instantaneous and average blood flow rates from digital angiograms of vessel phantoms using distance−density curves」、Invest. Radiol、第26巻、第3号、207212頁、1991年3月、
S. D. Shpilfoygel、R. Jahan、R. A. Close、G. R. Duckwiler、およびD. J. Valentinoによる論文、名称「Comparison of methods for instantaneous angiographic blood flow measurement」、Med. Phys.、第26巻、第6号、862〜871頁、1999年6月、
D. W. Holdsworth、M. Drangova、およびA. Fensterによる論文、名称「Quantitative angiographic blood flow measurement using pulsed intra−arterial injection」、Med. Phys.、第26巻、第10号、2168〜2175頁、1999年10月、
Joan C. Tuinenburg、Gerhard Koning、Andrei Rares、Johannes P. Janssen、Alexandra J. Lansky、Johan H. C. Reiberによる論文、名称「Dedicated bifurcation analysis:basicprinciples」、Int J Cardiovasc Imaging (2011年) 27:167〜174頁、
Salvatore Davide Tomasello、Luca Costanzo、およびAlfredo Ruggero Galassiによる論文、名称「Quantitative Coronary Angiography in the Interventional Cardiology」、Advances in the Diagnosis of Coronary Atherosclerosis、
Johannes P. Janssen、Andrei Rares、Joan C. Tuinenburg、Gerhard Koning、Alexandra J. Lansky、Johan H. C. Reiberによる論文、名称「New approaches for the assessment of vessel sizes in quantitative (cardio−)vascular X−ray analysis」、Int J Cardiovasc Imaging (2010年) 26:259〜271頁、
Kirkeeide R L.編集Reiber J H CおよびSerruys P Wによる論文、名称「Coronary obstructions, morphology and physiologic significance Quantitative Coronary Arteriography」、The Netherlands: Kluwer、1991年、229〜244頁、
Kevin Sprague、Maria Drangova、Glen Lehmann、Piotr Slomka、David Levin、Benjamin Chow、およびRobert deKempによる論文、名称「Coronary x−ray angiographic reconstruction and image orientation」、Med Phys、2006年3月、33(3):707〜718頁、
Adamantios Andriotis、Ali Zifan、Manolis Gavaises、Panos Liatsis、Ioannis Pantos、Andreas Theodorakakos、Efstathios P. Efstathopoulos、およびDemosthenes Katritsisによる論文、名称「A New Method of Three−dimensional Coronary Artery Reconstruction From X−Ray Angiography: Validation Against a Virtual Phantom and Multislice Computed Tomography」、Catheter Cardiovasc Interv、2008年1月1日、71(1):28〜43頁、
Kenji Fusejima, MDによる論文、名称「Noninvasive Measurement of Coronary Artery Blood Flow Using Combined Two−Dimensional and Doppler Echocardiography」、JACC第10巻、第5号、1987年11月、1024〜31頁、
Carlo Caiati、Cristiana Montaldo、Norma Zedda、Alessandro Bina、およびSabino Ilicetoによる論文、名称「New Noninvasive Method for Coronary Flow Reserve Assessment: Contrast−Enhanced Transthoracic Second Harmonic Echo Doppler」、Circulation、the American Heart Association、1999年、99:771〜778頁、
Harald Lethena、Hans P Triesa、Stefan Kerstinga、およびHeinz Lambertzaによる論文、名称「Validation of noninvasive assessment of coronary flow velocity reserve in the right coronary artery−A comparison of transthoracic echocardiographic results with intracoronary Doppler flow wire measurements」、European Heart Journal (2003年) 24、1567〜1575頁、
Paolo Vocia、Francesco Pizzutoa、およびFrancesco Romeobによる論文、名称「Coronary flow: a new asset for the echo lab?」、European Heart Journal (2004年) 25、1867〜1879頁、
Siogkasらによる論文要録、名称「Quantification of the effect of Percutaneous Coronary Angioplasty on a stenosed Right Coronary Artery」、Information Technology and Applications in Biomedicine (ITAB)、2010年第10回IEEE International Conference on、
Patrick MeimounおよびChristophe Tribouilloyによるレビュー論文、名称「Non−invasive assessment of coronary flow and coronary flow reserve by transthoracic Doppler echocardiography: a magic tool for the real world」、European Journal of Echocardiography (2008年) 9、449〜457頁、
Carlo Caiati、Norma Zedda、Mauro Cadeddu、Lijun Chen、Cristiana Montaldo、Sabino Iliceto、Mario Erminio Lepera、およびStefano Favaleによる論文、名称「Detection, location, and severity assessment of left anterior descending coronary artery stenoses by means of contrast−enhanced transthoracic harmonic echo Doppler」、European Heart Journal (2009年) 30、1797〜1806頁、
Bullittらの論文、名称「Determining malignancy of brain tumors by analysis of vessel shape」、Medical Image Computing and Computer−Assisted Intervention−MICCAI2004。

0009

上述の、および本明細書全体を通しての、すべての文献の開示、さらにはこれらの文献において言及されているすべての文献の開示は、参照により本明細書に組み込まれている。

0010

本発明のいくつかの実施形態の態様によれば、血管評価を行うための、心臓血管系の第1の血管モデルを受信することと、血管系の狭窄セグメントを通る流れを表す第1の血管モデルに基づき少なくとも1つの特性を決定することと、第1の血管モデルに対応する要素と、流れの少なくとも1つの特性の差異を含む少なくとも1つの修正とを備える第2の血管モデルを生成することと、第1のモデルと第2のモデルとを比較する流動指数を算出することとを備える、方法が提供される。

0011

本発明のいくつかの実施形態によれば、流れの少なくとも1つの特性の差異は、狭窄セグメントを通る流れの少なくとも1つの特性と、第2のモデルの対応するセグメントの中の流れの特性との間の差異を備える。

0012

本発明のいくつかの実施形態によれば、血管モデルは、複数の2−D血管造影画像に基づき算出される。

0013

本発明のいくつかの実施形態によれば、血管造影画像が、主要なヒト冠状動脈からの少なくとも第3の分岐点に従って血管セグメントに対して10%以内で血管幅の決定を行うことを可能にする十分な解像度を有している。

0014

本発明のいくつかの実施形態によれば、流動指数は、狭窄セグメントから狭窄を取り除くためにインターベンションによって達成可能である流動増加の予測を備える。

0015

本発明のいくつかの実施形態によれば、比較流動指数は、第1および第2の血管モデルの対応する流動特性の比に基づき算出される。

0016

本発明のいくつかの実施形態によれば、比較流動指数は、狭窄セグメントと非狭窄セグメントの対応する流動特性の比に基づき算出される。

0017

本発明のいくつかの実施形態によれば、この方法は、比較流動指数を狭窄毎の単一の数として報告することを備える。

0018

本発明のいくつかの実施形態によれば、流れの少なくとも1つの特性は、流量を備える。

0019

本発明のいくつかの実施形態によれば、比較流動指数は、狭窄血管を通る最大の流れと狭窄が取り除かれた狭窄血管を通る最大の流れとの比を備える血流予備量指数を表す指数を備える。

0020

本発明のいくつかの実施形態によれば、比較流動指数は、血管再生に対する推奨を決定する際に使用される。

0021

本発明のいくつかの実施形態によれば、比較流動指数は、狭窄を取り除くことによって流れを復元するため容量を示す値を備える。

0022

本発明のいくつかの実施形態によれば、第1および第2の血管モデルは、血管セグメントデータの接続された枝を備え、それぞれ枝は流れに対する対応する血管抵抗に関連付けられている。

0023

本発明のいくつかの実施形態によれば、血管モデルは、血管壁径方向に詳細になっている3−Dの記述を含まない。

0024

本発明のいくつかの実施形態によれば、第2の血管モデルは、第1の血管モデルにおける狭窄血管を置き換える比較的大きな直径を有する血管を備える、通常モデルである。

0025

本発明のいくつかの実施形態によれば、第2の血管モデルは、隣接する非狭窄血管の特性に基づき狭窄血管を正常化することによって得られる正常化された血管を備える、通常モデルである。

0026

本発明のいくつかの実施形態によれば、流の少なくとも1つの特性は、狭窄セグメントと流れで接続する複数の血管セグメントの特性に基づき算出される。

0027

本発明のいくつかの実施形態によれば、流れの特性は、流体流れに対する抵抗を備える。

0028

本発明のいくつかの実施形態によれば、この方法は、第1の血管モデルにおいて、狭窄血管と、狭窄血管の下流にある血管枝冠部とを識別することと、冠部内の流体流れに対する抵抗を算出することとを備え、ここにおいて、流動指数は、冠部の容積に基づき、また流体流れに対する抵抗への狭窄血管の寄与分に基づき算出される。

0029

本発明のいくつかの実施形態によれば、第1の血管モデルは、三次元空間内の血管位置表現を備える。

0030

本発明のいくつかの実施形態によれば、それぞれの血管モデルは、血管系の2つの連続する分岐部の間にある血管系の一部に対応する。

0031

本発明のいくつかの実施形態によれば、それぞれの血管モデルは、血管系の分岐部を含む血管系の一部に対応する。

0032

本発明のいくつかの実施形態によれば、それぞれの血管モデルは、血管系の少なくとも1つの分岐部を狭窄セグメントを超えて拡大する血管系の一部に対応する。

0033

本発明のいくつかの実施形態によれば、それぞれの血管モデルは、血管系の少なくとも3つの分岐部を狭窄セグメントを超えて拡大する血管系の一部に対応する。

0034

本発明のいくつかの実施形態によれば、血管モデルは、血管セグメントに沿った経路を備え、これらの経路のそれぞれは複数の2−D画像内の位置までのその広がりに沿ってマッピングされる。

0035

本発明のいくつかの実施形態によれば、この方法は、心臓血管系の画像を取得することと、その第1の血管モデルを構築することとを備える。

0036

本発明のいくつかの実施形態によれば、それぞれの血管モデルは、画像の解像度が正しい値の10%以内で血管幅の決定を可能にする限り遠位拡張する血管系の一部に対応する。

0037

本発明のいくつかの実施形態によれば、血管モデルは、モデルを生成するために使用される画像の取得時に人工的に拡張された血管系のものである。

0038

本発明のいくつかの実施形態の一態様によれば、プログラム命令が格納され、命令コンピュータによって読み込まれると被験者の血管系の複数の2−D画像を受信して血管評価のための方法を実行することをコンピュータに行わせる、コンピュータ可読媒体を備える、コンピュータソフトウェア製品が用意される。

0039

本発明のいくつかの実施形態の一態様によれば、血管評価を行うための、
複数の2−D画像を受信し、複数の2−Dを血管系の第1の血管モデルに変換し、血管系の狭窄セグメントを通る流れを表す第1の血管モデルに基づき少なくとも1つの特性を決定し、第1の血管モデルに対応する要素を備える、第2の血管モデルと、狭窄セグメントを通る流れの少なくとも1つの特性を狭窄の効果が低減される対応するセグメントを通るかのような流れの特性に変更することを含む少なくとも1つの修正とを生成し、第1のモデルと第2のモデルとを比較する流動指数を算出するように構成されたコンピュータを備える、システムが実現される。

0040

本発明のいくつかの実施形態によれば、コンピュータは、第1の血管モデルを受信する5分以内に流動指数を算出するように構成される。

0041

本発明のいくつかの実施形態によれば、コンピュータは、2−D画像の取得の5分以内に流動指数を算出するように構成される。

0042

本発明のいくつかの実施形態によれば、コンピュータは、撮像デバイスから離れた場所に配置される。

0043

本発明のいくつかの実施形態の一態様によれば、心臓血管系の血管モデルを受信することと、血管系の狭窄セグメントと狭窄セグメントへの冠部血管とを通る流れを表す血管モデルに基づき少なくとも第1の流動特性を決定することと、狭窄セグメントによる流れの制限を受けることなく、冠部血管を通る流れを表す血管モデルに基づき少なくとも第2の流動特性を決定することと、第1の流動特性と第2の流動特性とを比較する流動指数を算出することとを備える血管評価のための方法が提供される。

0044

本発明のいくつかの実施形態の一態様によれば、被験者の血管系の一部に含まれる血管セグメントの複数の2−D血管造影画像を受信することと、自動的に、複数の2−D血管造影画像のそれぞれから、血管セグメントの2−D特徴位置を備える対応する画像特徴セットを抽出することと、それぞれ特徴セット逆投影可能である共通の3−D座標系における相対的位置誤差を低減するために2−D特徴位置を自動的に調整することと、共通の血管セグメント領域から投影される画像特徴が関連付けられるように画像特徴セットにまたがって2−D特徴位置を自動的に関連付けることと、関連付けられている2−D特徴位置から決定される3−D投影の検査、およびそれからの最適な利用可能な3−D投影の選択に基づき画像特徴の表現を自動的に決定することとを備える血管樹(tree)モデルの構築のための方法が提供される。

0045

本発明のいくつかの実施形態によれば、抽出される画像特徴セットは、血管セグメントに沿って順序付けられた2−D中心線位置を含む中心線データセットを備える。

0046

本発明のいくつかの実施形態によれば、決定された表現は、血管セグメントの広がりの3−D空間表現である。

0047

本発明のいくつかの実施形態によれば、決定された表現は、血管セグメントの広がりのグラフ表現である。

0048

本発明のいくつかの実施形態によれば、2−D画像位置を自動的に関連付けるために必要な情報は、人間の操作者による画像のレビュー前に全部提供される。

0049

本発明のいくつかの実施形態によれば、調整すること、関連付けること、および決定することは、中心線データセットの要素により実行される。

0050

本発明のいくつかの実施形態によれば、調整することは、2−D中心線位置にその3−D逆投影間でより密接な対応関係を持たせるパラメータによる3−D空間内での2−D画像のレジストレーションを備える。

0051

本発明のいくつかの実施形態によれば、抽出される画像特徴セットは、樹モデルの原点、狭窄血管セグメント内局所的に小さくされる半径の配置、および血管セグメントにまたがる分岐部からなる群の少なくとも1つを含むランドマークデータセットを備える。

0052

本発明のいくつかの実施形態によれば、抽出される画像特徴セットは、変換上での自己相似性の所定の閾値より低いピクセル強度構成を含むランドマークデータセットを備える。

0053

本発明のいくつかの実施形態によれば、調整することは、ランドマークデータセットの要素上で実行され、関連付けることおよび決定することは、中心線データセットの要素間で実行される。

0054

本発明のいくつかの実施形態によれば、調整することは、ランドマークデータセットの特徴にその3−D逆投影間でより密接な対応関係を持たせるパラメータによる3−D空間内での2−D画像のレジストレーションを備える。

0055

本発明のいくつかの実施形態によれば、2−D画像のレジストレーションは、中心線データセットの要素の位置のレジストレーションを備える。

0056

本発明のいくつかの実施形態によれば、この方法は、順序付けられた2−D中心線位置に垂直な直線に沿って複数の2−D血管造影画像のうちの少なくとも1つの値に基づき径方向血管幅の測定基準を推定することを備える。

0057

本発明のいくつかの実施形態によれば、径方向血管幅の測定基準を推定することは、2−D中心線位置のいずれかの側に沿って走る接続経路を見つけることを備え、接続経路は、血管壁の境界領域の画像となるピクセルを備える。

0058

本発明のいくつかの実施形態によれば、血管壁の境界領域は、垂直線に沿った強度勾配分析によって決定される。

0059

本発明のいくつかの実施形態によれば、径方向血管幅の測定基準は、中心線位置の関数として算出される。

0060

本発明のいくつかの実施形態によれば、決定することは、複数の2−D血管造影画像の少なくとも1つの2−D平面内への3−D表現の投影に基づき2−D特徴位置を調整することを備える。

0061

本発明のいくつかの実施形態によれば、調整することは、複数の2−D血管造影画像の第1のサブセットの2−D特徴位置から特徴位置の3−D表現を算出することと、複数の2−D血管造影画像の第2のサブセット内の2−D特徴位置を、第1の3−D表現が第2のサブセットの調整された像平面内に投影されたかのように、3−D表現の特徴とよりよく一致するように調整することと、停止条件が満たされるまで、第1および第2のサブセットへの変更と共に算出することと、調整することとを繰り返すこととを備える。

0062

本発明のいくつかの実施形態によれば、停止条件は、距離閾値より上の2−D特徴位置に合わせて調整する位置がないことである。

0063

本発明のいくつかの実施形態によれば、この方法は、被験者の心臓の形状に対応する表面を画成することと、その表面を特徴位置の関連付けのための制約条件として使用することとを備える。

0064

本発明のいくつかの実施形態によれば、画像は、血管系への造影剤注入後に取得され、この方法は、血管系を通る造影剤の移動の時間的特性を決定することと、時間的特性に基づき特徴位置を制約することとをさらに備える。

0065

本発明のいくつかの実施形態によれば、血管系の一部分は、冠状動脈を備える。

0066

本発明のいくつかの実施形態によれば、複数の2D血管造影画像の取り込みは、複数の2D血管造影画像を取り込むために複数の撮像デバイスによって実行される。

0067

本発明のいくつかの実施形態によれば、複数の2D血管造影画像の取り込みは、心拍周期内の実質的に同じ期で複数の画像を取り込むように複数の撮像デバイスを同期させることを備える。

0068

本発明のいくつかの実施形態の一態様によれば、プログラム命令が格納され、命令がコンピュータによって読み込まれると血管系の一部の複数の2D血管造影画像を受信して血管樹モデルの構築のための方法を実行することをコンピュータに行わせる、コンピュータ可読媒体を備える、コンピュータソフトウェア製品が用意される。

0069

本発明のいくつかの実施形態の一態様によれば、血管評価を行うための、被験者の血管系の一部の複数の2−D画像を取り込むための血管造影撮像デバイスに論理的に接続され、複数の血管造影撮像デバイスから複数の2−D血管造影画像を受け取り、複数の2−D血管造影画像のそれぞれから、血管セグメントの2−D特徴位置を備える画像特徴データセットを抽出し、特徴位置に共通の3−D座標系内の相対位置誤差を最小にするように2−D特徴位置を調整し、共通の血管セグメント領域から異なる画像に投影される2−D特徴位置が関連付けられるように画像特徴データセット間の2−D特徴位置の対応関係を見つけ、関連付けられている2−D特徴位置から決定された3−D投影の検査に基づき2−D特徴位置の3−D表現を決定するように構成されたコンピュータを備える、システムが実現される。

0070

本発明のいくつかの実施形態によれば、システムが抽出するように構成されている画像特徴セットは、血管セグメントに沿って順序付けられた2−D中心線位置を含む中心線データセットを備える。

0071

本発明のいくつかの実施形態によれば、システムは、中心線データセットの要素の位置を2−D特徴位置として使用するように構成される。

0072

本発明のいくつかの実施形態によれば、システムは、2−D中心線位置にその3−D逆投影間でより密接な対応関係を持たせるパラメータによる3−D空間内での2−D画像のレジストレーションに基づき2−D特徴位置を調整するように構成される。

0073

本発明のいくつかの実施形態によれば、径方向血管幅の測定は、2−D中心線位置のいずれかの側に沿って走る接続経路間の距離を備え、接続経路は、血管壁の境界領域の画像となるピクセルを備える。

0074

本発明のいくつかの実施形態によれば、画像変換ベースの調整は、画像の第1および第2のセットに対する画像の少なくとも第2の選択について繰り返し実行可能である。

0075

本発明のいくつかの実施形態によれば、血管系の一部分は、主冠状動脈から少なくとも第3の分岐点までの冠状動脈の樹を備える。

0076

本発明のいくつかの実施形態の一態様によれば、血管樹モデルを構築し、血管樹の2−D画像を受信することと、画像のそれぞれが対応する像面位置に関連付けられており、2−D画像の血管特徴を自動的に識別することと、画像間の相同の血管特徴を、像面位置内で血管特徴から光線幾何学的に投影し、共通の像目標空間に通すことによって識別することと、交差する光線を有する特徴を相同であるとして関連付けることとを備える方法が提供される。

0077

本発明のいくつかの実施形態によれば、光線の交差は、互いから所定の距離の範囲内に入ることを備える。

0078

本発明のいくつかの実施形態によれば、像面位置は、光線の交差における誤差を小さくするために繰り返し更新され、相同の血管特徴の識別は、その後繰り返される。

0079

本発明のいくつかの実施形態の一態様によれば、血管樹モデルを構築し、複数の2−D画像内の特徴から共通の3−D平面に光線を繰り返し逆投影することと、複数の2−D画像の間で共通である特徴から光線の交差における誤差を決定することと、2−D画像を調整することと、逆投影することと、決定することと、少なくとも第1の追加の時間を調整することとを繰り返すこととを備える方法が提供される。

0080

本発明のいくつかの実施形態の一態様によれば、血管系の一部のモデルが用意され、ここにおいてこのモデルの要素は、複数の2−D血管造影画像の座標空間と、共通の3−D空間の座標空間と、接続ノードから分岐されている1−Dの広がりを有する血管グラフ空間とからなる群から選択された複数の配置記述に関連付けられる。

0081

本発明のいくつかの実施形態の一態様によれば、血管評価を行うための、被験者の血管系の一部の複数の2−D血管造影画像を受信することと、受信してから20分以内に、画像の自動処理によって、狭窄心臓動脈を備える血管系の一部に関して第1の3−D血管樹モデルを生成することと、血管樹モデルに基づき、狭窄部を開くことによって流れを復元するための容量を定量化する指数を自動的に決定することとを備える、方法が提供される。

0082

本発明のいくつかの実施形態によれば、狭窄部を開くことによって流れを復元するための容量の指示は、血管幅の変化に基づく算出を備える。

0083

本発明のいくつかの実施形態によれば、自動処理は、1京回以内の計算で実行される。

0084

本発明のいくつかの実施形態によれば、自動処理は、血管壁の径方向に詳細な3−D表現を含まないモデルの形成を備える。

0085

本発明のいくつかの実施形態によれば、自動的に決定すること、および自動処理は、動的流れモデリングを含まないモデルの形成を備える。

0086

本発明のいくつかの実施形態によれば、自動的に決定することは、血管の流動特性の線形モデリングを備える。

0087

本発明のいくつかの実施形態によれば、血管樹モデルは、血管幅を血管の広がりの関数として表す。

0088

本発明のいくつかの実施形態によれば、血管の広がりは、血管樹モデル上のノード位置に配置されている血管セグメントに沿った距離を備える。

0089

本発明のいくつかの実施形態によれば、第1の3−D血管樹モデルは、血管セグメントの間に少なくとも3つの枝ノードを備える。

0090

本発明のいくつかの実施形態によれば、第1の3−D血管樹モデルは、血管中心線と、それに沿った血管幅を備える。

0091

本発明のいくつかの実施形態によれば、第1の3−D血管樹は、5分以内に生成される。

0092

本発明のいくつかの実施形態によれば、この方法は、血管樹の少なくとも1つの血管セグメントに対するFFR特性を算出することを備える。

0093

本発明のいくつかの実施形態によれば、FFR特性を算出することは、第1のモデルに基づき、第2のモデルでは血管幅がより大きいものとして表される点が異なる、第2の血管樹モデルを生成することと、第1の血管樹モデルと第2の血管樹モデルとを比較することとを備える。

0094

本発明のいくつかの実施形態によれば、比較することは、少なくとも1つの血管セグメントに対する第1の血管樹モデルと第2の血管樹モデルとでモデル化された流量の比を取得することを備える。

0095

本発明のいくつかの実施形態によれば、FFR特性は、第1の3−D血管樹モデルを生成してから1分以内に算出される、
本発明のいくつかの実施形態によれば、FFR特性は、第1の3−D血管樹モデルと第2の3−D血管樹モデルとを生成してから10秒以内に算出される、
本発明のいくつかの実施形態によれば、FFR特性は、少なくとも95%の感度を有する圧力測定決定FFR指数の予測因子である。

0096

本発明のいくつかの実施形態によれば、この方法は、第1の3−D血管樹の一部の、複数の2−D血管造影画像のうちの少なくとも1つによって共有される2−D座標基準フレーム内への投影を生成することを備える。

0097

本発明のいくつかの実施形態によれば、少なくとも1つの画像は、元の座標基準フレームから、3−D血管樹の3−D座標基準フレームに相対的に定義される座標基準フレームに変換される。

0098

本発明のいくつかの実施形態によれば、被験者は、受信された複数の2−D血管造影画像を生成する撮像において血管内カテーテル挿入を受け、画像の受信時に、および第1の3−D血管樹モデルの生成時に、カテーテルを挿入されたままである。

0099

本発明のいくつかの実施形態によれば、この方法は、被験者を撮像して、第2の複数の2−D血管造影画像を、第1の血管樹モデルの第1の生成、第2の複数の画像を備える画像の第2の受信、および第1の3−D血管樹モデルの第2の生成の後に、生成し、ここにおいて、被験者は、血管内にカテーテルを挿入されたままである。

0100

本発明のいくつかの実施形態によれば、生成は、被験者の進行中のカテーテル挿入手技インタラクティブに行われる。

0101

本発明のいくつかの実施形態によれば、FFR特性の算出は、被験者の進行中のカテーテル挿入手技とインタラクティブに行われる。

0102

本発明のいくつかの実施形態の一態様によれば、血管評価を行うための、被験者の血管系の一部の複数の2−D画像を取り込むための血管造影撮像デバイスに論理的に接続され、それから5分以内に血管樹モデルを算出するように構成されたコンピュータを備え、ここにおいて、狭窄部を開くことによって流れの復元に対する容量を示す血管機能の指数は、さらに1分以内に血管樹モデルに基づき決定可能である、システムが実現される。

0103

本発明のいくつかの実施形態によれば、血管樹モデルに基づく決定は、狭窄の領域内でモデル化された血管幅を広げることによって血管樹モデルから導かれる第2の血管樹モデルの生成を備える。

0104

本発明のいくつかの実施形態では、患者の血管系の1つまたは複数のモデルが生成される。

0105

いくつかの実施形態では、第1のモデルは、患者の血管系の画像から収集された実際のデータから生成される。適宜、実際のデータは、狭窄のある少なくとも1つの血管を含む血管系の一部を含む。これらの実施形態では、第1のモデルは、狭窄のある少なくとも1つの血管を含む血管系の一部を記述するものである。このモデルは、狭窄モデル交換可能に称される。適宜、実際のデータは、狭窄のある少なくとも1つの血管と冠部とを含む血管系の一部を含む。これらの実施形態では、狭窄モデルは、冠部の形状および/または容積に関係する情報と、血流および/または冠部内の血流に対する抵抗に関係する情報とをさらに含む。

0106

いくつかの実施形態では、第1のモデルは、血管機能を示す指数を算出するために使用される。好ましくは、指数は、血管再生の潜在的効果をも示す。たとえば、指数は、モデルにおける冠部の容積と、冠部内の血流に対する抵抗への狭窄血管の寄与分とに基づき算出され得る。

0107

本発明のいくつかの実施形態において、第2のモデルは、実際のデータから生成され、患者の血管系内に存在する1つまたは複数の狭窄部がそれらが血管再生されているかのように変更される。

0108

いくつかの実施形態では、第1のモデルおよび第2のモデルが比較され、血管再生の潜在的効果を示す指数は、第1のモデルにおける物理的特性と第2のモデルにおける物理的特性とを比較することに基づき、生成される。

0109

いくつかの実施形態では、指数は、当技術分野で知られているように、血流予備量比(FFR)である。

0110

いくつかの実施形態では、指数は、適宜狭窄部の位置で、1つまたは複数の血管の血管再生を実行する効果に潜在的に相関する他の何らかの尺度である。

0111

本発明のいくつかの実施形態の一態様によれば、血管評価のための方法が提供される。この方法は、被験者の血管系の一部の複数の2D血管造影画像を受信することと、画像を処理し、60分未満内に、血管系の一部について第1の血管樹を生成するためにコンピュータを使用することとを備える。

0112

本発明のいくつかの実施形態によれば、血管系は、その中に、血管造影用カテーテル以外の少なくとも1つのカテーテルを有し、ここにおいて、画像が処理され、樹は、カテーテルが血管系内にある間に生成される。

0113

本発明のいくつかの実施形態によれば、この方法は、血管機能を示す指数を算出するために血管モデルを使用することを備える。

0114

本発明のいくつかの実施形態によれば、指数は、血管再生の必要性を示す。

0115

本発明のいくつかの実施形態によれば、算出は、60分未満内に行われる。

0116

本発明のいくつかの実施形態の一態様によれば、血管造影画像を分析する方法が提供される。この方法は、被験者の一部の血管系の複数の2D血管造影画像を受信することと、画像を処理して血管系の樹モデルを生成するためにコンピュータを使用することとを備える。

0117

本発明のいくつかの実施形態の一態様によれば、血管系を治療する方法が提供される。この方法は、治療表面上に動かないように固定されている被験者の血管系の複数の2D血管造影画像を取り込むことと、被験者が動かないように固定されている間に、画像を処理して、血管系についての血管樹を生成することと、樹内の収縮した血管を識別することと、樹内の収縮した血管に対応する血管系の部位でステント膨張させることとを備える。

0118

本発明のいくつかの実施形態によれば、複数の2D血管造影画像は、少なくとも3つの2D血管造影画像を備え、ここにおいて、樹モデルは3D樹モデルである。

0119

本発明のいくつかの実施形態によれば、この方法は、第1の血管樹において、狭窄血管と狭窄血管の冠部とを識別することと、冠部内の流体流れに対する抵抗を算出することとを備え、ここにおいて、指数は、冠部の容積に基づき、また流体流れに対する抵抗への狭窄血管の寄与分に基づき算出される。

0120

本発明のいくつかの実施形態によれば、血管樹は、血管系の一部分の中の複数の点における血管の配置と、配向と、直径とに関係するデータを備える。

0121

本発明のいくつかの実施形態によれば、この方法は、画像を処理して、血管系について第2の三次元血管樹を生成することを備え、第2の血管樹は狭窄血管が膨張させた血管で置き換えられる第1の血管樹に対応し、ここにおいて、指数の算出は、第1の樹と第2の樹とに基づく。

0122

本発明のいくつかの実施形態によれば、この方法は、画像を処理して、血管系について第2の三次元血管樹を生成することを備え、第2の血管樹は狭窄部を含まない、第1の血管樹に幾何学的に類似している、血管系の一部に対応し、ここにおいて、指数の算出は、第1の樹と第2の樹とに基づく。

0123

本発明のいくつかの実施形態によれば、この方法は、指数に基づき血流予備量比(FFR)を取得することを備える。

0124

本発明のいくつかの実施形態によれば、この方法は、指数に基づき、狭窄部の領域内の最大血流量と狭窄部のない同じ領域内の最大血流量との比を決定することを備える。

0125

本発明のいくつかの実施形態によれば、この方法は、侵襲性最小限度に抑えて狭窄血管を治療することを備える。

0126

本発明のいくつかの実施形態によれば、治療は、指数の算出から1時間未満内に実行される。

0127

本発明のいくつかの実施形態によれば、この方法は、樹をコンピュータ可読媒体内に格納することを備える。

0128

本発明のいくつかの実施形態によれば、この方法は、樹をリモートコンピュータに送信することを備える。

0129

本発明のいくつかの実施形態によれば、この方法は、2D血管造影画像を取り込むことを備える。

0130

本発明のいくつかの実施形態によれば、複数の2D血管造影画像を取り込むことは、複数の2D血管造影画像を取り込むために複数の撮像デバイスによって実行される。

0131

本発明のいくつかの実施形態によれば、複数の2D血管造影画像を取り込むことは、心拍周期内の実質的に同じ期で複数の画像を取り込むように複数の撮像デバイスを同期させることを備える。

0132

本発明のいくつかの実施形態によれば、同期させることは、被験者のECG信号に従う。

0133

本発明のいくつかの実施形態によれば、この方法は、N個の血管造影画像のそれぞれにおける対応する画像特徴を検出することと、ここにおいて、Nは、1より大きい整数である、対応する画像特徴に基づき画像補正パラメータを算出することと、補正パラメータに基づき、N−1個の血管造影画像のレジストレーションを、N−1個の血管造影画像以外の血管造影画像に幾何学的に対応するように実行することとを備える。

0134

本発明のいくつかの実施形態によれば、この方法は、被験者の心臓の形状に対応する表面を画成することと、対応する画像特徴の検出のために表面を制約として使用することとを備える。

0135

本発明のいくつかの実施形態によれば、この方法は、呼吸および患者の移動を補償することを備える。

0136

本発明のいくつかの実施形態の一態様によれば、コンピュータソフトウェア製品が提供される。コンピュータソフトウェア製品は、プログラム命令が格納され、命令がコンピュータによって読み込まれると被験者の血管系の複数の2D血管造影画像を受信して、上に示され、適宜、以下でさらに詳述されるように、この方法を実行することをコンピュータに行わせる、コンピュータ可読媒体を備える。

0137

本発明のいくつかの実施形態の一態様によれば、血管評価のためのシステムが提供される。このシステムは、被験者の血管系の複数の2D血管造影画像を取り込むように構成された複数の撮像デバイスと、複数の2D画像を受信し、上で示され、適宜以下でさらに詳述されるようにこの方法を実行するように構成されたコンピュータとを備える。

0138

本発明のいくつかの実施形態の一態様によれば、血管評価を行うための、被験者の血管系の一部の複数の2D画像を取り込むための複数の血管造影撮像デバイスに機能的に接続され、複数の血管造影撮像デバイスからデータを受け取り、画像を処理して血管系の樹モデルを生成するように構成され、ここにおいて、樹モデルは、血管系の少なくとも1つの枝の血管に沿った1つまたは複数の位置における血管系の幾何学的測定結果を備える。

0139

本発明のいくつかの実施形態によれば、システムは、血管系の複数の2D画像の取り込みを同期させるために複数の血管造影撮像デバイスに同期信号を供給するように構成された同期ユニットを備える。

0140

本発明のいくつかの実施形態によれば、コンピュータは、被験者ECG信号を受け取り、ECG信号に基づき、心拍周期において実質的に同じ期に対応する2D画像を選択するように構成される。

0141

本発明のいくつかの実施形態によれば、システムは、N個の血管造影画像のそれぞれにおける対応する画像特徴を検出することと、ここにおいて、Nは、1より大きい整数である、対応する画像特徴に基づき画像補正パラメータを算出することと、補正パラメータに基づき、N−1個の血管造影画像のレジストレーションを、N−1個の血管造影画像以外の血管造影画像に幾何学的に対応するように実行することとを行うように構成された画像レジストレーションユニットを備える。

0142

本発明のいくつかの実施形態によれば、コンピュータは、被験者の心臓の形状に対応する表面を画成することと、対応する画像特徴の検出のために表面を制約として使用することとを行うように構成される。

0143

本発明のいくつかの実施形態によれば、コンピュータは、呼吸と患者の移動とを補償するように構成される。

0144

本発明のいくつかの実施形態によれば、補償することは、血管造影画像の異なるサブセットについて毎回対応する画像特徴の検出を反復的に繰り返すことと、対応する画像特徴の繰り返される検出に応答して画像補正パラメータを更新することとを備える。

0145

本発明のいくつかの実施形態によれば、Nは2より大きい。本発明のいくつかの実施形態によれば、Nは3より大きい。

0146

本発明のいくつかの実施形態によれば、対応する画像特徴は、樹モデルの原点と、狭窄血管内の最小半径の配置と、血管の分岐部とからなる群のうちの少なくとも1つを備える。

0147

本発明のいくつかの実施形態によれば、樹モデルは、血管系の一部分の中の複数の点における血管の配置と、配向と、直径とに関係するデータを備える。

0148

本発明のいくつかの実施形態によれば、樹モデルは血管系の少なくとも1つの枝の血管に沿った1つまたは複数の位置における血管系の測定結果を備える。

0149

本発明のいくつかの実施形態によれば、血管系の幾何学的測定結果は、血管系の少なくとも1つの枝の中心線に沿った1つまたは複数の位置における測定結果である。

0150

本発明のいくつかの実施形態によれば、樹モデルは、複数の点のうちの1つまたは複数における血流特性に関係するデータを備える。

0151

本発明のいくつかの実施形態によれば、血管系の一部分は、心臓動脈を備える。

0152

本発明のいくつかの実施形態の一態様によれば、血管評価を行うための、被験者の血管系の一部の複数の2D血管造影画像を受信し、画像を処理して血管系に対する狭窄モデルを生成することと、狭窄モデルは血管系の血管に沿った1つまたは複数の位置で血管系の測定結果を有する、狭窄モデルの流動特性を取得することと、少なくとも一部は狭窄モデルにおける流動特性に基づき、血管機能を示す指数を算出することとを備える方法が提供される。

0153

本発明のいくつかの実施形態によれば、狭窄モデルの流動特性は、流体流れに対する抵抗を備える。

0154

本発明のいくつかの実施形態によれば、本発明、方法は、第1の狭窄モデルおいて、狭窄血管と狭窄血管の冠部とを識別することと、冠部内の流体流れに対する抵抗を算出することとを備え、ここにおいて、指数は、冠部の容積に基づき、また流体流れに対する抵抗への狭窄血管の寄与分に基づき算出される。

0155

本発明のいくつかの実施形態によれば、狭窄モデルの流動特性は、流体流れを備える。

0156

本発明のいくつかの実施形態によれば、狭窄モデルは、三次元血管樹である。

0157

本発明のいくつかの実施形態によれば、血管樹は、血管系の一部分の中の複数の点における血管の配置と、配向と、直径とに関係するデータを備える。

0158

本発明のいくつかの実施形態によれば、この処理は、狭窄モデルを1つの分岐部で拡張することと、拡張された狭窄モデルにおいて新しい流動特性を算出することと、新しい流動特性に応答して、所定の基準に従って、指数を更新することと、拡張と、算出と、更新とを反復的に繰り返すこととを備える。

0159

本発明のいくつかの実施形態によれば、この方法は、画像を処理して血管系に対する第2のモデルを生成することと、第2のモデルの流動特性を取得することと、ここにおいて、指数の算出は、狭窄モデルにおける流動特性と、第2のモデルにおける流動特性とに基づく。

0160

本発明のいくつかの実施形態によれば、この方法、第2のモデルは、狭窄モデルにおける狭窄血管を置き換える膨張させた血管を備える、通常モデルである。

0161

本発明のいくつかの実施形態によれば、狭窄モデルは、三次元血管樹であり、第2のモデルは、第2の三次元血管樹である。

0162

本発明のいくつかの実施形態によれば、これらのモデルのそれぞれは、血管系の2つの連続する分岐部の間にあり、狭窄部を含む、血管系の一部に対応する。

0163

本発明のいくつかの実施形態によれば、これらのモデルのそれぞれは、血管系の分岐部を含む血管系の一部に対応する。

0164

本発明のいくつかの実施形態によれば、これらのモデルのそれぞれは、狭窄部を含み、血管系の少なくとも1つの分岐部を狭窄部を超えて拡大する血管系の一部に対応する。

0165

本発明のいくつかの実施形態によれば、これらのモデルのそれぞれは、狭窄部を含み、血管系の少なくとも3つの分岐部を狭窄部を超えて拡大する、血管系の一部に対応する。

0166

本発明のいくつかの実施形態によれば、この方法、モデルのそれぞれは、狭窄部を含み、画像の解像度が許す限り、遠位に拡大する、血管系の一部に対応する。

0167

本発明のいくつかの実施形態によれば、狭窄モデルは、狭窄部を含む血管系の一部に対応し、第2のモデルは、狭窄部を含まない、狭窄モデルに幾何学的に類似している、血管系の一部に対応する。

0168

本発明のいくつかの実施形態によれば、この処理は、モデルをそれぞれを1つの分岐部で拡張することと、それぞれの拡張されたモデルにおいて新しい流動特性を算出することと、新しい流動特性に応答して、所定の基準に従って、指数を更新することと、拡張と、算出と、更新とを反復的に繰り返すこととを備える。

0169

本発明のいくつかの実施形態によれば、指数は、狭窄モデルにおける流動特性と、第2のモデルにおける流動特性との比に基づき算出される。

0170

本発明のいくつかの実施形態によれば、指数は、血管再生の必要性を示す。

0171

本発明のいくつかの実施形態の一態様によれば、血管評価を行うための、被験者の血管系の狭窄モデルを生成することと、狭窄モデルは被験者の血管系の血管中心線に沿って1つまたは複数の位置における被験者の血管系の測定を含む、狭窄モデルの流動特性を取得することと、狭窄モデルとして被験者の血管系の類似の広がりの、第2のモデルを生成することと、第2のモデルの流動特性を取得することと、狭窄モデルにおける流動特性と、第2のモデルにおける流動特性とに基づき、血管再生の必要性を示す指数を算出することとを含む、方法が提供される。

0172

本発明のいくつかの実施形態によれば、第2のモデルは、狭窄モデルにおける狭窄血管を置き換える膨張させた血管を含む、通常モデルである。

0173

本発明のいくつかの実施形態によれば、血管系は、被験者の心臓動脈を含む。

0174

本発明のいくつかの実施形態によれば、被験者の血管系の狭窄モデルを生成することは、被験者の血管系の複数の2D画像を取り込むために複数の血管造影撮像デバイスを使用することと、複数の2D画像に基づき狭窄モデルを生成することとを含む。

0175

本発明のいくつかの実施形態によれば、流動特性は、流体流れを含む。

0176

本発明のいくつかの実施形態によれば、狭窄モデルの流動特性を取得することは、狭窄モデルに含まれる被験者の血管系の広がり内の1つまたは複数の位置で被験者の血管系内の流体流れを測定することを含み、第2のモデルの流動特性を取得することは、少なくとも一部は、膨張させた血管を考慮して狭窄モデルの流体流れを補正することに基づき、第2のモデルに含まれる被験者の血管系の広がり内の1つまたは複数の位置で被験者の血管系内の流体流れを算出することを含む。

0177

本発明のいくつかの実施形態によれば、流動特性は、流体流れに対する抵抗を含む。

0178

本発明のいくつかの実施形態によれば、狭窄モデルの流動特性を取得することは、少なくとも一部は、狭窄モデルに含まれる被験者の血管系の広がり内の1つまたは複数の位置の被験者の血管系の断面積に基づき流れへの抵抗を算出することを含み、第2のモデルの流動特性を取得することは、少なくとも一部は、第2のモデルに含まれる被験者の血管系の広がり内の1つまたは複数の位置の被験者の血管系の膨張した断面積に基づき流れへの抵抗を算出することを含む。

0179

本発明のいくつかの実施形態によれば、狭窄モデルおよび第2のモデルのうちのそれぞれ1つの広がりは、狭窄部を含む、血管系の2つの連続する分岐部の間の、血管系のセグメントを含む。

0180

本発明のいくつかの実施形態によれば、狭窄モデルおよび第2のモデルのうちのそれぞれ1つの広がりは、血管系の分岐部を含む血管系のセグメントを含む。

0181

本発明のいくつかの実施形態によれば、狭窄モデルおよび第2のモデルのうちのそれぞれ1つは、狭窄部を含み、血管系の少なくとも1つの分岐部を狭窄部を超えて拡大する、血管系の広がりを含む。

0182

本発明のいくつかの実施形態によれば、狭窄モデルおよび第2のモデルのうちのそれぞれ1つは、狭窄部と膨張させた狭窄部とをそれぞれ含み、血管系の少なくとも3つの分岐部を狭窄部を超えて拡大する、血管系の広がりを含む。

0183

本発明のいくつかの実施形態によれば、狭窄モデルおよび第2のモデルのうちのそれぞれ1つは、狭窄部を含み、イメージングモダリティの解像度が許す限り遠位に拡大する、血管系の広がりを含む。

0184

本発明のいくつかの実施形態によれば、狭窄モデルおよび第2のモデルのうちのそれぞれ1つは、狭窄部を含み、血管系の少なくとも1つの分岐部を狭窄部を超えて遠位に拡大する、血管系の広がりを含み、狭窄モデルの流動特性を狭窄モデルの前の流動特性として格納し、第2のモデルの流動特性を第2のモデルの前の流動特性として格納することと、狭窄モデルと第2のモデルの広がりをさらに分岐部1つ分拡大することと、狭窄モデルにおける新しい流動特性を算出し、第2のモデルにおける新しい流動特性を算出することと、血管再生に対する必要性を示す指数を算出するかどうかを、狭窄モデルの新しい流動特性と狭窄モデルの前の特性との差が第1の特定の差より小さく、第2のモデルの新しい流動特性と第2のモデルの前の特性との差が第2の特定の差より小さい場合に、血管再生に対する必要性を示す指数を算出し、さもなければ格納、拡大、算出、および決定を繰り返すようにして決定することとをさらに含む。

0185

本発明のいくつかの実施形態によれば、狭窄部モデルは、狭窄部を含む血管系の広がりを含み、第2のモデルは、狭窄部を含まない、第1のモデルに幾何学的に類似している、血管系の広がりを含む。

0186

本発明のいくつかの実施形態によれば、指数は、狭窄モデルにおける流動特性と、第2のモデルにおける流動特性との比として算出される。

0187

本発明のいくつかの実施形態によれば、算出された指数は、血流予備量比(FFR)を決定するために使用される。

0188

本発明のいくつかの実施形態によれば、算出された指数は、狭窄部の領域内の最大血流量と狭窄部のない同じ領域内の最大血流量との比を決定するために使用される。

0189

本発明のいくつかの実施形態によれば、狭窄モデルを生成すること、狭窄モデルの流動特性を取得すること、第2のモデルを生成すること、第2のモデルの流動特性を取得すること、および指数を算出することは、診断カテーテル挿入時に、診断カテーテル挿入に使用されるカテーテルが被験者の身体から引き抜かれる前に、すべて実行される。

0190

本発明のいくつかの実施形態の一態様によれば、血管評価を行うための、被験者の血管系の複数の2D血管造影画像を取り込むことと、被験者の血管系の樹モデルを生成することと、樹モデルは被験者の血管系の少なくとも1つの枝の血管中心線に沿って1つまたは複数の位置における被験者の血管系の幾何学的測定を含む、複数の取り込まれた2D血管造影画像のうちの少なくとも一部を使用することと、第1の樹モデルの流動特性のモデルを生成することとを含む方法が提供される。

0191

本発明のいくつかの実施形態によれば、血管系は、被験者の心臓動脈を含む。

0192

本発明のいくつかの実施形態によれば、複数の2D血管造影画像を取り込むことは、複数の撮像デバイスを使用して複数の2D血管造影画像を取り込むことを含む。

0193

本発明のいくつかの実施形態によれば、複数の2D血管造影画像を取り込むことは、複数の画像を同時に取り込むように複数の撮像デバイスを同期させることを含む。

0194

本発明のいくつかの実施形態によれば、同期させることは、被験者のECG信号を使用する。

0195

本発明のいくつかの実施形態によれば、同期させることは、複数の2D血管造影画像の少なくとも第1の2D血管造影画像と第2の2D血管造影画像とにおける対応する画像特徴を検出することと、対応する画像特徴に基づき画像補正パラメータを算出することと、第1の2D血管造影画像に幾何学的に対応するように少なくとも第2の2D血管造影画像のレジストレーションを行うこととを含み、ここにおいて、対応する画像特徴は、樹モデルの原点と、狭窄血管内の最小半径の配置と、血管の分岐部とからなる群のうちの少なくとも1つを含む。

0196

本発明のいくつかの実施形態の一態様によれば、血管評価を行うための、被験者の血管系の複数の2D画像を取り込むために複数の血管造影撮像デバイスに機能的に接続され、複数の血管造影撮像デバイスからデータを受け取り、複数の取り込まれた2D画像のうちの少なくともいくつかを使用して、被験者の血管系の樹モデルを生成し、ここにおいて、樹モデルは、被験者の血管系の少なくとも1つの枝の血管中心線に沿った1つまたは複数の位置における被験者の血管系の幾何学的測定を含み、樹モデルの流動特性のモデルを生成するように構成された、コンピュータを含む、システムが実現される。

0197

本発明のいくつかの実施形態によれば、血管系は、被験者の心臓動脈を含む。

0198

本発明のいくつかの実施形態によれば、被験者の血管系の複数の2D画像の取り込みを同期させるために複数の血管造影撮像デバイスに同期信号を供給するように構成された同期ユニットをさらに備える。

0199

本発明のいくつかの実施形態によれば、被験者のECG信号を受け取り、2D画像内の同じ心臓期で複数の血管造影撮像デバイスからのデータから2D画像を選択するように構成された同期ユニットをさらに備える。

0200

本発明のいくつかの実施形態によれば、複数の血管造影撮像デバイスからのデータから少なくとも第1の2D画像および第2の2D画像内の対応する画像特徴を検出し、対応する画像特徴に基づき画像補正パラメータを算出し、第1の2D画像に幾何学的に対応するように少なくとも第2の2D画像のレジストレーションを行うように構成された画像レジストレーションユニットをさらに備え、ここにおいて、対応する画像特徴は、樹モデルの原点と、狭窄血管内の最小半径の配置と、血管の分岐部とからなる群のうちの少なくとも1つを含む。

0201

本発明のいくつかの実施形態の一態様によれば、血管評価を行うための、被験者の血管系の狭窄モデルを生成することと、狭窄モデルは被験者の血管系の血管中心線に沿って1つまたは複数の位置における被験者の血管系の幾何学的測定を含み、狭窄部を含み、血管系の少なくとも1つの分岐部を狭窄部を超えて拡大する、血管系の広がりを含む、狭窄モデルの流動特性を取得することと、狭窄モデルとして被験者の血管系の類似の広がりの、第2のモデルを生成することと、第2のモデルの流動特性を取得することと、狭窄モデルにおける流動特性と、第2のモデルにおける流動特性とに基づき、血管再生の必要性を示す指数を算出することとを含み、狭窄モデルの流動特性を狭窄モデルの前の流動特性として格納し、第2のモデルの流動特性を第2のモデルの前の流動特性として格納することと、狭窄モデルと第2のモデルの広がりをさらに分岐部1つ分拡大することと、狭窄モデルにおける新しい流動特性を算出し、第2のモデルにおける新しい流動特性を算出することと、血管再生に対する必要性を示す指数を算出するかどうかを、狭窄モデルの新しい流動特性と狭窄モデルの前の特性との差が第1の特定の差より小さく、第2のモデルの新しい流動特性と第2のモデルの前の特性との差が第2の特定の差より小さい場合に、血管再生に対する必要性を示す指数を算出し、さもなければ格納、拡大、算出、および決定を繰り返すようにして決定することとをさらに含む、方法が提供される。

0202

断りのない限り、本明細書で使用されるすべての技術および/または科学用語は、本発明が関係している技術分野の当業者に通常理解される意味と同じ意味を有する。本明細書で説明されているものと類似のまたは同等の多数の方法および材料が本発明の実施形態を実施または試験する際に使用され得るが、例示的な方法および/または材料について以下で説明される。食い違いがある場合、本特許明細書が、定義も含めて、優先する。それに加えて、材料、方法、および実施例は、例示にすぎず、必ず制限するものであることを意図されていない。

0203

当業者であれば理解するように、本発明の態様は、システム、方法、またはコンピュータプログラム製品として具現化され得る。したがって、本発明の態様は、全体がハードウェアである実施形態、全体がソフトウェアである実施形態(ファームウェア常駐ソフトウェアマイクロコードなどを含む)、または本明細書ですべて「回路」、「モジュール」、または「システム」と一般的に称され得るソフトウェアの態様とハードウェアの態様とを組み合わせた実施形態の形をとることができる。さらに、本発明の態様は、コンピュータ可読プログラムコードが具現化される1つまたは複数のコンピュータ可読媒体内に具現化されたコンピュータプログラム製品の形態をとり得る。本発明の実施形態の方法および/またはシステムの実装は、選択されたタスク手動で、自動的に、またはこれらを組み合わせて実行するか、または完遂することを伴い得る。

0204

たとえば、本発明の実施形態による選択されたタスクを実行するためのハードウェアは、チップまたは回路として実装され得る。ソフトウェアとしては、本発明の実施形態による選択されたタスクは、好適なオペレーティングシステムを使用してコンピュータによって実行される複数のソフトウェア命令として実装され得る。本発明の例示的な一実施形態において、本明細書で説明されているような方法および/またはシステムの例示的な実施形態による1つまたは複数のタスクは、複数の命令を実行するためのコンピューティングプラットフォームなどの、データプロセッサによって実行される。適宜、データプロセッサは、命令および/またはデータを格納するための揮発性メモリ、および/または、命令および/またはデータを格納するための不揮発性記憶装置、たとえば、磁気ハードディスクおよび/または取り外し可能媒体を備える。適宜、ネットワーク接続も同様に提供される。ディスプレイ、および/またはキーボードもしくはマウスなどのユーザ入力デバイスも、同様に適宜備えられる。

0205

1つまたは複数のコンピュータ可読媒体(複数可)の組み合わせが利用され得る。コンピュータ可読媒体は、コンピュータ可読信号媒体またはコンピュータ可読ストレージ媒体であってよい。コンピュータ可読記憶媒体は、たとえば、限定はしないが、電子磁気、光、電磁気赤外線、または半導体システム、装置、もしくはデバイス、または前述のものの好適な組み合わせとすることができる。コンピュータ可読記憶媒体のより具体的な例(非網羅的なリスト)は、1つまたは複数の電線を有する電気的接続携帯型コンピュータディスケットハードディスクランダムアクセスメモリ(RAM)、リードオンリーメモリ(ROM)、消去可プログラム可能リードオンリーメモリ(EPROMまたはフラッシュメモリ)、光ファイバ携帯コンパクトディスクリードオンリーメモリ(CD−ROM)、光学式記憶装置デバイス、磁気記憶装置デバイス、または前述のものの好適な組み合わせを含む。本明細書の文脈において、コンピュータ可読記憶媒体は、命令実行システム、装置、またはデバイスにより使用されるか、または命令実行システム、装置、またはデバイスと接続して使用されるプログラムを含む、または格納することができる有形の媒体とすることができる。

0206

コンピュータ可読信号媒体は、その中に具現化されたコンピュータ可読プログラムコードを使用して、たとえば、ベースバンドで、または搬送波の一部として伝搬されるデータ信号を含み得る。そのような伝搬信号は、限定はしないが、電磁気、光、またはこれらの好適な組み合わせを含む、さまざまな形態をとり得る。コンピュータ可読信号媒体は、コンピュータ可読記憶媒体でない、また命令実行システム、装置、またはデバイスで使用するための、または命令実行システム、装置、またはデバイスに関連して使用するためのプログラムを伝達する、伝搬する、または搬送することができるコンピュータ可読媒体とすることができる。

0207

コンピュータ可読媒体上に具現化されたプログラムコードは、限定はしないが、ワイヤレス有線光ファイバケーブル、RF、など、または前述のものの好適な組み合わせを含む適切な媒体を使用して送信され得る。

0208

本発明の態様に対するオペレーションを実行するためのコンピュータプログラムコードは、Java(登録商標)、Smalltalk、C++、または同様のものなどのオブジェクト指向プログラミング言語、および「C」プログラミング言語または類似のプログラミング言語などの伝統的な手続き型プログラミング言語を含む、1つまたは複数のプログラミング言語の組み合わせで書ける。プログラムコードは、全部をユーザのコンピュータ上で、一部をユーザのコンピュータ上で、スタンドアロンソフトウェアパッケージとして、一部をユーザのコンピュータ、一部をリモートコンピュータ上で、または全部をリモートコンピュータまたはサーバ上で実行することができる。後者のシナリオでは、リモートコンピュータは、ローカルエリアネットワーク(LAN)またはワイドエリアネットワークWAN)を含む、任意のタイプのネットワークを通じてユーザのコンピュータに接続され得るか、または接続を外部コンピュータに対して(たとえば、インターネットサービスプロバイダを利用してインターネットを通じて)行うことができる。

0209

本発明の態様は、本発明の実施形態による方法、装置(システム)、およびコンピュータプログラム製品の流れ図図解および/またはブロック図を参照しつつ以下で説明される。流れ図図解および/またはブロック図のそれぞれのブロック、流れ図図解および/またはブロック図中のブロックの組み合わせは、コンピュータプログラム命令により実装され得ることは理解されるであろう。これらのコンピュータプログラム命令は、ある1つの機械を生成するために汎用コンピュータ、専用コンピュータ、または他のプログラム可能データ処理装置に送られ、これにより、コンピュータまたは他のプログラム可能データ処理装置のプロセッサを介して実行される命令が流れ図および/またはブロック図の1つまたは複数のブロックで指定された機能/活動を実行する手段を作成することができる。

0210

コンピュータ、他のプログラム可能なデータ処理装置、または他のデバイスを特定の方法で機能させるよう指令することができるこれらのコンピュータプログラム命令は、さらに、コンピュータ可読媒体内に格納することもでき、これにより、コンピュータ可読媒体内に格納されている命令で、流れ図および/またはブロック図の1つまたは複数のブロックで指定された機能/活動を実行する命令を収めた製造品生産することができる。

0211

これらのコンピュータプログラム命令は、さらに、コンピュータ、他のプログラム可能なデータ処理装置、または他のデバイス上にロードされ、これにより、コンピュータ、他のプログラム可能なデータ処理装置、または他のデバイス上で一連動作ステップが実行され、コンピュータまたは他のプログラム可能なデータ処理装置上で実行される命令は、流れ図および/またはブロック図の1つまたは複数のブロックで指定された機能/活動を実行するプロセスを構成することができる。

0212

本発明のいくつかの実施形態は、例にすぎないが、添付図面および画像を参照しつつ、本明細書において説明される。次に、図面および画像を詳細に特に参照しつつ、図示されている詳細は例示的であり、また本発明の実施形態の例示的な説明を目的としていることに留意されたい。この点に関して、図面および画像に伴う説明は、本発明の実施形態が実施され得る仕方を当業者に対して明確にするものである。

図面の簡単な説明

0213

本発明のいくつかの例示的な実施形態により処理される、元の画像およびフランジフィルタ処理画像を示す図。
本発明のいくつかの例示的な実施形態による、図1の元の画像の上に重ねられている淡色の中心線を示す図。
本発明のいくつかの例示的な実施形態により生成される、冠状血管樹モデルの画像。
本発明のいくつかの例示的な実施形態により樹枝タグが追加されている、図3Aの冠状血管樹モデルの画像。
本発明のいくつかの例示的な実施形態により生成される、冠状血管樹の樹モデルの簡略化された図。
本発明のいくつかの例示的な実施形態による、それぞれの枝に沿った距離の関数として、図3Cに示されている冠状血管樹モデルの枝に沿った本発明の例の実施形態により生成される血管セグメント半径を示す9枚の一連の図。
本発明のいくつかの例示的な実施形態によりすべて生成される、冠状動脈樹モデルと、樹枝タグを示す組み合わせ行列と、樹枝抵抗を示す組み合わせ行列とを示す図。
本発明のいくつかの例示的な実施形態による、本発明の例の実施形態により生成される、樹モデルの出口番号付けするタグを有する、タグは流線に対応する、血管系の樹モデルを示す図。
本発明のいくつかの例示的な実施形態による、それぞれの枝の枝抵抗Riおよびそれぞれの流線出口の算出された流量Qiを含む、本発明の例の実施形態により生成される血管樹モデルの簡略化された図。
本発明のいくつかの例示的な実施形態による、FFR指数生成を示す簡略化された流れ図。
本発明のいくつかの例示的な実施形態による、FFR指数生成の別の方法を示す簡略化された流れ図。
本発明のいくつかの例示的な実施形態による、FFR指数生成のさらに別の方法を示す簡略化された流れ図。
本発明のいくつかの例示的な実施形態に関係付けられているような、狭窄血管と非狭窄血管とを備える血管系の簡略化された図面。
本発明のいくつかの例示的な実施形態により構築される、血管評価のためのシステムのハードウェア実装の簡略化された図。
本発明のいくつかの例示的な実施形態により構築される、血管評価のためのシステムの別のハードウェア実装の簡略化された図。
本発明のいくつかの例示的な実施形態による、血管モデル構築における段階の例示的な概要を説明する流れ図。
本発明のいくつかの例示的な実施形態による、血管モデル構築における段階の詳細の例示的な概要を説明する流れ図。
本発明のいくつかの例示的な実施形態による、撮像システムのための撮像座標の例示的な配置構成の概略図。
本発明のいくつかの例示的な実施形態による、異方性拡散を含む処理操作の簡略化された流れ図。
本発明のいくつかの例示的な実施形態による、動き補償を含む処理操作の簡略化された流れ図。
本発明のいくつかの例示的な実施形態による、動き補償の代替的または追加の方法を含む処理操作の簡略化された流れ図。
本発明のいくつかの例示的な実施形態による、画像間の算出された対応関係から悪い光線交差を無視するための「心臓シェル」制約条件の算出の態様を示す図。
本発明のいくつかの例示的な実施形態による、画像間の算出された対応関係から悪い光線交差を無視するための「心臓シェル」制約条件の算出の態様を示す図。
本発明のいくつかの例示的な実施形態による、ピクセル対応関係を心臓表面近くの容積内に制約することを含む処理操作の簡略化された流れ図。
本発明のいくつかの例示的な実施形態による、血管枝間の相同の識別を示す図。
本発明のいくつかの例示的な実施形態による、血管枝間の相同の識別を示す図。
本発明のいくつかの例示的な実施形態による、血管枝間の相同の識別を示す図。
本発明のいくつかの例示的な実施形態による、血管枝間の相同の識別を示す図。
本発明のいくつかの例示的な実施形態による、血管枝に沿って相同領域を識別することを含む処理操作の簡略化された流れ図。
本発明のいくつかの例示的な実施形態による、血管中心線に沿って投影対を選択することを含む処理操作の簡略化された流れ図。
本発明のいくつかの例示的な実施形態による、2−D画像位置からの3−D目標位置と空間内のその幾何学的関係とのエピポーラ決定の概略表現図
本発明のいくつかの例示的な実施形態による、エッジグラフを生成することと、エッジグラフに沿って接続経路を見つけることとを含む処理操作の簡略化された流れ図。
本発明のいくつかの例示的な実施形態による、自動VSSTスコアリングシステムの簡略図。
本発明のいくつかの例示的な実施形態による、再結合する枝を有する例示的な分岐構造を示す図。
本発明のいくつかの例示的な実施形態による、FFR指数と画像ベースのFFR指数との差の、その平均の関数としてのブランドアルマンプロット

実施例

0214

本発明は、それらのいくつかの実施形態において、血管モデリングに関係し、より具体的には、限定することなく、血管の機能と診断とに関係する指数をリアルタイムで−たとえば、カテーテル挿入撮像法の実行中に−生成するための血管モデルの使用に関係する。

0215

本発明のいくつかの実施形態の広い態様は、血管系の一部の撮像に基づき血流予備量比(FFR)を算出することに関係する。

0216

本発明のいくつかの実施形態の一態様は、被験者体内の血流のモデルの算出に関係する。いくつかの実施形態では、撮像される血管系の一部分は、冠状血管である。いくつかの実施形態では、血管系は、動脈である。いくつかの実施形態では、血流は、血管樹の3−D再構築における血管直径に基づきモデル化される。適宜、血管抵抗は、血管直径に基づき決定される。適宜、血管抵抗は、狭窄血管について、またその血管の冠部(狭窄血管の下流の血管)について算出される。いくつかの実施形態では、FFRは、血管樹、たとえば、CTスキャンからの血管樹再構築の一般的な3−D再構築から算出される。いくつかの実施形態では、再構築は、始めから、たとえば、2−D血管造影画像データから実行される。適宜、与えられた血管樹は、たとえば、血管の広がりの関数としての血管幅のグラフ表現への縮小によって、FFR算出の特定の要求条件を満たす。

0217

本発明のいくつかの実施形態の一態様は、潜在的に狭窄を有する血管系の血管モデルと、狭窄血管系モデルから導出され、および/または相同である異なる血管モデルとの間の流量の差に基づくFFRの算出に関係する。いくつかの実施形態では、非狭窄バージョンの血管モデルへの変更は、血管系の1つまたは複数の他の部分において得られた基準幅測定結果に基づく狭窄領域内の壁開口部(拡張)の決定を含む。いくつかの実施形態では、基準幅測定結果は、狭窄のいずれかの側の血管部分から得られる。いくつかの実施形態では、基準幅測定結果は、狭窄セグメントと類似する枝順序で自然に非狭窄である血管から得られる。

0218

本発明のいくつかの実施形態では、FFR指数は、潜在的に狭窄となっている血管セグメントを備えるモデルと前記セグメントがより低い流れ抵抗セグメントで置き換えられ、および/または前記セグメントによる流れに対する抵抗が取り除かれたモデルとの流量の比を備える。この比の決定の潜在的に有利な点は、指数が血管系、たとえば、ステント植え込みなどの経皮冠動脈インターベンション(PCI)による血管領域の開口部への潜在的な治療上の処置の効果の表現を備える点である。この比の別の潜在的な有利な点は、血管再生に対する必要性の指示を与えるものとして適切に受け入れられているが、当技術分野において、狭窄性病変の両側への直接的にアクセスを必要とする侵襲的圧力測定によって一般に決定されるパラメータ(血流予備量比)を測定する点である。

0219

本発明のいくつかの実施形態の広い態様は、血管樹モデルの生成に関係する。

0220

本発明のいくつかの実施形態の一態様は、複数の血管画像の間で相同である特徴の自動的マッチングに基づく、哺乳類の血管系の一部の樹モデルの構築に関係する。本発明のいくつかの実施形態では、樹モデルは、血管セグメント中心線を備える。適宜、相同マッチングは、血管セグメント中心線および/またはその一部分の間のものである。いくつかの実施形態では、血管セグメント中心線の間のモデル化された空間関係は枝ノードにおけるセグメント端部の関連付けを備える。

0221

血管セグメント中心線、および/または画像内の血管セグメントデータから容易に識別可能な他の特徴を使用する潜在的な利点は、これらが、撮像構成に基づき3−D空間内にいくつかの対の(またはより多い複数の)個別の画像から光線を逆投影することによって光線交差試験を受けることができるリッチメタ特徴」をもたらす点である。いくつかの実施形態では、正確な光線交差は不要であり、容積内の交差は、相同を確立するのに十分である。孤立した特徴は、そのような交差ベースの相同識別に対して潜在的に有用であるが、血管セグメントに沿った経路の拡大された特徴は(たとえば)初期潜在的仮相同識別のさらなる精密化に対する相関および/または制約技術の、いくつかの実施形態における使用を可能にすることに留意されたい。したがって、光線交差は、いくつかの実施形態では、異なる血管投影における相同特徴の手動による識別に取って代わる

0222

本発明のいくつかの実施形態では、モデル化された血管系は、心臓の血管系(心臓血管系)、特に、冠状動脈およびその枝の血管系を備える。いくつかの実施形態では、樹モデルは、心臓血管系に対する3−D位置情報を備える。

0223

本発明のいくつかの実施形態の一態様は、血管系それ自体の特徴によって画成される座標に基づき、および/または座標を通じて導出される心臓血管系のモデルにおける位置(および、特に、3−D空間的位置)に関係する。いくつかの実施形態では、同じ血管特徴(たとえば、血管中心線)は両方とも、モデルの3−D空間を画成し、それに加えて、モデルそれ自体のバックボーンを備える。適宜、中心線は、空間内のその3−D位置に従って、それと同時に、ノードの中心線の接続セグメントを備える血管樹によって画成されるグラフ空間内の位置として、表される。いくつかの実施形態では、血管セグメントは、2つの枝ノードを接続する血管経路(たとえば、血管中心線)に関連付けられているデータを備える。

0224

本発明のいくつかの実施形態では、血管特徴位置の間のマッチングによって画成される「コンセンサス」3−D空間は、樹モデル構築の結果である。

0225

この血管中心モデリングアプローチの潜在的利点は、心臓(血管系が機械的に結合される)が絶えず動いていることに関係する。いくつかの実施形態では、血管系モデルは、逐次撮られる一連の2−D画像から構築される。心臓血管撮像の期間中、および/または撮像位置の間で、血管系の領域は、潜在的に、その実際のおよび/または3−D空間内の較正された位置(絶対的および/または相対的)を変更する。これは、たとえば、心臓の動、呼吸、随意運動、および/または画像投影面を決定する際のミスアライメントによるものである。いくつかの実施形態では、撮像プロトコルは、たとえば、撮像の瞬間を心臓周期の特定の期(たとえば拡張期終わり)に同期させることによって、これらの運動をある程度補正するように修正される。しかしながら、たとえば、心周期の自然な変動、期を外れている異なる生理学的周期(心臓および呼吸)の効果、および利用可能な撮像に対する期間の制限により、誤差はこの後にそのような後でも潜在的に残る。したがって、潜在的に、生の2−D画像データに共通の「自然な」3−D空間はない。コンセンサス空間を目標とすることで、潜在的に、モデリングの結果の一貫性に関してモデリング問題を再構成することが可能になる。

0226

3−D位置は変化するが、血管位置の他の特徴、たとえば、血管系に沿った接続性、および/または領域の順序付けは、動きアーチファクトに関して不変である。したがって、血管系それ自体の特徴を使用して、3−D再構築が確立され得る基準系を決定することは潜在的に有利な点である。いくつかの実施形態では、3−D再構築が基づく特徴は、相同が自動的な、適宜反復的な方法によって確立される複数の画像内に存在する血管セグメントの2−D中心線を備える。中心線を3−Dモデリングの基礎として使用する潜在的利点は、モデル樹の構築を固定する中心線が、独立して1−D座標系としても使用できるという点にある。したがって、中心線を再構築の基礎として使用すると、中心線位置に関連付けられている樹モデル特徴の一貫性および/または継続性を確実にすることができる。

0227

いくつかの実施形態では、血管系に関係する他の特徴は、ランドマーク、たとえば、最小血管幅の点、血管部分岐点、および/または血管基点として使用される。適宜、中心線などの血管特徴は、血管樹モデル内に組み込まれる前に、ランドマーク特徴への変換と共に(それ自体が交差画像マッチングの目標となることなく)変換される。

0228

本発明のいくつかの実施形態の一態様は、2−D座標系と3−D座標系との間の反復的投影および逆投影を使用して、2−D像面を目標座標の3−Dシステムに関係付けるコンセンサス座標系(consensus coordinate system)に到達することに関係する。

0229

本発明のいくつかの実施形態では、撮像時に単一の目標領域から複数の2−D画像に投影されるランドマーク血管特徴(たとえば、血管中心線)へのコンセンサス3−D位置の割り当ては、2−D画像それ自体の再投影および/または再レジストレーションを備え、「コンセンサス」3−D空間とよりよくマッチする。適宜、再投影により2−D画像に、像面に対して元々記録されているものと異なる像面を割り当てる。適宜、再レジストレーションは、たとえば、撮像時に心臓の変形を補償するために、画像の非線形歪みを備える。適宜、たとえば、異なる画像群を異なる特徴レジストレーション反復で「目標」および「マッチング」として定義することによって、再投影および/または再レジストレーションが反復的に実行される。本発明のいくつかの実施形態では、異なる数の画像が、相同特徴を定義するために、また前記相同特徴が関係する追加の画像特徴(血管幅など)のその後の分析のために使用される。

0230

本発明のいくつかの実施形態の一態様は、樹決定の算出の複雑度の低減に関係し、これにより、臨床的結論に到達するためにより高速な処理を行える。

0231

いくつかの実施形態では、画像データの一部(たとえば、「非特徴」ピクセル値)は、完全な3−D再構築を必要とすることなく、2−D表現で適宜維持される。いくつかの実施形態では、たとえば、血管壁位置などの非ランドマーク特徴の3−D位置の算出は、これにより、回避され、簡素化され、および/または延期される。特に、いくつかの実施形態では、血管エッジは、2−D画像データの直接的処理から認識される(たとえば、血管中心線に垂直な画像勾配の検査を備える)。適宜、決定されたエッジは、元の画像ピクセルデータを3−Dボクセル表現に投影することを必要とすることなく、3−D空間内に投影される(たとえば、3−D中心線位置から垂直に拡大する1つまたは複数の半径として表される)。

0232

それに加えて、または代替的に、血管壁位置は、中心線に沿った位置を備える基準系によって画成される1つまたは複数の「1−D」空間内で決定されおよび/または処理される(たとえば、血管抵抗を決定するために)。適宜、この処理は、たとえば、3−D空間内への壁位置の投影とは独立している。いくつかの実施形態では、たとえば、血管流動特性を決定するために、モデルを中心線位置の1−D機能に縮小することでさらなる算出の複雑度が低減される。

0233

本発明のいくつかの実施形態の一態様は、異なる次元を有する血管モデル構成要素の間の関係に関係する。いくつかの実施形態では、非位置または部分的非位置特性を備える1−D、2−D、および/または3−D位置、および/または論理的接続性、および/または特性は、直接的機能によって、および/または中間基準系を通じて間接的に互いに関係付けられる。

0234

いくつかの実施形態では、たとえば、血管モデルは、以下の特徴のうちの1つまたは複数を備える。

0235

中の相同特徴の間の関係によって画成される3−D空間内の位置を有する2−D画像、
1つまたは複数の血管特性、たとえば、直径、半径、流量、流動抵抗、および/または曲率の関数に対する1つまたは複数の1−D軸を備える血管の広がり、
3−D空間内の位置の関数に対する1つまたは複数の1−D軸を備える血管の広がり、
血管の広がりに沿った位置に関するノード(たとえば、血管セグメントの端部を接続するノード)として記述される、血管の広がりの間の接続性、
血管の広がりの1−D軸がマッピングされる2−D画像、
1つの軸に沿った血管の広がりを備える2−Dフレーム、および第2の軸に沿った血管の広がりに直交する画像データ。

0236

本発明のいくつかの実施形態の広い態様は、被験者に対するカテーテル挿入手技が進行中である期間に臨床診断情報を提供するための血管樹モデルのリアルタイム決定、および/またはその使用に関係する。

0237

本発明のいくつかの実施形態の一態様は、リアルタイム自動的血管状態決定を利用して、臨床診断法をそれが進行しているときにインタラクティブに操作することに関係する。リアルタイム決定は、いくつかの実施形態において、カテーテル挿入手技の時間枠内、たとえば、30分、1時間、またはそれ以下、それ以上、または中間の時間での決定を備える。より具体的には、リアルタイム決定は、血管状態決定が基づく画像から開始する、カテーテル挿入手技の決定および/または転帰に影響を及ぼすのにちょうどよいタイミングの決定を備える。たとえば、初期算出について血管樹の特定の部分を選択することは潜在的な利点であり、算出は、ステントの植え込みなどの、特定のPCI手技を実行する決定に影響を及ぼすのに十分に短い時間に完了する可能性が高い。たとえば、2つの主血管枝を備えるFFRの算出に対する5分の遅延は、画像データのおおざっぱな検討の結果に基づき第1の枝が特に重要であるように見えるときに、第1の枝を算出の初期段階となるように選択することによって、2.5分の遅延に縮めることができる。それに加えて、または代替的に、算出が高速であれば、カテーテル挿入手技の過程でFFR結果を1回または複数回更新することができる。たとえば、第1のステント植え込みでは、潜在的に、その後のステント植え込みの予想される影響を次いで変える可能性がある、血管幅の自己調節変更を十分に引き起こせるように他の部位の灌流状態を変更する。また、たとえば、血管幅に対する実際のステント植え込みの画像に現れる効果が予測される効果と比較され、これにより、流れ容量に対する望ましい効果が達成されていることを検証することができる。本発明のいくつかの実施形態では、血管モデルおよび/または血管特性がどのように算出されるかのインターフェース制御を可能にし、新たに利用可能になる画像データに基づきモデル更新を制御し、および/または実際のおよび/または予測された血管状態モデルの間の比較を選択するように構成されている。

0238

本発明のいくつかの実施形態の一態様は、潜在的な臨床的インターベンションの結果の目標とする予測に適している血管樹モデルの構築に関係する。適宜、臨床的インターベンションは、ステントの植え込みなどのPCI手技である。本発明のいくつかの実施形態では、目標は、血管樹モデル構築の段階に、これらが直接的に臨床的修正に利用可能である血管パラメータに関する前/後結果に至るように集中することを備える。いくつかの実施形態では、血管パラメータは、血管幅(たとえば、ステント植え込みによって修正可能)である。血管系の治療前状態と治療後状態との間の差を決定することに対してモデリングを集中させる潜在的利点は、他の血管詳細の近似によるモデル修正の効果が相殺される(および/または大きさが低減される)点である。特に、これらは、「インターベンションによってもたらされる変更がインターベンションが目標とする変数の知られている効果に関する臨床的状況を役立つ形で改善するか?」などの操作上の懸念に関する重要度を潜在的に低減される。潜在的な1つの結果として、他の方法で血管系の機能的および/または解剖学的特性を完全にモデル化するために実行されるであろう算出は、省略され得る。潜在的に、これは、流動指数が生成され得る速度を高める。

0239

本発明のいくつかの実施形態の一態様は、1つまたは複数の選択された、臨床的に関連するパラメータ(血管幅、流動抵抗、および流動それ自体など)を構造化するためのフレームワークの血管系目標規定のモデル表現の形成に関係する。いくつかの実施形態では、構造は、モデリングに対する血管の広がりによるアプローチを備え、そこでは、血管セグメントに沿った位置が基準系を定める。適宜、血管の広がりの基準系は、血管樹のノードにリンクする枝の間の分割を備える。潜在的に、これは、算出時間を短縮する寸法の縮小を備える。

0240

いくつかの実施形態では、血管モデルにおける3−D位置のモデルは、潜在的に不完全な、または正確な初期位置情報から形成される。これは、たとえば、取得されるデータ間の整合性を高めるように位置情報を調整する反復的プロセスによって自己無撞着フレームワークにアニールすることによって達成される。調整は、たとえば、像面を変換すること、画像それ自体を変形して類似性を高めること、および/またはコンセンサスの決定を妨げる外れ値を無視することなどの操作を備える。潜在的に、特定の現実世界の構成(たとえば、空間内の血管系の一部の1つまたは複数の「現実の」3−D構成)に対するフレームワークの忠実度を確実にすることを求める代替的アプローチは、目標パラメータの推定のために得られる利点に関して大量の計算を実行する。対照的に、目標パラメータに関係する算出をサポートするサービスにおける内部整合性を強調するフレームワークでは、コンセンサスに似たアプローチを使用して計算負荷を潜在的に低減することができる。特に、このアプローチは、上で説明されているように、血管系内の変更の算出と組み合わせるのに潜在的に適している。

0241

本発明の少なくとも1つの実施形態を詳しく説明する前に、本発明が、その応用例において、以下の説明で述べられ、および/または図面に示されている構造の詳細および構成要素および/または方法の配置構成に必ずしも制限されないことは理解されるであろう。本発明は、他の実施形態を利用することができるか、またはさまざまな仕方で実施されるか、または実行され得る。

0242

以下で説明されている例示的な実施形態において、冠状血管系、およびより具体的には冠状動脈系が使用されていることに留意されたい。例は、本発明の実施形態を冠状動脈に制限することを意味しておらず、本発明の実施形態は潜在的に、たとえば、静脈系およびリンパ系などの、他の血管系に適用される。

0243

いくつかの実施形態では、被験者の血管系を撮像することに基づく、被験者体内の血流の第1のモデルが構築される。典型的には、第1のモデルは、血管の少なくとも一部における狭窄などの、血管系の問題セグメントを含む血管系から構築される。本発明のいくつかの実施形態において、第1のモデルは、狭窄のある少なくとも1つの血管を含む血管系の一部に対応する。これらの実施形態では、第1のモデルは、狭窄および冠部のある少なくとも1つの血管を含む血管系の一部を記述するものである。これらの実施形態では、第1のモデルは、適宜、冠部の形状および/または容積に関係する情報と、血流および/または狭窄血管および/または冠部内の血流に対する抵抗に関係する情報とをさらに含む。

0244

典型的には、ただし必ずというわけではないが、第2のモデルが構築される。第2のモデルは、適宜、第1のモデルに対応する少なくとも部分的に健康な血管系を記述する。いくつかの実施形態では、第2のモデルは、ステントが狭窄部を開くとすればそうなるであろうように第1のモデルの狭窄部をより開いた状態に変更することによって構築され、いくつかの実施形態では、第2のモデルは、第1のモデルの問題のある血管に類似する健康な血管を含む被験者の血管系のセグメントを選択することと、それを使用して狭窄血管を置き換えることとによって構築される。

0245

血管モデル構築について、以下で説明される。

0246

いくつかの実施形態では、血管再生の必要性を示す指数が算出される。これは、第1のモデルに基づき、または血流の第1のモデルと第2のモデルとの比較の結果に基づき実行され得る。指数は、適宜、圧力測定導出FFR指数と同様にして使用され、これにより、狭窄血管が血管系内の流れに、狭窄血管の膨張の後の被験者の病状の改善のための予後診断が膨張それ自体の結果生じる合併症発症確率よりも高くなるように影響を及ぼすかどうかを評価する。

0247

すべての文法的な形における「FFR」および「FFR指数」という用語は、本明細書全体を通して使用され、上述の指数を表すことを主張し、背景技術の項で、狭窄部上に小型圧力トランスデューサを装備されるガイドワイヤの挿入を伴う侵襲的測定として言及されているFFR指数だけを表すものでない。いくつかの場合−特に、特定のタイプのFFRおよびFFRに似た指数の間の違いが説明されている場合−それらを区別するために添字が使用され、たとえば、圧力測定から導出されるFFRについてはFFRpressure、および/またはFFRが流れの決定に関して表される場合にはFFRflowが使用される。

0248

血管モデルを構築するためのデータの取得
いくつかの実施形態では、血管系をモデル化するためのデータは、医療撮像データを備える。

0249

本発明のいくつかの実施形態では、データは、低侵襲血管造影画像、たとえば、X線画像からのデータである。いくつかの実施形態では、血管造影画像は二次元(2−D)である。いくつかの実施形態では、異なる視野角から撮った2−D血管造影画像が組み合わされて、たとえば、2、3、4、またはそれ以上の視野角から三次元(3−D)データを含むモデルを生成する。

0250

いくつかの実施形態では、データは、コンピュータ断層撮影(CT)スキャンからのデータである。今日の技術により、血管造影画像は、CTスキャンよりも細かい解像度を実現していることに留意されたい。血管造影画像に基づき構築される血管系のモデルは、一次元(1−D)樹モデルであるか、完全3−Dモデルであるかに関係なく、CTスキャンに基づくモデルよりも潜在的に正確であり、また潜在的に、より正確な血管評価をもたらす。

0251

結果の速度
リアルタイムでの使用に関係する本発明のいくつかの実施形態における目的は、血管モデルの高速算出と、解剖学的および/またはその機能パラメータの高速算出であり、これにより、リアルタイム診断意志決定のためのフィードバックを返す。

0252

本発明のいくつかの実施形態では、インターベンションする意思決定を下すことに関するフィードバック(たとえば、特定の領域における、またはすべて)は、3つの広いカテゴリ、すなわち、「インターベンションすることを推奨」、「インターベンションしないことを推奨」、および「推奨なし」に分割可能である。適宜、フィードバックがそのような形式提示される。適宜、分類することそれ自体は、複数の出力状態連続範囲の出力状態、またはその間の任意の数の状態である多数の出力状態を有する、グラフ、カテゴリ説明、および/または別の出力である、提供される指数に基づき、医師によって実行される。さらに、本発明のいくつかの実施形態では、診断フィードバックは、たとえば、FFRpressure、SYNTAXスコアなどのスコアリング方法、または血管評価の別の方法などの、分野においてすでに確立されている指数に容易に関係付けられる(またそれと潜在的に交換可能である)指数を生成することによって、臨床転帰に関係付けられ、および/または容易に関係付け可能である。

0253

本発明のいくつかの実施形態では、血管樹構築は、血管セグメント経路、たとえば、血管セグメント中心線の生成に最適化される。この段階から(または血管の広がりの位置が容易に決定される血管樹を生成する別のプロセスの結果から)、1つまたは複数の診断上有意な指数の決定のための算出は、適切な指数目標が求められる限り、潜在的に非常に高速である。

0254

適切な指数目標の選択に関して、リアルタイムの使用に関係する本発明のいくつかの実施形態における別の目的は、臨床意思決定ツールとして使用可能であるように十分に正確である診断指数をそのまま生成しながら、血管樹を与えられた場合に、きわめて高速に算出され得る流量パラメータの使用である。そのような指数を取得する1つの補助は、いくつかの実施形態において、深い血管樹(3、4、またはそれ以上の枝)が利用可能であることであり、それにより、血管網の大きな広がり全体にわたる流れに対する抵抗は、狭窄(狭まっている)状態と非狭窄(広がっている)状態の両方において特定のセグメントを通る流れに対する影響に関して算出され得る。いくつかの実施形態では、X線血管造影画像について本明細書で説明されているように構築されるが、回転血管造影および/またはCT血管造影などの別の撮像方法から潜在的に利用可能であるものとしても構築される明確に定められている血管樹は、画像ベースのFFR計算に対する入力として使用される。「明確に定められている」は、たとえば、3、4、またはそれ以上の血管分岐の分岐深さを有することを備える。それに加えて、または代替的に、「明確に定められている」は、たとえば、5%、10%、15%、または真の血管幅の別のより大きい、より小さい、または中間の値の範囲内の精度で血管幅をモデル化するのに十分な撮像解像度を備える。

0255

本発明のいくつかの実施形態では、治療推奨の生成に集中することで画像分析方法の選択がガイドされ、これにより、診断フィードバックの高速な提供がより容易に得られる。特に、いくつかの特定の実施形態では、目標は、特定の血管再生インターベンションが臨床的に意味のある血流を復元するかどうかの分析を行うことである。血管モデルを作成する際に、臨床インターベンションの変更を目標とする測定可能なパラメータのモデリングに集中することは潜在的な利点であるが、それは、提案された治療(もしあれば)の効果が感じられることはこれらの変更によるものだからである。さらに、そのような集中は、適宜、無変更および/または同等のパラメータを、少なくとも、それらが治療転帰の望ましさに影響を及ぼさない範囲で、簡素化し、および/または無視することを可能にする。したがって、たとえば、潜在的に、いかなる動的な流れのモデリングも、血管機能の診断指数に到達する必要はない。

0256

本発明のいくつかの実施形態では、PCIおよび/またはCABG(冠状動脈バイパス移植術)に対する有用な推奨を生成するために十分な分析は、血管セグメント位置などの1−Dパラメータの局所的機能として容易に決定される1つまたは複数の特徴の分析を備える。たとえば、血管抵抗は、系の流体力学について十分考慮することによって潜在的に処置可能である多くの変数の影響を受けるが、血管直径の変数に対する強い依存関係を有する。血管直径は、次いで、ステント植え込みなどの治療オプションの目標である。さらに、血管直径それ自体(および/または血管半径、断面積、および/または断面プロファイルなどの関係するメトリクス)は、血管セグメント位置の記述を備える経路に沿って画像データから高速に算出可能である。

0257

さらに、中心線決定に対して最適化されている血管モデルの潜在的利点は、たとえば、臨床的有意性の低い細部、たとえば、血管壁形状に関係する算出は、回避可能であり、および/または延期可能であるという点である。いくつかの実施形態では、血管中心線は、最終モデル中心フレームワークを構成する。同じ血管中心線(および/またはそれらの近似)を、3−D血管樹がモデル化される2−D画像のレジストレーションが行われる3−D座標系を構築する処理の1つの期においてランドマークをもたらす特徴として使用することは潜在的利点である。潜在的に、これにより第2の特徴セットの決定の必要がなくなる。潜在的に、レジストレーションおよびモデル基礎の両方に対して設定された同じ特徴を使用することでいくつかの算出が回避され、レジストレーション特徴とモデル特徴との間の非対称がこれにより低減されるので、画像アーチファクトによる不整合が解消される。

0258

本発明のいくつかの実施形態では、比較的穏当な計算リソース(たとえば、市販のマルチコアCPUと4枚のミッドレンジGPUカード−生の計算能力の約8〜12テラフロップに相当する−を備えるPC)を用いることで、画像を受け取ってからFFRなどの診断上有用なメトリクスが利用可能になるまでの完全な処理期間は、約2〜5分を備える。5分の時間スケールで、このタイプの機器を使用すると、いくつかの実施形態では、約200枚の入力画像中心線分割は、処理時間に約0.5分、3−Dモデルへの変換に約4分、FFRの算出などの残りのタスクに約10〜30秒を備えるが、これは算出される樹の広がりに依存する。1テラフロップあたりの一般的な処理能力コストが減少し続ける限り、処理時間のさらなる短縮が期待されることに留意されたい。さらに、処理タスクマルチプロセッサおよび/またはマルチコアへの分割は、当然のことながら、血管境界に沿った分割、たとえば、空間的位置に基づき作業をいくつかの処理リソースに分割することによって達成され得る。本発明のいくつかの実施形態では、血管樹を再構築し、流動指数を算出するための計算は、約1京未満の演算を備える。いくつかの実施形態では、計算は、約5,000兆未満、2,000兆、1,000兆、500兆の、または中間、より大きい、もしくはより小さい回数の演算を備える。

0259

本発明のいくつかの実施形態における別の目的は、画像から臨床的作業の流れへの自動的血管パラメータ決定の統合である。いくつかの実施形態では、この統合は、自動的撮像処理の結果および/または制御とカテーテル挿入手技の他の態様との間の、手技が進行中であるときの、相互作用を備える点でインタラクティブである。たとえば、本発明のいくつかの実施形態では、医療専門家は、血管樹の2本の枝のうちの1本がPCIなどの血管インターベンションの可能性の高い第1の候補であると、手動によるおおざっぱな検査から決定することができる。本発明のいくつかの実施形態では、第1の候補枝は、たとえば、その枝に対するFFR指数を決定する処理が、第2の枝に対する算出より早く完了するように選択可能である。潜在的に、これは、患者に対して実行されている手技において意志決定をより早い段階でおよび/またはより短い中断で行うことを可能にする。

0260

本発明のいくつかの実施形態では、樹処理は、患者との単一のセッションの過程内で2つ、3つ、またはそれ以上の撮像法が実行され、分析され得る十分に高速なものである。単一のセッションは、たとえば、その中の狭窄部を開くインターベンションに対して、たとえば、カテーテルおよび/またはガイドワイヤの一部が血管樹の一部の中に残っている期間を備え、この時間は、たとえば、30分から1時間、またはより短い、より長い、または中間の時間である。FFRpressureは、たとえば、典型的には、患者の血管系を最大に広げるためにアデノシンの注射と合わせて決定される。しかし、アデノシン注射の安全な頻度は、制限されており、したがって、そのような注射なしのFFRと同等の指数を決定する方法は、潜在的利点をもたらす。第2の撮像セッションは、たとえば、ステント植え込みの結果を検証するために、潜在的に貴重であり、これは、現在のステント植え込みに対する位置決め検証のレベルで一般的に実行される。潜在的に、ステント植え込みの後の血管自己調節は、結果として血管幅に変更を引き起こし、それにより、第2の撮像セッションは、さらなるステント植え込みが助言可能になり、および/または助言可能であるままとなるかを決定するのを助けることができる。

0261

いくつかの実施形態では、算出の集中的に行われる段階の結果は、さらに取得される画像に基づく再算出、および/または指数の再算出の基礎として使用され得る。たとえば、すでに算出されている血管樹は、完全な画像セットを再取得する必要なく、植え込み後の血管系の1つまたは複数の画像のレジストレーションの基礎として使用され得る。

0262

本発明のいくつかの実施形態では、コンピュータへのユーザインターフェース、たとえば、1つまたは複数のインタラクティブユーザコマンドがサポートされるようなグラフィカルユーザインターフェースが用意される。適宜、たとえば、1つまたは複数のユーザコマンドが、画像処理目標を被験者の血管系の1つまたは複数の選択された枝に集中させるために利用可能である。適宜、血管モデルの一態様を変更するための(たとえば、狭窄血管の非狭窄状態をモデル化するための)1つまたは複数のコマンドが利用可能である。適宜、複数の画像セット(たとえば、手技における全く異なる時刻に撮った画像セット、および/または異なる心拍周期の期における心臓の表示を備える画像セット)から血管モデルを選択し、および/または比較するための1つまたは複数のコマンドが利用可能である。

0263

いくつかの例示的な血管モデルの特徴
本発明のいくつかの実施形態では、血管系モデルは、樹モデル、適宜、3−D樹モデルを備える。しかし、モデルの空間的次元は、アプリケーションの要求条件に適合するように異なる解剖学的レベルおよび/または処理段階で適宜調整される。たとえば、2−D画像は、1−D血管セグメントモデルの識別および構築を可能にする3−D血管樹情報を抽出するように適宜組み合わされる。次いで、1−Dセグメントのモデルは、いくつかの実施形態では、その接続性に従って、他の空間的関係の詳細を保存しつつ、または保存せずに、論理的にリンクされる。いくつかの実施形態では、空間的情報は、たとえば、円(直径)、楕円長軸短軸)、または他の表現のパラメータによって断面領域を近似することによって圧縮または符号化される。いくつかの実施形態では、血管樹に沿った領域は、非空間的情報、たとえば、流動抵抗、算出された流量、弾性、および/またはサンプリングされおよび/または拡張された血管セグメント領域、および/または血管樹のノードに関連付けられている別の動的もしくは静的特性を備える。

0264

いくつかの実施形態では、樹モデルは、曲線セグメントによってリンクされるノードを有する樹データ構造を備える。ノードは、血管分岐部(たとえば、二分岐部または三分岐部または多分岐部)と関連付けられ、曲線セグメントは、血管セグメントと関連付けられる。樹の曲線セグメントは、以下では、枝とも称され、枝の遠位にある樹部分全体は、冠部と称される。したがって、樹モデルは、本発明のいくつかの実施形態において、樹のノードを血管分岐に、樹の枝を血管系の血管セグメントに割り当てる血管系の記述を備える。

0265

いくつかの実施形態では、枝に沿ったサンプル点は、血管直径情報に関連付けられている。そのような実施形態において、樹は、一緒にリンクされて血管樹内の任意の点における局所的なサイズ、形状、枝分かれ、および他の構造的特徴に関係する情報を含む3−D構造を形成する一連の円盤またはポーカーチップ(たとえば、円形もしくは楕円形の円盤)として表されているものとして考えられ得る。

0266

いくつかの実施形態では、三分岐部および/または多分岐部は、二分岐部の組み合わせに系統的に変換される。適宜、たとえば、三分岐部は、2つの二分岐部に変換される。すべての文法の形における「分岐」という用語が本明細書全体を通して使用され、二分岐、三分岐、または多分岐を意味することを主張する。

0267

いくつかの実施形態では、樹モデルは、モデル内のそれぞれの枝に沿ったサンプル点に関連付けられ、および/または枝全体についておよび/またはその拡張部分について集約される特性データを含む。特性データとしては、たとえば、血管の配置、配向、断面、半径、および/または直径が挙げられる。いくつかの実施形態では、樹モデルは、これらの点のうちの1つまたは複数における流動特性を備える。

0268

いくつかの実施形態では、樹モデルは、血管系の血管中心線に沿って測定された幾何学的データを備える。

0269

いくつかの実施形態では、血管系モデルは、3−Dモデル、たとえば、CTスキャンから取得可能で、異なる角度から撮った一連の2−D血管造影画像から構築された3−Dモデルを備える。

0270

いくつかの実施形態では、血管系モデルは、血管系の一連の血管の中心線に沿った血管セグメントの1−Dモデリングを備える。

0271

いくつかの実施形態では、血管系の樹モデルは、2つまたはそれ以上のセグメントに分割するセグメントを記述する1−Dで表されるセグメントに関するデータを備える。

0272

いくつかの実施形態では、モデルは、点の1−D集合体に関連付けられている三次元データ、たとえば、それぞれの点における断面積に関するデータ、セグメントの3−D方向に関するデータ、および/または分岐部の角度に関するデータを含む、血管のセグメントに沿ったデータの集合体を含む。

0273

いくつかの実施形態では、血管系のモデルは、圧力、流量、流動抵抗、剪断応力、および/または流速などの物理的特性を含む、流体流の物理的モデルを算出するために使用される。

0274

流体流に対する抵抗の算出などの、点の1−D集合体についての算出を実行することは、血管系のすべてのボクセルを含む完全な3−Dモデルを使用してそのような算出を実行することに比べて潜在的にかなり効率が高いことに留意されたい。

0275

血管モデルの計算
次に図13を参照すると、これは本発明のいくつかの例示的な実施形態による、血管モデル構築における段階の例示的な概要を説明する流れ図である。

0276

図13は、最初に概要として紹介され、次いで、以下でさらに詳細に説明される、例示的な血管樹再構築方法の概要として使用される。

0277

ブロック10において、いくつかの実施形態では、画像、たとえば、約200個の画像が、たとえば、4つの撮像デバイスに分けて、取得される。いくつかの実施形態では、取得された画像は、X線血管造影法によって得られる。X線血管造影法を使用する潜在的利点は、最新技術により、診断およびインターベンション手技が実行されるカテーテル処置室において立体X線血管造影法用のデバイスが一般的に利用可能であることを含む。X線血管造影画像は、潜在的に、CTなどの代替的撮像方法と比較して比較的高い解像度も有する。

0278

ブロック20において、いくつかの実施形態では、血管中心線が抽出される。血管中心線は、この中心線を血管樹再構築の他の期に対する有用な基準にするいくつかの特性を有する。本発明のいくつかの実施形態において利用される特性は、適宜、以下を含む。

0279

中心線は、2−D画像から決定可能な特徴であり、これにより、その使用で個別の画像を3−Dで互いに関係付けることができる。

0280

血管中心線は、定義により、目標が3−D血管モデルを再構築することである場合に注目する撮像領域全体にわたって分散される。したがって、これらは、再構築された撮像領域内基準点に対する魅力的な候補として使用される。

0281

血管中心線は、たとえば、以下で説明されているように、容易に分割される画像特性に基づき、事前の人間による選択なしで、自動的に決定可能である。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • アースアイズ株式会社の「 監視装置、監視システム、及び、監視方法」が 公開されました。( 2020/09/24)

    【課題】2次元画像を用いた監視装置において、監視対象とした「人」が行う監視対象とした「物」に対する不定形な一般的動作を抽出して、監視対象とした「人」が、監視対象とした「物」に対して不審度の高い所定の行... 詳細

  • 株式会社日立ハイテクノロジーズの「 電子ビーム装置及び画像処理方法」が 公開されました。( 2020/09/24)

    【課題】電子ビーム装置において、シフト量がサブピクセル量となった場合でも、画像を移動させたことによる測長値の変化を防止する。【解決手段】画素補間フィルタにより画像を画素間の画素シフト量だけシフトさせる... 詳細

  • 富士ゼロックス株式会社の「 画像処理装置及びプログラム」が 公開されました。( 2020/09/24)

    【課題】本開示の技術は、色見本表に対する測色の誤りを回避することができる画像処理装置及びプログラムを提供する。【解決手段】画像処理装置は、複数の色見本が行列状に配置され、前記複数の色見本に含まれる予め... 詳細

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ