図面 (/)

技術 浸炭装置と浸炭方法

出願人 国立大学法人横浜国立大学日本発條株式会社
発明者 中尾航丹下彰丹後公一甲斐盛通
出願日 2015年5月19日 (5年7ヶ月経過) 出願番号 2015-101781
公開日 2016年12月22日 (4年0ヶ月経過) 公開番号 2016-216774
状態 特許登録済
技術分野 熱処理 金属質材料の表面への固相拡散 物品の熱処理
主要キーワード 混合管路 流通孔内 セッチング 取入れ管 材料表 機械要素部品 昇温炉 連続製造ライン
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2016年12月22日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (12)

課題

浸炭処理を省設備でかつ能率良く行なうことができる浸炭装置を提供する。

解決手段

実施形態の浸炭装置10Bは、鋼からなる材料11を焼入れ可能な温度に加熱する加熱炉50と、搬送機構55と、有機化合物蒸気発生器の一例であるアルコール蒸気発生器32Bと、アルコール蒸気吹付け部57と、焼入れ槽58と、加熱炉50の熱を取入れる排熱取入れ管61とを具備している。搬送機構55は、複数の材料11を加熱炉50の入口部51から出口部52に向かって移動させる。アルコール蒸気発生器32Bは、加熱炉50が発生する熱の一部を熱源として利用する。アルコール蒸気吹付け部57は、加熱炉50内を移動する材料11にアルコール蒸気を吹付けてアルコール中の炭素を材料11に吸着させる工程と、材料に吸着した炭素の拡散のためのインターバルをとる拡散工程とを、加熱炉50内において複数回繰返す。浸炭処理がなされた材料に焼入れが行なわれ、焼入れ組織が形成される。

概要

背景

自動車等の車両の軽量化を図り燃費を向上させるために、車両を構成する部品の軽量化が望まれている。車両を構成する部品の中でも懸架ばねは、単体としての重量が比較的大きく、しかも車体の重量を支える重要な部品でもある。このため懸架ばねは、高い信頼性を確保した上での軽量化が求められている。

熱間で製造される懸架ばねは、熱間コイリングを行なうために昇温炉にて大気中で加熱される。このため、ばねの表面近傍に程度の差こそあれ脱炭フェライト脱炭や部分脱炭)が生じることが避けられない。脱炭が生じたばねは焼入れ硬さや焼戻し後の硬さが低下し、降伏応力の低下、ひいては疲労強度が低下する要因となっている。ばねの耐久性を高める手段としてショットピーニングが有効であるが、ショットピーニングでは被処理材(例えば懸架ばね)の降伏応力を超える圧縮残留応力を生じさせることができない。このため脱炭による降伏応力の低下は、ショットピーニングによる効果を低下させる原因ともなる。

懸架ばね等の鋼製品の脱炭問題を解決する1つの手段として、浸炭処理が有効である。従来の浸炭法として、固体浸炭法、液体浸炭法変成炉ガス浸炭法滴注式ガス浸炭法、真空浸炭法プラズマ浸炭法などが知られている。特に変成炉式ガス浸炭法、真空浸炭法、プラズマ浸炭法に関しては、例えば特公昭59−15964号公報(特許文献1)に開示されているように、過去に数多くの研究がなされており、制御法確立されている。このためばね部材や歯車をはじめとする種々の工業製品に対して、これらの浸炭法が適用されている。

しかしながらこれらの既存の浸炭法は、ガス変成炉や専用の浸炭炉が必要であるため、既設のばね製造プロセスを行なう設備に追加で設置することが困難なケースがあるばかりでなく、多大な費用が必要となる。しかも現在工業的に用いられている浸炭法は、通常、被処理材の周囲に浸炭雰囲気ガスを保持して浸炭処理を行なうためバッチ式の処理になってしまう。これでは熱処理炉内で連続的に処理される熱間加工の鋼製品に対して浸炭処理を行なうことができない。このため開放系大気条件下で材料を加熱する加熱炉熱処理炉)を利用して浸炭処理を行なうことが望まれている。

開放系の大気条件下で浸炭処理を行なう技術として、特許文献2に開示されているように、被処理材(ワーク)を加熱する円環状の加熱コイルと、加熱された被処理材に向けて浸炭ガス噴射するガスノズルとを備えた浸炭方法および浸炭装置が公知である。特許文献2の加熱コイルには浸炭ガスを流通させるための内部通路が形成されていて、加熱コイルの熱を利用して浸炭ガスを加熱するように構成されている。特許文献3に多孔質体毛管給水作用を利用した過熱水蒸気発生装置が開示されている。

概要

浸炭処理を省設備でかつ能率良く行なうことができる浸炭装置を提供する。実施形態の浸炭装置10Bは、鋼からなる材料11を焼入れ可能な温度に加熱する加熱炉50と、搬送機構55と、有機化合物蒸気発生器の一例であるアルコール蒸気発生器32Bと、アルコール蒸気吹付け部57と、焼入れ槽58と、加熱炉50の熱を取入れる排熱取入れ管61とを具備している。搬送機構55は、複数の材料11を加熱炉50の入口部51から出口部52に向かって移動させる。アルコール蒸気発生器32Bは、加熱炉50が発生する熱の一部を熱源として利用する。アルコール蒸気吹付け部57は、加熱炉50内を移動する材料11にアルコール蒸気を吹付けてアルコール中の炭素を材料11に吸着させる工程と、材料に吸着した炭素の拡散のためのインターバルをとる拡散工程とを、加熱炉50内において複数回繰返す。浸炭処理がなされた材料に焼入れが行なわれ、焼入れ組織が形成される。

目的

自動車等の車両の軽量化を図り燃費を向上させるために、車両を構成する部品の軽量化が望まれている

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

鋼からなる材料を加熱する加熱炉と、複数の前記材料を前記加熱炉の入口部から出口部に向かって連続的または間欠的に移動させる搬送機構と、液体有機化合物蒸発させることにより有機化合物蒸気を発生させる有機化合物蒸気発生器と、前記加熱炉内を移動する前記材料に前記有機化合物蒸気を吹付けて該有機化合物中炭素を前記材料に吸着させかつ炭素の拡散のためのインターバルが経過した状態において再び前記有機化合物蒸気を前記材料に吹付けることを前記加熱炉内で複数回繰返す有機化合物蒸気吹付け部と、前記加熱炉から取り出された前記材料を急冷し前記材料に焼入れ組織を生じさせる焼入れ手段と、を具備したことを特徴とする浸炭装置

請求項2

前記加熱炉が発生する熱の一部を前記有機化合物蒸気発生器の熱源として利用するための排熱取入れ手段を備えたことを特徴とする請求項1に記載の浸炭装置。

請求項3

前記有機化合物蒸気発生器は、液体の有機化合物を収容する容器部と、前記容器部に一部が浸漬され、前記液体の有機化合物が内部を拡散する多孔質体とを有し、前記多孔質体が流通する流通孔内を加熱することで前記有機化合物蒸気を発生させることを特徴とする請求項1または2に記載の浸炭装置。

請求項4

前記有機化合物蒸気発生器は、前記流通孔内面の少なくとも一部を加熱する加熱手段を備えていることを特徴とする請求項3に記載の浸炭装置。

請求項5

前記加熱炉が前記材料をオーステナイト化温度まで加熱する熱処理炉であることを特徴とする請求項1から4のいずれか1項に記載の浸炭装置。

請求項6

前記有機化合物蒸気吹付け部は、前記搬送機構の移動方向に複数段階に分かれて配置された複数のノズルを備えていることを特徴とする請求項1から5のいずれか1項に記載の浸炭装置。

請求項7

前記液体の有機化合物がアルコール液であることを特徴とする請求項1から6のいずれか1項に記載の浸炭装置。

請求項8

前記アルコール液がエチルアルコールであることを特徴とする請求項7に記載の浸炭装置。

請求項9

鋼からなる材料を加熱炉内にて焼入れ可能な温度に加熱し、液体の有機化合物を蒸発させることにより有機化合物蒸気を発生させ、前記材料を前記加熱炉の入口部から出口部に向かって連続的または間欠的に移動させ、前記加熱炉内の前記材料に前記有機化合物蒸気を吹付ける工程と、材料に吸着した炭素を拡散させる工程とを前記加熱炉内で複数回繰返し、前記加熱炉から取出された前記材料を急冷することにより焼入れ組織を生じさせることを特徴とする鋼製品浸炭方法

技術分野

0001

この発明は、ばね部材や各種機械要素等の鋼製品浸炭を行なう浸炭装置浸炭方法に関する。

背景技術

0002

自動車等の車両の軽量化を図り燃費を向上させるために、車両を構成する部品の軽量化が望まれている。車両を構成する部品の中でも懸架ばねは、単体としての重量が比較的大きく、しかも車体の重量を支える重要な部品でもある。このため懸架ばねは、高い信頼性を確保した上での軽量化が求められている。

0003

熱間で製造される懸架ばねは、熱間コイリングを行なうために昇温炉にて大気中で加熱される。このため、ばねの表面近傍に程度の差こそあれ脱炭フェライト脱炭や部分脱炭)が生じることが避けられない。脱炭が生じたばねは焼入れ硬さや焼戻し後の硬さが低下し、降伏応力の低下、ひいては疲労強度が低下する要因となっている。ばねの耐久性を高める手段としてショットピーニングが有効であるが、ショットピーニングでは被処理材(例えば懸架ばね)の降伏応力を超える圧縮残留応力を生じさせることができない。このため脱炭による降伏応力の低下は、ショットピーニングによる効果を低下させる原因ともなる。

0004

懸架ばね等の鋼製品の脱炭問題を解決する1つの手段として、浸炭処理が有効である。従来の浸炭法として、固体浸炭法、液体浸炭法変成炉ガス浸炭法滴注式ガス浸炭法、真空浸炭法プラズマ浸炭法などが知られている。特に変成炉式ガス浸炭法、真空浸炭法、プラズマ浸炭法に関しては、例えば特公昭59−15964号公報(特許文献1)に開示されているように、過去に数多くの研究がなされており、制御法確立されている。このためばね部材や歯車をはじめとする種々の工業製品に対して、これらの浸炭法が適用されている。

0005

しかしながらこれらの既存の浸炭法は、ガス変成炉や専用の浸炭炉が必要であるため、既設のばね製造プロセスを行なう設備に追加で設置することが困難なケースがあるばかりでなく、多大な費用が必要となる。しかも現在工業的に用いられている浸炭法は、通常、被処理材の周囲に浸炭雰囲気ガスを保持して浸炭処理を行なうためバッチ式の処理になってしまう。これでは熱処理炉内で連続的に処理される熱間加工の鋼製品に対して浸炭処理を行なうことができない。このため開放系大気条件下で材料を加熱する加熱炉熱処理炉)を利用して浸炭処理を行なうことが望まれている。

0006

開放系の大気条件下で浸炭処理を行なう技術として、特許文献2に開示されているように、被処理材(ワーク)を加熱する円環状の加熱コイルと、加熱された被処理材に向けて浸炭ガス噴射するガスノズルとを備えた浸炭方法および浸炭装置が公知である。特許文献2の加熱コイルには浸炭ガスを流通させるための内部通路が形成されていて、加熱コイルの熱を利用して浸炭ガスを加熱するように構成されている。特許文献3に多孔質体毛管給水作用を利用した過熱水蒸気発生装置が開示されている。

先行技術

0007

特公昭59−15964号公報
特開2011−26651号公報
特許第4923258号公報

発明が解決しようとする課題

0008

ばね製造プロセス等に使用される熱処理炉(加熱炉)は、材料を開放系の大気条件下で加熱するため密閉されていない。このため既存の浸炭技術では、鋼製品の連続製造ラインを移動する材料に対して開放系の熱処理炉を使用して浸炭処理を行なうことが困難であった。特許文献2は開放系の大気条件下で浸炭処理を行なう技術であるが、浸炭処理のための専用の加熱コイルを用いて被処理材(ワーク)と浸炭ガスを加熱しているため、鋼製品の製造プロセスから切離されたバッチ処理となる。このため浸炭処理専用の設備(加熱コイル等)が必要であり、しかも加熱のための電力を必要としている。またプロパン等の爆発性のある浸炭ガスを使用するため、取り扱いに格別の配慮が必要である。

0009

従って本発明の目的は、ばね部材等の鋼製品の製造プロセスにおいて行なわれる浸炭処理を省設備で安全かつ能率良く行なうことができる浸炭装置と浸炭方法を提供することにある。

課題を解決するための手段

0010

1つの実施形態の浸炭装置は、鋼からなる材料を焼入れ可能な温度に加熱する加熱炉と、例えばウォーキングビームコンベア等の搬送機構と、有機化合物蒸気発生器と、有機化合物蒸気吹付け部と、浸炭後の材料に焼入れを行なう際に使用する焼入れ手段とを具備している。浸炭に用いる有機化合物の一例はエチルアルコールエタノール)である。加熱炉の一例は、前記材料を980〜1000℃(オーステナイト化温度)まで加熱する。前記搬送機構は、複数の前記材料を前記加熱炉の入口部から出口部に向かって連続的または間欠的に移動させる。

0011

前記有機化合物蒸気発生器は、熱源によって液体の有機化合物を蒸発させることにより有機化合物蒸気を発生させる。前記有機化合物蒸気吹付け部は、前記加熱炉内を移動する前記材料に前記有機化合物蒸気を吹付けて該有機化合物中炭素を前記材料に吸着させ、かつ、炭素の拡散のためのインターバルが経過した状態において再び前記有機化合物蒸気を前記材料に吹付ける。このように浸炭処理(有機化合物蒸気の吹付けと、炭素の拡散)を複数回に分けて前記加熱炉内で繰返す。前記焼入れ手段は、前記加熱炉から取り出された浸炭後の前記材料を急冷し、前記材料に焼入れ組織を生じさせる。

発明の効果

0012

本発明によれば、浸炭ガスを発生させるための大掛かりな変成炉や専用の浸炭炉が不要となり、ばね製造プロセス等の鋼製品の製造プロセスにおいて行なわれる浸炭処理を省設備で安全かつ能率良く行なうことができる。

図面の簡単な説明

0013

第1の実施形態に係る浸炭装置の構成を模式的に表わした図。
浸炭処理の繰返し数が5,10,15,20の場合について、それぞれの表面からの距離とビッカース硬さとの関係を表わした図。
浸炭処理の繰返し数と浸炭深さとの関係を表わした図。
浸炭処理の繰返し数が5,10,15,20の場合について、それぞれの表面からの距離と炭素濃度との関係を表わした図。
第2の実施形態に係る浸炭装置の構成を模式的に表わした図。
図5に示された浸炭装置の有機化合物蒸気発生器の例を模式的に示す断面図。
有機化合物蒸気発生器の他の例を模式的に示す断面図。
図5に示された浸炭装置を用いる鋼製品の製造方法の一例を工程順に表わした図。
図8に示された製造方法の一部で浸炭工程の詳細を示す図。
鋼製品を熱間で製造する場合の製造方法の一例を工程順に表わした図。
(A)〜(G)は、それぞれ鋼製品の例を示す正面図。

実施例

0014

以下に第1の実施形態に係る浸炭装置について、図1から図4を参照して説明する。
図1は、実験室レベルで実施される浸炭装置10Aの構成を模式的に表わしたものである。この浸炭装置10Aは、鋼製の材料11を収容する容器12と、容器12内の材料11を保持するホルダ13と、材料11を加熱する赤外線集光形のヒータ14と、有機化合物供給系の一例であるアルコール蒸気供給系15と、不活性ガス供給系16と、排気ポンプ18と、切換弁19と、材料11の温度を検出する温度センサ熱電対)20と、材料11を焼入れる際に使用する冷却槽21などを含んでいる。冷却槽21には冷水21aが収容されている。

0015

容器12の一例は石英管からなり、上蓋12aと開閉可能な底蓋12bとによって内部を気密に保つことができるようになっている。試験片としての材料11の一例は、直径12mm、長さ50mmの鋼棒オイルテンパー線)である。オイルテンパー線の成分(wt%)は0.41C−2.2Si−0.84Mn−0.11Cr−0.16Ni−0.26Cu、残部Feである。容器12とヒータ14とによって加熱炉25が構成されている。

0016

アルコール蒸気供給系15は、液体の有機化合物の一例であるアルコール液30を収容する容器部としてのトレイ31と、アルコール蒸気を発生させるアルコール蒸気発生器32Aと、切換弁36などを含んでいる。アルコールの一例はエチルアルコール(C2H5OH)である。また、浸炭処理で使用する液体は少なくとも酸素を含む分子構造を有する有機化合物であればよい。例えば、アセトンなどのケトンや種々の酸であってもよい。

0017

アルコール蒸気発生器32Aの一例は、連続気泡性の多孔質体の一例である多孔質ブロック(例えば耐火レンガ)33と、多孔質ブロック33の流通孔内に配置された電熱ヒータとを有し、多孔質ブロック33の少なくとも一部が、トレイ31に収容されたアルコール液30に浸漬されている。多孔質ブロック33内をアルコール溶液浸透・拡散し、多孔質ブロック33内で気化させたアルコール蒸気を混合管路35に送り込むようになっている。

0018

アルコール蒸気発生器の他の例では、熱源として電熱ヒータを用いる代わりに加熱炉25の熱を多孔質ブロック33に取入れるための手段(例えば加熱炉25の熱を取入れるための配管34)を多孔質ブロック33に接続することにより、加熱炉25の熱を利用して多孔質ブロック33を加熱する。

0019

アルコール蒸気発生器32Aによって発生させたアルコール蒸気が混合管路35を介して容器12内に供給されることにより、容器12の内部をアルコール蒸気で満たすことができる。容器12の内部においてアルコール蒸気が高温の材料11に触れることにより、アルコール中の炭素が材料11に吸着する。

0020

不活性ガス供給系16は、アルゴン等の不活性ガスを収容したガス供給源40と、開閉弁41とを含んでいる。開閉弁41を開弁することにより、ガス供給源40内のアルゴンガスが開閉弁41と管路42とを経て混合管路35に供給される。またアルゴンガス等の不活性ガスによってアルコール蒸気を希釈することもできる。

0021

容器12内の材料11がヒータ14によって約1000℃に加熱される。その温度が保たれた状態のもとで、アルコール蒸気発生器32Aによって発生させたアルコール蒸気が混合管路35を介して容器12内に供給されることにより、容器12内にアルコール蒸気が一定時間(例えば7秒)満たされ、アルコール中の炭素が材料に吸着される。そののち切換弁36を切換えることにより、アルコール蒸気発生器32Aから供給されるアルコール蒸気を遮断する。

0022

そして排気ポンプ18によって容器12内のアルコール蒸気を排出するとともに、ガス供給源40から供給されるアルゴンガスを容器12の内部に満たす。容器12の内部をアルゴンガス雰囲気にした状態のもとで、一定時間(例えば53秒)のインターバルをとることにより、炭素を材料11中に拡散させるとともに、材料11の表面にが付着することを防ぐ。

0023

こうして1回目の浸炭処理(1回目のアルコール蒸気吹付けと炭素の拡散)がなされたのち、2回目以降の浸炭処理(2回目以降のアルコール蒸気吹付けと炭素の拡散)が行なわれる。すなわち前記浸炭処理(アルコール蒸気の吹付けと炭素の拡散)を複数回繰返すことにより、材料11の表面から1mm前後の深さに、炭素濃度が0.4〜1.2重量%の浸炭層が形成される。

0024

前記浸炭処理が終了したら容器12の底蓋12bを開放し、容器12から取出された高温(焼入れ可能な温度)の材料11を冷却槽21の冷水21aに挿入し急冷することにより、焼入れを行なう。この焼入れ処理によって、材料11の少なくとも表層部に焼入れ組織(マルテンサイト)が形成される。

0025

図2は、浸炭処理の繰返し数(n)が5,10,15,20の場合について、それぞれの材料表面からの距離とビッカース硬さとの関係を表わしている。なお、図2図4に示されている“As-quenched”は浸炭処理を行わない場合である。図3は、浸炭処理の繰返し数(n)と浸炭深さとの関係を表わしている。図2図3とから、浸炭処理の繰返し数が多いほど、材料表面から深い位置まで硬化し、かつ硬さのピークが深い位置に存在していることがわかる。

0026

図4は、浸炭処理の繰返し数(n)が5,10,15,20の場合について、それぞれの材料表面からの距離と炭素濃度との関係を表わしている。図4により、表面から約1mm付近までの表層部では、浸炭処理の回数が多いほど炭素濃度が増加し、かつ、深い位置まで炭素濃度を増加させることができることがわかる。

0027

以下に第2の実施形態に係る浸炭装置について、図5図6を参照して説明する。
図5は、ばね製造プロセスにおいて工場ベルで浸炭を行なう浸炭装置10Bを模式的に示している。この浸炭装置10Bは、ばね鋼からなる材料11を加熱する熱処理炉としての加熱炉50と、複数の材料11を加熱炉50の入口部51から出口部52に向かって移動させる搬送機構55と、アルコール蒸気供給系56と、アルコール蒸気吹付け部57と、焼入れ手段としての焼入れ槽58などを具備している。焼入れ槽58には水あるいは油等の焼入れ液が収容されている。

0028

加熱炉50は、都市ガス等の可燃ガス燃焼させることによって得られる火炎フレーム)により、材料11を焼入れ可能な温度(例えば980℃)に加熱する。この加熱炉50は、ばね部材等の鋼製品の製造プロセスにおいて、鋼製の材料11をオーステナイト化温度まで加熱する昇温炉(熱処理炉)であり、開放系の大気条件下で材料11を加熱するものである。加熱炉50の加熱形式は、開放式ガス加熱炉に限定されるものではなく、例えば、ラジアントチューブを備えた間接加熱による加熱炉であってもよい。例えばラジアントチューブを用いたラジアントチューブバーナによって発生させた輻射熱を利用して炉内を加熱してもよい。

0029

搬送機構55の一例はウォーキングビームのように前進一時停止とを交互に行なう間欠移動タイプであり、複数の材料11を加熱炉50の入口部51から出口部52に向かって図5中に矢印Fで示す方向に移動させるように構成されている。なお、搬送機構55の他の形態として、連続的に無端移動するコンベアが採用されてもよい。

0030

アルコール蒸気供給系56は、図6に模式的に示すアルコール蒸気発生器32Bと、排熱取入れ管61と、アルコール蒸気供給管62と、流量調整器63と、不活性ガス供給部64と、炭酸ガス供給部65などを備えている。排熱取入れ管61は、加熱炉50によって発生する熱の一部をアルコール蒸気発生器32Bの熱源として利用するための排熱取入れ手段として機能する。

0031

アルコール蒸気発生器32Bと加熱炉50との間に流量調整器63が配置されている。アルコール蒸気発生器32Bからアルコール蒸気吹付け部57に供給されるアルコール蒸気の量が流量調整器63によって調整される。また必要に応じて、不活性ガス供給部64から窒素等の不活性ガスが供給され、あるいは炭酸ガス供給部65から二酸化炭素を供給することもできるようになっている。

0032

図6に示されたアルコール蒸気発生器32Bの一例は、アルコール液30を収容した容器部の一例であるトレイ70と、トレイ70内のアルコール液30を含浸する連続気泡形の多孔質体の一例である多孔質ブロック71と、多孔質ブロック71に形成された流通孔72とを備えている。加熱炉50内で発生した高温ガスの一部が、排熱取入れ管61を介して流通孔72に流入することにより、多孔質ブロック71に含浸したアルコール(エチルアルコール)が気化し、アルコール蒸気供給管62からアルコール蒸気吹付け部57に供給される。この場合の排熱取入れ管61は、流通孔72の内面の少なくとも一部を加熱するための加熱手段として機能する。

0033

アルコール蒸気吹付け部57は、加熱炉50内を移動する材料11にアルコール蒸気を段階的に吹付けるための複数のノズル57a,57b,57nを含んでいる。これらのノズル57a,57b,57nは、搬送機構55によって加熱炉50内を移動する材料11を出口部52付近にて囲むように、材料11の移動方向に間隔を存して複数段階に分かれて配置されている。

0034

段目のノズル57aは、加熱炉50の出口部52付近において材料11の移動方向上流側に配置されている。2段目のノズル57bは、1段目のノズル57aよりも材料11の移動方向下流側に配置されている。N段目(3段目以降)のノズル57nは、2段目のノズル57bよりも材料11の移動方向下流側に配置されている。

0035

アルコール蒸気発生器32Bによって発生したアルコール蒸気は、それぞれのノズル57a,57b,57nから材料11に向かって噴出し、材料11の周り高濃度のアルコール蒸気を存在させる。ノズル57a,57b,57n間には、実質的にアルコール蒸気の濃度がきわめて低いインターバル区間(炭素の拡散のための区間)が形成されている。

0036

なお、図7はアルコール蒸気発生器の他の例を模式的に示す断面図である。図7に示されたアルコール蒸気発生器32Cは、多孔質ブロック71に形成された流通孔72内に高温ガス流路80が形成されている。この高温ガス流路80に排熱取入れ管61が接続されており、加熱炉50内の高温ガスの一部が高温ガス流路80を流れるようになっている。この場合の高温ガス流路80は、流通孔72の内面の少なくとも一部を加熱するための加熱手段として機能する。高温ガス流路80を流れる加熱炉50の高温ガスの熱によって、多孔質ブロック71中のアルコール液が蒸発し、蒸発したアルコール蒸気が流通孔72とアルコール蒸気供給管62と流量調整器63とを経て、アルコール蒸気吹付け部57(図5に示す)に供給される。

0037

また、ばね製造プロセスにおいて工場レベルで浸炭を行なう浸炭装置10Bにおいて、アルコール蒸気発生器は、加熱炉の熱を利用せず、外部の熱源を利用するものでもよい。例えば、第1の実施形態に係るアルコール蒸気発生系のように電熱ヒータを熱源として利用してもよい。

0038

図8は、ばね部材等の鋼製品を製造する製造工程の一例を示している。図8中のステップST1(加熱工程)において、例えばばね鋼等の鋼製の材料11が加熱炉50内で加熱される。ステップST2(浸炭工程)では、前記浸炭装置10Bを用いて浸炭処理が行なわれる。図9は、図8中のステップST2(浸炭工程)の詳細を示している。

0039

図9に示されるように、本実施形態の浸炭工程(ステップST2)では、加熱炉50内を移動する材料11が1段目のノズル57a(図5に示す)と対向する位置まで移動した状態において、1段目のノズル57aからアルコール蒸気を材料11に吹付けることにより、1回目の蒸気吹付け工程ST10が行なわれ、アルコール中の炭素が材料11に吸着する。材料11に吸着した炭素は、1回目の拡散工程ST11を経ることによって、ブードア反応(2CO→[C]+CO2)等により浸炭作用が進行する。

0040

1回目の拡散工程ST11の経過後、材料11が2段目のノズル57b(図5に示す)と対向する位置まで移動すると、2段目のノズル57bが再びアルコール蒸気を材料11に吹付けることにより、2回目の蒸気吹付け工程ST12が行なわれ、アルコール中の炭素が材料11に吸着する。材料11に吸着した炭素は、2回目の拡散工程ST13を経ることにより、再びブードア反応等によって浸炭作用が進行し、材料11の表面付近の炭素濃度が高まる。

0041

2回目の拡散工程ST13の経過後、材料11がN段目のノズル57n(図5に示す)と対向する位置まで移動すると、N段目のノズル57nが再びアルコール蒸気を材料11に吹付けることにより、N回目の蒸気吹付け工程ST14が行なわれ、アルコール中の炭素が材料11に吸着する。材料11に吸着した炭素は、N回目の拡散工程ST15を経ることより、再びブードア反応等によって浸炭作用が進行し、材料11の表面付近の炭素濃度がさらに高まる。このように加熱炉50内で浸炭処理(アルコール蒸気の吹付けと拡散)が複数回(N回)繰返される。

0042

浸炭工程(ステップST2)によって浸炭がなされかつ高温に保たれている材料11は、加熱炉50の出口部52から加熱炉50の外部に搬送される。そして図8中のステップST3において焼入れ槽58に投入され、焼入れ組織(マルテンサイト)が生じる温度勾配で急冷されることにより、材料11の少なくとも表層部に焼入れ組織が形成される。

0043

そののち、図8中のステップST4において焼戻し熱処理が行なわれる。材料11は浸炭工程を経ていることから焼戻し後も十分な硬さを有している。さらにステップST5(成形工程)において、塑性加工等によって材料11が所定の形状(例えばコイルばねの形状)に成形される。さらにステップST6においてショットピーニングが実施され、材料11の表面に圧縮残留応力が付与される。また、必要に応じてセッチング塗装等の後処理が行なわれる。ステップST7にて製品検査が行なわれてばね部材が完成する。

0044

図10は、鋼製品を熱間(再結晶温度以上)で成形する場合の製造工程の一例を示している。図10中のステップST1(加熱工程)において、材料11がオーステナイト化温度に加熱される。この温度が維持された状態のもとで、図10中のステップST5(成形工程)において、材料11が熱間で成形される。

0045

熱間成形が行なわれると、材料11の表面に程度の差こそあれ脱炭が生じる。そこで本実施形態では、熱間成形後に行なわれるステップST2(浸炭工程)において、浸炭装置10B(図5)によって加熱炉50内で浸炭処理が行なわれる。この場合も、図9に示されるようにアルコール蒸気の吹付けと炭素の拡散を複数回(N回)繰返すことにより、浸炭処理が段階的に行なわれる。ステップST2(浸炭工程)が終了したのち、必要に応じて焼入れと焼戻し等の熱処理(ステップST3,ST4)が行なわれ、さらにショットピーニングや検査(ステップST6,ST7)等が実施される。

0046

なお、図10に係る製造工程の説明において、ステップST2(浸炭工程)をステップST5(成形工程)の後としたが、ステップST2(浸炭工程)をステップST1(加熱工程)と同時または終了後に行うようにしても良い。

0047

以上説明したように本実施形態の鋼製品の浸炭方法は下記の工程を含んでいる。
(1)鋼からなる材料を加熱炉内にて焼入れ可能な温度に加熱し、
(2)アルコール液を蒸発させることによりアルコール蒸気を発生させ、
(3)前記材料を前記加熱炉の入口部から出口部に向かって連続的または間欠的に移動させ、
(4)前記加熱炉内の前記材料に前記アルコール蒸気を吹付ける工程と炭素の拡散のための工程とを前記加熱炉内で複数回繰返し、
(5)前記加熱炉から取り出された前記材料を急冷することにより焼入れ組織を生じさせる。

0048

本実施形態の浸炭装置10Bと浸炭方法によれば、浸炭ガスを発生させるための変成炉や専用の浸炭炉が不要であるため、省設備で浸炭処理を行うことができ、かつ、浸炭ガスとしてエタノール蒸気を用いるため安全である。またワーク(鋼製品)の連続生産を行なう製造ラインの一部をなす熱処理炉(加熱炉)にて熱処理とほぼ同時に浸炭処理を行なうことができるため、浸炭層を有する鋼製品を能率良く生産することができる。

0049

以上説明した実施形態の浸炭装置と浸炭方法は、ばね鋼からなるばね部材をはじめとして、種々の形態の鋼製の機械要素部品に適用することができる。図11の(A)〜(G)は鋼製品の例を模式的に示している。図11の(A)はコイルばね等の巻きばね11aである。図11の(B)は車両用スタビライザ11b、(C)は皿ばね11c、(D)はトーションバー11d、(E)は板ばね11eを示している。これらのばね部材以外にも、例えば図11の(F)に示す歯車11f、あるいは(G)に示すねじ部材11g等の機械要素に本発明の浸炭装置と浸炭方法が適用されてもよいし、これら以外の工業製品に適用されてもよい。要するに浸炭によって表層部に炭素濃度の高い浸炭層を形成することが望まれる鋼製品であれば本発明を適用することができる。

0050

なお本発明を実施するに当たって、加熱炉や搬送機構、アルコール蒸気発生器、排熱取入れ手段、アルコール蒸気吹付け部、焼入れ手段をはじめとして、本発明に係る浸炭装置を構成する要素の具体的な構造や配置等の態様を必要に応じて種々に変更して実施できることは言うまでもない。浸炭に使用するアルコールはエチルアルコールに限定されることはなく、要するに炭化水素水素原子水酸基置換した形の化合物で蒸気化することができる物質であればよい。

0051

10A,10B…浸炭装置、11…材料、11a〜11g…鋼製品、30…アルコール液(液体の有機化合物の一例)、31…トレイ(容器部)、32A,32B,32C…アルコール蒸気発生器、50…加熱炉、51…入口部、52…出口部、55…搬送機構、56…アルコール蒸気供給系、57…アルコール蒸気吹付け部、57a,57b,57n…ノズル、58…焼入れ槽(焼入れ手段)、61…排熱取入れ管(排熱取入れ手段)、62…アルコール蒸気供給管、70…トレイ(容器部)、71…多孔質ブロック(多孔質体)、72…流通孔、80…高温ガス流路。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

該当するデータがありません

関連する公募課題

該当するデータがありません

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 高周波熱錬株式会社の「 耐遅れ破壊特性に優れたPC鋼材及びその製造方法」が 公開されました。( 2020/10/29)

    【課題】従来とは異なる手法により、耐遅れ破壊特性に優れたPC鋼材及びその製造方法を提供すること。【解決手段】質量%で、C:0.10〜0.60%、Si:1.0%以上を含有し、金属組織が焼戻しマルテンサイ... 詳細

  • 電気興業株式会社の「 横型加熱処理装置」が 公開されました。( 2020/10/29)

    【課題】横型加熱処理装置において、細長ワークに対して無酸化加熱処理を効率的に施し、冷却液が加熱機構による加熱を行う加熱空間に侵入するのを効率的に防止する。【解決手段】本発明は、横置きに配置した細長ワー... 詳細

  • 日本製鉄株式会社の「 鋼部品およびその製造方法」が 公開されました。( 2020/10/29)

    【課題】オーステナイト系ステンレス鋼からなる鋼部品であって、拡散接合で製造された場合であっても、高硬度かつ、接合面での未接合部が少ない(接合率が高い)鋼部品、およびその製造方法を提供すること。【解決手... 詳細

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

該当するデータがありません

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ