図面 (/)

技術 癌のための個別化ワクチン

出願人 バイオエヌテックエールエヌアーファーマシューティカルズゲーエムベーハートロン−トランスラショナルオンコロジーアンデアウニヴェリジテーツメディツィンデアヨハネスグーテンベルク−ウニヴェルシテートマインツゲマインニューツィゲゲーエムベーハー
発明者 サヒン,ウグルパレット,クラウディアフォルムブロック,キルステンベンダー,クリスティアンディークマン,ヤン
出願日 2013年11月26日 (5年8ヶ月経過) 出願番号 2015-544376
公開日 2016年1月21日 (3年6ヶ月経過) 公開番号 2016-501870
状態 特許登録済
技術分野 抗原、抗体含有医薬:生体内診断剤 突然変異または遺伝子工学 化合物または医薬の治療活性 他の有機化合物及び無機化合物含有医薬
主要キーワード 検出パイプ 捕獲データ リード当たり リアラインメント 再キャリブレーション マイクロポスト 構造機構 配列状況
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2016年1月21日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題・解決手段

本発明は、腫瘍抗原、特に共通腫瘍抗原の個別発現パターン、および個別の腫瘍突然変異を標的とする患者特異的腫瘍治療に関する。1つの態様では、本発明は、患者において癌を予防するまたは治療するための方法であって、(i)前記患者において1つ以上の腫瘍抗原に対する第一免疫応答誘導する工程、および(ii)前記患者において1つ以上の腫瘍抗原に対する第二免疫応答を誘導する工程であって、前記第二免疫応答が、前記患者の癌細胞中に存在する癌特異的体細胞突然変異に特異的である、工程、を含む方法に関する。

概要

背景

癌は、すべての死亡の4件に1件を占める、主要な死亡原因である。癌の治療は伝統的に平均の法則、すなわち最大数患者に最もよく効くものに基づいてきた。しかし、癌における分子多様性のために、認可されている治療法から恩恵を受けるのはしばしば治療された個人の25%未満である。患者に特化した治療に基づく個別化医療は、医薬品開発の革新のための低い有効性と高いコストに対する潜在的な解決策とみなされている。

抗原特異的免疫療法は、患者における特異的免疫応答を増強または誘導することを目的とし、癌疾患を抑制するために成功裏に使用されてきた。T細胞は、ヒトおよび動物での細胞媒介性免疫において中心的役割を果たす。特定の抗原の認識および結合は、T細胞の表面に発現されるT細胞受容体(TCR)によって媒介される。T細胞のT細胞受容体(TCR)は、主要組織適合遺伝子複合体MHC)分子に結合し、標的細胞の表面に提示された免疫原性ペプチドエピトープ)と相互作用することができる。TCRの特異的結合は、T細胞内でシグナルカスケード始動させ、増殖および成熟エフェクターT細胞への分化をもたらす。

ますます多くの病原体関連抗原および腫瘍関連抗原(TAA)が同定されることにより、免疫療法のための適切な標的の幅広コレクションがもたらされた。これらの抗原に由来する免疫原性ペプチド(エピトープ)を提示する細胞は、能動または受動免疫戦略のいずれかによって特異的に標的化することができる。能動免疫は、病的細胞を特異的に認識し、死滅させることができる抗原特異的T細胞を患者において誘導し、増殖させる傾向があり得る。種々の抗原形式腫瘍ワクチン接種のために使用することができ、これには全癌細胞タンパク質ペプチドまたは患者への導入後にDCをパルスすることによってインビボまたはインビトロで直接適用することができるRNA、DNAもしくはウイルスベクターなどの免疫ベクターが含まれる。

癌は、ゲノム突然変異および後成的変化の蓄積から生じると考えられ、その一部が原因としての役割を果たし得る。腫瘍関連抗原に加えて、ヒト癌は平均して100〜120の非同義突然変異担持し、その多くはワクチンによって標的可能である。腫瘍における突然変異の95%以上は固有であり、患者特異的である(Weide et al.2008:J.Immunother.31,180−188)。腫瘍特異的T細胞エピトープを生じさせ得る、タンパク質を変化させる体細胞突然変異の数は30〜400の範囲内である。患者1人当たり40〜60の腫瘍特異的体細胞突然変異に由来するHLAクラス拘束エピトープが存在することがコンピュータ予測されている(Azuma et al.1993:Nature 366,76−79)。さらに、新たな免疫原性HLAクラスII拘束エピトープも腫瘍関連突然変異からもたらされる可能性が高いが、これらの数は未だ不明である。

特に、一部の非同義突然変異は悪性形質転換に原因として関与し、発癌表現型を維持するのに不可欠であり(ドライバー突然変異)、癌細胞の潜在的な「アキレス腱」であり得る。原発性腫瘍で認められる突然変異は転移においても存在し得る。しかし、いくつかの試験は、患者の転移性腫瘍は個々の腫瘍進化の間にしばしば臨床的に意味のあるさらなる遺伝的変異を獲得することを実証した(Suzuki et al.2007:Mol.Oncol.1(2),172−180:Campbell et al.2010:Nature 467(7319),1109−1113)。さらに、多くの転移の分子特性も原発性腫瘍のものから有意に逸脱する。

概要

本発明は、腫瘍抗原、特に共通腫瘍抗原の個別発現パターン、および個別の腫瘍突然変異を標的とする患者特異的腫瘍治療に関する。1つの態様では、本発明は、患者において癌を予防するまたは治療するための方法であって、(i)前記患者において1つ以上の腫瘍抗原に対する第一免疫応答を誘導する工程、および(ii)前記患者において1つ以上の腫瘍抗原に対する第二免疫応答を誘導する工程であって、前記第二免疫応答が、前記患者の癌細胞中に存在する癌特異的体細胞突然変異に特異的である、工程、を含む方法に関する。なし

目的

本発明の基礎となる技術的な課題は、腫瘍の不均一性に関連する既存のアプローチ障害物を克服する極めて有効な癌ワクチン接種戦略を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

患者において癌を予防するまたは処置するための方法であって、(i)前記患者において1つ以上の腫瘍抗原に対する第一免疫応答誘導する工程、および(ii)前記患者において1つ以上の腫瘍抗原に対する第二免疫応答を誘導する工程であって、前記第二免疫応答が、前記患者の癌細胞中に存在する癌特異的体細胞突然変異に特異的である、工程、を含む方法。

請求項2

前記第一および/または第二免疫応答が細胞性応答である、請求項1に記載の方法。

請求項3

前記第一免疫応答がCD8+T細胞応答を含む、請求項1または2に記載の方法。

請求項4

前記第二免疫応答がCD4+T細胞応答を含む、請求項1から3のいずれか一項に記載の方法。

請求項5

前記第一免疫応答が、前記患者の癌細胞中に存在する癌特異的体細胞突然変異に特異的ではない、請求項1から4のいずれか一項に記載の方法。

請求項6

前記第一免疫応答が製造前ワクチン生成物のセットから選択される1つ以上のワクチン生成物を投与することによって誘導され、各々の製造前ワクチン生成物が腫瘍抗原に対する免疫応答を誘導し、前記セットが好ましくは異なる腫瘍抗原に対する免疫応答を誘導するワクチン生成物を含む、請求項1から5のいずれか一項に記載の方法。

請求項7

投与される前記ワクチン生成物が、処置される癌において一般的である腫瘍抗原に対する免疫応答を誘導する、請求項6に記載の方法。

請求項8

前記セットが、種々の癌において一般的である腫瘍抗原に対する免疫応答を誘導するワクチン生成物を含む、請求項6または7に記載の方法。

請求項9

前記患者が前記1つ以上の腫瘍抗原について陽性である、請求項1から8のいずれか一項に記載の方法。

請求項10

前記癌特異的体細胞突然変異が、前記患者の癌細胞のエクソーム中に存在するおよび/または非同義突然変異である、請求項1から9のいずれか一項に記載の方法。

請求項11

前記第二免疫応答が、突然変異に基づくネオエピトープを含むポリペプチドまたは前記ポリペプチドをコードする核酸を含有するワクチンを投与することによって誘導され、前記ポリペプチドが好ましくは30までの突然変異に基づくネオエピトープを含む、請求項1から10のいずれか一項に記載の方法。

請求項12

前記ポリペプチドが、癌細胞によって発現される癌特異的体細胞突然変異を含まないエピトープをさらに含む、請求項11に記載の方法。

請求項13

前記エピトープが、ワクチン配列を形成するようにそれらの天然配列状況に存在し、前記ワクチン配列が好ましくは約30アミノ酸長である、請求項11または12に記載の方法。

請求項14

前記ネオエピトープ、エピトープおよび/またはワクチン配列が、頭−尾方向に並んでいるおよび/またはリンカーによって分離されている、請求項11から13のいずれか一項に記載の方法。

請求項15

前記第一および/または第二免疫応答が、RNAワクチンを投与することによって誘導される、請求項1から14のいずれか一項に記載の方法。

請求項16

前記腫瘍抗原が腫瘍関連抗原である、請求項1から15のいずれか一項に記載の方法。

技術分野

0001

本発明は、腫瘍抗原、特に共通腫瘍抗原の個別発現パターン、および個別の腫瘍突然変異を標的とする患者特異的腫瘍治療に関する。

背景技術

0002

癌は、すべての死亡の4件に1件を占める、主要な死亡原因である。癌の治療は伝統的に平均の法則、すなわち最大数患者に最もよく効くものに基づいてきた。しかし、癌における分子多様性のために、認可されている治療法から恩恵を受けるのはしばしば治療された個人の25%未満である。患者に特化した治療に基づく個別化医療は、医薬品開発の革新のための低い有効性と高いコストに対する潜在的な解決策とみなされている。

0003

抗原特異的免疫療法は、患者における特異的免疫応答を増強または誘導することを目的とし、癌疾患を抑制するために成功裏に使用されてきた。T細胞は、ヒトおよび動物での細胞媒介性免疫において中心的役割を果たす。特定の抗原の認識および結合は、T細胞の表面に発現されるT細胞受容体(TCR)によって媒介される。T細胞のT細胞受容体(TCR)は、主要組織適合遺伝子複合体MHC)分子に結合し、標的細胞の表面に提示された免疫原性ペプチドエピトープ)と相互作用することができる。TCRの特異的結合は、T細胞内でシグナルカスケード始動させ、増殖および成熟エフェクターT細胞への分化をもたらす。

0004

ますます多くの病原体関連抗原および腫瘍関連抗原(TAA)が同定されることにより、免疫療法のための適切な標的の幅広コレクションがもたらされた。これらの抗原に由来する免疫原性ペプチド(エピトープ)を提示する細胞は、能動または受動免疫戦略のいずれかによって特異的に標的化することができる。能動免疫は、病的細胞を特異的に認識し、死滅させることができる抗原特異的T細胞を患者において誘導し、増殖させる傾向があり得る。種々の抗原形式腫瘍ワクチン接種のために使用することができ、これには全癌細胞タンパク質ペプチドまたは患者への導入後にDCをパルスすることによってインビボまたはインビトロで直接適用することができるRNA、DNAもしくはウイルスベクターなどの免疫ベクターが含まれる。

0005

癌は、ゲノム突然変異および後成的変化の蓄積から生じると考えられ、その一部が原因としての役割を果たし得る。腫瘍関連抗原に加えて、ヒト癌は平均して100〜120の非同義突然変異を担持し、その多くはワクチンによって標的可能である。腫瘍における突然変異の95%以上は固有であり、患者特異的である(Weide et al.2008:J.Immunother.31,180−188)。腫瘍特異的T細胞エピトープを生じさせ得る、タンパク質を変化させる体細胞突然変異の数は30〜400の範囲内である。患者1人当たり40〜60の腫瘍特異的体細胞突然変異に由来するHLAクラス拘束エピトープが存在することがコンピュータ予測されている(Azuma et al.1993:Nature 366,76−79)。さらに、新たな免疫原性HLAクラスII拘束エピトープも腫瘍関連突然変異からもたらされる可能性が高いが、これらの数は未だ不明である。

0006

特に、一部の非同義突然変異は悪性形質転換に原因として関与し、発癌表現型を維持するのに不可欠であり(ドライバー突然変異)、癌細胞の潜在的な「アキレス腱」であり得る。原発性腫瘍で認められる突然変異は転移においても存在し得る。しかし、いくつかの試験は、患者の転移性腫瘍は個々の腫瘍進化の間にしばしば臨床的に意味のあるさらなる遺伝的変異を獲得することを実証した(Suzuki et al.2007:Mol.Oncol.1(2),172−180:Campbell et al.2010:Nature 467(7319),1109−1113)。さらに、多くの転移の分子特性も原発性腫瘍のものから有意に逸脱する。

先行技術

0007

Weide et al.2008:J.Immunother.31,180−188
Azuma et al.1993:Nature 366,76−79
Suzuki et al.2007:Mol.Oncol.1(2),172−180
Campbell et al.2010:Nature 467(7319),1109−1113

発明が解決しようとする課題

0008

腫瘍の不均一性は、現在利用可能な治療法の効果にとって大きな障害物であると考えられる。本発明の基礎となる技術的な課題は、腫瘍の不均一性に関連する既存のアプローチの障害物を克服する極めて有効な癌ワクチン接種戦略を提供することである。

0009

本発明は、個人の疾患遺伝学統合し、腫瘍学においてカスタマイズされた治療法を創製するという個別化された治療概念に関する。ヒト癌は様々な免疫原性共通腫瘍抗原を発現し、数ダースから数百の非同義突然変異を担持しており、その多くはT細胞によって標的可能である。これらは中枢性免疫寛容を受けないので、これらの突然変異はワクチン開発のための理想的な候補物である。本発明は、腫瘍抗原の個別発現パターンおよび個別腫瘍突然変異を標的とする、個別化ワクチン、特にRNAワクチンを使用する。本発明の概念は、遺伝的腫瘍変化に妨げられるのではなく、患者のために遺伝的腫瘍変化を利用するのである。

0010

標的化のために多くの患者における共通の分子学的分母を探索する代わりに、本発明は各個別患者の抗原標的レパートリーを利用する。平均のために設計された治療を提供することによる相殺取引受け入れるのではなく、本発明は各々個々の患者にとって最良組合せを提供する。これは単なるパラダイムシフトではなく、幅広い個体間の変動性および腫瘍内のクローン不均一性などの現在の癌薬剤開発における重要な問題を解決する新しい可能性を開く。本発明は、患者における抗原レパートリーの最適な利用を可能にする。

0011

具体的には、本願は、非変異腫瘍抗原および変異腫瘍抗原の両方を含む、各個別癌患者において認められる個別腫瘍抗原レパートリー全体の多重特異的標的化に関する。非変異腫瘍抗原を標的化するには、大きな割合の患者をカバーする腫瘍抗原標的ポートフォリオ倉庫)を用いることができる。この倉庫は、「在庫」の製造前ワクチンのためおよびこれらを個々の患者における使用のためにワクチンカクテルと組み合わせるための薬剤保管場所である。ミュータノーム解析に基づいて作られたワクチンと合わせると、これは患者における抗原レパートリーの最適な利用を可能にする。

0012

本発明は、患者特異的な癌突然変異の同定および患者の個々の癌突然変異の「シグネチャー」を標的化することを含む。患者の主要組織適合遺伝子複合体(MHC)分子に提示されるアミノ酸変化をもたらす非同義点突然変異の同定は、患者の癌に特異的であるが患者の正常細胞中では認められない新規エピトープ(ネオエピトープ)を提供する。血中循環腫瘍細胞(CTC)などの癌細胞から突然変異のセットを収集することにより、遺伝的に異なるサブ集団ならびに腫瘍転移を含む場合でも潜在的に原発性腫瘍を標的とする免疫応答を誘導するワクチンの提供が可能となる。ワクチン接種のために、本願に従って同定されるそのようなネオエピトープは、好ましくは前記ネオエピトープを含むポリペプチドの形態で患者に提供され、適切なプロセシングMHC分子による提示後、適切なT細胞を刺激するためにネオエピトープが患者の免疫系に表示される。

0013

好ましくは、本発明によれば、免疫応答が誘導されるべき1つ以上の免疫原性エピトープを含む免疫原性遺伝子産物、例えばペプチドまたはポリペプチドをコードするRNAを投与することにより、免疫応答が患者において誘導される。そのような免疫原性遺伝子産物は、免疫応答が誘導されるべき腫瘍抗原全体を含み得るか、またはT細胞エピトープなどのその一部分を含み得る。インビトロ転写RNA(IVT−RNA)を種々の免疫化経路によって患者に直接注入する戦略は、様々な動物モデルにおいて試験され、成功を収めている。RNAはトランスフェクト細胞において翻訳され得、発現産物はプロセシング後に細胞の表面のMHC分子に提示されて免疫応答を誘発し得る。

0014

RNAを一種の可逆的遺伝子療法として用いることの利点には、一過性の発現および形質転換しないという特性が含まれる。RNAは、発現されるために核内に入る必要がなく、さらに宿主ゲノムに取り込まれることができないため、それにより発現の危険性が排除される。RNAで達成可能なトランスフェクション率は比較的高い。さらに、達成されるタンパク質の量は生理的発現におけるものに対応する。

課題を解決するための手段

0015

本発明は、共通腫瘍抗原などの腫瘍抗原の個別発現パターンを標的とする癌ワクチンを投与すること、および個別腫瘍突然変異を標的とする癌ワクチンを投与することにより、癌患者において効率的で特異的な免疫応答を誘導するための方法に関する。好ましくは、本発明に従って患者に投与される癌ワクチンは、患者の腫瘍に特異的な、MHCによって提示されるエピトープが由来する抗原(共通腫瘍抗原および患者特異的突然変異を有する抗原)を発現する細胞に対するT細胞を刺激する、プライムするおよび/または増殖させるのに適した、患者の腫瘍に特異的なMHC提示エピトープを提供する。したがって、本明細書で述べるワクチンは、好ましくはクラスI MHCによる1つ以上の癌発現抗原の提示を特徴とする癌疾患に対する細胞性応答、好ましくは細胞傷害性T細胞活性を誘導するまたは促進することができる。本発明に従って投与されるワクチンはまた、癌特異的突然変異を標的とするので、患者の腫瘍に特異的である。

0016

1つの態様では、本発明は、患者において癌を予防するまたは治療するための方法であって、
(i)患者において1つ以上の腫瘍抗原に対する第一免疫応答を誘導する工程、および
(ii)患者において1つ以上の腫瘍抗原に対する第二免疫応答を誘導する工程であって、前記第二免疫応答が、患者の癌細胞中に存在する癌特異的体細胞突然変異に特異的である工程、を含む方法に関する。

0017

(i)第一免疫応答を誘導する工程および(ii)第二免疫応答を誘導する工程は、同時にまたは連続的に実施し得る。前記工程を連続的に実施する場合、工程(ii)は、好ましくは工程(i)の後に実施する。工程(i)と(ii)を同時に実施する場合は、第一免疫応答を誘導するためのワクチンを、好ましくは第二免疫応答を誘導するためのワクチンの投与と同時に投与する。工程(i)と(ii)を連続的に実施する場合は、第一免疫応答を誘導するためのワクチンを、好ましくは第二免疫応答を誘導するためのワクチンの投与の前に投与する。

0018

1つの実施形態では、第一および/または第二免疫応答は、1つ以上の適切なワクチン、特にRNAワクチンを投与することによって誘導される。1つの実施形態では、腫瘍抗原は腫瘍関連抗原である。

0019

1つの実施形態では、第一および/または第二免疫応答は細胞性応答である。1つの実施形態では、第一免疫応答はCD8+T細胞応答を含む。1つの実施形態では、第二免疫応答はCD4+T細胞応答を含む。

0020

1つの実施形態では、第一免疫応答は、患者の癌細胞中に存在する腫瘍抗原発現パターン(すなわち腫瘍抗原のコレクション)に特異的である。この実施形態では、第一免疫応答は、好ましくは患者の癌細胞中で発現される腫瘍抗原のコレクションに対する免疫応答を含む。1つの実施形態では、第一免疫応答は、患者の癌細胞中に存在する癌特異的体細胞突然変異に特異的ではない。1つの実施形態では、第一免疫応答は、共通腫瘍抗原である1つ以上の腫瘍抗原に対して誘導される。1つの実施形態では、第一免疫応答を誘導するためのワクチンは、癌患者の大部分の癌細胞において発現される腫瘍抗原に特異的な免疫応答を誘導し、前記癌患者は、本発明に従って治療される癌などの同じ型の癌または異なる型の癌を有する。本発明によれば、第一免疫応答は、共通腫瘍抗原またはそのエピトープなどの腫瘍抗原のコレクションを患者に提供することによって誘導され得、前記エピトープは、これらのエピトープを含有するポリエピトープポリペプチド(本明細書では多価ポリペプチドとも称される)の形態で提供され得る。前記抗原またはエピトープは、好ましくは前記抗原またはエピトープをコードする核酸、特にRNAを投与することによって患者に提供される。適切なプロセシングとMHC分子による提示後、適切なT細胞を刺激するためにエピトープが患者の免疫系に表示される。

0021

エピトープは、ワクチン配列の形態でポリエピトープポリペプチド中に存在し得る、すなわち、例えば天然に存在するタンパク質中でも前記エピトープに隣接(flank)するアミノ酸配列に隣接した、それらの天然配列状況に存在し得る。そのようなフランキング配列は、各々5個以上、10個以上、15個以上、20個以上、および好ましくは50個まで、45個まで、40個まで、35個までまたは30個までのアミノ酸を含んでよく、N末端および/またはC末端エピトープ配列に隣接し得る。したがって、ワクチン配列は、20個以上、25個以上、30個以上、35個以上、40個以上、および好ましくは50個まで、45個まで、40個まで、35個までまたは30個までのアミノ酸を含み得る。1つの実施形態では、エピトープおよび/またはワクチン配列はポリペプチド中で頭部から尾部の方向に並んでいる。1つの実施形態では、エピトープおよび/またはワクチン配列はリンカーによって分離されている。そのようなリンカーは以下でさらに説明する。第一免疫応答を誘導するために、好ましくは患者の個別腫瘍抗原発現パターンを決定せずに投与される製造前ポリエピトープポリペプチドを使用しようとする場合、ポリエピトープポリペプチドは、実験データに基づき、患者の癌細胞によって発現される1つ以上の腫瘍抗原を標的とする免疫応答を誘導する可能性が最も高いエピトープを含むことが好ましい。これは、同じおよび/または異なる型の腫瘍試料の最大数を標的とするように選択したポリエピトープポリペプチド中にエピトープを含めることによって達成できる。しかし、エピトープの数はできるだけ少なく抑えることが望ましい。このために、3つの異なる腫瘍抗原だけの特定のセットが、分析するメラノーマ転移患者試料の88%をカバーするのに十分であることを実施例で明らかにする。言い換えると、メラノーマ転移患者の88%は、3つの異なる腫瘍抗原だけの前記特定セットの中の少なくとも1つの抗原を発現する。したがって、前記3つの異なる腫瘍抗原の各々からの少なくとも1つのエピトープをポリエピトープポリペプチドに含めることにより、メラノーマ転移患者の88%において第一免疫応答が誘導されると予想される。これらの抗原のコレクションは、ポリエピトープポリペプチド中のエピトープの数をできるだけ少なく抑えつつ、必ずしも最大数の腫瘍患者をカバーするように補完的である必要はないので、ポリエピトープポリペプチドは必ずしも最大割合の腫瘍患者において共有される抗原からのエピトープを含まなくてもよいことが理解されるべきである。むしろ、そのようなセットのエピトープは、ポリエピトープポリペプチド中のエピトープの数をできるだけ少なく抑えつつ、(i)最大割合の腫瘍患者によって共有される抗原および(ii)最大数の腫瘍患者をカバーする抗原に関して最適化される。

0022

1つの実施形態では、第一免疫応答を誘導するためのワクチン生成物は、(i)各々のペプチドもしくはポリペプチドが1つ以上の腫瘍抗原を含む、1つ以上のペプチドもしくはポリペプチド、(ii)各々のペプチドもしくはポリペプチドが1つ以上の腫瘍抗原の1つ以上のT細胞エピトープを含む、1つ以上のペプチドもしくはポリペプチド、または(iii)(i)もしくは(ii)に含まれる1つ以上のペプチドもしくはポリペプチドをコードする核酸、好ましくはRNAを含有する。1つの実施形態では、免疫のために使用されるポリペプチドは30までのエピトープを含む。1つの実施形態では、エピトープは、ワクチン配列を形成するようにそれらの天然配列状況に存在する。1つの実施形態では、ワクチン配列は約30アミノ酸長である。1つの実施形態では、エピトープおよび/またはワクチン配列は、頭部から尾部の方向に並んでいる。1つの実施形態では、エピトープおよび/またはワクチン配列はリンカーによって分離されている。

0023

1つの実施形態では、第一免疫応答を誘導するために投与されるワクチン生成物は、治療される癌において一般的であるおよび/または種々の癌において一般的である腫瘍抗原に対する免疫応答を誘導する。好ましくは、第一免疫応答の誘導に関与する腫瘍抗原は共通腫瘍抗原である。1つの実施形態では、患者は、第一免疫応答が誘導される1つ以上の腫瘍抗原について陽性である。1つの実施形態では、患者は、第一免疫応答が誘導されるすべての腫瘍抗原について陽性である。本発明によれば、「患者は腫瘍抗原について陽性である」という用語は、患者の癌細胞が腫瘍抗原を発現することを意味する。

0024

1つの実施形態では、第一免疫応答は、製造前ワクチン生成物、特に腫瘍抗原またはT細胞エピトープなどのその免疫原性フラグメントを含むペプチドまたはポリペプチドをコードするRNAを含むセットから選択される1つ以上のワクチン生成物を投与することによって誘導され、各々の製造前ワクチン生成物は腫瘍抗原に対する免疫応答を誘導する。1つの実施形態では、セットは、少なくとも3つの腫瘍抗原、少なくとも5つの腫瘍抗原、少なくとも8つの腫瘍抗原、少なくとも10の腫瘍抗原、少なくとも15の腫瘍抗原、少なくとも20の腫瘍抗原、少なくとも25の腫瘍抗原、少なくとも30の腫瘍抗原、またはさらにそれ以上のような種々の腫瘍抗原に対する免疫応答を誘導するワクチン生成物を含む。

0025

1つの実施形態では、癌特異的体細胞突然変異は患者の癌細胞のエクソーム中に存在する。1つの実施形態では、癌特異的体細胞突然変異は非同義突然変異である。1つの実施形態では、癌細胞は血中循環腫瘍細胞である。1つの実施形態では、第二免疫応答は、突然変異に基づくネオエピトープを含むポリペプチド、または前記ポリペプチドをコードする核酸、好ましくはRNAを含有するワクチンを投与することによって誘導される。1つの実施形態では、ポリペプチドは30個までの突然変異に基づくネオエピトープを含む。1つの実施形態では、ポリペプチドは、癌細胞によって発現される癌特異的体細胞突然変異を含まないエピトープをさらに含む。1つの実施形態では、エピトープは、ワクチン配列を形成するようにそれらの天然配列状況に存在する。1つの実施形態では、ワクチン配列は約30アミノ酸長である。1つの実施形態では、ネオエピトープ、エピトープおよび/またはワクチン配列は、頭部から尾部の方向に並んでいる。1つの実施形態では、ネオエピトープ、エピトープおよび/またはワクチン配列はリンカーによって分離されている。

0026

本発明によれば、第一免疫応答を誘導するためのワクチンは、
(a)癌患者の腫瘍標本中で発現される腫瘍抗原、特に共通腫瘍抗原を同定する工程;および
(b)好ましくは、各々の製造前ワクチン生成物が好ましくは共通腫瘍抗原に対する免疫応答を誘導する、製造前ワクチン生成物を含むセットからワクチン生成物を選択することによって、工程(a)で得られた腫瘍抗原プロフィール、特に共通腫瘍抗原プロフィールを特徴とするワクチンを提供する工程、を含む方法によって提供され得る。

0027

本発明によれば、「共通腫瘍抗原」という用語は、癌の大部分、例えば同じ型の癌の大部分、例えば本発明に従って治療される癌型の大部分によって、および/または異なる型の癌の大部分によって発現される腫瘍抗原に関する。したがって、「共通腫瘍抗原」という用語は、同じ癌型および/または異なる癌型を有する種々の患者の大部分によって共有される腫瘍抗原に関する。好ましくは、そのような腫瘍抗原は、少なくとも1つの免疫原性T細胞エピトープを担持する腫瘍抗原である。「大部分」という用語は、好ましくは少なくとも60%、より好ましくは少なくとも70%、より好ましくは少なくとも80%、より好ましくは少なくとも90%、特に少なくとも95%を意味する。そのような共通腫瘍抗原を標的とすることにより、癌患者の大部分に適用できる、限られた数のワクチン生成物を使用することが本発明に従って可能である。本発明によれば「同じ型の癌」という用語は、同じ器官または組織の癌のような同じ医学分類の癌に関する。さらに、本発明によれば「異なる型の癌」という用語は、異なる器官または組織の癌のような異なる医学的分類の癌に関する。

0028

本発明によれば、「腫瘍抗原に対する免疫応答を誘導する」とは、好ましくは、患者に投与した場合、共通腫瘍抗原などの腫瘍抗原に対する免疫応答、または共通腫瘍抗原などの腫瘍抗原を発現するおよび/もしくは提示する癌細胞などの細胞に対する免疫応答、好ましくはT細胞応答を誘導する能力に関する。したがって、共通腫瘍抗原に対する免疫応答を誘導するためのワクチンは、(i)共通腫瘍抗原を含むペプチドもしくはポリペプチド、または(ii)共通腫瘍抗原の1つ以上のT細胞エピトープを含むペプチドもしくはポリペプチドを含有し得る。1つの特に好ましい実施形態では、本発明による共通腫瘍抗原を含むペプチドもしくはポリペプチド、または(ii)本発明による共通腫瘍抗原の1つ以上のT細胞エピトープを含むペプチドもしくはポリペプチドは、抗原提示細胞などの患者の細胞において発現されて、前記ペプチドまたはポリペプチドを生成し得る核酸、好ましくはインビトロ転写RNAまたは合成RNAなどのRNAの形態で患者に投与される。

0029

本発明によれば、第一免疫応答を誘導するためのワクチンは、好ましくは、供給前RNAワクチン倉庫などの供給前ワクチン倉庫から選択される。このアプローチは、本明細書では「在庫」とも称される。そのような供給前ワクチン倉庫は、各々の製造前ワクチン生成物が共通腫瘍抗原などの腫瘍抗原に対する免疫応答を誘導する、製造前ワクチン生成物を含むセットに関する。本発明によれば、そのような倉庫は、好ましくは、同じ型の癌を有する癌患者の大部分および/または異なる型の癌を有する癌患者の大部分に適用できるように設計された限られた数のワクチン生成物を含む。したがって、本発明に従って使用されるワクチン倉庫は、好ましくは癌患者の大部分に適用できるワクチン生成物のセットを含む。例えば、一般的な腫瘍抗原のセットが特定の癌型に関して公知である場合、セット中のワクチン生成物が前記の一般的な腫瘍抗原に対する免疫応答を誘導する、ワクチン生成物のセットを含むそのような供給前ワクチン倉庫を作製することが可能である。そのようなワクチン倉庫は患者の大部分に適用できるように選択されるので、治療される特定の患者の癌細胞において発現される1つ以上の腫瘍抗原に対する免疫応答を誘導し、したがって、治療される患者のために特に設計されたさらなるワクチン生成物を提供することを必要とせずにそれぞれの患者の腫瘍抗原プロフィールを標的とする、1つ以上のワクチン生成物を前記供給前ワクチン倉庫から選択することが可能である。そのような選択は、患者を腫瘍抗原発現に関して試験し、次に患者の癌細胞によって発現される前記腫瘍抗原を標的とする供給前ワクチン倉庫から適切なワクチン生成物を選択することによって実施できる。そのような選択は、患者の腫瘍のトランスクリプトーム/ペプチドーム解析に基づいて行うことができる。例えば、適格患者からの腫瘍試料を腫瘍抗原シグネチャーに関して分析することができる。共通腫瘍抗原プロフィールは、定量的マルチプレックスRTPCRおよびIHCによって決定することができ、それぞれのワクチン生成物を倉庫から選択することができる。治療される特定の患者の癌細胞において発現される1つ以上の腫瘍抗原に対する免疫応答を誘導し、したがって、それぞれの患者の腫瘍抗原プロフィールを標的とする、1つ以上のワクチン生成物を前記供給前ワクチン倉庫から選択することは、実験データに基づき患者の癌細胞によって発現される1つ以上の腫瘍抗原を標的とする可能性が最も高い供給前ワクチン倉庫からワクチン生成物を無作為に選択することによっても実施できる。

0030

本発明によれば、製造前ワクチン生成物のセットは、腫瘍試料のカバー範囲およびそれらの腫瘍抗原発現パターンに関して最適化される。特に、前記セットは、セット中のワクチン生成物の数をできるだけ少なく抑えつつ、同じおよび/または異なる型の腫瘍試料の最大数を標的とするように選択されたワクチン生成物を含む。このために、3つの異なる腫瘍抗原だけの特定のセットが、分析するメラノーマ転移患者試料の88%をカバーするのに十分であることを実施例で明らかにする。言い換えると、メラノーマ転移患者の88%は、3つの異なる腫瘍抗原だけの前記特定セットの中の少なくとも1つの抗原を発現する。これらの抗原のコレクションは、倉庫中のワクチン生成物の数をできるだけ少なく抑えつつ、必ずしも最大数の腫瘍患者をカバーするように補完的である必要はないので、そのようなセットは必ずしも最大割合の腫瘍患者において共有される抗原を含まなくてもよいことが理解されるべきである。むしろ、ワクチン生成物のそのようなセットは、好ましくは、倉庫中のワクチン生成物の数をできるだけ少なく抑えつつ、(i)最大割合の腫瘍患者によって共有される抗原および(ii)最大数の腫瘍患者をカバーする抗原に関して最適化される。

0031

1つの実施形態では、腫瘍抗原、好ましくは共通腫瘍抗原のワクチン倉庫は、特定の腫瘍型を有する患者の少なくとも60%、より好ましくは少なくとも70%、より好ましくは少なくとも80%、より好ましくは少なくとも90%、特に少なくとも95%を標的とするのに適する。

0032

本発明によれば、「腫瘍抗原プロフィール」という用語は、患者の癌細胞中に存在する腫瘍抗原のコレクション、すなわち患者の1つ以上の癌細胞中に存在する(すなわち発現され、好ましくは提示された)共通腫瘍抗原などのすべての腫瘍抗原または患者の1つ以上の癌細胞中に存在する腫瘍抗原の一部分を指す。好ましくは、そのような腫瘍抗原プロフィールまたは腫瘍抗原のコレクションは、2個以上、3個以上、4個以上、5個以上、6個以上、7個以上、8個以上、9個以上、10個以上、および好ましくは30個まで、20個までまたは15個までの腫瘍抗原を含む。したがって、本発明は、患者の1つ以上の癌細胞中に存在するすべての共通腫瘍抗原の同定を含み得るか、または患者の1つ以上の癌細胞中に存在する共通腫瘍抗原の一部分だけの同定を含み得る。一般に、共通腫瘍抗原の数は、ワクチンによって標的とされる十分な数の共通腫瘍抗原を提供する癌患者の腫瘍標本中で同定され得る。

0033

第一免疫応答を誘導するためのワクチンは、患者に投与された場合、好ましくは、共通腫瘍抗原などの腫瘍抗原のコレクション、例えば2個以上、3個以上、4個以上、5個以上、6個以上、7個以上、8個以上、9個以上、10個以上、および好ましくは30個まで、20個までまたは15個までの腫瘍抗原のコレクションからのMHC提示エピトープのコレクションを提供する。患者の細胞、特に抗原提示細胞によるこれらのエピトープの提示は、好ましくは、MHCに結合した場合エピトープを標的とする、したがって、MHC提示エピトープが由来する抗原を発現し、腫瘍細胞の表面に同じエピトープを提示する患者の腫瘍、好ましくは原発性腫瘍ならびに腫瘍転移を標的とするT細胞を生じさせる。

0034

本発明によれば、第二免疫応答を誘導するためのワクチンは、
(a)癌患者の腫瘍標本中で癌特異的体細胞突然変異を同定し、患者の癌突然変異シグネチャーを提供する工程;および
(b)工程(a)で得られた癌突然変異シグネチャーを特徴とするワクチンを提供する工程、を含む方法によって提供され得る。

0035

1つの実施形態では、本発明の方法は、
i)癌患者からの腫瘍標本および、好ましくは癌患者に由来する、非腫瘍形成性標本を提供する工程;
ii)腫瘍標本のゲノム、エクソームおよび/またはトランスクリプトームと非腫瘍形成性標本のゲノム、エクソームおよび/またはトランスクリプトームとの間の配列相違を同定する工程;
iii)工程(ii)で決定された配列相違を組み込んだエピトープを含むペプチドまたはポリペプチドを設計する工程;
iv)工程(iii)で設計されたペプチドもしくはポリペプチドまたは前記ペプチドもしくはポリペプチドをコードする核酸、好ましくはRNAを提供する工程;ならびに
v)工程(iv)で提供されたペプチドまたはポリペプチドまたは核酸を含有するワクチンを提供する工程、を含み得る。

0036

本発明によれば、腫瘍標本は、腫瘍または癌細胞を含むまたは含むと予想される患者に由来する身体試料などの任意の試料に関する。身体試料は、血液、原発性腫瘍からもしくは腫瘍転移から得られた組織試料、または腫瘍もしくは癌細胞を含む任意の他の試料などの任意の組織試料であり得る。好ましくは、身体試料は血液であり、癌特異的体細胞突然変異または配列相違は、血液中に含まれる1つ以上の血中循環腫瘍細胞(CTC)において決定される。別の実施形態では、腫瘍標本は、血中循環腫瘍細胞(CTC)などの1つ以上の単離された腫瘍もしくは癌細胞、または血中循環腫瘍細胞(CTC)などの1つ以上の単離された腫瘍もしくは癌細胞を含む試料に関する。

0037

非腫瘍形成性標本は、患者または、好ましくは患者と同じ種の別の個体、好ましくは腫瘍もしくは癌細胞を含まないもしくは含まないと予想される健常個体に由来する身体試料などの任意の試料に関する。身体試料は、血液または非腫瘍形成性組織からの試料などの任意の組織試料であり得る。

0038

本発明によれば、「癌突然変異シグネチャー」という用語は、患者の1つ以上の癌細胞中に存在するすべての癌突然変異を表し得るか、または患者の1つ以上の癌細胞中に存在する癌突然変異の一部分だけを表し得る。したがって、本発明は、患者の1つ以上の癌細胞中に存在するすべての癌特異的突然変異の同定を含み得るか、または患者の1つ以上の癌細胞中に存在する癌特異的突然変異の一部分だけの同定を含み得る。一般に、本発明は、ワクチンに含めるのに十分な数のネオエピトープを提供する多くの突然変異の同定を提供する。「癌突然変異」は、癌細胞中に含まれる核酸と正常細胞中に含まれる核酸との間の配列相違に関する。

0039

好ましくは、本発明に従って同定される突然変異は、非同義突然変異、好ましくは腫瘍または癌細胞中で発現されるタンパク質の非同義突然変異である。

0040

1つの実施形態では、癌特異的体細胞突然変異または配列相違は、腫瘍標本のゲノム、好ましくはゲノム全体において決定される。したがって、本発明は、1つ以上の癌細胞のゲノム、好ましくはゲノム全体の癌突然変異シグネチャーを同定することを含み得る。1つの実施形態では、癌患者の腫瘍標本中の癌特異的体細胞突然変異を同定する工程は、全ゲノム癌突然変異プロフィールを同定することを含む。

0041

1つの実施形態では、癌特異的体細胞突然変異または配列相違は、腫瘍標本のエクソーム、好ましくはエクソーム全体において決定される。エクソームは、発現される遺伝子のコード部分であるエクソンによって形成される生物のゲノムの一部である。エクソームは、タンパク質および他の機能的遺伝子産物の合成において使用される遺伝的青写真を提供する。これはゲノムの機能的に最も重要な部分であり、それゆえ、生物の表現型に寄与する可能性が最も高い。ヒトゲノムのエクソームは全ゲノムの1.5%を占めると推定されている(Ng,PC et al.,PLoS Gen.,4(8):1−15,2008)。したがって、本発明は、1つ以上の癌細胞のエクソーム、好ましくはエクソーム全体の癌突然変異シグネチャーを同定することを含み得る。1つの実施形態では、癌患者の腫瘍標本中の癌特異的体細胞突然変異を同定する工程は、全エクソーム癌突然変異プロフィールを同定することを含む。

0042

1つの実施形態では、癌特異的体細胞突然変異または配列相違は、腫瘍標本のトランスクリプトーム、好ましくはトランスクリプトーム全体において決定される。トランスクリプトームは、1個の細胞または細胞集団において産生されるmRNArRNAtRNAおよび他の非コードRNAを含む、すべてのRNA分子のセットである。本発明に関連して、トランスクリプトームは、特定の時点で所与の個体の1個の細胞、細胞集団、好ましくは癌細胞集団、またはすべての細胞において産生されるすべてのRNA分子のセットを意味する。したがって、本発明は、1つ以上の癌細胞のトランスクリプトーム、好ましくはトランスクリプトーム全体の癌突然変異シグネチャーを同定することを含み得る。1つの実施形態では、癌患者の腫瘍標本中の癌特異的体細胞突然変異を同定する工程は、全トランスクリプトーム癌突然変異プロフィールを同定することを含む。

0043

1つの実施形態では、癌特異的体細胞突然変異を同定するまたは配列相違を同定する工程は、1個以上、好ましくは2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20個またはさらにそれ以上の癌細胞の単一細胞シークエンシングを含む。したがって、本発明は、前記1つ以上の癌細胞の癌突然変異シグネチャーを同定することを含み得る。1つの実施形態では、癌細胞は血中循環腫瘍細胞である。血中循環腫瘍細胞などの癌細胞は、単一細胞シークエンシングの前に単離し得る。

0044

1つの実施形態では、癌特異的体細胞突然変異を同定するまたは配列相違を同定する工程は、次世代シークエンシング(NGS)を用いることを含む。

0045

1つの実施形態では、癌特異的体細胞突然変異を同定するまたは配列相違を同定する工程は、腫瘍標本のゲノムDNAおよび/またはRNAをシークエンシングすることを含む。

0046

癌特異的体細胞突然変異または配列相違を明らかにするため、腫瘍標本から得られた配列情報を、好ましくは、患者または異なる個体のいずれかから入手し得る生殖系列細胞などの正常な非癌性細胞のDNAまたはRNAなどの核酸をシークエンシングすることから得られる配列情報などの参照と比較する。1つの実施形態では、正常なゲノム生殖系列DNAは末梢血単核細胞(PBMC)から得られる。

0047

第二免疫応答を誘導するためのワクチンは、患者に投与された場合、好ましくは、同定された突然変異または配列相違に基づく配列変化を組み込んだ、MHCによって提示されるエピトープのコレクション、例えば2個以上、5個以上、10個以上、15個以上、20個以上、25個以上、30個以上、および好ましくは60個まで、55個まで、50個まで、45個まで、40個まで、35個までまたは30個までのMHC提示エピトープのコレクションを提供する。そのような同定された突然変異または配列相違に基づく配列変化を組み込んだMHC提示エピトープは、本明細書では「ネオエピトープ」とも称される。患者の細胞、特に抗原提示細胞によるこれらのエピトープの提示は、好ましくは、MHCに結合した場合エピトープを標的とする、したがって、MHC提示エピトープが由来する抗原を発現し、腫瘍細胞の表面に同じエピトープを提示する患者の腫瘍、好ましくは原発性腫瘍ならびに腫瘍転移を標的とするT細胞を生じさせる。

0048

第二免疫応答を誘導するためのワクチンを提供するために、本発明は、十分な数のネオエピトープ(好ましくはコード核酸の形態)をワクチン中に恣意的に組み込むことを含み得るか、または癌ワクチン接種のためのエピトープ中の同定された突然変異の有用性を決定するさらなる工程を含み得る。したがってこのさらなる工程は、以下の1つ以上を含み得る:(i)配列変化が公知のまたは予測されるMHC提示エピトープ中に位置するかどうかを評価すること、(ii)配列変化がMHC提示エピトープ中に位置するかどうかをインビトロおよび/またはインシリコで試験すること、例えば配列変化がMHC提示エピトープへとプロセシングされるおよび/またはMHC提示エピトープとして提示されるペプチド配列の一部であるかどうかを試験すること、ならびに(iii)想定される突然変異エピトープが、特にそれらの天然配列状況で存在する場合、例えば天然に存在するタンパク質中でも前記エピトープに隣接するアミノ酸配列に隣接している場合、および抗原提示細胞中で発現された場合、所望の特異性を有する患者のT細胞を刺激することができるかどうかをインビトロで試験すること。そのようなフランキング配列は、各々3個以上、5個以上、10個以上、15個以上、20個以上、および好ましくは50個まで、45個まで、40個まで、35個までまたは30個までのアミノ酸を含んでよく、N末端および/またはC末端でエピトープ配列に隣接し得る。

0049

本発明に従って決定される突然変異または配列相違は、癌ワクチン接種のためのエピトープとしてのそれらの有用性に関して順位付けし得る。したがって、1つの態様では、本発明は、同定された突然変異を、提供されるそれぞれのワクチンにおけるそれらの有用性に関して分析し、選択する手動またはコンピュータに基づく分析処理を提供する。好ましい実施形態では、前記分析処理はコンピュータアルゴリズムに基づく処理である。

0050

好ましくは、前記分析処理は、以下の工程:
−例えば転写産物を分析することによって、発現されたタンパク質改変突然変異を同定する工程;
−潜在的に免疫原性である突然変異を同定する、すなわち得られたデータを、確認されている免疫原性エピトープの利用可能なデータセット、例えばhttp://www.immunoepitope.orgのIMMUNEEPITOPEDATABASEAND ANALYSIS RESOURCEなどの公共免疫エピトープデータベースに含まれるものと比較することによって同定する工程;
の1つ以上、好ましくは全部を含む。

0051

潜在的に免疫原性である突然変異を同定する工程は、MHC結合能力、好ましくはMHCクラスI結合能力の予測に従ってエピトープを決定するおよび/または順位付けることを含み得る。

0052

別の実施形態では、エピトープは、タンパク質影響、関連遺伝子発現、配列固有性、予測される提示可能性、および癌遺伝子との関連などのさらなるパラメータを用いることによって選択するおよび/または順位付けることができる。

0053

複数のCTC分析も、突然変異の選択と優先順位付けを可能にする。例えば、より大きな割合のCTCにおいて認められる突然変異は、より少ない割合のCTCで認められる突然変異よりも高く優先順位付けられ得る。

0054

同定され、第二免疫応答を誘導するためのワクチンによって提供される、突然変異に基づくネオエピトープのコレクションは、好ましくは前記ネオエピトープを含むポリペプチド(ポリエピトープポリペプチド)または前記ポリペプチドをコードする核酸、特にRNAの形態で存在する。さらに、ネオエピトープは、例えば天然に存在するタンパク質中でも前記エピトープに隣接するアミノ酸配列に隣接した、ワクチン配列の形態でポリペプチド中に存在し得る、すなわちそれらの天然配列状況で存在し得る。そのようなフランキング配列は、各々5個以上、10個以上、15個以上、20個以上、および好ましくは50個まで、45個まで、40個まで、35個までまたは30個までのアミノ酸を含んでよく、N末端および/またはC末端でエピトープ配列に隣接し得る。したがって、ワクチン配列は、20個以上、25個以上、30個以上、35個以上、40個以上、および好ましくは50個まで、45個まで、40個まで、35個までまたは30個までのアミノ酸を含み得る。1つの実施形態では、ネオエピトープおよび/またはワクチン配列は、ポリペプチド中で頭部から尾部の方向に並んでいる。

0055

1つの実施形態では、ネオエピトープおよび/またはワクチン配列は、リンカー、特に中性リンカーによって分離されている。本発明による「リンカー」という用語は、エピトープまたはワクチン配列などの2つのペプチドドメインの間に、前記ペプチドドメインを連結するために付加されたペプチドに関する。リンカー配列に関して特に制限はない。しかし、リンカー配列は、2つのペプチドドメイン間の立体障害を低減し、良好に翻訳され、エピトープのプロセシングを支持するまたは許容することが好ましい。さらに、リンカーは、免疫原性配列要素を全く有さないかまたはわずかしか有さないべきである。リンカーは、好ましくは、望ましくない免疫反応を生じさせ得る、近接ネオエピトープ間の接合縫合から生じるもののような非内因性ネオエピトープを生成するべきではない。それゆえ、ポリエピトープワクチンは、好ましくは、望ましくないMHC結合性接合エピトープの数を低減することができるリンカー配列を含むべきである。Hoyt et al.(EMBO J.25(8),1720−9,2006)およびZhang et al.(J.Biol.Chem.,279(10),8635−41,2004)は、グリシンリッチ配列がプロテアソームプロセシングを低下させ、したがってグリシンリッチリンカー配列の使用は、プロテアソームによってプロセシングされ得るリンカーに含まれるペプチドの数を最小限に抑えるように働くことを示した。さらに、グリシンは、MHC結合溝位置で強力な結合を阻害することが観察された(Abastado et al.,J.Immunol.151(7),3569−75,1993)。Schlessinger et al.(Proteins,61(1),115−26,2005)は、アミノ酸配列中に含まれるアミノ酸グリシンおよびセリンが、より効率的に翻訳され、プロテアソームによってプロセシングされて、コードされるネオエピトープへのより良好なアクセスを可能にする、より柔軟性のあるタンパク質をもたらすことを見出した。リンカーは、各々3個以上、6個以上、9個以上、10個以上、15個以上、20個以上、および好ましくは50個まで、45個まで、40個まで、35個までまたは30個までのアミノ酸を含み得る。好ましくは、リンカーはグリシンおよび/またはセリンアミノ酸が富化されている。好ましくは、リンカーのアミノ酸の少なくとも50%、少なくとも60%、少なくとも70%、少なくとも80%、少なくとも90%、または少なくとも95%はグリシンおよび/またはセリンである。1つの好ましい実施形態では、リンカーは実質的にアミノ酸グリシンおよびセリンから成る。1つの実施形態では、リンカーは、アミノ酸配列(GGS)a(GSS)b(GGG)c(SSG)d(GSG)eを含み、ここでa、b、c、dおよびeは、独立して0、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、または20から選択される数であり、a+b+c+d+eは0ではなく、好ましくは2以上、3以上、4以上または5以上である。1つの実施形態では、リンカーは、配列GGSGGGGSGなどの実施例に記載するリンカー配列を含む、本明細書で述べる配列を含む。

0056

別の実施形態では、同定され、第二免疫応答を誘導するためのワクチンによって提供される、突然変異に基づくネオエピトープのコレクションは、好ましくは、各々が、重複することもできる1つ以上のネオエピトープを含む、種々のペプチド上の前記ネオエピトープを含むペプチドのコレクション、または前記ペプチドをコードする核酸、特にRNAのコレクションの形態で存在する。

0057

第二免疫応答を誘導するためのワクチンの投与は、MHC提示エピトープが由来する抗原を発現する細胞に対してCD4+ヘルパーT細胞応答を誘発することができる、MHCクラスII提示エピトープを提供し得る。あるいはまたは加えて、第二免疫応答を誘導するためのワクチンの投与は、MHC提示エピトープが由来する抗原を発現する細胞に対してCD8+T細胞応答を誘発することができる、MHCクラスI提示エピトープを提供し得る。さらに、第二免疫応答を誘導するためのワクチンの投与は、1つ以上のネオエピトープ(公知のネオエピトープおよび本発明に従って同定されるネオエピトープを含む)、ならびに癌特異的体細胞突然変異を含まないが、癌細胞によって発現され、好ましくは癌細胞に対する免疫応答、好ましくは癌特異的免疫応答を誘導する1つ以上のエピトープを提供し得る。1つの実施形態では、第二免疫応答を誘導するためのワクチンの投与は、MHCクラスII提示エピトープであるおよび/またはMHC提示エピトープが由来する抗原を発現する細胞に対してCD4+ヘルパーT細胞応答を誘発することができるネオエピトープ、ならびにMHCクラスI提示エピトープであるおよび/またはMHC提示エピトープが由来する抗原を発現する細胞に対してCD8+T細胞応答を誘発することができる、癌特異的体細胞突然変異を含まないエピトープを提供する。1つの実施形態では、癌特異的体細胞突然変異を含まないエピトープは腫瘍抗原に由来する。1つの実施形態では、ネオエピトープおよび癌特異的体細胞突然変異を含まないエピトープは、癌の治療において相乗効果を有する。好ましくは、第二免疫応答を誘導するためのワクチンは、細胞傷害性応答および/またはヘルパーT細胞応答のポリエピトープ刺激のために有用である。

0058

1つの特に好ましい実施形態では、本発明によるポリエピトープポリペプチドなどのワクチン接種のためのペプチドまたはタンパク質を、ペプチドまたはタンパク質を生成させるために抗原提示細胞などの患者の細胞中で発現させ得る核酸、好ましくはインビトロ転写RNAまたは合成RNAなどのRNAの形態で患者に投与する。本発明はまた、本発明の目的上「ポリエピトープポリペプチド」という用語に包含される1つ以上のマルチエピトープポリペプチドを、好ましくは1つ以上のポリペプチドを生成させるために抗原提示細胞などの患者の細胞中で発現させ得る核酸の形態で、好ましくはインビトロ転写RNAまたは合成RNAなどのRNAの形態で投与することも想定する。2つ以上のマルチエピトープポリペプチドを投与する場合、異なるマルチエピトープポリペプチドによって提供されるネオエピトープは、異なっていてもよくまたは部分的に重複していてもよい。ひとたび抗原提示細胞などの患者の細胞中に存在すると、ペプチドまたはタンパク質はプロセシングされて、ネオエピトープなどの免疫原性エピトープを生成する。

0059

本発明の特に好ましい態様は、(i)それぞれの患者の共通腫瘍抗原プロフィールを標的とする供給前RNA倉庫からの「在庫」RNAを含有するインビトロ転写ポリヌクレオチドRNAワクチンカクテルおよび(ii)患者特異的突然変異に由来するネオエピトープをコードする、要求に応じて作製されるRNAワクチンを含む。

0060

本明細書で述べるワクチンは、医薬的に許容される担体を含んでよく、場合により1つ以上のアジュバント、安定剤等を含んでもよい。ワクチンは、治療ワクチンまたは予防ワクチンの形態であり得る。

0061

さらなる態様では、本発明は、本明細書で述べる治療の方法において使用するため、特に癌の治療または予防において使用するための本明細書で述べるワクチンを提供する。

0062

本明細書で述べる癌の治療は、外科切除および/または放射線および/または伝統的な化学療法と組み合わせることができる。

0063

本発明の他の特徴および利点は、以下の詳細な説明および特許請求の範囲から明らかになる。

図面の簡単な説明

0064

図1上:バルク腫瘍試料中の起こり得る免疫原性体細胞突然変異を発見し、優先順位付ける工程。図1下:B16およびBlack6系に適用される工程。
図2:Kif18bにおける実証された突然変異の例。サンガーシークエンシングによって確認された、NGSエクソームシクエンシングによりKif18b遺伝子中で同定された突然変異。野生型細胞では、配列はT/Tである。腫瘍細胞では、この配列はT/Gの混合物である。
図3突然変異配列に対する免疫反応性マウス(n=5)を突然変異ペプチド配列(100μg+PolyI:C 50μg;s.c.)で2回(0日目、7日目)免疫した。12日目にマウスを犠死させ、脾細胞採取した。5×105脾細胞/ウェルをエフェクターとし、ペプチドを負荷した(2μg/mlを37℃および5%CO2で2時間)5×104骨髄樹状細胞を標的細胞として使用してIFNγ ELISpotを実施した。エフェクター脾細胞を突然変異ペプチド、野生型ペプチドおよびコントロールペプチド(水疱性口内炎ウイルスヌクレオタンパク質、VSV−NP、アミノ酸52−59)に対して試験した。すべてのマウスについてVSV−NPに対するバックグラウンドスポットを差し引いた、測定された平均スポット数を示す(白い丸:野生型ペプチドで免疫したマウス;黒い四角:突然変異ペプチドで免疫したマウス)。データを各々のマウスについて示し、平均±SEMで表している。
図4:新たに同定された突然変異ペプチド配列でワクチン接種したマウスについての生存上の恩恵。 B16F10細胞(7.5×104)を0日目に皮下的に接種した。マウスにペプチド30(Jerini Peptide Technologies(Berlin);ペプチド100μg+PolyI:C 50μg s.c.(Invivogen))を−4日目、+2日目、+9日目にワクチン接種した。コントロール群にはPoly I:C(50μg s.c.)だけを与えた。腫瘍成長を+16日目まで観測し、ログランクマンテルコックス検定で*、p<0.05であった。
図5A:安定性および翻訳効率に関して最適化されたRNAによる増強されたタンパク質発現の例(左:eGFP、右:ルシフェラーゼ)。図5B:有効な抗原経路に関して最適化されたRNAによる抗原特異的CD8+およびCD4+T細胞のポリエピトープ拡大の例(参考文献、Kreiter,Konrad,Sester et al,Cancer Immunol.Immunother.56:1577−1587,2007参照)。図5C:単一エピトープ(OVA−SIINFEKL)をコードするRNAワクチンを使用したB16黒色モデルにおける抗腫瘍効果前臨床実証の例。ワクチン単独またはアジュバントと組み合わせたワクチンで処置したマウスに関して生存率データを得た。図5D:個別化されたポリネオエピトープワクチンの設計。ワクチンビヒクルには、発現の増大および免疫原性の最適化のための機能的要素が組み込まれている。リンカーによって分離された30個までの突然変異エピトープを、各分子についてそれらの天然配列状況で組み込むことができる。
図6構築物の設計。図6A:RNAポリエピトープ構築物の概略図。キャップキャップ類似体;5'UTR:5'非翻訳領域;L:リンカー;配列1:突然変異アミノ酸を含むペプチドをコードするRNA配列;3'UTR:3'非翻訳配列;ポリA:ポリA尾部。図6B:B16F10からの突然変異アミノ酸を含む2つのアミノ酸配列をコードするRNA構築物の配列。開始および終結コドンならびにシグナルペプチドおよびMITD配列は概略図の一部ではなく、"...."の記号で表されている。
図7:RNAポリエピトープの機能性。 5×105脾細胞/ウェルをエフェクターとし、5×104BMDCを標的細胞として用いたIFNγ ELISpotのデータ。BMDCは、ペプチドを負荷するか(2μg/mlを37℃および5%CO2で2時間)またはエレクトロポレーションによってRNA(20μg)でトランスフェクトした。コントロールRNAは、eGFP(左のパネル)またはリンカーによって分離された突然変異アミノ酸を含む2つの無関係なペプチドをコードするRNA構築物であった。データは平均±SEMで示している。図7A:突然変異ペプチド30、野生型ペプチド30ならびに突然変異30および31をコードするRNAについてのデータを示す。図7B:突然変異ペプチド12、野生型ペプチド12ならびに突然変異12および39をコードするRNAについてのデータを示す。図7C:図7Bに示す読み出しの単一マウスからの代表的なELISpotスキャンを示す。
図8:接合エピトープを示すRNAポリネオエピトープワクチンの2つの実施形態 RNAワクチンは、突然変異をコードするペプチドの間にリンカーを置いて(上)またはリンカーなしで(下)構築することができる。良好なエピトープには、体細胞突然変異("*")を含有し、MHC分子に結合するものが含まれる。不良エピトープには、MHC分子に結合するが、2つのペプチドのいずれかの一部(下)またはペプチドの一部とリンカー配列(上)を含むエピトープが含まれる。
図9:「T細胞ドラッガブルミュータノーム」の発見および特性付け図9Aフローチャートは、B16F10およびC57BL/6試料から出発するELISPOT読み出しまでの実験手順の概略を示す。
図9B:各評価段階についてのヒットの数ならびにDNA検証および免疫原性試験のための突然変異の選択の工程を示す。検証および免疫原性試験のために選択した突然変異は、免疫原性であり、遺伝子中でRPKM>10で発現されると予測されたものであった。
図9C:T細胞ドラッガブルミュータノームをB16F10のゲノムにマッピングした。外側から内側への環は以下のサブセット:(1)三つ組すべてに存在する、(2)FDR<0.05を有する、(3)タンパク質コード領域内に位置する、(4)非同義変化を引き起こす、(5)発現された遺伝子中に局在する、および(6)実証されたセット中にある、を表す。マウス染色体(外側の円)、遺伝子密度(緑色)、遺伝子発現(緑色(低)/黄色/赤色(高))、および体細胞突然変異(橙色)。
図10:突然変異を表す長い合成ペプチドでのマウスのワクチン接種によってインビボで誘発される免疫応答図10A、B:突然変異コードペプチドでワクチン接種したマウス由来のT細胞エフェクターのIFN−γ ELISPOT分析。柱は各群につき5匹のマウスの平均(±SEM)を表す。星印は、突然変異ペプチドおよび野生型ペプチドに対する反応性の統計的に有意の差を示す(スチューデントt検定;p値<0.05)。図10A:ワクチン接種したマウスの脾細胞を、ワクチン接種のために使用した突然変異をコードするペプチド、対応する野生型ペプチドおよび無関係なコントロールペプチド(VSV−NP)でトランスフェクトしたBMDCで再刺激した。
図10B内因的にプロセシングされた突然変異に対するT細胞反応性の分析のために、ワクチン接種したマウスの脾細胞を、コントロールRNA(eGFP)または指示されている突然変異をコードするRNAでトランスフェクトしたBMDCで再刺激した。
図10C:突然変異30(遺伝子Kif18B、タンパク質Q6PFD6、突然変異p.K739N)。サンガーシークエンシングトレースおよび突然変異の配列(上)。タンパク質ドメインおよび突然変異の位置(下)。
図11攻撃的成長するB16F10腫瘍を有するマウスにおける突然変異ペプチドワクチンの抗腫瘍作用図11A:C57BL/6マウス(n=7)に、7.5×104 B16F10細胞をマウスの側腹部に皮下的に接種した。腫瘍接種後3日目および10日目に、マウスをMUT30もしくはMUT44ペプチド100μg+poly(I:C)50μgまたはアジュバント単独でワクチン接種した。図11B:C57BL/6マウス(n=5)に、−4日目にMUT30ペプチド100μg+poly(I:C)50μgの1回の免疫を実施した。0日目に、7.5×104 B16F10細胞をマウスの側腹部に皮下的に接種した。MUT30ペプチド(+poly(I:C))での追加免疫を2日目と9日目に行った。カプラン・マイヤー生存率ブロット(左)。腫瘍成長動態(右)。
図12:突然変異をコードするRNAによるワクチン接種はCD4+およびCD8+ T細胞応答をもたらす。 突然変異をコードするRNAでワクチン接種したマウス由来のCD4+およびCD8+ T細胞エフェクター中のIFN−γに関する細胞内サイトカイン染色分析データ。RNAは、1つ(モノエピトープ、上の列)、2つ(バイエピトープ、真ん中の列)または16(ポリエピトープ、下の列)の異なる突然変異をコードしていた。ドットは各群につき3匹のマウスの平均を表す。星印は、突然変異ペプチドおよびコントロールペプチド(VSV−NP)に対する反応性の統計的に有意の差を示す(スチューデントt検定;p値<0.05)。FACSプロットは、各々の突然変異について最も高いIFN−γ分泌動物からのエフェクターを示し、T細胞応答の表現型を指示する。
図13:突然変異をコードするポリエピトープRNAによるワクチン接種はいくつかの突然変異に対するT細胞応答をもたらす。 16の異なる突然変異を含む、突然変異をコードするポリエピトープでワクチン接種したマウス由来のT細胞エフェクター中のIFN−γ ELISPOT分析。柱は各群につき3匹のマウスの平均(±SEM)を表す。写真は、指示されているペプチドで再刺激した1匹の例示動物からの細胞の三つ組のウェルを示す。
図14:1個のRNAによってコードされる5つの異なるモデルエピトープによるワクチン接種はコードされるすべてのエピトープに対する免疫応答をもたらす。図14A:5つの異なるモデルエピトープ(SIINFEKL、Trp2、VSV−NP、Inf−NP、OVAクラスII)を含む、突然変異をコードするモデルポリエピトープでワクチン接種したマウス由来のT細胞エフェクター中のIFN−γ ELISPOT分析。脾細胞を指示されているペプチドで再刺激した。スポットは各群につき5匹のマウスからの三つ組のウェルの平均を表す。図14B:1匹のコントロールマウスおよびモデルポリエピトープで免疫した1匹のマウスの血液リンパ球の五量体染色。Inf−NP五量体で染色したCD8+細胞はInf−NPペプチドに特異的である。
図15:突然変異を誘導するCD4+ T細胞は、CD8+ T細胞エピトープとの相乗作用でB16F10メラノーマへの強力な抗腫瘍作用を誘導することができる C57BL/6マウス(n=8)に、1×105 B16F10細胞をマウスの側腹部に皮下的に接種した。腫瘍接種後3、10および17日目に、マウスをMUT30、Trp2または両方のペプチド100μg+poly(I:C)50μgでワクチン接種した。図15A:各群の平均腫瘍成長動態を示す。28日目に、単一処置群および未処置動物と併用群との間の平均値は統計的に異なる(マン・ホイットニー検定、p値<0.05)。
図15B:種々の群のカプラン・マイヤー生存率プロット。MUT30およびMUT30+Trp2でワクチン接種したマウスの生存率曲線は統計的に異なる(ログランク検定、p値=0.0029)。
図16:B16における体細胞突然変異を見出すための工程の概要。 個々の段階に関する数を、1つのblack6試料と比較した、1つのB16試料についての一例として示す。「エクソン」は、タンパク質をコードするすべてのRefSeq転写産物によって定義されるエクソン座標を指す。
図17:それぞれ個別、2つまたは3つすべてのソフトウェアツールによって見出された、タンパク質をコードするエクソン中体細胞変異の数を示すベン図。 数はフィルタリング後に計算し、3つすべての試料コンセンサスを表す。
図18A:見出された一塩基変異の例:3つすべてのB16試料で見出された体細胞突然変異(左)、すべてのB16およびblack6試料で見出された非体細胞突然変異(中央)および1つのblack6試料でのみ見出された突然変異(右)。
図18B:実証された突然変異を選択したデータセットについての計算されたFDR分布;分布を平均推定ROC曲線として視覚化し、灰色のバーは、均一サンプリング位置での両方の次元の平均についての95%信頼区間を示す。平均は、すべての可能な18の組合せについてのFDRの推定ROC曲線の分布から得た(本文参照)。
図19A:3つの異なるソフトウェアツールの比較のための推定ROC曲線(二つ組カバレッジ38x)。図19B:種々の平均シークエンシング深度の比較のための推定ROC曲線(samtools、複製なし)。38xは実験によって得られたカバレッジを示し、他のカバレッジはこのデータから出発してダウンサンプリングした。図19C:実験複製の作用を視覚化する推定ROC曲線(カバレッジ38x、samtools)。図19D:種々のシークエンシングプロトコルについての推定ROC曲線(samtools、複製なし)。曲線は2×100ヌクレオチドライブラリの結果を用いて計算した。
図20A:2396変異の最終セットからの最適パラメータセットを用いて選択した最も低いFDRを有する10の実証された突然変異。これらの突然変異のいずれもがdbSNP中には存在しない(バージョン128;ゲノムアセンブリmm9)。図20B:データセット中のすべての変異および実証された突然変異について別々にプロットした、所与のFDRカットオフ値に関してAと同じデータセットで見出された変異の相対量。視覚的明瞭さのために、0〜10%FDRの値だけを示す。
図21:突然変異をコードするポリエピトープRNAワクチンの抗腫瘍活性。 C57BL/6マウス(n=10)に、1×105 B16F10細胞をマウスの側腹部に皮下的に接種した。腫瘍接種後3、6、10、17および21日目に、マウスを、ポリトープRNAを配合したリポソームRNAトランスフェクション試薬でワクチン接種した。コントロール群にはRNAなしのリポソームを与えた。図は、種々の群のカプラン・マイヤー生存率プロットを示す。生存率曲線は統計的に異なる(ログランク検定、p値=0.0008)。
図22癌治療のための標的としての腫瘍抗原の組合せの選択。 DCT、TYRおよびTPTEの3つの腫瘍抗原だけの組合せが、分析したメラノーマ転移試料の88%を示すのに十分である。

0065

本発明を以下で詳細に説明するが、本発明は、本明細書で述べる特定の方法、プロトコルおよび試薬に限定されず、これらは異なり得ることが理解されるべきである。また、本明細書で使用される用語は特定の実施形態を説明することだけを目的とし、本発明の範囲を限定することを意図するものではなく、本発明の範囲は付属の特許請求の範囲によってのみ限定されることも理解されるべきである。特に定義されない限り、本明細書で使用されるすべての技術および学術用語は、当業者によって一般的に理解されるのと同じ意味を有する。

0066

以下において、本発明の要素を説明する。これらの要素を特定の実施形態と共に列挙するが、それらを任意の方法および任意の数で組み合わせて付加的な実施形態を創製し得ることが理解されるべきである。様々に説明される実施例および好ましい実施形態は、本発明を明確に説明される実施形態だけに限定すると解釈されるべきではない。この説明は、明確に説明される実施形態を、多くの開示されるおよび/または好ましい要素と組み合わせた実施形態を裏付け、包含することが理解されるべきである。さらに、本願で述べるすべての要素の任意の順序および組合せが、文脈によって特に指示されない限り、本願の説明によって開示されるとみなされるべきである。例えば、1つの好ましい実施形態においてRNAが120ヌクレオチドから成るポリ(A)尾部を含み、別の好ましい実施形態では前記RNA分子が5'キャップ類似体を含む場合、好ましい実施形態では、前記RNAは、120ヌクレオチドから成るポリ(A)尾部および5'キャップ類似体を含む。

0067

好ましくは、本明細書で使用される用語は、"A multilingual glossary of biotechnological terms:(IUPAC Recommendations)",H.G.W.Leuenberger,B.Nagel,and H.Kolbl,Eds.,Helvetica Chimica Acta,CH−4010 Basel,Switzerland,(1995)に記載されているように定義される。

0068

本発明の実施は、特に指示されない限り、当該分野の文献中で説明される生化学細胞生物学免疫学および組換えDNA技術の従来の方法を用いる(例えば、Molecular Cloning:A Laboratory Manual,2nd Edition,J.Sambrook et al.eds.,Cold Spring Harbor Laboratory Press,Cold Spring Harbor 1989参照)。

0069

本明細書および以下の特許請求の範囲全体を通して、文脈上特に必要とされない限り、「含む」という語および「含むこと」などの変形は、記述される成員整数もしくは工程または成員、整数もしくは工程の群の包含を意味し、いかなる他の成員、整数もしくは工程または成員、整数もしくは工程の群の排除も意味しないが、一部の実施形態では、そのような他の成員、整数もしくは工程または成員、整数もしくは工程の群が排除され得る、すなわち主題が、記述される成員、整数もしくは工程または成員、整数もしくは工程の群の包含に存することが理解される。本発明の説明に関連して(特に特許請求の範囲に関連して)使用される「1つの」および「その」という用語および同様の言及は、本明細書で特に指示されない限りまたは文脈と明らかに矛盾しない限り、単数および複数の両方を含むと解釈されるべきである。本明細書中数値の範囲の列挙は、単に範囲内に属する各々別々の数値を個別に言及することの簡略化した方法としての役割を果たすことが意図されている。本明細書で特に指示されない限り、各々個別の数値は、本明細書で個別に列挙されるがごとくに本明細書に組み込まれる。

0070

本明細書で述べるすべての方法は、本明細書で特に指示されない限りまたは文脈と明らかに矛盾しない限り、任意の適切な順序で実施することができる。本明細書で提供されるありとあらゆる例または例示的な言語(例えば「など」)の使用は、単に本発明をよりよく説明することを意図し、本発明の範囲または特許請求の範囲に限定を課すものではない。本明細書中のいかなる言語も、特許請求されていない要素が本発明の実施に必須であると指示するものとして解釈されるべきではない。

0071

いくつかの資料が本明細書の本文全体にわたって引用される。上記または下記で、本明細書において引用される資料の各々は(すべての特許、特許出願、学術出版物製造者仕様書指示書等を含む)、それらの全体が参照により本明細書に組み込まれる。本明細書のいかなる内容も、本発明が先行発明を理由にそのような開示に先行する権利を有さないことの承認と解釈されるべきではない。

0072

本明細書で述べるワクチンは、好ましくは組換えワクチンである。

0073

本発明に関連して「組換え」という用語は、「遺伝子操作を通して作製された」ことを意味する。好ましくは、本発明に関連して組換えポリペプチドなどの「組換え実体」は、天然に存在せず、好ましくは天然では組み合わされないアミノ酸配列または核酸配列などの実体の組合せの結果である。例えば、本発明に関連して組換えポリペプチドは、ネオエピトープまたは、例えばペプチド結合もしくは適切なリンカーによって一緒に融合された異なるタンパク質もしくは同じタンパク質の異なる部分に由来するワクチン配列などの、いくつかのアミノ酸配列を含み得る。

0074

本明細書で使用される「天然に存在する」という用語は、ある物体が自然界で見出すことができるという事実を指す。例えば、生物(ウイルスを含む)中に存在し、天然源から単離することができ、実験室内で人の手によって意図的に改変されていないペプチドまたは核酸は、天然に存在する。

0075

本発明によれば、「ワクチン」という用語は、投与時に、病原体または癌細胞などの異常細胞を認識し、攻撃する免疫応答、特に細胞性免疫応答を誘導する医薬調製物医薬組成物)または生成物に関する。ワクチンは、疾患の予防または治療のために使用し得る。「個別化癌ワクチン」という用語は特定の癌患者に関し、癌ワクチンが個々の癌患者の必要性または特有の状況に適合されていることを意味する。

0076

「免疫応答」という用語は、抗原に対する統合された身体応答を指し、好ましくは細胞性免疫応答または細胞性ならびに体液性免疫応答を指す。免疫応答は、保護的/防止的/予防的および/または治療的であり得る。

0077

「免疫応答を誘導する」とは、誘導前は特定の抗原に対する免疫応答が存在しなかったことを意味し得るが、誘導前に特定の抗原に対する一定レベルの免疫応答が存在し、誘導後に前記免疫応答が増強されることも意味し得る。したがって、「免疫応答を誘導する」はまた、「免疫応答を増強する」ことも包含する。好ましくは、被験体において免疫応答を誘導した後、前記被験体は癌疾患などの疾患を発症することから保護される、または免疫応答を誘導することによって疾患状態が改善される。例えば、腫瘍発現抗原に対する免疫応答を、癌疾患を有する患者または癌疾患を発症する危険性がある被験体において誘導し得る。この場合免疫応答を誘導することは、被験体の疾患状態が改善されること、被験体が転移を発症しないこと、または癌疾患を発症する危険性がある被験体が癌疾患を発症しないことを意味し得る。

0078

本発明によれば、「腫瘍抗原に対する免疫応答」という用語は、腫瘍抗原または腫瘍抗原を提示する細胞に対する細胞性応答などの免疫応答に関し、腫瘍抗原を発現して提示する癌細胞などの細胞に対する免疫応答を含む。

0079

「細胞性免疫応答」、「細胞性応答」、「抗原に対する細胞性応答」または同様の用語は、MHCクラスIまたはクラスIIによる抗原の提示を特徴とする細胞に対する細胞性応答を含むことが意図されている。細胞性応答は、「ヘルパー」または「キラー」のいずれかとして働くT細胞またはTリンパ球と呼ばれる細胞に関する。ヘルパーT細胞(CD4+T細胞とも称される)は、免疫応答を調節することによって中心的な役割を果たし、キラー細胞(細胞傷害性T細胞、細胞溶解性T細胞、CD8+T細胞またはCTLとも称される)は、癌細胞などの異常細胞を死滅させ、さらなる異常細胞の産生を防止する。好ましい実施形態では、本発明は、1つ以上の腫瘍発現抗原を発現し、好ましくはそのような腫瘍発現抗原をクラスIMHCと共に提示する腫瘍細胞に対する抗腫瘍CTL応答の刺激を含む。

0080

本発明による「抗原」は、免疫応答を誘発する任意の物質を包含する。特に、「抗原」は、抗体またはTリンパ球(T細胞)と特異的に反応する任意の物質、好ましくはペプチドまたはタンパク質に関する。本発明によれば、「抗原」という用語は、少なくとも1つのエピトープを含む任意の分子を包含する。好ましくは、本発明に関連して抗原は、場合によりプロセシング後に、好ましくは抗原(抗原を発現する細胞を含む)に特異的な免疫反応を誘導する分子である。本発明によれば、免疫反応の候補物である任意の適切な抗原を使用してよく、ここで免疫反応は、好ましくは細胞性免疫反応である。本発明の実施形態に関連して、抗原は、好ましくは細胞によって、好ましくは異常細胞、特に癌細胞を含む抗原提示細胞によって、MHC分子に関連して提示され、これは抗原に対する免疫反応をもたらす。抗原は、好ましくは天然に存在する抗原に対応するまたは天然に存在する抗原に由来する生成物である。そのような天然に存在する抗原には腫瘍抗原が含まれる。

0081

好ましい実施形態では、抗原は、腫瘍抗原、すなわち細胞質、細胞表面または細胞核に由来し得る腫瘍細胞中で発現されるタンパク質またはペプチドなどの腫瘍細胞の一部、特に主として腫瘍細胞の細胞内にまたは表面抗原として存在するものである。例えば、腫瘍抗原には、癌胎児性抗原、α1−フェトプロテインイソフェリチンおよび胎児性スルホグリコプロテイン、α2−H−鉄タンパク質およびγ−フェトプロテインが含まれる。本発明によれば、腫瘍抗原は、好ましくは、腫瘍または癌においてならびに腫瘍細胞または癌細胞において発現され、場合により型および/または発現レベルに関して腫瘍または癌に特有のならびに腫瘍細胞または癌細胞に特有の任意の抗原を含む。1つの実施形態では、「腫瘍抗原」または「腫瘍関連抗原」という用語は、正常条件下では、限られた数の組織および/もしくは器官中でまたは特定の発生段階で特異的に発現されるタンパク質に関し、例えば腫瘍抗原は、正常条件下では、胃組織中、好ましくは胃粘膜中、生殖器官中、例えば精巣中、栄養膜組織中、例えば胎盤中、または生殖系列細胞中で特異的に発現され得、1つ以上の腫瘍または癌組織中で発現または異常発現される。これに関連して、「限られた数」は、好ましくは3以下、より好ましくは2以下を意味する。本発明に関連して腫瘍抗原には、例えば分化抗原、好ましくは細胞型特異的分化抗原、すなわち正常条件下では特定の発生段階で特定の細胞型中で特異的に発現されるタンパク質、癌/精巣抗原、すなわち正常条件下では精巣中および時として胎盤中で特異的に発現されるタンパク質、ならびに生殖系列特異的抗原が含まれる。好ましくは、腫瘍抗原または腫瘍抗原の異常発現は癌細胞を同定する。本発明に関連して、被験体、例えば癌疾患に罹患している患者において癌細胞によって発現される腫瘍抗原は、好ましくは前記被験体における自己タンパク質である。好ましい実施形態では、本発明に関連して腫瘍抗原は、正常条件下では必須ではない組織もしくは器官、すなわち免疫系によって損傷された場合に被験体の死をもたらさない組織もしくは器官中で、または免疫系によってアクセスされないもしくはほとんどアクセスされない身体の器官もしくは構造体中で特異的に発現される。

0082

本発明によれば、「腫瘍抗原」、「腫瘍発現抗原」、「癌抗原」および「癌発現抗原」という用語は等価であり、本明細書中で互換的に使用される。

0083

「免疫原性」という用語は、免疫反応を誘導するための抗原の相対的有効性に関する。

0084

本発明による「抗原ペプチド」は、好ましくは、抗原に対する、または抗原の発現を特徴とする、好ましくは異常細胞、特に癌細胞などの抗原の提示を特徴とする細胞に対する免疫応答、好ましくは細胞性応答を刺激することができる抗原の一部分またはフラグメントに関する。好ましくは、抗原ペプチドは、クラスIMHCによる抗原の提示を特徴とする細胞に対する細胞性応答を刺激することができ、好ましくは抗原応答性細胞傷害性Tリンパ球(CTL)を刺激することができる。好ましくは、本発明による抗原ペプチドは、MHCクラスIおよび/もしくはクラスII提示ペプチドであるか、またはMHCクラスIおよび/もしくはクラスII提示ペプチドを生成するようにプロセシングされ得る。好ましくは、抗原ペプチドは、抗原のフラグメントのアミノ酸配列に実質的に対応するアミノ酸配列を含む。好ましくは、抗原の前記フラグメントはMHCクラスIおよび/またはクラスII提示ペプチドである。好ましくは、本発明による抗原ペプチドは、そのようなフラグメントのアミノ酸配列に実質的に対応するアミノ酸配列を含み、そのようなフラグメント、すなわち抗原由来のMHCクラスIおよび/またはクラスII提示ペプチドを生成するようにプロセシングされる。

0085

ペプチドが直接、すなわちプロセシングされずに、特に切断されずに提示される場合、そのペプチドは、MHC分子、特にクラスI MHC分子に結合するのに適した長さを有し、好ましくは7〜20アミノ酸長、より好ましくは7〜12アミノ酸長、より好ましくは8〜11アミノ酸長、特に9または10アミノ酸長である。

0086

ペプチドが、付加的な配列を含むより大きな実体、例えばワクチン配列またはポリペプチドの一部であり、プロセシング後に、特に切断後に提示される場合、プロセシングによって生成されるペプチドは、MHC分子、特にクラスI MHC分子に結合するのに適した長さを有し、好ましくは7〜20アミノ酸長、より好ましくは7〜12アミノ酸長、より好ましくは8〜11アミノ酸長、特に9または10アミノ酸長である。好ましくは、プロセシング後に提示されるペプチドの配列は抗原のアミノ酸配列に由来し、すなわちその配列は抗原のフラグメントに実質的に対応し、好ましくは完全に同一である。したがって、本発明による抗原ペプチドまたはワクチン配列は、1つの実施形態では、抗原のフラグメントに実質的に対応し、好ましくは完全に同一である、7〜20アミノ酸長、より好ましくは7〜12アミノ酸長、より好ましくは8〜11アミノ酸長、特に9または10アミノ酸長の配列を含み、抗原ペプチドまたはワクチン配列のプロセシング後に、提示されるペプチドを形成する。本発明によれば、プロセシングによって生成されるそのようなペプチドは、同定された配列変化を含む。

0087

本発明によれば、抗原ペプチドまたはエピトープは、2つ以上の抗原ペプチドまたはエピトープを含むワクチン配列および/またはポリペプチドなどのより大きな実体の一部としてワクチン中に存在し得る。提示される抗原ペプチドまたはエピトープは、適切なプロセシング後に生成される。

0088

クラスIMHCによって提示されるペプチドの配列に実質的に対応するアミノ酸配列を有するペプチドは、クラスI MHCによって提示されるペプチドのTCR認識のためまたはMHCへのペプチド結合のために必須ではない1つ以上の残基において異なっていてもよい。そのような実質的に対応するペプチドは、抗原応答性CTLを刺激することもでき、免疫学的に等価とみなされ得る。TCR認識には影響を及ぼさないが、MHCへの結合の安定性を改善する残基において提示ペプチドとは異なるアミノ酸配列を有するペプチドは、抗原ペプチドの免疫原性を改善することができ、本明細書では「最適化ペプチド」と称され得る。これらの残基のいずれが、MHCまたはTCRのいずれかへの結合に影響を及ぼす可能性がより高いと考えられるかについての既存の知識を利用して、実質的に対応するペプチドの設計への合理的なアプローチを使用し得る。生じる機能性のペプチドは抗原ペプチドとして企図される。

0089

抗原ペプチドは、MHCによって提示された場合、T細胞受容体によって認識可能であるべきである。好ましくは、抗原ペプチドは、T細胞受容体によって認識された場合、適切な共刺激シグナルの存在下で、抗原ペプチドを特異的に認識するT細胞受容体を担持するT細胞のクローン増殖を誘導することができる。好ましくは、抗原ペプチドは、特にMHC分子に関連して提示された場合、それらが由来する抗原、または抗原の発現を特徴とする、好ましくは抗原の提示を特徴とする細胞に対する免疫応答、好ましくは細胞性応答を刺激することができる。好ましくは、抗原ペプチドはクラスI MHCによる抗原の提示を特徴とする細胞に対する細胞性応答を刺激することができ、好ましくは抗原応答性CTLを刺激することができる。そのような細胞は、好ましくは標的細胞である。

0090

「抗原プロセシング」または「プロセシング」は、ポリペプチドまたは抗原などのペプチドまたはタンパク質の、前記ペプチドまたはタンパク質のフラグメントであるプロセシング産物への分解(例えばポリペプチドのペプチドへの分解)、および細胞、好ましくは抗原提示細胞による特異的T細胞への提示のための、MHC分子とこれらのフラグメントの1つ以上との会合(例えば結合による)を指す。

0091

「抗原提示細胞」(APC)は、その細胞表面にMHC分子と会合したタンパク質抗原ペプチドフラグメントを提示する細胞である。一部のAPCは抗原特異的T細胞を活性化し得る。

0092

プロフェッショナル抗原提示細胞は、食作用または受容体媒介性エンドサイトーシスのいずれかによって抗原をインターナライズし、その後MHCクラスII分子に結合した抗原のフラグメントをその膜上に提示することにおいて非常に効率的である。T細胞は、抗原提示細胞の膜上の抗原−MHCクラスII分子複合体を認識し、これと相互作用する。次に、さらなる共刺激シグナルが抗原提示細胞によって生成され、T細胞の活性化をもたらす。共刺激分子の発現はプロフェッショナル抗原提示細胞の決定的な特徴である。

0093

プロフェッショナル抗原提示細胞の主な種類は、最も広範囲抗原提示を有し、おそらく最も重要な抗原提示細胞である樹状細胞、マイクロファージB細胞、および特定の活性化上皮細胞である。

0094

樹状細胞(DC)は、末梢組織中で捕獲された抗原を、MHCクラスIIおよびクラスIの両方の抗原提示経路によってT細胞に提示する白血球集団である。樹状細胞が免疫応答の強力な誘導物質であり、これらの細胞の活性化が抗腫瘍免疫の誘導のために必須の段階であることは周知である。

0095

樹状細胞は、「未成熟」細胞および「成熟」細胞として好都合に分類され、2つの十分に特性付けられた表現型を区別する簡単な方法として使用することができる。しかし、この命名法は分化のすべての可能な中間段階を除外すると解釈されるべきでない。

0096

未成熟樹状細胞は、抗原の取込みおよびプロセシングのための高い能力を有する抗原提示細胞として特性付けられ、前記能力はFcγ受容体およびマンノース受容体の高発現と相関する。成熟表現型は、典型的にはこれらのマーカーのより低い発現を特徴とするが、MHCクラスIおよびクラスII、接着分子(例えばCD54およびCD11)ならびに共刺激分子(例えばCD40、CD80、CD86および4−1BB)などのT細胞活性化の責任を担う細胞表面分子の高発現によっても特徴付けられる。

0097

樹状細胞の成熟は、そのような抗原提示樹状細胞がT細胞のプライミングをもたらす樹状細胞活性化の状態と称されるが、未成熟樹状細胞による提示は寛容を生じさせる。樹状細胞の成熟は、主として、先天的受容体によって検出される微生物特徴を有する生体分子(細菌DNA、ウイルスRNA、内毒素等)、炎症誘発性サイトカイン(TNF、IL−1、IFN)、CD40Lによる樹状細胞表面上のCD40の連結、およびストレス性細胞死を受けた細胞から放出される物質によって引き起こされる。樹状細胞は、骨髄細胞を、顆粒球マクロファージコロニー刺激因子GMCSF)および腫瘍壊死因子αなどのサイトカインと共にインビトロで培養することによって誘導することができる。

0098

非プロフェッショナル抗原提示細胞は、ナイーブT細胞との相互作用に必要なMHCクラスIIタンパク質を構成的に発現しない;これらは、IFNγなどの特定のサイトカインによる非プロフェッショナル抗原提示細胞の刺激後にのみ発現される。

0099

「抗原提示細胞」は、ペプチドまたは提示されるべきペプチドを含むポリペプチドをコードする核酸、好ましくはRNA、例えば抗原をコードする核酸を細胞に形質導入することによってMHCクラスI提示ペプチドを負荷することができる。

0100

一部の実施形態では、樹状細胞または他の抗原提示細胞を標的とする遺伝子送達ビヒクルを含有する医薬組成物を患者に投与して、インビボで起こるトランスフェクションを生じさせ得る。樹状細胞のインビボトランスフェクションは、例えば、国際公開第97/24447号に記載されているものまたはMahvi et al.,Immunology and cell Biology 75:456−460,1997によって記述されている遺伝子銃アプローチなどの当分野で公知の任意の方法を用いて一般に実施し得る。

0101

本発明によれば、「抗原提示細胞」という用語は標的細胞も包含する。

0102

「標的細胞」は、細胞性免疫応答などの免疫応答の標的である細胞を意味するものとする。標的細胞には、抗原または抗原エピトープ、すなわち抗原に由来するペプチドフラグメントを提示する細胞が含まれ、癌細胞などの任意の望ましくない細胞が含まれる。好ましい実施形態では、標的細胞は、本明細書で述べる抗原を発現し、好ましくは前記抗原をクラスIMHCと共に提示する細胞である。

0103

「エピトープ」という用語は、抗原などの分子中の抗原決定基、すなわち、特にMHC分子に関連して提示された場合、免疫系によって認識される、例えばT細胞によって認識される分子中の一部または分子のフラグメントを指す。腫瘍抗原などのタンパク質のエピトープは、好ましくは前記タンパク質の連続的または不連続的な一部分を含み、好ましくは5〜100、好ましくは5〜50、より好ましくは8〜30、最も好ましくは10〜25アミノ酸長であり、例えばエピトープは、好ましくは9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、または25アミノ酸長であり得る。本発明に関連してエピトープは、T細胞エピトープであることが特に好ましい。

0104

本発明によれば、エピトープは、細胞の表面上のMHC分子などのMHC分子に結合することができ、したがって「MHC結合ペプチド」または「抗原ペプチド」であり得る。「MHC結合ペプチド」という用語は、MHCクラスIおよび/またはMHCクラスII分子に結合するペプチドに関する。クラスI MHC/ペプチド複合体の場合、結合ペプチドは、典型的には8〜10アミノ酸長であるが、より長いまたはより短いペプチドが有効であり得る。クラスII MHC/ペプチド複合体の場合、結合ペプチドは、典型的には10〜25アミノ酸長であり、特に13〜18アミノ酸長であるが、より長いおよびより短いペプチドが有効であり得る。

0105

「エピトープ」、「抗原ペプチド」、「抗原エピトープ」、「免疫原性ペプチド」および「MHC結合ペプチド」という用語は、本明細書では互換的に使用され、好ましくは、抗原に対するまたは抗原を発現するもしくは含む、好ましくは提示する細胞に対する免疫応答を誘発することができる、抗原の不完全な形態に関する。好ましくは、この用語は抗原の免疫原性部分に関する。好ましくは、これは、特にMHC分子に関連して提示された場合、T細胞受容体によって認識される(すなわち特異的に結合される)抗原の一部分である。好ましいそのような免疫原性部分は、MHCクラスIまたはクラスII分子に結合する。本明細書で使用される場合、免疫原性部分は、当分野で公知の任意のアッセイを用いてそのような結合が検出可能である場合、MHCクラスIまたはクラスII分子に「結合する」といわれる。

0106

本明細書で使用される場合、「ネオエピトープ」という用語は、正常な非癌性細胞または生殖系列細胞などの参照物中には存在しないが癌細胞中で認められるエピトープを指す。これには、特に、正常な非癌性細胞または生殖系列細胞中で対応するエピトープが認められるが、癌細胞中の1つ以上の突然変異のために、エピトープの配列がネオエピトープを生じるように変化している状況が含まれる。

0107

「一部分」(portion)という用語は画分を指す。アミノ酸配列またはタンパク質などの特定の構造に関して、その「一部分」という用語は、前記構造の連続的または不連続的な画分を表し得る。好ましくは、アミノ酸配列の一部分は、前記アミノ酸配列のアミノ酸の少なくとも1%、少なくとも5%、少なくとも10%、少なくとも20%、少なくとも30%、好ましくは少なくとも40%、好ましくは少なくとも50%、より好ましくは少なくとも60%、より好ましくは少なくとも70%、さらに一層好ましくは少なくとも80%、最も好ましくは少なくとも90%を含む。好ましくは、一部分が不連続的な画分である場合、前記不連続的な画分は構造の2個、3個、4個、5個、6個、7個、8個またはそれ以上の部分から構成され、各々の部分は構造の連続的な要素である。例えば、アミノ酸配列の不連続的な画分は、前記アミノ酸配列の2個、3個、4個、5個、6個、7個、8個またはそれ以上、好ましくは4個以下の部分から構成され得、ここで各々の部分は、好ましくはアミノ酸配列の少なくとも5個の連続的なアミノ酸、少なくとも10個の連続的なアミノ酸、好ましくは少なくとも20個の連続的なアミノ酸、好ましくは少なくとも30個の連続的なアミノ酸を含む。

0108

「一部」(part)および「フラグメント」という用語は、本明細書では互換的に使用され、連続的な要素を指す。例えばアミノ酸配列またはタンパク質などの構造の一部とは、前記構造の連続的な要素を指す。構造の一部分、一部またはフラグメントは、好ましくは前記構造の1つ以上の機能的特性を含む。例えばエピトープ、ペプチドまたはタンパク質の一部分、一部またはフラグメントは、好ましくはそれが由来するエピトープ、ペプチドまたはタンパク質と免疫学的に等価である。本発明に関連して、アミノ酸配列などの構造の「一部」は、構造全体またはアミノ酸配列全体の少なくとも10%、少なくとも20%、少なくとも30%、少なくとも40%、少なくとも50%、少なくとも60%、少なくとも70%、少なくとも80%、少なくとも85%、少なくとも90%、少なくとも92%、少なくとも94%、少なくとも96%、少なくとも98%、少なくとも99%を好ましくは含み、好ましくはこれらから成る。

0109

本発明に関連して「免疫反応性細胞」という用語は、免疫反応の間にエフェクター機能を及ぼす細胞に関する。「免疫反応性細胞」は、好ましくは抗原または抗原もしくは抗原に由来する抗原ペプチドの提示を特徴とする細胞に結合することができ、免疫応答を媒介することができる。例えばそのような細胞は、サイトカインおよび/またはケモカインを分泌し、抗体を分泌し、癌性細胞を認識し、および場合によりそのような細胞を排除する。例えば、免疫反応性細胞には、T細胞(細胞傷害性T細胞、ヘルパーT細胞、腫瘍浸潤性T細胞)、B細胞、ナチュラルキラー細胞好中球マクロファージおよび樹状細胞が含まれる。好ましくは、本発明に関連して、「免疫反応性細胞」はT細胞、好ましくはCD4+および/またはCD8+T細胞である。

0110

好ましくは、「免疫反応性細胞」は、抗原または抗原に由来する抗原ペプチドを、特に抗原提示細胞または癌細胞などの異常細胞の表面上などにMHC分子に関連して提示された場合、ある程度の特異性で認識する。好ましくは、前記認識は、抗原または前記抗原に由来する抗原ペプチドを認識する細胞が応答性または反応性になることを可能にする。細胞が、MHCクラスII分子に関連して抗原または抗原に由来する抗原ペプチドを認識する受容体を担持するヘルパーT細胞(CD4+T細胞)である場合、そのような応答性または反応性は、サイトカインの放出ならびに/またはCD8+リンパ球(CTL)および/もしくはB細胞の活性化を含み得る。細胞がCTLである場合、そのような応答性または反応性は、MHCクラスI分子に関連して提示される細胞、すなわちクラスIMHCによる抗原の提示を特徴とする細胞の、例えばアポトーシスまたはパーフォリン媒介性細胞溶解による排除を含み得る。本発明によれば、CTL応答性には、持続的なカルシウム流細胞分裂、IFN−γおよびTNF−αなどのサイトカインの産生、CD44およびCD69などの活性化マーカーの上方調節、ならびに抗原を発現する標的細胞の特異的細胞溶解性死滅が含まれ得る。CTL応答性はまた、CTL応答性を正確に示す人工レポーターを使用しても決定し得る。抗原または抗原に由来する抗原ペプチドを認識し、応答性または反応性であるCTLは、本明細書では「抗原応答性CTL」とも称される。細胞がB細胞である場合、そのような応答性は免疫グロブリンの放出を含み得る。

0111

「T細胞」および「Tリンパ球」という用語は、本明細書では互換的に使用され、Tヘルパー細胞(CD4+T細胞)および細胞溶解性T細胞を含む細胞傷害性T細胞(CTL、CD8+T細胞)を含む。

0112

T細胞は、リンパ球として公知の白血球の群に属し、細胞媒介性免疫において中心的な役割を果たす。これらは、T細胞受容体(TCR)と呼ばれるその細胞表面上の特殊な受容体の存在によって、B細胞およびナチュラルキラー細胞などの他のリンパ球型から識別され得る。胸腺はT細胞の成熟の責任を担う主要な器官である。各々が異なる機能を有する、T細胞のいくつかの異なるサブセットが発見されている。

0113

Tヘルパー細胞は、数ある機能の中でも特に、B細胞の形質細胞への成熟ならびに細胞傷害性T細胞およびマクロファージの活性化を含む免疫学的過程において他の白血球を助ける。これらの細胞は、その表面にCD4タンパク質を発現するため、CD4+T細胞としても公知である。ヘルパーT細胞は、抗原提示細胞(APC)の表面に発現されるMHCクラスII分子によってペプチド抗原と共に提示された場合に活性化する。ひとたび活性化すると、これらは速やかに分裂し、能動免疫応答を調節するまたは助けるサイトカインと呼ばれる小さなタンパク質を分泌する。

0114

細胞傷害性T細胞は、ウイルス感染細胞および腫瘍細胞を破壊し、移植片拒絶反応にも関与する。これらの細胞は、その表面にCD8糖タンパク質を発現するので、CD8+T細胞としても公知である。これらの細胞は、身体のほぼあらゆる細胞の表面上に存在する、MHCクラスIと会合した抗原に結合することによってその標的を認識する。

0115

T細胞の大部分は、いくつかのタンパク質の複合体として存在するT細胞受容体(TCR)を有する。実際のT細胞受容体は、独立したT細胞受容体アルファおよびベータ(TCRαおよびTCRβ)遺伝子から産生され、α−TCR鎖およびβ−TCR鎖と呼ばれる2つの別々のペプチド鎖から成る。γδT細胞(ガンマデルタT細胞)は、その表面に異なるT細胞受容体(TCR)を有するT細胞の小さなサブセットである。しかし、γδT細胞では、TCRは1本のγ鎖と1本のδ鎖で構成される。このT細胞の群はαβT細胞よりもはるかにまれである(全T細胞の2%)。

0116

T細胞の活性化における最初のシグナルは、T細胞受容体が別の細胞上の主要組織適合遺伝子複合体(MHC)によって提示された短いペプチドに結合することによって与えられる。これは、そのペプチドに特異的なTCRを有するT細胞だけが活性化されることを確実にする。パートナー細胞は、通常はプロフェッショナル抗原提示細胞(APC)であり、ナイーブ応答の場合は通常樹状細胞であるが、B細胞およびマクロファージは重要なAPCであり得る。MHCクラスI分子によってCD8+T細胞に提示されるペプチドは、典型的には8〜10アミノ酸長である;MHCクラスII分子の結合溝の末端は開いているので、MHCクラスII分子によってCD4+T細胞に提示されるペプチドは、典型的にはより長い。

0117

本発明によれば、T細胞受容体は、標準的なアッセイにおいてあらかじめ定められた標的に有意の親和性を有し、前記あらかじめ定められた標的に結合する場合、前記あらかじめ定められた標的に結合することができる。「親和性」または「結合親和性」は、しばしば平衡解離定数(KD)によって測定される。T細胞受容体は、標準的なアッセイにおいて標的に有意の親和性を有さず、前記標的に有意に結合しない場合、前記標的に(実質的に)結合することができない。

0118

T細胞受容体は、好ましくはあらかじめ定められた標的に特異的に結合することができる。T細胞受容体は、あらかじめ定められた標的に結合することができるが、他の標的には(実質的に)結合することができない、すなわち標準的なアッセイにおいて他の標的に有意の親和性を有さず、他の標的に有意に結合しない場合、前記あらかじめ定められた標的に特異的である。

0119

細胞傷害性Tリンパ球は、抗原または抗原ペプチドをインビボで抗原提示細胞に組み込むことによってインビボで生成し得る。抗原または抗原ペプチドは、タンパク質として、DNAとして(例えばベクター内で)またはRNAとして存在し得る。抗原は、MHC分子のペプチドパートナーを生成するようにプロセシングされ得るが、そのフラグメントはさらなるプロセシングを必要とせずに提示され得る。特にこれらがMHC分子に結合することができる場合、後者が当てはまる。一般に、皮内注射による患者への投与が可能である。しかし、注射は、リンパ節内への結節内注射によっても実施し得る(Maloy et al.(2001),Proc Natl Acad Sci USA 98:3299−303)。生じる細胞は関心対象の複合体を提示し、自己細胞傷害性Tリンパ球によって認識され、前記自己細胞傷害性Tリンパ球はその後増殖する。

0120

CD4+またはCD8+T細胞の特異的活性化は様々な方法で検出し得る。特異的T細胞活性化を検出する方法には、T細胞の増殖、サイトカイン(例えばリンホカイン)の産生、または細胞溶解活性の発生を検出することが含まれる。CD4+T細胞に関しては、特異的T細胞活性化を検出するための好ましい方法は、T細胞の増殖の検出である。CD8+T細胞に関しては、特異的T細胞活性化を検出するための好ましい方法は、細胞溶解活性の発生の検出である。

0121

「主要組織適合遺伝子複合体」という用語および「MHC」という略語は、MHCクラスIおよびMHCクラスII分子を含み、すべての脊椎動物中に存在する遺伝子の複合体に関する。MHCタンパク質または分子は、免疫反応においてリンパ球と抗原提示細胞または異常細胞との間のシグナル伝達のために重要であり、ここでMHCタンパク質または分子はペプチドと結合し、T細胞受容体による認識のためにそれらを提示する。MHCによってコードされるタンパク質は細胞の表面上に発現され、自己抗原(細胞自体からのペプチドフラグメント)および非自己抗原(例えば侵入微生物のフラグメント)の両方をT細胞に表示する。

0122

MHC領域は、クラスI、クラスIIおよびクラスIIIの3つのサブグループに分けられる。MHCクラスIタンパク質はα鎖およびβ2ミクログロブリン(15番染色体によってコードされるMHCの一部ではない)を含む。これらは抗原フラグメントを細胞傷害性T細胞に提示する。大部分の免疫系細胞、特に抗原提示細胞上で、MHCクラスIIタンパク質はα鎖およびβ鎖を含み、抗原フラグメントをTヘルパー細胞に提示する。MHCクラスIII領域は、補体成分およびサイトカインをコードする一部の成分などの他の免疫成分をコードする。

0123

ヒトにおいて、細胞表面上の抗原提示タンパク質をコードするMHC領域中の遺伝子はヒト白血球抗原HLA)遺伝子と称される。しかし、MHCという略語は、しばしばHLA遺伝子産物を指すために用いられる。HLA遺伝子には、9つのいわゆる古典的MHC遺伝子:HLA−A、HLA−B、HLA−C、HLA−DPA1、HLA−DPB1、HLA−DQA1、HLA−DQB1、HLA−DRAおよびHLA−DRB1が含まれる。

0124

本発明のすべての態様の1つの好ましい実施形態では、MHC分子はHLA分子である。

0125

「抗原の提示を特徴とする細胞」または「抗原を提示する細胞」または同様の表現により、MHC分子、特にMHCクラスI分子に関連して、その細胞が発現する抗原または前記抗原に由来するフラグメントを、例えば抗原のプロセシングによって提示する異常細胞、例えば癌細胞、または抗原提示細胞などの細胞が意味される。同様に、「抗原の提示を特徴とする疾患」という用語は、特にクラスIMHCによる、抗原の提示を特徴とする細胞を含む疾患を表す。細胞による抗原の提示は、抗原をコードするRNAなどの核酸で細胞をトランスフェクトすることによって実施し得る。

0126

「提示される抗原のフラグメント」または同様の表現により、フラグメントが、例えば抗原提示細胞に直接加えられた場合、MHCクラスIまたはクラスII、好ましくはMHCクラスIによって提示され得ることが意味される。1つの実施形態では、フラグメントは、抗原を発現する細胞によって天然に提示されるフラグメントである。

0127

「免疫学的に等価」という用語は、免疫学的に等価の分子、例えば免疫学的に等価のアミノ酸配列が、例えば体液性および/もしくは細胞性免疫応答の誘導などの免疫学的作用の種類、誘導される免疫反応の強さおよび/もしくは持続期間、または誘導される免疫反応の特異性に関して、同じもしくは基本的に同じ免疫学的特性を示すおよび/または同じもしくは基本的に同じ免疫学的作用を及ぼすことを意味する。本発明に関連して、「免疫学的に等価」という用語は、好ましくは免疫のために用いられるペプチドの免疫学的作用または特性に関して使用される。例えば、アミノ酸配列が被験体の免疫系に暴露されたとき参照アミノ酸配列と反応する特異性を有する免疫反応を誘導する場合、前記アミノ酸配列は参照アミノ酸配列と免疫学的に等価である。

0128

本発明に関連して「免疫エフェクター機能」という用語は、例えば腫瘍細胞の死滅、または腫瘍の播種および転移の阻害を含む腫瘍増殖の阻害および/もしくは腫瘍発生の阻害をもたらす、免疫系の成分によって媒介される任意の機能を包含する。好ましくは、本発明に関連して免疫エフェクター機能は、T細胞媒介性エフェクター機能である。そのような機能には、ヘルパーT細胞(CD4+T細胞)の場合は、T細胞受容体によるMHCクラスII分子に関連した抗原または抗原に由来する抗原ペプチドの認識、サイトカインの放出ならびに/またはCD8+リンパ球(CTL)および/もしくはB細胞の活性化が含まれ、CTLの場合は、T細胞受容体によるMHCクラスI分子に関連した抗原または抗原に由来する抗原ペプチドの認識、MHCクラスI分子に関連して提示される細胞、すなわちクラスIMHCによる抗原の提示を特徴とする細胞の、例えばアポトーシスまたはパーフォリン媒介性細胞溶解による排除、IFN−γおよびTNF−αなどのサイトカインの産生ならびに抗原を発現する標的細胞の特異的細胞溶解性死滅が含まれる。

0129

「ゲノム」という用語は、生物または細胞の染色体中の遺伝情報の総量に関する。「エクソーム」という用語はゲノムのコード領域を指す。「トランスクリプトーム」という用語は、すべてのRNA分子のセットに関する。

0130

「核酸」は、本発明によれば、好ましくはデオキシリボ核酸(DNA)またはリボ核酸(RNA)、より好ましくはRNA、最も好ましくはインビトロ転写RNA(IVTRNA)または合成RNAである。核酸には、本発明によれば、ゲノムDNA、cDNA、mRNA、組換え産生された分子および化学合成分子が含まれる。本発明によれば、核酸は一本鎖または二本鎖の直鎖状または共有結合閉環状分子として存在し得る。核酸は、本発明によれば、単離することができる。「単離された核酸」という用語は、本発明によれば、核酸が、(i)インビトロで、例えばポリメラーゼ連鎖反応(PCR)によって増幅された、(ii)クローニングによって組換え産生された、(iii)例えば切断およびゲル電気泳動による分離によって精製された、または(iv)例えば化学合成によって合成されたことを意味する。核酸は、細胞への導入、すなわち細胞のトランスフェクションのために、特にDNA鋳型からインビトロ転写によって調製することができるRNAの形態で使用することができる。前記RNAは、適用の前に配列の安定化、キャッピングおよびポリアデニル化によってさらに修飾することができる。

0131

遺伝物質」という用語は、DNAもしくはRNAのいずれかの単離された核酸、二重らせんの一部、染色体の一部、または生物もしくは細胞のゲノム全体、特にそのエクソームもしくはトランスクリプトームを指す。

0132

「突然変異」という用語は、参照と比較した核酸配列の変化または相違(ヌクレオチドの置換、付加または欠失)を指す。「体細胞突然変異」は、生殖細胞精子および卵子)を除く身体のいずれの細胞においても起こり得、それゆえ子には伝わらない。これらの変化は(常にではないが)、癌または他の疾患を引き起こし得る。好ましくは、突然変異は非同義突然変異である。「非同義突然変異」という用語は、翻訳産物中にアミノ酸置換などのアミノ酸変化を生じさせる突然変異、好ましくはヌクレオチド置換を指す。

0133

本発明によれば、「突然変異」という用語は、点突然変異、インデル(Indel)、融合、クロモスリプシスおよびRNA編集を包含する。

0134

本発明によれば、「インデル」(Indel)という用語は、共局在する挿入と欠失およびヌクレオチドの正味の増加または減少をもたらす突然変異と定義される、特殊な突然変異クラスを表す。ゲノムのコード領域では、インデルの長さが3の倍数でない限り、これはフレームシフト突然変異を生じさせる。インデルは点突然変異と対比させることができる;インデルが配列からヌクレオチドを挿入および欠失させる場合、点突然変異はヌクレオチドの1個を置き換える置換の1つの形態である。

0135

融合は、それまでは別々の2つの遺伝子から形成されたハイブリッド遺伝子を生成することができる。これは、転座、中間部欠失または染色体逆位の結果として起こり得る。しばしば、融合遺伝子は癌遺伝子である。発癌性融合遺伝子は、2つの融合パートナーから新しいまたは異なる機能を有する遺伝子産物をもたらし得る。あるいは、癌原遺伝子が強力なプロモーターに融合し、それにより強力なプロモーターが引き起こす上流の融合パートナーの上方調節によって発癌機能が作動し始める。発癌性融合転写物は、トランススプライシングまたはリードスルー事象によっても引き起こされ得る。

0136

本発明によれば、「クロモスリプシス」という用語は、単一の破壊事象によってゲノムの特定領域が崩壊し、その後一緒に縫合される遺伝的現象を指す。

0137

本発明によれば、「RNA編集」または「RNAエディティング」という用語は、RNA分子中の情報内容塩基組成化学的変化を通して改変される分子過程を指す。RNAエディティングには、シチジン(C)からウリジン(U)へおよびアデノシン(A)からイノシン(I)への脱アミノ化、ならびに非鋳型ヌクレオチド付加および挿入などのヌクレオシド修飾が含まれる。mRNAにおけるRNAエディティングは、コードされるタンパク質のアミノ酸配列を、ゲノムDNA配列によって予測されるものと異なるように有効に改変する。

0138

「癌突然変異シグネチャー」という用語は、非癌性参照細胞と比較した場合に癌細胞中に存在する突然変異のセットを指す。

0139

本発明によれば、「参照」は、腫瘍標本から本発明の方法で得られた結果を関連付け、比較するために使用し得る。典型的には、「参照」は、患者または1つ以上の異なる個体、好ましくは健常個体、特に同じ種の個体から得られた、1つ以上の正常標本、特に癌疾患による影響を受けていない標本に基づいて入手し得る。「参照」は、十分に多数の正常標本を試験することによって経験的に決定することができる。

0140

任意の適切なシークエンシング法を本発明に従って使用することができ、次世代シークエンシング(NGS)技術が好ましい。第三世代シークエンシング法は、方法のシークエンシング工程を迅速化するために将来はNGS技術にとって代わる可能性がある。明確化のために、本発明に関連して「次世代シークエンシング」または「NGS」という用語は、サンガー法として公知の「従来の」シークエンシング法に対して、ゲノム全体を小片に分割することにより核酸鋳型をゲノム全体に沿って並行してランダムに読み取る、すべての新規ハイスループットシークエンシング技術を意味する。そのようなNGS技術(超並列シークエンシング技術としても公知である)は、全ゲノム、エクソーム、トランスクリプトーム(ゲノムのすべての転写配列)またはメチローム(ゲノムのすべてのメチル化配列)の核酸配列情報を非常に短期間、例えば、1〜2週間以内、好ましくは1〜7日間以内、または最も好ましくは24時間未満内に送達することができ、原理上は、単一細胞シークエンシングアプローチを可能にする。市販されているかまたは文献中で言及されている複数のNGSプラットフォーム、例えばZhang et al.2011:The impact of next−generation sequencing on genomics.J.Genet Genomics 38(3),95−109;またはVoelkerding et al.2009:Next generation sequencing:Frombasicresearch to diagnostics.Clinical chemistry 55,641−658に詳述されているものを本発明に関連して使用することができる。そのようなNGS技術/プラットフォームの非限定的な例は以下のとおりである:
1)例えば、Ronaghi et al.1998:A sequencing method based on real−time pyrophosphate.Science 281(5375),363−365に最初に記載された、Roche関連会社である454 Life Sciences(Branford,Connecticut)のGS−FLX 454 Genome Sequencer(登録商標)において実行されるピロシークエンス法として公知の「合成によるシークエンシング」技術。この技術は、一本鎖DNA結合ビーズが、激しくボルテックスすることにより、エマルジョンPCR増幅のために油に取り囲まれたPCR反応物を含有する水性ミセル中被包される、エマルジョンPCRを用いる。ピロシークエンシング工程中、ポリメラーゼDNA鎖を合成するにつれて、ヌクレオチド組込みの間にリン酸分子から放出される光が記録される。
2)可逆的色素ターミネータに基づく、例えばIllumina/Solexa Genome Analyzer(登録商標)およびIllumina HiSeq 2000 Genome Analyzer(登録商標)において実行される、Solexa(現在はIllumina Inc.,San Diego,Californiaの一部)によって開発された「合成によるシークエンシング」アプローチ。この技術では、4つすべてのヌクレオチドを、DNAポリメラーゼと共にフローセルチャネル中のオリゴプライミングしたクラスターフラグメントに同時に添加する。架橋増幅は、シークエンシングのために4つすべての蛍光標識ヌクレオチドを有するクラスター鎖を伸長させる。
3)例えばApplied Biosystems(現在はLife Technologies Corporation,Carlsbad.California)のSOLid(登録商標)プラットフォームにおいて実行される、「ライゲーションによるシークエンシング」アプローチ。この技術では、固定された長さのすべての可能なオリゴヌクレオチドプール配列決定された位置に従って標識する。オリゴヌクレオチドをアニーリングし、連結する;配列をマッチさせるためのDNAリガーゼによる選択的なライゲーションは、その位置のヌクレオチドの情報を与えるシグナルをもたらす。シークエンシングの前に、DNAをエマルジョンPCRによって増幅する。各々同じDNA分子コピーだけを含有する、生じたビーズをスライドガラス上に載せる。2番目の例として、Dover Systems(Salem,New Hampshire)のPolonator(登録商標)G.007プラットフォームも、ランダムに配置したビーズに基づくエマルジョンPCRを使用して並列シークエンシングのためにDNAフラグメントを増幅することによる、「ライゲーションによるシークエンシング」アプローチを用いる。
4)例えばPacific Biosciences(Menlo Park,California)のPacBio RSシステムまたはHelicos Biosciences(Cambridge,Massachusetts)のHeliScope(登録商標)プラットフォームにおいて実行されるような、単一分子シークエンシング技術。この技術の明らかな特徴は、単一分子リアルタイムSMRT)DNAシークエンシングと定義される、単一DNAまたはRNA分子を増幅せずに配列決定するその能力である。例えばHeliScopeは、各々のヌクレオチドが合成されると共にそれを直接検出する高感度蛍光検出システムを用いる。蛍光共鳴エネルギー移動(FRET)に基づく同様のアプローチがVisigen Biotechnology(Houston,Texas)から開発されている。他の蛍光に基づく単一分子技術は、U.S.Genomics(GeneEngine(登録商標))およびGenovoxx(AnyGene(登録商標))からのものである。
5)例えば複製中の一本鎖上のポリメラーゼ分子の動きを観測するためにチップ上に配置された様々なナノ構造を用いる、単一分子シークエンシングのためのナノ技術。ナノ技術に基づくアプローチの非限定的な例は、Oxford Nanopore Technologies(Oxford,UK)のGridON(登録商標)プラットフォーム、Nabsys(Providence,Rhode Island)によって開発されたハイブリダイゼーション支援ナノポアシークエンシング(HANS(登録商標))プラットフォーム、およびコンビナトリアルプローブアンカーライゲーション(cPAL(登録商標))と呼ばれるDNAナノボールDNB)技術を用いた、特許保護されているリガーゼに基づくDNAシークエンシングプラットフォームである。
6)単一分子シークエンシングのための電子顕微鏡検査に基づく技術、例えばLightSpeed Genomics(Sunnyvale,California)およびHalcyon Molecular(RedwoodCity,California)によって開発されたもの。
7)DNAの重合の間に放出される水素イオンの検出に基づくイオン半導体シークエンシング。例えばIon Torrent Systems(San Francisco,California)は、この生化学的工程を超並列的に実施するために微細機械加工したウェルの高密度アレイを使用する。各々のウェルは異なるDNA鋳型を保持する。ウェルの下にはイオン感受性層があり、その下には特許保護されているイオンセンサーがある。

0141

好ましくは、DNAおよびRNA調製物はNGSのための出発物質としての役割を果たす。そのような核酸は、生物学的物質などの試料から、例えば新鮮急速冷凍もしくはホルマリン固定パラフィン包腫瘍組織FFPE)から、または新たに単離された細胞から、または患者の末梢血中に存在するCTCから容易に入手することができる。正常な非突然変異ゲノムDNAまたはRNAは正常な体組織から抽出することができるが、生殖系列細胞が本発明に関連して好ましい。生殖系列DNAまたはRNAは、非血液学的悪性腫瘍を有する患者における末梢血単核細胞(PBMC)から抽出される。FFPE組織または新鮮単離された単一細胞から抽出された核酸は高度に断片化されているが、これらはNGS適用に適する。

0142

エクソームシークエンシングのためのいくつかの標的NGS法が文献に記載されており(総説については、例えばTeer and Mullikin 2010:Human Mol Genet 19(2),R145−51参照)、それらのすべてが本発明と共に使用することができる。これらの方法の多くは(例えばゲノム捕捉、ゲノム分配、ゲノム濃縮等として記述されている)ハイブリダイゼーション技術を使用し、アレイに基づく(例えばHodges et al.2007:Nat.Genet.39,1522−1527)および液体に基づく(例えばChoi et al.2009:Proc.Natl.Acad.Sci USA 106,19096−19101)ハイブリダイゼーションアプローチを含む。また、DNA試料の調製およびその後のエクソーム捕獲のための市販のキット入手可能である;例えばIllumina Inc.(San Diego,California)は、TruSeq(登録商標)DNA Sample Preparation Kit)およびTruSeq(登録商標)Exome Enrichment Kitを提供している。

0143

例えば腫瘍試料の配列を生殖系列試料の配列などの参照試料の配列と比較する場合、癌特異的体細胞突然変異または配列相違を検出する際に偽陽性所見の数を低減するために、これらの試料種の一方または両方のレプリケート中の配列を決定することが好ましい。したがって、生殖系列試料の配列などの参照試料の配列を2回または3回またはそれ以上決定することが好ましい。あるいはまたは加えて、腫瘍試料の配列を2回または3回またはそれ以上決定する。また、生殖系列試料の配列などの参照試料の配列および/または腫瘍試料の配列を、ゲノムDNA中の配列を少なくとも1回決定し、前記参照試料および/または前記腫瘍試料のRNA中の配列を少なくとも1回決定することによって2回以上決定することも可能であり得る。例えば、生殖系列試料などの参照試料のレプリケート間の変異を決定することにより、統計的量としての体細胞突然変異の予想される偽陽性率(FDR)を推定することができる。1つの試料の技術的反復は同一の結果を生じるはずであり、この「対同一物比較」(same vs.same comparison)において検出されるいずれの突然変異も偽陽性である。特に、参照試料と比較して腫瘍試料における体細胞突然変異検出についての発見率を決定するため、参照試料の技術的反復を、偽陽性の数を推定するための参照として用いることができる。さらに、様々なクオリティ関連測定基準(例えばカバレッジまたはSNPクオリティ)を、機械学習アプローチを用いて単一クオリティスコアに組み合わせ得る。所与の体性変異に関して、上回るクオリティスコアを有するすべての他の変異を計数することができ、これはデータセット中のすべての変異の順位付けを可能にする。

0144

本発明によれば、ハイスループット全ゲノム単一細胞遺伝子型決定法を適用することができる。

0145

ハイスループット全ゲノム単一細胞遺伝子型決定の1つの実施形態では、Fluidigmプラットフォームを使用し得る。そのようなアプローチは以下の工程を含み得る:
1.所与の患者から腫瘍組織/細胞および健常組織を採取する。
2.遺伝物質を癌性および健常細胞から抽出し、次に標準的な次世代シークエンシング(NGS)プロトコルを用いてそのエクソーム(DNA)を配列決定する。NGSのカバレッジは、少なくとも5%の頻度を有するヘテロ接合体対立遺伝子を検出できる範囲である。トランスクリプトーム(RNA)も癌細胞から抽出し、cDNAに変換して、配列決定し、いずれの遺伝子が癌細胞によって発現されるかを決定する。
3.発現された非同義一塩基変異(SNV)を本明細書で述べるように同定する。健常組織中のSNPである部位をフィルタリング除去する。
4.(3)からのN=96の突然変異を種々の頻度にわたって選択する。蛍光検出に基づくSNP遺伝子型決定アッセイをこれらの突然変異について設計し、合成する(そのようなアッセイの例には、Life TechnologiesによるTaqManに基づくSNPアッセイまたはFluidigmによるSNPtypeアッセイが含まれる)。アッセイは、所与のSNVを含むアンプリコンを増幅するための特異的標的増幅(STA)プライマーを含む(これはTaqManおよびSNPtypeアッセイにおいて標準的である)。
5.個々の細胞をレーザーマイクロダイセクション(LMD)または単細胞懸濁液への分離のいずれかによって腫瘍および健常組織から単離し、次いで以前に記述されているように(Dalerba P.et al.(2011)Nature Biotechnology 29:1120−1127)選別する。細胞を事前選択せずに(すなわち偏りなく)選択することができるか、あるいは癌性細胞を濃縮することができる。濃縮方法には、特異的染色、細胞の大きさによる選別、LMD中の組織学的検査等が含まれる。
6.個々の細胞を、マスターミックスとSTAプライマーを含むPCR管中で単離し、SNVを含むアンプリコンを増幅する。あるいは単一細胞のゲノムを、以前に記述されているように(Frumkin D.et al.(2008)Cancer Research 68:5924)全ゲノム増幅(WGA)によって増幅する。95℃の加熱工程または専用の溶解緩衝液のいずれかによって細胞溶解を達成する。
7.STA増幅した試料を希釈し、Fluidigm遺伝子型決定アレイに負荷する。
8.健常組織からの試料を陽性コントロールとして使用し、ホモ接合体対立遺伝子クラスター(突然変異なし)を決定する。NGSデータはホモ接合体突然変異が極めてまれであることを示すので、典型的には2つのクラスター:XXおよびXYだけが予測され、X=健常である。
9.実行し得るアレイの数は制限されず、実際には約1000個までの単一細胞を検定することが可能である(約10個のアレイ)。384プレートで実施した場合、試料調製を数日間に短縮することができる。
10.次に各々の細胞についてのSNVを決定する。

0146

ハイスループット全ゲノム単一細胞遺伝子型決定の別の実施形態では、NGSプラットフォームを使用し得る。そのようなアプローチは以下の工程を含み得る:
1.上記の工程1から6は、N(検定されるSNVの数)が96よりはるかに大きくてもよいことを除き、同一である。WGAの場合は、その後に数サイクルのSTAを実施する。STAプライマーは、各プライマー上に2つの万能タグ配列を含む。
2.STA後、バーコードプライマーをアンプリコンへとPCR増幅する。バーコードプライマーは、固有のバーコード配列と上記万能タグ配列を含む。したがって各々の細胞は固有のバーコードを含む。
3.すべての細胞からのアンプリコンを混合し、NGSによって配列決定する。多重化できる細胞数への実際的な制限は、調製できるプレートの数である。試料を384プレートで調製することができるので、実際的な制限は約5000個の細胞である。
4.配列データに基づき、個々の細胞のSNV(または他の構造的異常)を検出する。

0147

抗原の優先順位を決定するために、単一細胞遺伝子型決定に基づく腫瘍系統発生的再構築(「系統発生的抗原優先順位付け」)を本発明に従って使用し得る。発現、突然変異の種類(非同義対他の突然変異)、MHC結合特性などの基準に基づく抗原の優先順位付け以外に、腫瘍内および腫瘍間の不均一性ならびに生検バイアス対処するように設計された優先順位付けのさらなる次元を、例えば以下で述べるように使用することができる。

0148

1.最も豊富な抗原の同定
ハイスループット全ゲノム単一細胞遺伝子型決定法に関連して上述した単一細胞アッセイに基づき、各々のSNVの頻度を正確に推定することができ、存在する最も豊富なSNVを、癌の個別化ワクチン(IVAC)を提供するために選択することができる。

0149

2.根付き木解析に基づく一次基底抗原の同定
腫瘍からのNGSデータは、ホモ接合体突然変異(両方の対立遺伝子でヒット)がまれな事象であることを示唆する。それゆえ、ハプロタイピングの必要はなく、腫瘍体細胞突然変異の系統樹を単一細胞SNVデータセットから作成することができる。生殖系列配列を使用して系統樹を根付かせる。祖先配列再現するためのアルゴリズムを使用して、系統樹の根に近い節の配列を再現する。これらの配列は、原発性腫瘍中に存在すると予測される最初期の突然変異(本明細書では一次基底突然変異/抗原と定義される)を含む。2つの突然変異がゲノム上の同じ位置の同じ対立遺伝子で起こる確率は低いため、祖先配列における突然変異は腫瘍中で固定されていると予測される。

0150

一次基底抗原を優先順位付けることは、生検中の最も頻度の高い突然変異を優先順位付けることと等価ではない(ただし、一次基底突然変異は生検中の最も頻度が高いものの1つであると予想される)。その理由は以下のとおりである:例えば2つのSNVが生検に由来するすべての細胞中に存在する(したがって同じ頻度、すなわち100%を有する)と思われるが、一方の突然変異は基底であり、他方はそうではない場合、基底突然変異がIVACのために選択されるべきである。これは、基底突然変異は腫瘍のすべての領域中に存在する可能性が高いが、後者の突然変異は、生検が採取された領域に偶然固定されたより最近の突然変異であり得るためである。加えて、基底抗原は、原発性腫瘍に由来する転移性腫瘍中に存在する可能性が高い。それゆえIVACのために基底抗原を優先することにより、IVACが腫瘍の一部だけでなく腫瘍全体を根絶することができる可能性を大きく高め得る。

0151

二次性腫瘍が存在し、これらも採取された場合、すべての腫瘍の進化樹を推定することができる。これは系統樹の頑健性を改善することができ、すべての腫瘍の基底となる突然変異の検出を可能にする。

0152

3.腫瘍に最大限にまたがる抗原の同定
すべての腫瘍部位を最大限にカバーする抗原を得るための別のアプローチは、腫瘍からいくつかの生検を採取することである。1つの戦略は、NGS分析によってすべての生検中に存在すると同定された抗原を選択することである。基底突然変異を同定する確率を改善するために、すべての生検からの単一細胞突然変異に基づく系統発生分析を実施することができる。

0153

転移の場合は、すべての腫瘍からの生検を得ることができ、すべての腫瘍に共通する、NGSによって同定された突然変異を選択することができる。

0154

4.転移を阻害する抗原を優先順位付けるためのCTCの使用
転移性腫瘍は単一細胞に由来すると考えられている。それゆえ所与の患者の種々の腫瘍から抽出した個々の細胞を遺伝子型決定することと併せて患者の血中循環腫瘍細胞(CTC)を遺伝子型決定することにより、癌の進化の歴史を再構築することができる。原発性腫瘍に由来するCTCのクレードを通してもとの腫瘍から進化する転移性腫瘍を観測することが期待される。

0155

以下(CTCを同定し、計数して、遺伝子プローブするためのバイアスのない方法)では、CTCのバイアスのない単離およびゲノム解析のための、上述したハイスループット全ゲノム単一細胞遺伝子型決定法の拡張を述べる。上述した分析を用いて、次にプライマー腫瘍、CTCおよび転移から生じる二次性腫瘍(存在する場合)の系統樹を再構築することができる。この系統樹に基づき、CTCが最初に原発性腫瘍から切り離された時点またはその直後に起こった突然変異(パッセンジャーまたはドライバー)を同定することができる。原発性腫瘍から生じるCTCのゲノムは、二次性腫瘍ゲノムよりも原発性腫瘍ゲノムに進化的により類似することが予想される。さらに、原発性腫瘍から生じるCTCのゲノムは、二次性腫瘍中に固定されている、または将来二次性腫瘍が形成された場合に固定される可能性が高い、固有の突然変異を含むことが予想される。これらの固有の突然変異を、転移を標的とする(または予防する)IVACのために優先することができる。

0156

CTC突然変異と一次基底突然変異を優先順位付けることの利点は、CTCに由来する抗原が、転移を特異的に標的とするためにT細胞を動員することができ、それゆえ原発性腫瘍を標的とするT細胞とは独立した武器となる(異なる抗原を使用する)ことである。加えて、二次性腫瘍がほとんど(または全く)存在しない場合、腫瘍回避の確率は所与の抗原を担持する癌細胞の数に対応するはずであるので、CTC由来抗原からの免疫回避の可能性はより低いと予想される。

0157

5.同じ細胞上に共起する抗原の同定(「カクテル」IVAC)
腫瘍は、免疫系および治療法の選択圧に起因する突然変異を抑制するように進化すると考えられている。同じ細胞上に共起し、腫瘍中でも高頻度である複数の抗原を標的とする癌ワクチンは、腫瘍回避機構を無効にするより大きな可能性を有し、それゆえ再発の可能性を低減する。そのような「カクテルワクチン」は、HIV陽性患者のための抗レトロウイルス併用療法に類似する。共起する突然変異は、系統発生分析によってまたはすべての細胞のSNVアラインメント検査することによって同定できる。

0158

さらに、本発明によれば、CTCを同定し、計数して、遺伝子プローブするためのバイアスのない方法を使用することができる。そのようなアプローチは以下の工程を含み得る:
1.腫瘍の生検を入手し、体細胞突然変異の地図を決定する。
2.選択肢1:これまでに確立された優先順位付けスキームに基づくさらなる検討のためにN≧96の突然変異を選択する。
選択肢2:単一細胞アッセイ(上述したハイスループット全ゲノム単一細胞遺伝子型決定法参照)、次いで系統発生分析を実施し、多様性を最大化するためにN≧96の一次基底突然変異および場合により最近の突然変異を選択する。前者の突然変異はCTCを同定するために(以下参照)、および後者は系統発生分析を行うために有用である(「同じ細胞上に共起する抗原の同定(「カクテル」IVAC)」の章参照)。
3.癌患者から全血を得る。
4.赤血球を溶解する。
5.CD45+細胞を枯渇させる(例えば選別、抗CD45抗体に結合した磁気ビーズ等による)ことによって白血球を除去し、CTCを濃縮する。
6.DNAアーゼ消化によって遊離DNAを除去する。遊離DNAの起源は、血液中に存在するDNAまたは死細胞からのDNAであり得る。
7.残りの細胞をPCR管に選別し、STAを実施して(選択した突然変異に基づく)、Fluidigm(上述したハイスループット全ゲノム単一細胞遺伝子型決定法)でスクリーニングする。CTCは、一般に複数のSNVについて陽性であるはずである。
8.次に、スクリーニングしたSNVのパネルに基づき、癌性と同定された細胞(=CTC)を系統発生的にさらに分析することができる(「同じ細胞上に共起する抗原の同定(「カクテル」IVAC)」の章参照)。

0159

また、この方法を、単離されたCTCについてのこれまでに確立された方法と組み合わせることも可能である。例えば、EpCAM+細胞、またはサイトケラチンについて陽性の細胞を選別することができる(RaoCG.et al.(2005)International journal of oncology 27:49;Allard WJ.et al.(2004)Clinical Cancer Research 10:6897−6904)。次に、これらの推定上のCTCをFluidigm/NGSで検証/プロファイリングし、その突然変異を導き出すことができる。

0160

この方法を用いてCTCを計数することができる。この方法は、癌細胞によって発現され得るまたは発現されないと考えられる1つの特定のマーカーに頼るではなく、患者に固有の癌体細胞突然変異の突然変異プロフィールに基づくので、これはCTCを検出し、数えるためのバイアスのない方法である。

0161

本発明によれば、ドライバー突然変異を濃縮するための単一細胞遺伝子型決定に基づく腫瘍系統発生的再構築を含むアプローチ(「系統発生的フィルタリング」)を使用し得る。

0162

このアプローチの1つの実施形態では、ドライバー突然変異を回復するための汎腫瘍系統発生分析を実施する。

0163

例えば、n=1の腫瘍からのドライバー突然変異を検出し得る。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ