図面 (/)

技術 情報処理装置、情報処理方法、及び、プログラム

出願人 ソニー株式会社
発明者 佐塚直也脇田能宏彼末一之
出願日 2015年5月19日 (4年5ヶ月経過) 出願番号 2015-101829
公開日 2016年12月22日 (2年10ヶ月経過) 公開番号 2016-214499
状態 特許登録済
技術分野 運動付属具 訓練用具
主要キーワード 目標スピード 振動モジュール ステップ長 全力疾走 ステップ周期 目標ゾーン ピッチ特性 アイウエア
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2016年12月22日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題

ランニング等のユーザのトレーニング支援を適切に行う事が可能な装置の提供。

解決手段

誘導部は、ユーザのセンシング情報を利用して、ユーザの移動時のスピードピッチ、及び、ストライドの関係を示す移動特性に基づいてデータを取得し、取得したデータに基づきユーザのスピード、ピッチ、及び、ストライドのうち少なくとも1つの誘導を行う。

概要

背景

従来、ユーザにウエアラブル端末を装着し、速度、加速度ペース歩数レート心拍数等モニタリングし、ユーザのパフォーマンストレーニング方法等についてのフィードバックインタラクションを行うシステムが提案されている(例えば、特許文献1参照)。

概要

ランニング等のユーザのトレーニング支援を適切に行う事が可能な装置の提供。誘導部は、ユーザのセンシング情報を利用して、ユーザの移動時のスピードピッチ、及び、ストライドの関係を示す移動特性に基づいてデータを取得し、取得したデータに基づきユーザのスピード、ピッチ、及び、ストライドのうち少なくとも1つの誘導を行う。

目的

情報処理システム101は、ユーザにランニング支援サービスを提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

ユーザのセンシング情報を利用して、前記ユーザの移動時のスピードピッチ、及び、ストライドの関係を示す移動特性に基づいて、前記ユーザのスピード、ピッチ、及び、ストライドのうち少なくとも1つの誘導を行う誘導部を備える情報処理装置

請求項2

前記ユーザの前記移動特性、並びに、前記移動特性に基づいて前記ユーザの移動状態分析した結果のうち少なくとも一方の提示を制御するユーザインタフェース制御部をさらに備える請求項1に記載の情報処理装置。

請求項3

前記ユーザインタフェース制御部は、前記移動特性に基づいて前記ユーザのピッチとストライドのバランスを分析した結果を提示するように制御する請求項2に記載の情報処理装置。

請求項4

前記ユーザインタフェース制御部は、前記ユーザのピッチとストライドのバランス、及び、スピードの時系列推移を提示するように制御する請求項3に記載の情報処理装置。

請求項5

前記ユーザインタフェース制御部は、複数の時点における前記ユーザのピッチとストライドのバランスを比較した結果、又は、複数のユーザのピッチとストライドのバランスを比較した結果のうち少なくとも一方の提示を制御する請求項2に記載の情報処理装置。

請求項6

前記ユーザの前記移動特性に基づいて、前記ユーザの移動状態を分析する状態分析部をさらに備える請求項1に記載の情報処理装置。

請求項7

前記誘導部は、スピード、ピッチ、及び、ストライドのうちの1つを固定し、残りの2つを変化させるように誘導する請求項1に記載の情報処理装置。

請求項8

前記誘導部は、前記ユーザの心拍数又は脈拍数がほぼ一定になるように、前記ユーザのピッチ及びストライドを誘導する請求項1に記載の情報処理装置。

請求項9

前記ユーザのスタミナ特性に基づいて、前記ユーザが移動するコースにおけるピッチとストライドの配分、及び、前記コースにおけるスピードの配分のうち少なくとも一方を含むプランを作成するプラン作成部をさらに備え、前記誘導部は、前記プランに基づいて、前記ユーザのスピード、ピッチ、及び、ストライドの誘導を行う請求項1に記載の情報処理装置。

請求項10

前記プラン作成部は、前記ユーザの移動状態、並びに、調子に基づいて、前記ユーザの移動中に前記プランを更新する請求項9に記載の情報処理装置。

請求項11

前記プラン作成部は、前記コースの残りの距離に基づいて、ゴール時の前記ユーザのスタミナ量の余りを調整しながら、前記プランを更新する請求項9に記載の情報処理装置。

請求項12

前記スタミナ特性は、前記ユーザのスピード、ピッチ、及び、ストライドのうちの少なくとも1つ、残存スタミナ量、並びに、スタミナ効率の関係を示すスタミナ効率特性と、前記ユーザのスタミナ容量とを含む請求項9に記載の情報処理装置。

請求項13

前記誘導部は、前記ユーザのスピードが所定の閾値未満の場合、ストライドの誘導を行い、前記ユーザのスピードが前記閾値以上の場合、ピッチの誘導を行う請求項1に記載の情報処理装置。

請求項14

主にストライドを伸ばすことにより加速する方法と主にピッチを速くすることにより加速する方法とを切り替える速度である切替速度より遅い第1のスピード、前記切替速度より速い第2のスピード、及び、前記第1のスピードと第2のスピードの間の第3のスピードの少なくとも3つのスピードにおける前記ユーザのピッチ及びストライドの測定結果に基づいて、前記ユーザの前記移動特性を分析する移動特性分析部をさらに備える請求項1に記載の情報処理装置。

請求項15

前記ユーザのスピード、ストライド及びピッチのうち少なくとも1つを誘導しながら測定した心拍数又は脈拍数の測定結果に基づいて、前記ユーザの心肺能力を分析する心肺能力分析部をさらに備える請求項1に記載の情報処理装置。

請求項16

前記心肺能力は、前記ユーザの標準心拍数及び最高心拍数を含む請求項15に記載の情報処理装置。

請求項17

前記ユーザのスピード、ストライド及びピッチのうち少なくとも1つを誘導しながら測定したスピード、並びに、心拍数又は脈拍数の測定結果に基づいて、前記ユーザのスタミナ特性を分析するスタミナ特性分析部をさらに備える請求項1に記載の情報処理装置。

請求項18

前記移動特性は、前記ユーザの走行時の各スピードにおけるピッチ及びストライドの組み合わせを示し、前記移動状態は、前記ユーザの走行状態である請求項2に記載の情報処理装置。

請求項19

ユーザのセンシング情報を利用して、前記ユーザの移動時のスピード、ピッチ、及び、ストライドの関係を示す移動特性に基づいて、前記ユーザのスピード、ピッチ、及び、ストライドのうち少なくとも1つの誘導を行う誘導ステップを含む情報処理方法

請求項20

ユーザのセンシング情報を利用して、前記ユーザの移動時のスピード、ピッチ、及び、ストライドの関係を示す移動特性に基づいて、前記ユーザのスピード、ピッチ、及び、ストライドのうち少なくとも1つの誘導を行う誘導ステップを含む処理をコンピュータに実行させるためのプログラム

技術分野

0001

本技術は、情報処理装置情報処理方法、及び、プログラムに関し、特に、ランニング等の人の移動の支援を適切に行うことができるようにした情報処理装置、情報処理方法、及び、プログラムに関する。

背景技術

0002

従来、ユーザにウエアラブル端末を装着し、速度、加速度ペース歩数レート心拍数等モニタリングし、ユーザのパフォーマンストレーニング方法等についてのフィードバックインタラクションを行うシステムが提案されている(例えば、特許文献1参照)。

先行技術

0003

特開2013−78593号公報

発明が解決しようとする課題

0004

しかしながら、特許文献1に記載の発明では、ユーザのピッチ及びストライドに基づいて、ユーザの走行状態分析することは検討されていない。従って、特許文献1に記載の発明では、ピッチ及びストライドの観点からランニングの支援を行うことができない。例えば、特許文献1に記載の発明では、ユーザのピッチ及びストライドについて適切なアドバイストレーニングを行うことができない。

0005

そこで、本技術は、ランニング等の人の移動の支援を適切に行うことができるようにするものである。

課題を解決するための手段

0006

本技術の一側面の情報処理装置は、ユーザのセンシング情報を利用して、前記ユーザの移動時のスピード、ピッチ、及び、ストライドの関係を示す移動特性に基づいて、前記ユーザのスピード、ピッチ、及び、ストライドのうち少なくとも1つの誘導を行う誘導部を備える。

0007

前記ユーザの前記移動特性、並びに、前記移動特性に基づいて前記ユーザの移動状態を分析した結果のうち少なくとも一方の提示を制御するユーザインタフェース制御部をさらに設けることができる。

0008

前記ユーザインタフェース制御部には、前記移動特性に基づいて前記ユーザのピッチとストライドのバランスを分析した結果を提示するように制御させることができる。

0009

前記ユーザインタフェース制御部には、前記ユーザのピッチとストライドのバランス、及び、スピードの時系列推移を提示するように制御させることができる。

0010

前記ユーザインタフェース制御部には、複数の時点における前記ユーザのピッチとストライドのバランスを比較した結果、又は、複数のユーザのピッチとストライドのバランスを比較した結果のうち少なくとも一方の提示を制御させることができる。

0011

前記ユーザの前記移動特性に基づいて、前記ユーザの移動状態を分析する状態分析部をさらに設けることができる。

0012

前記誘導部には、スピード、ピッチ、及び、ストライドのうちの1つを固定し、残りの2つを変化させるように誘導させることができる。

0013

前記誘導部には、前記ユーザの心拍数又は脈拍数がほぼ一定になるように、前記ユーザのピッチ及びストライドを誘導させることができる。

0014

前記ユーザのスタミナ特性に基づいて、前記ユーザが移動するコースにおけるピッチとストライドの配分、及び、前記コースにおけるスピードの配分のうち少なくとも一方を含むプランを作成するプラン作成部をさらに設け、前記誘導部には、前記プランに基づいて、前記ユーザのスピード、ピッチ、及び、ストライドの誘導を行わせることができる。

0015

前記プラン作成部には、前記ユーザの移動状態、並びに、調子に基づいて、前記ユーザの移動中に前記プランを更新させることができる。

0016

前記プラン作成部には、前記コースの残りの距離に基づいて、ゴール時の前記ユーザのスタミナ量の余りを調整しながら、前記プランを更新させることができる。

0017

前記スタミナ特性は、前記ユーザのスピード、ピッチ、及び、ストライドのうちの少なくとも1つ、残存スタミナ量、並びに、スタミナ効率の関係を示すスタミナ効率特性と、前記ユーザのスタミナ容量とを含むことができる。

0018

前記誘導部には、前記ユーザのスピードが所定の閾値未満の場合、ストライドの誘導を行い、前記ユーザのスピードが前記閾値以上の場合、ピッチの誘導を行わせることができる。

0019

主にストライドを伸ばすことにより加速する方法と主にピッチを速くすることにより加速する方法とを切り替える速度である切替速度より遅い第1のスピード、前記切替速度より速い第2のスピード、及び、前記第1のスピードと第2のスピードの間の第3のスピードの少なくとも3つのスピードにおける前記ユーザのピッチ及びストライドの測定結果に基づいて、前記ユーザの前記移動特性を分析する移動特性分析部をさらに設けることができる。

0020

前記ユーザのスピード、ストライド及びピッチのうち少なくとも1つを誘導しながら測定した心拍数又は脈拍数の測定結果に基づいて、前記ユーザの心肺能力を分析する心肺能力分析部をさらに設けることができる。

0021

前記心肺能力は、前記ユーザの標準心拍数及び最高心拍数を含むことができる。

0022

前記ユーザのスピード、ストライド及びピッチのうち少なくとも1つを誘導しながら測定したスピード、並びに、心拍数又は脈拍数の測定結果に基づいて、前記ユーザのスタミナ特性を分析するスタミナ特性分析部をさらに設けることができる。

0023

前記移動特性は、前記ユーザの走行時の各スピードにおけるピッチ及びストライドの組み合わせを示し、前記移動状態は、前記ユーザの走行状態であるようにすることができる。

0024

本技術の一側面の情報処理方法は、ユーザのセンシング情報を利用して、前記ユーザの移動時のスピード、ピッチ、及び、ストライドの関係を示す移動特性に基づいて、前記ユーザのスピード、ピッチ、及び、ストライドのうち少なくとも1つの誘導を行う誘導ステップを含む。

0025

本技術の一側面のプログラムは、ユーザのセンシング情報を利用して、前記ユーザの移動時のスピード、ピッチ、及び、ストライドの関係を示す移動特性に基づいて、前記ユーザのスピード、ピッチ、及び、ストライドのうち少なくとも1つの誘導を行う誘導ステップを含む処理をコンピュータに実行させる。

0026

本技術の一側面においては、ユーザのセンシング情報を利用して、前記ユーザの移動時のスピード、ピッチ、及び、ストライドの関係を示す移動特性に基づいて、前記ユーザのスピード、ピッチ、及び、ストライドのうち少なくとも1つの誘導が行われる。

発明の効果

0027

本技術の第1の側面又は第2の側面によれば、ランニング等の人の移動の支援を適切に行うことができる。

0028

なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。

図面の簡単な説明

0029

スピード−ピッチ−ストライド特性の例を示すグラフである。
スピード−ピッチ特性の例を示すグラフである。
スピード−ストライド特性の例を示すグラフである。
ピッチ−ストライド特性の例を示すグラフである。
走行特性に基づいて走行状態を推定する例を説明するための図である。
走行特性に基づいて走行状態を推定する例を説明するための図である。
本技術を適用した情報処理システムの一実施の形態を示すブロック図である。
サーバの構成例を示すブロック図である。
サーバのCPUにより実現される機能の構成例を示すブロック図である。
携帯端末の構成例を示すブロック図である。
携帯端末のCPUにより実現される機能の構成例を示すブロック図である。
ウエアラブル端末の構成例を示すブロック図である。
ウエアラブル端末の第1の例を示す外観構成図である。
ウエアラブル端末の第2の例を示す外観構成図である。
ウエアラブル端末のCPUにより実現される機能の構成例を示すブロック図である。
情報処理システムにより実行される走行特性分析処理を説明するためのフローチャートである。
ピッチ切替速度の検出方法を説明するための図である。
ストライド切替速度の検出方法を説明するための図である。
走行特性の分析結果を提示する画面の第1の例を示す図である。
走行特性の分析結果を提示する画面の第2の例を示す図である。
走行特性の分析結果を提示する画面の第3の例を示す図である。
情報処理システムにより実行される心肺能力分析処理を説明するためのフローチャートである。
心肺能力の分析結果を提示する画面の第1の例を示す図である。
心肺能力の分析結果を提示する画面の第2の例を示す図である。
心肺能力の分析結果を提示する画面の第3の例を示す図である。
心肺能力の分析結果を提示する画面の第4の例を示す図である。
情報処理システムにより実行されるスタミナ特性分析処理を説明するためのフローチャートである。
スタミナ特性の分析結果を提示する画面の第1の例を示す図である。
スタミナ特性の分析結果を提示する画面の第2の例を示す図である。
スタミナ特性の分析結果を提示する画面の第3の例を示す図である。
クライアントにより実行される走行状態分析処理を説明するためのフローチャートである。
走行状態の分析結果を提示する画面の第1の例を示す図である。
走行状態の分析結果を提示する画面の第2の例を示す図である。
走行状態の分析結果を提示する画面の第3の例を示す図である。
図34のグラフを拡大した図である。
走行状態の分析結果を提示する画面の第4の例を示す図である。
走行状態の分析結果を提示する画面の第5の例を示す図である。
走行状態の分析結果を提示する画面の第6の例を示す図である。
走行状態の分析結果を提示する画面の第7の例を示す図である。
走行状態の分析結果を提示する画面の第8の例を示す図である。
走行状態の分析結果を提示する画面の第9の例を示す図である。
走行状態の分析結果を提示する画面の第10の例を示す図である。
走行状態の分析結果を提示する画面の第11の例を示す図である。
クライアントにより実行されるデータ比較処理を説明するためのフローチャートである。
データの比較結果を提示する画面の第1の例を示す図である。
データの比較結果を提示する画面の第2の例を示す図である。
データの比較結果を提示する画面の第3の例を示す図である。
データの比較結果を提示する画面の第4の例を示す図である。
クライアントにより実行される走行パラメータコントロールトレーニング支援処理を説明するためのフローチャートである。
走行パラメータコントロールトレーニング支援処理の例を説明するための図である。
走行パラメータコントロールトレーニング支援処理の例を説明するための図である。
走行パラメータコントロールトレーニング支援処理の例を説明するための図である。
走行パラメータコントロールトレーニング支援処理の例を説明するための図である。
クライアントにより実行される心拍維持トレーニング支援処理を説明するためのフローチャートである。
クライアントにより実行される心拍維持トレーニング支援処理を説明するためのフローチャートである。
心拍維持トレーニング支援処理の例を説明するための図である。
クライアントにより実行される走行支援処理を説明するためのフローチャートである。
走行プランの例を示す図である。
クライアントの走行支援処理に対応してサーバにより実行される走行プラン提供処理を説明するためのフローチャートである。
走行プラン作成処理の詳細を説明するためのフローチャートである。
誘導音テンポのみによりピッチの誘導を行う場合について説明するための図である。
誘導刺激設定処理を説明するためのフローチャートである。
誘導音と着地タイミング位相差を用いてピッチを誘導する場合について説明するための図である。
コンピュータの構成例を示すブロック図である。

実施例

0030

以下、本技術を実施するための形態(以下、実施の形態という)について説明する。なお、説明は以下の順序で行う。
1.用語の定義
2.人の走行特性
3.実施の形態
4.変形例

0031

<1.用語の定義>
まず、本明細書で使用する主な用語の定義を行う。以下、特に断りがない限り、各用語を以下の定義で使用する。

0032

スピードとは、人が走る速さのことであり、m/s(メートル毎秒)、m/min(メートル毎分)等の単位で表される。なお、スピードのことをペースとも称する。

0033

ピッチとは、人の足の回転数のことであり、step/min(ステップ毎分)等の単位で表される。なお、学術論文ではケイデンスという用語が用いられることが多いが、本明細書では、日本での認知度が高いピッチを主に使用する。

0034

ストライドとは、人の歩幅のことであり、m(メートル)、cm(センチメートル)等の単位で表される。なお、学術論文ではステップ長という用語が用いられることが多いが、本明細書では、日本での認知度が高いストライドを主に使用する。

0035

なお、スピード=ストライド×ピッチの関係となる。

0036

スタミナ量とは、以下の性質を有する体内リソースや体内生成物の量により定義されるパラメータのことである。例えば、走行時に消費された後、長い時間をかけて回復するため、走行時には消費優位となる性質を有する体内リソースが存在する。また、蓄積することで走行を阻害し、長い時間をかけて分解・排出される性質を有するため、走行時には蓄積優位となる性質を有する体内生成物が存在する。これらの体内リソース及び体内生成物の影響は、一般的に始めに良好に維持できていた走行状態が、走行距離の増加とともに悪化してゆく現象として観測される。スタミナ量は、例えば、これらの体内リソースや体内生成物の量により定義される。なお、体内生成物の蓄積量は、蓄積量を表す数値の符号を反転して考えることにより、体内リソースの消費量として扱うことができる。

0037

また、スタミナ量は、必ずしも実際の生理的物質の濃度や蓄積量等に対応する必要はなく、例えば、走行パターンと走行可能距離との関係を機械学習した際に現れる保存量的な性質を持つ内部変数により表される。なお、走行パターンとは、例えば、スピード、ピッチ、ストライドにより示されるパターンのことである。走行可能距離とは、歩いたり休憩を挟んだりせずに、走り続けることができる距離のことである。

0038

スタミナ枯渇点とは、スタミナ量を減少させながら継続的に走行した場合に、ある時点で急速に走行が悪化する時点のことである。

0039

スタミナ容量とは、調子が良く疲れも残っていない状態で走行を開始してからスタミナ枯渇点に達するまでに消費されたスタミナ量の累積値のことである。

0040

スタミナ量及びスタミナ容量は、1又は複数の体内リソースに対応した1又は複数の数値により表される。特定の体内リソースの枯渇が常に最初に発生するのであれば、他の体内リソースを考慮せずに、その特定の体内リソースの量により、スタミナ量及びスタミナ容量を定義することが可能である。しかし、実際には、例えば、筋疲労が支配的になったり、エネルギー供給停滞が支配的になったりする等、最初に枯渇する体内リソースが状況により変化する。従って、スタミナ量及びスタミナ容量は、通常、複数の体内リソースの量に基づく多次元ベクトルにより表される。

0041

残存スタミナ量とは、走行中のある時点からスタミナ枯渇点までに消費可能なスタミナ量のことである。

0042

消費スタミナ量とは、走行中のある時点と別の時点のスタミナ量の差のことである。

0043

スタミナ効率とは、単位距離あたりの消費スタミナ量の逆数のことである。従って、スタミナ効率が大きい値をとるほど、消費スタミナ量が小さく効率の良い走りであり、スタミナ効率が小さい値をとるほど、消費スタミナ量が大きく効率の悪い走りである。

0044

調子指数とは、人の調子を連続的な数値で表す指標のことであり、走行中のある時点の人の残存スタミナ量及びスタミナ効率を決定するのに用いられる。なお、人の調子は、体調や気分等の人の肉体的及び精神的な状態を表すものである。

0045

調子クラスとは、人の調子を表す不連続の指標のことであり、調子指数と同様に、走行中のある時点の人の残存スタミナ量及びスタミナ効率を決定するのに用いられる。例えば、調子クラスは、「良い」、「悪い」、「寝不足」等の不連続の値をとる。

0046

標準速度とは、ユーザが長距離を走るのに適したスピード、換言すれば、ユーザが長距離を走る際に快適に走ることができるスピードのことである。

0047

標準心拍数とは、ユーザが標準速度で走行しているときの心拍数のことである。

0048

持続可能心拍数とは、ユーザが所定の距離を持続して走行可能な心拍数の上限値又は上限値に近い心拍数のことである。

0049

心肺限界速度とは、ユーザが持続可能心拍数を維持することができるスピードのことである。

0050

<2.人の走行特性>
次に、図1乃至図6を参照して、本技術に適用する人の走行特性について説明する。

0051

図1乃至図4は、実験により得られた人の走行特性の典型例を示している。図1は、人の走行時のスピード、ピッチ、及び、ストライドの関係(以下、スピード−ピッチ−ストライド特性と称する)を示す3次元のグラフである。横方向(x方向)の軸は、スピードを表し、奥行き方向(y方向)の軸は、ストライドを表し、高さ方向(z方向)の軸は、ピッチを表している。図2は、人の走行時のスピードとピッチの関係(以下、スピード−ピッチ特性と称する)を示す2次元のグラフである。横軸はスピードを表し、縦軸はピッチを表している。図3は、人の走行時のスピードとストライドの関係(以下、スピード−ストライド特性と称する)を示す2次元のグラフである。横軸はスピードを表し、縦軸はストライドを表している。図4は、人の走行時のピッチとストライドの関係(以下、ピッチ−ストライド特性と称する)を示す2次元のグラフである。横軸はピッチを表し、縦軸はストライドを表している。

0052

図1乃至図4に示されるように、人が走るときのスピード、ピッチ、及び、ストライドの間には、以下の関係が存在することが実験により分かった。

0053

図2に示されるように、ピッチは、スピードに対してほぼ単調に増加する。すなわち、基本的に、スピードが速くなるほどピッチも速くなり、スピードが遅くなるほどピッチも遅くなる。

0054

図3に示されるように、ストライドは、スピードに対してほぼ単調に増加する。すなわち、基本的に、スピードが速くなるほどストライドは長くなり、スピードが遅くなるほどストライドは短くなる。ただし、一部の人においては、全力疾走時にわずかにストライドが短くなる現象が観察される場合がある。

0055

図4に示されるように、ストライドは、ピッチに対してほぼ単調に増加する。すなわち、基本的に、ピッチが速くなるほどストライドは長くなり、ピッチが遅くなるほどストライドは短くなる。ただし、一部の人においては、最もピッチが速くなる領域でわずかにストライドが短くなる現象が観察される場合がある。

0056

また、図2に示されるように、スピードに対するピッチの変動率(以下、ピッチ変動率と称する)は、所定のスピード(以下、ピッチ切替速度と称する)付近を境に大きく変化する。すなわち、ピッチ切替速度未満の範囲において、ピッチ変動率は小さくなり、ピッチ切替速度以上の範囲において、ピッチ変動率は大きくなる。従って、スピードがピッチ切替速度に達するまでは、スピードに対するピッチの伸びは小さくなり、スピードがピッチ切替速度以上になると、スピードに対するピッチの伸びが大きくなる。

0057

一方、図3に示されるように、スピードに対するストライドの変動率(以下、ストライド変動率と称する)は、所定のスピード(以下、ストライド切替速度と称する)付近を境に大きく変化する。すなわち、ストライド切替速度未満の範囲において、ストライド変動率は大きくなり、ストライド切替速度以上の範囲において、ストライド変動率は小さくなる。従って、スピードがストライド切替速度に達するまでは、スピードに対するストライドの伸びは大きくなり、スピードがストライド切替速度以上になると、スピードに対するストライドの伸びは小さくなる。

0058

そして、ピッチ切替速度とストライド切替速度は、定義上は別の値を取り得るが、実測すると多くの人でほぼ同じ値になる。これにより、人は、所定のスピードに達するまでは、主にストライドを伸ばすことにより加速し、所定のスピードに達した後は、主にピッチを速くすることにより加速することが分かる。すなわち、人は、所定のスピードに達するまでの間、主にストライドを伸ばすことにより加速するストライド走法を行い、所定のスピードに達した後は、主にピッチを速くすることにより加速するピッチ走法に切り替える。換言すれば、人は遅く走るとき、ストライド走法を行い、速く走るとき、ピッチ走法を行う。

0059

そして、各個人固有の走行特性を有している。すなわち、人が走るとき、短期的にはその人特有再現性の高い走行特性を示す。一方、走行特性には個人差がある。

0060

より具体的には、走行特性は個人の違いによらず以下の特徴を示す。
・ピッチ及びストライドがスピードに対してほぼ単調増加する。
・ピッチ切替速度付近を境に、ピッチ変動率が大きく変化する。ピッチ切替速度以上の場合の方が、ピッチ切替速度未満の場合よりも、ピッチ変動率が大きくなる。
・ストライド切替速度付近を境に、ストライド変動率が大きく変化する。ストライド切替速度未満の場合の方が、ストライド切替速度以上の場合よりも、ストライド変動率が大きくなる。
・多くの人においてピッチ切替速度とストライド切替速度との差は小さい。

0061

一方、主に以下の項目の差により、走行特性に個人差が生じる。
・ピッチ切替速度
・ストライド切替速度
・ピッチ変動率
・ストライド変動率
・ピッチの最小値及び最大値
・ストライドの最小値及び最大値
・スピードの最大値

0062

また、各個人の走行特性は、トレーニング、体格筋力の変化、加齢等の要素により変化する。一方、各個人の走行特性は、外気温湿度、高度による影響をあまり受けないと推定される。

0063

このように、走行特性は、各個人の走行時の各スピードにおけるピッチとストライドの組み合わせを示している。また、各個人の走行特性を把握することにより、スピード、ピッチ及びストライドのうちの1つから、他の2つをほぼ正確に推定することが可能になる。例えば、走行中のスピードが分かれば、図1のグラフに基づいて、そのスピードに対するストライド及びピッチをほぼ正確に推定することができる。

0064

一方、従来は、この走行特性の存在が認識されていなかったため、スピード、ピッチ及びストライドのうち2つが分からないと、他の1つを求めることができなかった。

0065

また、各個人の走行特性と、スピード、ピッチ、ストライドの実測値とを比較することにより、各個人の現在の走行状態を推定することができる。

0066

例えば、図5及び図6は、ある人の走行特性の例を示している。図5は、スピード−ピッチ特性を示し、図6は、スピード−ストライド特性を示している。

0067

例えば、スピード、ピッチ及びストライドの実測値が、図5の点PA1及び図6の点PB1に示される値である場合、現在の走行状態は、以下のようにいくつもの見方で捉えることができる。

0068

例えば、図5の矢印A1a及び図6の矢印B1aに示されるように、現在の走行状態は、走行特性と比較して、同じスピードに対して、ピッチが速くなり、ストライドが短くなっているとみなすことができる。或いは、図5の矢印A1b及び図6の矢印B1bに示されるように、現在の走行状態は、走行特性と比較して、同じピッチに対して、ストライドが短くなり、スピードが遅くなっているとみなすことができる。或いは、図5の矢印A1c及び図6の矢印B1cに示されるように、現在の走行状態は、走行特性と比較して、同じストライドに対して、ピッチが速くなり、スピードが速くなっているとみなすことができる。以上のような様々な見方は、図5の点PA1のようにスピード/ピッチの特性曲線より上側に位置している点は、自身の走行特性に比べてピッチが勝った走りであることを意味している、と総括できる。

0069

また、例えば、スピード、ピッチ及びストライドの実測値が、図5の点PA2及び図6の点PB2に示される値である場合、現在の走行状態は、以下のような見方で捉えることができる。

0070

例えば、図5の矢印A2a及び図6の矢印B2aに示されるように、現在の走行状態は、走行特性と比較して、同じスピードに対して、ピッチが遅くなり、ストライドが長くなっているとみなすことができる。或いは、図5の矢印A2b及び図6の矢印B2bに示されるように、現在の走行状態は、通常の走行特性と比較して、同じピッチに対して、ストライドが長くなり、スピードが速くなっているとみなすことができる。以上のような様々な見方は、図5の点PA2のようにスピード/ピッチの特性曲線より下側に位置している点は、自身の走行特性に比べてストライドが勝った走りであることを意味している、と総括できる。

0071

本技術は、以上に説明した走行特性を利用して、走行状態、心肺能力、及び、スタミナ特性の分析、トレーニングの支援、走行プランの作成等を行う。

0072

<2.本技術の実施の形態>
次に、本技術の実施の形態について説明する。

0073

{情報処理システム101の構成例}
図7は、本技術の一実施の形態である情報処理システム101の構成例を示している。

0074

情報処理システム101は、ユーザにランニング支援サービスを提供するシステムである。ランニング支援サービスとは、例えば、走行特性、走行状態、心肺能力、及び、スタミナ特性の分析、トレーニングの支援、走行プランの作成等を行うサービスのことである。

0075

情報処理システム101は、サーバ111、クライアント112−1乃至112−n、及び、ネットワーク113を含むように構成される。クライアント112−i(i=1〜n)は、それぞれ携帯端末121−i(i=1〜n)及びウエアラブル端末122−i(i=1〜n)を含むように構成される。

0076

サーバ111と携帯端末121−1乃至121−nとは、ネットワーク113を介して相互に接続されている。より正確には、サーバ111、及び、携帯端末121−1乃至121−nは、それぞれ図示せぬ基地局等(例えば、携帯電話機の基地局、無線LANアクセスポイント等)を介してネットワーク113に接続されるが、説明を簡単にするために、基地局等の記載は省略する。

0077

なお、以下、クライアント112−1乃至112−n、携帯端末121−1乃至121−n、及び、ウエアラブル端末122−1乃至122−nを個々に区別する必要がない場合、それぞれ単に、クライアント112、携帯端末121、及び、ウエアラブル端末122と称する。

0078

サーバ111は、例えば、コンピュータ等により構成される。サーバ111は、サービス提供者が保有し、各クライアント112に対してランニング支援サービスの提供を行う。例えば、サーバ111は、ランニング支援サービスを利用するためのアプリケーションプログラムの提供、各ユーザの走行特性、走行状態、心肺能力、及び、スタミナ特性の分析、トレーニングメニュー及び走行プランの提供等を行う。

0079

各クライアント112は、ランニング支援サービスを利用する各ユーザが保有し、各ユーザは、クライアント112を介して、ランニング支援サービスを利用する。

0080

携帯端末121は、例えば、スマートフォン、携帯電話機、携帯情報端末等、ユーザが走行中に携帯可能なデバイスにより構成される。

0081

ウエアラブル端末122は、ユーザが走行中に装着可能なデバイスにより構成される。ウエアラブル端末122には、例えば、眼鏡型、腕時計型ブレスレット型ネックレス型、ネックバンド型、イヤフォン型、ヘッドセット型ヘッドマウント型バンダナ型、ヘアバンド側等の各種の方式のウエアラブルデバイスを採用することができる。

0082

携帯端末121とウエアラブル端末122とは、所定の方式により近距離無線通信を行う。

0083

{サーバ111の構成例}
次に、図8及び図9を参照して、サーバ111の構成例について説明する。

0084

図8は、サーバ111の構成例を示している。

0085

サーバ111は、CPU(Central Processing Unit)201、記憶部202、及び、通信部203を含むよう構成される。記憶部202は、主記憶装置211及び補助記憶装置212を含むように構成される。

0086

主記憶装置211は、例えば、ROM(Read Only Memory)、RAM(Random Access Memory)等により構成される。

0087

補助記憶装置212は、例えば、ハードディスクドライブフラッシュメモリ等により構成される。また、補助記憶装置212は、例えば、磁気ディスク光ディスク光磁気ディスク、又は、半導体メモリ等のリムーバブルメディア、及び、リムーバブルメディアを駆動するドライブ等により構成される。

0088

通信部203は、例えば、ネットワークインタフェース等により構成される。通信部203は、所定の方式により図示せぬ基地局と通信を行い、当該通信局及びネットワーク113を介して、各携帯端末121と通信を行う。通信部203の通信方式には、有線又は無線を問わず、任意の方式を採用することが可能である。ただし、クライアント112に安定してサービスが提供できるように、動作が安定した通信方式を採用することが望ましい。

0089

図9は、サーバ111のCPU201が所定のプログラムを実行することにより実現される機能の構成例を示している。CPU201が所定のプログラムを実行することにより、分析部251、走行プラン作成部252、受信制御部253、及び、送信制御部254を含む機能が実現される。分析部251は、走行特性分析部261、心肺能力分析部262、及び、スタミナ特性分析部263を含むように構成される。

0090

走行特性分析部261は、各クライアント112から取得した各ユーザのスピード、ピッチ、ストライド、心拍数等の測定結果に基づいて、各ユーザの走行特性の分析を行う。走行特性分析部261は、各ユーザの走行特性の分析結果を記憶部202に記憶させる。また、走行特性分析部261は、走行特性の分析結果に基づいて、各ユーザへのフィードバック情報を生成する。そして、走行特性分析部261は、生成したフィードバック情報を、送信制御部254、通信部203、及び、ネットワーク113を介して、各クライアント112に送信する。

0091

心肺能力分析部262は、各ユーザの走行特性、並びに、各クライアント112から取得した各ユーザのスピード、ピッチ、ストライド、心拍数等の測定結果に基づいて、各ユーザの心肺能力の分析を行う。心肺能力分析部262は、各ユーザの心肺能力の分析結果を記憶部202に記憶させる。また、心肺能力分析部262は、心肺能力の分析結果に基づいて、各ユーザへのフィードバック情報を生成する。そして、心肺能力分析部262は、生成したフィードバック情報を、送信制御部254、通信部203、及び、ネットワーク113を介して、各クライアント112に送信する。

0092

スタミナ特性分析部263は、各ユーザの走行特性及び心肺能力、並びに、各クライアント112から取得した各ユーザのスピード、ピッチ、ストライド、心拍数等の測定結果に基づいて、各ユーザのスタミナ特性の分析を行う。スタミナ特性分析部263は、各ユーザのスタミナ特性の分析結果を記憶部202に記憶させる。また、スタミナ特性分析部263は、スタミナ特性の分析結果に基づいて、各ユーザへのフィードバック情報を生成する。そして、スタミナ特性分析部263は、生成したフィードバック情報を、送信制御部254、通信部203、及び、ネットワーク113を介して、各クライアント112に送信する。

0093

走行プラン作成部252は、各ユーザの走行特性、心肺能力、及び、スタミナ特性、並びに、各クライアント112から取得した各ユーザのスピード、ピッチ、ストライド、心拍数等の測定結果に基づいて、各ユーザが走行するコースの走行プランの作成及び更新を行う。そして、走行プラン作成部252は、作成又は更新した走行プランを、送信制御部254、通信部203、及び、ネットワーク113を介して、各クライアント112に送信する。

0094

受信制御部253は、ネットワーク113を介して各携帯端末121から送信されてくるデータや情報の通信部203による受信を制御する。また、受信制御部253は、必要に応じて、受信したデータや情報をサーバ111の各部に供給したり、記憶部202に記憶させたりする。

0095

送信制御部254は、通信部203による各携帯端末121へのデータや情報の送信を制御する。

0096

なお、サーバ111の各部は、受信制御部253又は送信制御部254、通信部203、及び、ネットワーク113を介して、各クライアント112と通信を行うが、以下、説明を簡単にするために、「受信制御部253又は送信制御部254、通信部203、及び、ネットワーク113を介して」の記載は、基本的に省略する。

0097

{携帯端末121の構成例}
次に、図10及び図11を参照して、携帯端末121の構成例について説明する。

0098

図10は、携帯端末121の構成例を示している。

0099

携帯端末121は、CPU(Central Processing Unit)301、記憶部302、通信部303、近距離無線通信部304、入力部305、及び、出力部306を含むように構成される。記憶部302は、主記憶装置311、及び、補助記憶装置312を含むように構成される。

0100

主記憶装置311は、例えば、ROM(Read Only Memory)、RAM(Random Access Memory)等により構成される。

0101

補助記憶装置312は、例えば、ハードディスクドライブ、フラッシュメモリ等により構成される。また、補助記憶装置312は、例えば、磁気ディスク、光ディスク、光磁気ディスク、又は、半導体メモリ等のリムーバブルメディア及びリムーバブルメディアを駆動するドライブ等により構成される。

0102

通信部303は、所定の方式により、図示せぬ基地局と無線通信を行い、当該通信局及びネットワーク113を介して、サーバ111と通信を行う。通信部303の通信方式には、任意の方式を採用することが可能である。また、通信部303が、有線通信も行うようにしてもよい。

0103

近距離無線通信部304は、ウエアラブル端末122との間で所定の方式の近距離無線通信を行う。近距離無線通信部304の通信方式には、任意の方式を採用可能であり、例えば、Bluetooth(登録商標)、赤外線通信等が採用される。

0104

入力部305は、携帯端末121への指令、データ、音声コマンド等の入力に用いられる。例えば、入力部305は、各種の操作デバイス(例えば、タッチパネル、ボタン、スイッチ、キーキーボード等)、マイクロフォン画像センサ等により構成される。

0105

出力部306は、例えば、ディスプレイスピーカ映像出力端子音声出力端子等により構成され、画像又は音声等により各種の情報を出力する。

0106

図11は、携帯端末121のCPU301が所定のプログラムを実行することにより実現される機能の構成例を示している。

0107

CPU301が所定のプログラムを実行することにより、分析部351、誘導部352、UI(ユーザインタフェース)制御部353、受信制御部354、及び、送信制御部355を含むように構成される。分析部351は、走行状態分析部361を含むように構成される。

0108

走行状態分析部361は、ユーザの走行特性、心肺能力、スタミナ特性、並びに、ウエアラブル端末122から取得した各種の測定データに基づいて、ユーザの走行状態を分析する。走行状態分析部361は、ウエアラブル端末122から取得した測定データ、及び、走行状態の分析結果等を、記憶部302に記憶させたり、送信制御部355、通信部303、及び、ネットワーク113を介して、サーバ111に送信したりする。

0109

誘導部352は、受信制御部354又は送信制御部355、及び、近距離無線通信部403を介して、ウエアラブル端末122と通信を行い、ウエアラブル端末122により取得されるユーザのセンシング情報等を利用して、ウエアラブル端末122を介して、ユーザのスピード、ピッチ及びストライドの誘導を行う。

0110

UI制御部353は、入力部305及び出力部306によるデータ及び情報の入力、出力、提示等の制御を行う。また、UI制御部353は、必要に応じて、入力されたデータ及び情報を携帯端末121の各部に供給したり、記憶部302に記憶させたりする。

0111

受信制御部354は、ネットワーク113を介してサーバ111から送信されてくるデータや情報の通信部303による受信を制御する。また、受信制御部354は、ウエアラブル端末122から送信されてくるデータや情報の近距離無線通信部304による受信を制御する。さらに、受信制御部354は、必要に応じて、受信したデータや情報を携帯端末121の各部に供給したり、記憶部302に記憶させたりする。

0112

送信制御部355は、通信部303によるサーバ111へのデータや情報の送信を制御する。また、送信制御部355は、近距離無線通信部304によるウエアラブル端末122へのデータや情報の送信を制御する。

0113

なお、携帯端末121の各部は、受信制御部354又は送信制御部355、通信部303、及び、ネットワーク113を介して、サーバ111と通信を行うが、以下、説明を簡単にするために、「受信制御部354又は送信制御部355、通信部303、及び、ネットワーク113を介して」の記載は、基本的に省略する。また、携帯端末121の各部は、受信制御部354又は送信制御部355、及び、近距離無線通信部304を介して、ウエラブル端末122と通信を行うが、以下、説明を簡単にするために、「受信制御部354又は送信制御部355、及び、近距離無線通信部304を介して」の記載は、基本的に省略する。さらに、携帯端末121の出力部306は、UI制御部353の制御の下に、各種の情報の出力を行うが、以下、説明を簡単にするために、「UI制御部353の制御の下に」の記載は、基本的に省略する。

0114

{ウエアラブル端末122の構成例}
次に、図12乃至図15を参照して、ウエアラブル端末122の構成例について説明する。

0115

図12は、ウエアラブル端末122の構成例を示している。

0116

ウエアラブル端末122は、CPU(Central Processing Unit)401、記憶部402、近距離無線通信部403、入力部404、出力部405、及び、測定部406を含むように構成される。記憶部402は、主記憶装置411、及び、補助記憶装置412を含むように構成される。測定部406は、GPS(Global Positioning System)受信機421、心拍センサ422、加速度センサ423、ジャイロセンサ424、気圧センサ425、温度センサ426、及び、湿度センサ427を含むように構成される。この測定部406により、ユーザのセンシング情報等が取得される。

0117

主記憶装置411は、例えば、ROM(Read Only Memory)、RAM(Random Access Memory)等により構成される。

0118

補助記憶装置412は、例えば、ハードディスクドライブ、フラッシュメモリ等により構成される。また、補助記憶装置412は、例えば、磁気ディスク、光ディスク、光磁気ディスク、又は、半導体メモリ等のリムーバブルメディア及びリムーバブルメディアを駆動するドライブ等により構成される。

0119

近距離無線通信部403は、携帯端末121の近距離無線通信部304と同様の方式により、近距離無線通信部304と通信を行う。

0120

入力部404は、ウエアラブル端末122への指令、データ、音声コマンド等の入力に用いられる。例えば、入力部404は、各種の操作デバイス(例えば、タッチパネル、ボタン、スイッチ、キー、キーボード等)、マイクロフォン、画像センサ等により構成される。

0121

出力部405は、例えば、ディスプレイ、スピーカ、イヤフォン、発光素子振動モジュール等により構成される。或いは、例えば、出力部405は、映像出力端子、音声出力端子等により構成される。出力部405は、例えば、画像、音声、光、又は、振動等により各種の情報を出力する。

0122

図13は、ウエアラブル端末122の第1の例であるウエアラブル端末122aの外観の構成例を示している。

0123

ウエアラブル端末122aは、眼鏡、サングラスゴーグル等のアイウエア451に装着して使用される。ウエアラブル端末122aは、左右の本体部441L及び441R、ディスプレイ442、光学ユニット443、及び、ネックバンド444を含むように構成される。本体部441Lと本体部441Rとは、ネックバンド444を介して接続されている。

0124

本体部441L,441Rには、例えば、図12のCPU401、主記憶装置411、補助記憶装置412、近距離無線通信部403、入力部404、出力部405、及び、測定部406の少なくとも一部が格納される。

0125

ディスプレイ442及び光学ユニット443は、図12の出力部405に含まれる。ディスプレイ442は、例えば、有機EL(Electro Luminescence)ディスプレイ等のディスプレイにより構成される。光学ユニット443は、例えば、レンズ等により構成される。ユーザは、アイウエア451を装着した状態で、周囲を見ながら、光学ユニット443を介して、右目でディスプレイ442に表示される画像を見ることができる。

0126

図14は、ウエアラブル端末122の第2の例であるウエアラブル端末122bの外観の構成例を示している。

0127

ウエアラブル端末122bは、ネックバンド型のウエアラブル端末であり、左右の本体部461L及び461R、並びに、ネックバンド462を含むように構成される。本体部461Lと本体部461Rとは、ネックバンド462により接続されている。

0128

本体部461L,461Rには、例えば、図12のCPU401、主記憶装置411、補助記憶装置412、近距離無線通信部403、入力部404、出力部405、及び、測定部406の少なくとも一部が格納される。

0129

ユーザは、例えば、本体部461L,461Rに設けられているイヤフォン(不図示)を両に装着し、装着したイヤフォンを介して音声情報を聞くことができる。

0130

図15は、ウエアラブル端末122のCPU401が所定のプログラムを実行することにより実現される機能の構成例を示している。

0131

CPU401が所定のプログラムを実行することにより、データ収集部471、UI(ユーザインタフェース)制御部472、受信制御部473、及び、送信制御部474を含むように構成される。

0132

データ収集部471は、測定部406の各デバイスから出力される測定データを収集し、収集した測定データを、送信制御部474及び近距離無線通信部403を介して、携帯端末121に送信する。

0133

UI制御部472は、入力部404及び出力部405によるデータ及び情報の入力、出力、提示等の制御を行う。また、UI制御部472は、必要に応じて、入力されたデータ及び情報をウエアラブル端末122の各部に供給したり、記憶部402に記憶させたりする。

0134

受信制御部473は、携帯端末121から送信されてくるデータや情報の近距離無線通信部403による受信を制御する。受信制御部473は、必要に応じて、受信したデータや情報をウエアラブル端末122の各部に供給したり、記憶部402に記憶させたりする。

0135

送信制御部355は、近距離無線通信部403による携帯端末121へのデータや情報の送信を制御する。

0136

なお、ウエアラブル端末122の各部は、受信制御部473又は送信制御部474、及び、近距離無線通信部403を介して、携帯端末121と通信を行うが、以下、説明を簡単にするために、「受信制御部473又は送信制御部474、及び、近距離無線通信部403を介して」の記載は、基本的に省略する。また、ウエアラブル端末122の出力部405は、UI制御部472の制御の下に、各種の情報の出力を行うが、以下、説明を簡単にするために、「UI制御部472の制御の下に」の記載は、基本的に省略する。

0137

{情報処理システム101の処理}
次に、情報処理システム101の処理について説明する。

0138

(走行特性分析処理)
まず、図16のフローチャートを参照して、情報処理システム101により実行される走行特性分析処理について説明する。例えば、この処理は、走行特性の分析対象となるユーザ(以下、この処理において対象ユーザと称する)が、携帯端末121又はウエアラブル端末122に走行特性分析処理の実行の指令を入力したとき開始される。

0139

テップS1において、クライアント112は、低速走行時の測定を行う。例えば、携帯端末121の誘導部352は、走行特性分析処理の開始をウエアラブル端末122に通知する。ウエアラブル端末122の出力部405は、例えば、「あなたの走りのパターンを分析します。3つのステップで走りを計測します。」という音声メッセージを出力する。

0140

次に、携帯端末121の誘導部352は、低速走行時の測定をウエアラブル端末122に指令する。ウエアラブル端末122の出力部405は、例えば、「まずはゆっくりジョギングしてください。」という音声メッセージを出力し、対象ユーザに低速走行を促す。これにより、対象ユーザは、ストライド切替速度より遅いスピードでストライド走法を行う。ウエアラブル端末122のデータ収集部471は、測定部406の各デバイスから出力される測定データを収集し、収集した測定データを携帯端末121に送信する。

0141

携帯端末121の走行状態分析部361は、受信した測定データに基づいて、対象ユーザの低速走行時のスピード、ピッチ及びストライドを測定する。スピード、ピッチ及びストライドの測定方法には、任意の方法を採用することができるが、以下に測定方法の一例を挙げる。

0142

例えば、走行状態分析部361は、GPS受信機421の測定データに基づいて、離れた2点間所要時間を測定し、2点間の距離を所要時間で割ることにより、対象ユーザのスピードを測定する。或いは、走行状態分析部361は、加速度センサ423の測定データを積分することにより、対象ユーザのスピードを測定する。或いは、走行状態分析部361は、加速度センサ423の測定データの変化パターンに基づいて、他の方法により測定したスピードをキャリブレーションすることにより、対象ユーザのスピードを測定する。

0143

また、例えば、走行状態分析部361は、加速度センサ423の測定データの変化パターンを分析することにより、対象ユーザのピッチを推定する。そして、走行状態分析部361は、上記の方法により測定したスピードを、上推定したピッチで割ることにより、対象ユーザのストライドを算出する。

0144

或いは、例えば、走行状態分析部361は、スピードの実測値を推定ピッチで割った推定ストライドを教師データとし、加速度センサ423の波形の特徴量を入力データとして機械学習を行う。そして、走行状態分析部361は、機械学習の結果を用いて、加速度センサ423の波形の特徴量に基づいて、ストライドの推定を行う。これにより、物理量ではなく、走り方の癖に基づいてストライドを推定するため、加速度センサ423の精度が低くても、ストライドの推定精度が低下しない。また、走り方の癖に基づくため、例えば、後述する残存スタミナ量を推定するパラメータとしては、実際のストライドより優れている。さらに、例えば、残存スタミナ量や調子指数等により、学習結果補正を加えることにより、ストライドの推定精度をより向上させることができる。

0145

その後、誘導部352は、低速走行時の測定の完了をウエアラブル端末122に通知する。ウエアラブル端末122の出力部405は、例えば、「ジョギングの分析が完了しました。」という音声メッセージを出力する。

0146

ステップS2において、クライアント112は、標準速走行時の測定を行う。例えば、ウエアラブル端末122の出力部405は、「快調に走れるペースでしばらく走ってください。」という音声メッセージを出力し、対象ユーザに標準速走行を促す。標準速走行時の対象ユーザのスピードは、ジョギング時に比べてストライド切替速度及びピッチ切替速度に近づく。そして、低速走行時と同様の処理により、測定データの収集、並びに、対象ユーザの標準速走行時のスピード、ピッチ及びストライドの測定が行われる。その後、携帯端末121の誘導部352は、標準速走行時の測定の完了をウエアラブル端末122に通知する。ウエアラブル端末122の出力部405は、例えば、「快適な走りの分析が完了しました。」という音声メッセージを出力する。

0147

ステップS3において、クライアント112は、高速走行時の測定を行う。例えば、ウエアラブル端末122の出力部405は、「最後にラストスパートのつもりで100m程全力疾走してください。」という音声メッセージを出力し、対象ユーザに高速走行を促す。これにより、対象ユーザは、ピッチ切替速度より速いスピードでピッチ走法を行う。そして、低速走行時及び標準速走行時と同様の処理により、測定データの収集、並びに、対象ユーザの高速走行時のスピード、ピッチ及びストライドの測定が行われる。

0148

ステップS4において、クライアント112は、測定結果等を送信する。例えば、携帯端末121の走行状態分析部361は、対象ユーザの低速走行時、標準速走行時、及び、高速走行時のスピード、ピッチ、ストライド、及び、心拍数の測定結果、測定時の環境情報、並びに、ユーザ情報をウエアラブル端末122に送信する。測定時の環境情報には、例えば、測定した日時、外気温等が含まれる。ユーザ情報には、例えば、対象ユーザを識別するためのID情報年齢性別、体格(身長、体重等)等の情報が含まれる。ユーザ情報は、例えば、事前に対象ユーザに入力される。

0149

ステップS5において、サーバ111の受信制御部253は、クライアント112から送信された測定結果等を受信し、受信した測定結果等を記憶部202に記憶させる。

0150

ステップS6において、サーバ111の走行特性分析部261は、走行特性を分析する。

0151

例えば、走行特性分析部261は、事前に複数のユーザのスピード−ピッチ−ストライド特性の分析を行い、スピード−ピッチ−ストライド特性曲線のパターン(位置や形状等)を複数のクラスタ分類する。そして、走行特性分析部261は、対象ユーザの低速走行時、標準速走行時、及び、高速走行時のスピード、ピッチ及びストライドの測定結果に基づいて、対象ユーザのスピード−ピッチ−ストライド特性曲線が属するクラスタを推定する。例えば、走行特性分析部261は、各クラスタのスピード−ピッチ−ストライド特性曲線と、対象ユーザの低速走行時、標準速走行時、及び、高速走行時のスピード、ピッチ及びストライドの測定値との間の距離が最小となるクラスタを、対象ユーザのスピード−ピッチ−ストライド特性曲線が属するクラスタであると推定する。

0152

そして、走行特性分析部261は、対象ユーザが属すると推定したクラスタのスピード−ピッチ−ストライド特性曲線を、対象ユーザの低速走行時、標準速走行時、及び、高速走行時のスピード、ピッチ及びストライドの測定値にフィッティングさせる。これにより、対象ユーザのスピード−ピッチ−ストライド特性曲線が生成される。

0153

なお、同様の方法により、スピード−ピッチ特性曲線、スピード−ストライド特性曲線、及び、ピッチ−ストライド特性曲線のうちの2つ以上を生成するようにしてもよい。

0154

なお、以下、スピード−ピッチ−ストライド特性曲線、スピード−ピッチ特性曲線、スピード−ストライド特性曲線、及び、ピッチ−ストライド特性曲線を、まとめて走行特性曲線と総称する。

0155

そして、走行特性分析部261は、対象ユーザのスピード、ピッチ及びストライドの測定データが増えるに従い、収集した測定データを用いてフィッティングを繰り返し、対象ユーザの走行特性曲線を更新し、精度を高めてゆく。

0156

なお、走行特性分析部261は、例えば、クラスタリングの手法を用いずに、対象ユーザのスピード、ピッチ及びストライドの測定データのみに基づいて、対象ユーザの走行特性曲線を生成するようにしてもよい。或いは、走行特性分析部261は、クラスタリングの手法を用いる場合と、対象ユーザの測定データのみを用いる場合を適宜切り替えてもよい。或いは、走行特性分析部261は、両者の手法で生成した走行特性曲線を、所定の重みで合成することにより、最終的な走行特性曲線を生成するようにしてもよい。

0157

また、走行特性分析部261は、走行環境の影響を考慮して、走行特性を分析するようにしてもよい。例えば、走行特性分析部261は、環境情報の1つである路面のコンディションをパラメータに加えて、走行特性曲線を生成する。或いは、走行特性分析部261は、例えば、路面のコンディションを複数の範囲に分け、範囲毎に異なる走行特性曲線を生成する。これにより、走行特性曲線の精度が向上する。なお、路面のコンディションには、例えば、傾斜角、路面の材質アスファルト石畳、土等)、濡れているか乾いているか等が含まれる。また、路面のコンディションは、地図情報天気データユーザ入力等により取得又は推定することができる。

0158

さらに、走行特性分析部261は、対象ユーザの調子指数又は調子クラスに基づいて、対象ユーザの調子を複数のクラスに分類し、クラス毎に走行特性曲線を生成するようにしてもよい。

0159

さらに、走行特性分析部261は、対象ユーザのピッチ切替速度及びストライド切替速度を検出する。

0160

図17は、対象ユーザのスピードとピッチの測定データの分布の例を示している。横軸がスピードであり、縦軸がピッチである。例えば、走行特性分析部261は、分岐点P1を横軸(スピード)方向に移動させながら、分岐点P1よりスピードが遅い領域における直線又は曲線と、分岐点P1よりスピードが速い領域における直線又は曲線のフィッティングを個別に行う。そして、走行特性分析部261は、測定値との誤差が最小となる分岐点P1におけるスピードを、対象ユーザのピッチ切替速度とする。

0161

図18は、対象ユーザのスピードとストライドの測定データの分布の例を示している。横軸がスピードであり、縦軸がストライドである。例えば、走行特性分析部261は、分岐点P2を横軸(スピード)方向に移動させながら、分岐点P2よりスピードが遅い領域における直線又は曲線と、分岐点P2よりスピードが速い領域における直線又は曲線のフィッティングを個別に行う。そして、走行特性分析部261は、測定値との誤差が最小となる分岐点P2におけるスピードを、対象ユーザのストライド切替速度とする。

0162

また、走行特性分析部261は、ピッチ切替速度及びストライド切替速度に基づいて、対象ユーザのストライド・ピッチ切替速度を設定する。ここで、ストライド・ピッチ切替速度とは、対象ユーザがストライド走法とピッチ走法の切り替えを行うと推定されるスピードのことである。そして、対象ユーザの走行の誘導を行う場合、ストライド・ピッチ切替速度において、誘導する方法の切り替えが行われる。

0163

例えば、走行特性分析部261は、ピッチ切替速度とストライド切替速度が一致する場合、その一致するスピードをストライド・ピッチ切替速度に設定する。一方、走行特性分析部261は、ピッチ切替速度とストライド切替速度が一致しない場合、例えば、いずれか一方の速度をストライド・ピッチ切替速度に設定したり、或いは、ピッチ切替速度とストライド切替速度の中間の速度をストライド・ピッチ切替速度に設定したりする。或いは、両者の間に挟まれた領域が、切替領域として設定される。

0164

走行特性分析部261は、対象ユーザの走行特性の分析結果を記憶部202に記憶させる。

0165

ステップS7において、走行特性分析部261は、フィードバック情報を生成する。例えば、走行特性分析部261は、対象ユーザの走行特性の分析結果、及び、対象ユーザへのメッセージを含むフィードバック情報を生成する。対象ユーザへのメッセージは、例えば、走行特性の分析結果の説明、走行特性に基づく対象ユーザへのアドバイス等を含む。

0166

ステップS8において、サーバ111の走行特性分析部261は、対象ユーザの携帯端末121にフィードバック情報を送信し、サーバ111の処理は終了する。

0167

ステップS9において、携帯端末121のUI制御部353は、サーバ111から送信されたフィードバック情報を受信する。

0168

ステップS10において、クライアント112は、フィードバック情報を提示し、クライアント112の処理は終了する。例えば、携帯端末121の出力部306は、図19の画面を表示することにより、対象ユーザにフィードバック情報を提示する。図19の画面には、吹き出し501a、グラフ502、及び、ボタン503aが表示されている。

0169

吹き出し501a内には、対象ユーザへのメッセージが表示されている。この例では、走行を繰り返すほど走行特性の分析精度が向上することを伝えるメッセージが含まれている。

0170

グラフ502は、走行特性分析処理により得られた対象ユーザのピッチ−ストライド特性曲線である。なお、出力部306は、他の種類の走行特性曲線を表示するようにしてもよい。

0171

ボタン503aを押下すると、対象ユーザへのアドバイスが表示される。図20及び図21は、ボタン503aを押下した場合に表示される画面の例を示している。

0172

図20及び図21の画面には、吹き出し501aの代わりに、吹き出し501b及び501cがそれぞれ表示され、ボタン503aの代わりにボタン503b及び503cがそれぞれ表示されている。グラフ502は、そのまま継続して表示される。なお、図21の画面は、図19の画面と同じユーザに対するものであり、図20の画面は、図19の画面と異なるユーザに対するものである。

0173

吹き出し501b及び501cには、例えば、対象ユーザの現在の状態、及び、対象ユーザへのアドバイス等が表示されている。例えば、吹き出し501bには、対象ユーザへのアドバイスが表示されている。アドバイスの内容は、対象ユーザの走行特性に基づいて変化する。例えば、この例では、ストライドをまず伸ばすことを推奨するメッセージが表示されている。或いは、例えば、所定の距離(例えば、1km)を走れるペースを見つけるよう促すメッセージを表示するようにしてもよい。吹き出し501cには、対象ユーザの走りに対する評価が表示されている。また、次の心肺能力とスタミナ特性の測定を行うよう促すメッセージが表示されている。

0174

ボタン503bを押下すると、例えば、吹き出し511内のアドバイスを実現するためのトレーニング法が表示される。

0175

ボタン503cを押下すると、例えば、図22を参照して後述する心肺能力の測定を行うことができる。

0176

以上のようにして、対象ユーザの走行特性を分析することができる。また、図1乃至図4を参照して上述した人の走行特性に対する知見を用いて分析することにより、少ない測定データで対象ユーザの走行特性を正確に分析することができる。また、複数のユーザの走行特性をクラスタリングし、対象ユーザが属するクラスタの走行特性に基づいて分析することにより、低速走行時、標準速走行時、及び、高速走行時のスピード、ピッチ及びストライドを測定するだけで、対象ユーザの走行特性を正確に分析することができる。

0177

従って、対象ユーザは、ランニング支援サービスの利用開始後すぐに、自分の走行特性を知るとともに、走行特性に応じた適切なアドバイスを受けることができる。これにより、対象ユーザのサービスに対する飽きを防いだり、モチベーションを高めたりすることができる。

0178

また、測定データが蓄積されるにつれて走行特性が更新されるので、対象ユーザは、トレーニング等により走行特性が変化しても、常に自分の走行特性に応じた適切なアドバイスを受け、適切なトレーニングを行うことができる。

0179

(心肺能力分析処理)
次に、図22のフローチャートを参照して、情報処理システム101により実行される心肺能力分析処理について説明する。例えば、この処理は、心肺能力の分析対象となるユーザ(以下、この処理において対象ユーザと称する)が、携帯端末121又はウエアラブル端末122に心肺能力分析処理の実行の指令を入力したとき開始される。

0180

ステップS101において、携帯端末121の誘導部352は、対象ユーザの最新の走行特性のデータの送信をサーバ111に要求する。

0181

ステップS102において、サーバ111の走行特性分析部261は、対象ユーザの最新の走行特性のデータの送信の要求を受信する。

0182

ステップS103において、サーバ111の走行特性分析部261は、対象ユーザの最新の走行特性のデータを記憶部202から読み出し、対象ユーザの携帯端末121に送信する。

0183

ステップS104において、携帯端末121の誘導部352は、サーバ111から送信された対象ユーザの最新の走行特性のデータを受信する。

0184

ステップS105において、クライアント112は、標準速走行時の測定を行う。例えば、携帯端末121の誘導部352は、心肺能力分析処理の開始をウエアラブル端末122に通知する。ウエアラブル端末122の出力部405は、例えば、「あなたの心肺能力を分析します。」という音声メッセージを出力する。

0185

次に、携帯端末121の誘導部352は、対象ユーザの標準速走行時の測定をウエアラブル端末122に指令する。ウエアラブル端末122の出力部405は、例えば、「まずは快調なペースで走ってください。」という音声メッセージを出力し、対象ユーザに標準速走行を促す。そして、上述した図16のステップS2の処理と同様に、標準速走行時の測定が行われる。

0186

ステップS106において、携帯端末121の誘導部352は、ウエアラブル端末122を介して、スピードを上げるように対象ユーザを誘導する。例えば、ウエアラブル端末122の出力部405は、まず「聞こえてくる音の指示に合わせて走ってください。きつすぎると感じたらデバイスを叩いて下さい。」という音声メッセージを出力する。

0187

そして、誘導部352は、ウエアラブル端末122の出力部405を介して、音声によりスピードを段階的に上げるように対象ユーザを誘導する。また、クライアント112は、対象ユーザの誘導を行いながら、スピード、ピッチ、ストライド、心拍数等の測定を継続する。

0188

ステップS107において、クライアント112は、高速走行時の測定を行う。例えば、対象ユーザは、これ以上スピードを上げるのは苦しいと感じた場合、携帯端末121又はウエアラブル端末122に、誘導の停止の指令を入力する。この時点で、対象ユーザの心拍数は、かなり限界に近い状態まで上がっている。そして、上述した図16のステップS3の処理と同様に、高速走行時の測定が行われる。

0189

なお、ステップS106及びS107において、対象ユーザの心拍数が上がりすぎないように、例えば、対象ユーザの年齢等に応じて、心拍数の上限値を設定するようにしてもよい。そして、クライアント112は、対象ユーザの心拍数が上限値に達した場合、処理を中止したり、スピードを落とすように誘導したりするようにしてもよい。

0190

ステップS108において、クライアント112は、図16のステップS4の処理と同様に、測定結果等を送信する。

0191

ステップS109において、サーバ111は、図16のステップS5の処理と同様に、クライアント112から送信された測定結果等を受信する。

0192

ステップS110において、サーバ111の心肺能力分析部262は、心肺能力を分析する。例えば、心肺能力分析部262は、ステップS105の処理において測定された標準速走行時のスピードのうち、ステップS106の処理が行われる直前の所定の期間内のスピードの平均値を、標準速度として算出する。また、心肺能力分析部262は、同じ期間内の心拍数の平均値を、標準心拍数として算出する。

0193

さらに、心肺能力分析部262は、ステップS107の処理における高速走行期間を所定の時間幅で複数の小期間に分割し、各小期間の心拍数の平均値を算出する。そして、心肺能力分析部262は、各小期間の心拍数の平均値の最大値を最高心拍数に設定する。この最高心拍数は、対象ユーザの心拍数の上限値にほぼ近い値になる。

0194

さらに、心肺能力分析部262は、最高心拍数に所定の係数(例えば、0.8)を乗じた値を、対象ユーザの持続可能心拍数に設定する。

0195

なお、心肺能力分析部262は、走行環境の影響を考慮して、心肺能力を分析するようにしてもよい。例えば、心肺能力分析部262は、例えば、環境情報の1つである気圧を複数の範囲に分け、範囲毎に個別に標準速度、標準心拍数、最高心拍数、及び、持続可能心拍数を求める。これにより、心肺能力の分析精度が向上する。

0196

心肺能力分析部262は、対象ユーザの心肺能力の分析結果を記憶部202に記憶させる。

0197

ステップS111において、心肺能力分析部262は、フィードバック情報を生成する。例えば、心肺能力分析部262は、対象ユーザの心肺能力の分析結果、及び、対象ユーザへのメッセージを含むフィードバック情報を生成する。対象ユーザへのメッセージは、例えば、心肺能力の分析結果の説明、心肺能力に基づく対象ユーザへのアドバイス等を含む。

0198

ステップS112において、サーバ111の心肺能力分析部262は、対象ユーザの携帯端末121にフィードバック情報を送信し、サーバ111の処理は終了する。

0199

ステップS113において、携帯端末121のUI制御部353は、サーバ111から送信されたフィードバック情報を受信する。

0200

ステップS114において、クライアント112は、フィードバック情報を提示し、クライアント112の処理は終了する。例えば、携帯端末121の出力部306は、図23の画面を表示することにより、フィードバック情報を対象ユーザに提示する。図23の画面には、吹き出し601a、ウインドウ602、及び、ボタン603aが表示されている。

0201

吹き出し601a内には、対象ユーザへのメッセージが表示されている。この例では、走行を繰り返すほど心肺能力の分析精度が向上することを伝えるメッセージが含まれている。

0202

ウインドウ602内には、対象ユーザの心肺能力の分析結果として、標準心拍数、持続可能心拍数、最高心拍数、及び、標準速度が表示されている。

0203

ボタン603aを押下すると、対象ユーザへのアドバイス等が表示される。図24乃至図26は、ボタン603aを押下した場合に表示される画面の例を示している。

0204

図24乃至図26の画面には、吹き出し601aの代わりに、吹き出し601b乃至601dがそれぞれ表示され、ボタン603aの代わりにボタン603bが表示されている。ウインドウ602は、そのまま継続して表示される。なお、図24の画面は、図23の画面のユーザと同じユーザに対するものであり、図25及び図26の画面は、それぞれ図23の画面とは異なるユーザに対するものである。

0205

吹き出し601b乃至601dには、例えば、対象ユーザの現在の状態、及び、対象ユーザへのアドバイス等が表示されている。例えば、吹き出し601bには、対象ユーザが走り慣れていないため、心拍数が上がりやすいこと、及び、心拍数の目標値と、その心拍数で走り続けられるように促すメッセージが表示されている。吹き出し601cには、対象ユーザの心拍数がペースに応じた値になっていること、及び、キープする心拍数を徐々に上げるように促すメッセージが表示されている。吹き出し601dには、対象ユーザの心肺能力が優れていること、及び、走りの効率を高めるトレーニングの実行を促すメッセージが表示されている。

0206

ボタン603bを押下すると、対象ユーザのトレーニングの推奨メニューが表示される。例えば、対象ユーザの心肺能力に応じて、ペースや心拍数等の目標値が設定され、目標値を達成するためのトレーニング方法が、推奨メニューに表示される。例えば、心拍数を長時間ほぼ一定に維持できるようにするトレーニングと、負荷をかけて心拍数の上限値を上げるトレーニングとの配分や強度等が、推薦メニューに表示される。

0207

以上のようにして、対象ユーザの心肺能力を分析することができる。また、走行特性に基づいて対象ユーザの負荷を細かく制御しながら測定を行うため、1回の測定で対象ユーザの心肺能力を正確に分析することができる。

0208

従って、対象ユーザは、ランニング支援サービスの利用開始後すぐに、自分の心肺能力を知るとともに、心肺能力に応じた適切なアドバイスを受けることができる。これにより、対象ユーザのサービスに対する飽きを防いだり、モチベーションを高めたりすることができる。

0209

また、この心肺能力分析処理を繰り返し実行し、心肺能力の分析結果を更新することにより、分析結果の精度はさらに向上する。そして、例えば、対象ユーザは、トレーニング等により心肺能力が変化しても、常に自分の心肺能力に応じた適切なアドバイスを受け、適切なトレーニングを行うことができる。

0210

なお、心肺能力分析部262は、例えば、対象ユーザの測定データだけでなく、対象ユーザと類似する他のユーザの測定データも用いて、心肺能力の分析を行うようにしてもよい。例えば、心肺能力分析部262は、所定のパラメータに基づいて、ユーザを複数のクラスタに分類する。ここで、所定のパラメータとして、例えば、上述したステップS107の処理において、ユーザが誘導の停止の指令を入力したときの心拍数、心拍数が急速に増大する時点のスピード、ラストスパート時に増大した心拍数、対象ユーザの年齢、性別、身長、体重等の情報を用いることが可能である。そして、心肺能力分析部262は、対象ユーザの測定データに加えて、対象ユーザと同じクラスタに属するユーザの測定データも用いて、対象ユーザの心肺能力の分析を行う。

0211

なお、上述したパラメータ以外にも、例えば、走行特性に基づいて、ユーザをクラスタに分類するようにしてもよい。

0212

(スタミナ特性分析処理)
次に、図27のフローチャートを参照して、情報処理システム101により実行されるスタミナ特性分析処理について説明する。例えば、この処理は、スタミナ特性の分析対象となるユーザ(以下、この処理において対象ユーザと称する)が、携帯端末121又はウエアラブル端末122にスタミナ特性分析処理の実行の指令を入力したとき開始される。

0213

ステップS201において、携帯端末121の誘導部352は、対象ユーザの最新の走行特性及び心肺能力のデータの送信をサーバ111に要求する。

0214

ステップS202において、サーバ111の走行特性分析部261及び心肺能力分析部262は、対象ユーザの最新の走行特性及び心肺能力のデータの送信の要求を受信する。

0215

ステップS203において、サーバ111の走行特性分析部261及び心肺能力分析部262は、対象ユーザの最新の走行特性及び心肺能力のデータを記憶部202から読み出し、対象ユーザの携帯端末121に送信する。

0216

ステップS204において、携帯端末121の誘導部352は、サーバ111から送信された対象ユーザの最新の走行特性及び心肺能力のデータを受信する。

0217

ステップS205において、クライアント112は、ユーザの走りを誘導しながら測定を行う。例えば、携帯端末121の誘導部352は、スタミナ特性分析処理の開始をウエアラブル端末122に通知する。ウエアラブル端末122の出力部405は、例えば、「あなたのスタミナを分析します。」という音声メッセージを出力する。また、出力部405は、例えば、「心拍数を維持して走り、ペースの変化を測定します。」という音声メッセージを出力する。

0218

ウエアラブル端末122のデータ収集部471は、測定部406の各デバイスによる測定データの収集、及び、収集した測定データの携帯端末121への送信を開始する。携帯端末121の走行状態分析部361は、受信した測定データに基づいて、スピード、ピッチ及びストライドの算出を開始する。また、走行状態分析部361は、対象ユーザのスピード、ピッチ、ストライド、心拍数等の測定データの記憶部302への記憶を開始する。

0219

そして、携帯端末121の誘導部352は、対象ユーザの心拍数をモニタリングしながら、ウエアラブル端末122を介して、対象ユーザのスピード等を誘導する処理を開始する。ウエアラブル端末122の出力部405は、例えば、「聞こえてくる音の指示に合わせて走ってください。」という音声メッセージを出力し、対象ユーザの誘導を開始する。

0220

ここで、誘導部352は、スピードを徐々に上げながら、最終的に心拍数が持続可能心拍数よりやや低い値で推移するように、対象ユーザのスピードを誘導する。また、誘導部352は、走行特性にほぼ従うように、対象ユーザのピッチ及びストライドを誘導する。

0221

このときの対象ユーザのスピードは、標準速度、及び、最もスタミナ効率の良いスピードより速くなる。これにより、対象ユーザの残存スタミナ量を短時間で低下させることができ、スタミナ特性の分析に必要なデータの測定時間を短縮することができる。

0222

次に、ウエアラブル端末122の出力部405は、例えば「きつすぎると感じたらデバイスを叩いてください。」という音声メッセージを出力する。そして、例えば、対象ユーザは、これ以上スピードを上げるのは苦しいと感じた場合、携帯端末121又はウエアラブル端末122に、誘導の停止の指令を入力する。

0223

これに対して、携帯端末121の誘導部352は、誘導及び測定の停止をウエアラブル端末122に指令する。ウエアラブル端末122のデータ収集部471は、測定部406の各デバイスによる測定データの収集、及び、収集した測定データの携帯端末121への送信を停止する。また、ウエアラブル端末122の出力部405は、対象ユーザの誘導を停止する。

0224

ステップS206において、クライアント112は、図16のステップS4の処理と同様に、測定結果等を送信する。

0225

ステップS207において、サーバ111は、図16のステップS5の処理と同様に、クライアント112から送信された測定結果等を受信する。

0226

ステップS208において、サーバ111のスタミナ特性分析部263は、スタミナ特性を分析する。

0227

例えば、持続可能心拍数よりやや低い値を維持するように対象ユーザを誘導した場合、走行時間又は走行距離に対する心拍数及びスピードの推移を示すグラフにおいて、心拍数がほぼ一定に維持されているにも関わらず、徐々にスピードが低下する現象が現れる。或いは、心肺限界速度以下のスピードを維持して走行するように対象ユーザを誘導した場合、走行時間又は走行距離に対する心拍数及びスピードの推移を示すグラフにおいて、スピードがほぼ一定に維持されているにも関わらず、急速に心拍数が上昇する現象が現れる。

0228

スタミナ特性分析部263は、例えば、そのスピードが低下する部分の低下曲線や、心拍数が急速に上昇する上昇曲線等に基づいて、対象ユーザのスタミナ容量を推定する。

0229

また、スタミナ特性分析部263は、対象ユーザの走行時間又は走行距離に対する心拍数及びスピード(又は、ピッチ及びストライド)の推移、並びに、対象ユーザの走行特性及び心肺能力に基づいて、対象ユーザのスタミナ効率特性を推定する。ここで、スタミナ効率特性とは、残存スタミナ量、スピード(又は、ピッチ及びストライド)、並びに、スタミナ効率の関係を表すものである。

0230

スタミナ効率は、残存スタミナ量、及び、スピード(又は、ピッチ及びストライド)により変化する。すなわち、残存スタミナ量が同じでも、走行するスピード(又は、ピッチ及びストライド)によってスタミナ効率は変動する。また、同じスピード(又は、ピッチ及びストライド)で走行していても、残存スタミナ量によってスタミナ効率は変動する。

0231

例えば、スタミナ特性分析部263は、対象ユーザの走行時間又は走行距離に対する心拍数及びスピード(又は、ピッチ及びストライド)の推移、並びに、対象ユーザの走行特性及び心肺能力に基づいて、複数の異なる残存スタミナ量においてスピード(又は、ピッチ及びストライド)を変化させた場合の、単位距離あたりの消費スタミナ量を推定することにより、スタミナ効率特性を推定する。

0232

なお、スタミナ容量及びスタミナ効率特性の推定精度は、スタミナ特性分析処理を繰り返すことにより向上する。特に、対象ユーザが維持するスピードを変えながらスタミナ特性分析処理を繰り返すことにより、スタミナ効率の推定精度は向上する。

0233

また、スタミナ容量及びスタミナ効率特性は、対象ユーザの調子により変化する。そこで、スタミナ特性分析部263は、スタミナ特性分析処理を繰り返しながら、調子指数又は調子クラスと、スタミナ容量及びスタミナ効率特性との関係を学習する。なお、調子指数又は調子クラスは、測定部406の各デバイスによる測定データのうち対象ユーザの調子に関わるデータに基づいて求めるようにしてもよいし、或いは、対象ユーザが明示的に数値等により入力するようにしてもよい。

0234

なお、スタミナ特性分析部263は、スタミナ容量及びスタミナ効率特性の分析結果を、例えば、データベース化してもよいし、或いは、関数化してもよい。スタミナ特性分析部263は、分析結果をデータベース化する場合、例えば、調子クラス毎に異なるデータベースを作成する。

0235

或いは、スタミナ特性分析部263は、分析結果を関数化する場合、例えば、調子指数(又は調子クラス)を変数としてスタミナ容量を算出する関数を生成する。また、例えば、スタミナ特性分析部263は、残存スタミナ量、スピード(又は、ピッチ及びストライド)、並びに、調子指数(又は調子クラス)を変数としてスタミナ効率特性を算出する関数を生成する。

0236

また、スタミナ特性分析部263は、対象ユーザの走行特性、心肺能力、スタミナ容量及びスタミナ効率特性に基づいて、対象ユーザの走行可能距離、及び、走行可能距離を走行するのに必要な推定タイムを算出する。

0237

ステップS209において、スタミナ特性分析部263は、フィードバック情報を生成する。例えば、スタミナ特性分析部263は、対象ユーザのスタミナ特性の分析結果、及び、対象ユーザへのメッセージを含むフィードバック情報を生成する。対象ユーザへのメッセージは、例えば、スタミナ特性の分析結果の説明、スタミナ特性に基づく対象ユーザへのアドバイス等を含む。

0238

ステップS210において、サーバ111のスタミナ特性分析部263は、対象ユーザの携帯端末121にフィードバック情報を送信し、サーバ111の処理は終了する。

0239

ステップS211において、携帯端末121のUI制御部353は、サーバ111から送信されたフィードバック情報を受信する。

0240

ステップS212において、クライアント112は、フィードバック情報を提示し、クライアント112の処理は終了する。例えば、携帯端末121の出力部306は、図28の画面を表示することにより、フィードバック情報を対象ユーザに提示する。図28の画面には、吹き出し701a、ウインドウ702、及び、ボタン703aが表示されている。

0241

吹き出し701a内には、対象ユーザへのメッセージが表示されている。この例では、走行を繰り返すほどスタミナ特性の分析精度が向上することを伝えるメッセージが含まれている。

0242

ウインドウ702内には、対象ユーザのスタミナ特性の分析結果として、実走行距離、タイム、走行可能距離、推定タイム、及び、標準速度が表示されている。なお、実走行距離は、スタミナ特性の分析を行うために対象ユーザが実際に走行した距離であり、タイムは、その距離を走行するのに要した時間である。

0243

ボタン703aを押下すると、対象ユーザへのアドバイス等が表示される。図29及び図30は、ボタン703aを押下した場合に表示される画面の例を示している。

0244

図29及び図30の画面には、吹き出し701aの代わりに、吹き出し701b及び701cがそれぞれ表示され、ボタン703aの代わりにボタン703bが表示されている。ウインドウ702は、そのまま継続して表示される。なお、図29の画面は、図28の画面のユーザと同じユーザに対するものであり、図30の画面は、図28の画面とは異なるユーザに対するものである。

0245

吹き出し701b及び701cには、例えば、対象ユーザの現在の状態、及び、対象ユーザへのアドバイス等が表示される。例えば、吹き出し701bには、対象ユーザがまず走ることに慣れる必要があること、及び、走ることに慣れるためのアドバイスが表示されている。吹き出し701cには、対象ユーザがハーフマラソン余裕で完走する能力があること、及び、今後のアドバイスが表示されている。

0246

ボタン703bを押下すると、対象ユーザのトレーニングの推奨メニューが表示される。例えば、対象ユーザのスタミナ特性に応じて、トレーニング距離や目標とする距離が設定され、目標とする距離を完走できるようにするためのトレーニング方法が、推奨メニューに表示される。また、例えば、抑え目のペースで距離を伸ばしてゆくメニュー、徐々に走破ペースを上げてゆくメニュー、酸素不足で辛くなる区間でペースを落とさないようにするメニュー等が表示される。

0247

以上のようにして、対象ユーザのスタミナ特性を分析することができる。また、走行特性及び心肺特性に基づいて対象ユーザの負荷を細かく制御しながら測定を行うため、1回の測定で対象ユーザのスタミナ特性を正確に分析することができる。

0248

従って、対象ユーザは、ランニング支援サービスの利用開始後すぐに、自分のスタミナ特性を知るとともに、スタミナ特性に応じた適切なアドバイスを受けることができる。これにより、対象ユーザのサービスに対する飽きを防いだり、モチベーションを高めたりすることができる。

0249

また、スタミナ特性分析処理を繰り返し、分析結果を更新することにより、対象ユーザは、トレーニング等によりスタミナ特性が変化しても、常に自分のスタミナ特性に応じた適切なアドバイスを受け、適切なトレーニングを行うことができる。

0250

なお、スタミナ特性分析部263は、例えば、走行特性及び心肺能力の少なくとも一方に基づいて、ランニング支援サービスのユーザを複数のクラスタに分類し、対象ユーザの測定データだけでなく、対象ユーザが属するクラスタの他のユーザの測定データも用いて、スタミナ特性の分析を行うようにしてもよい。なお、例えば、年齢、性別、身長、体重等の情報を用いて、ユーザを複数のクラスタに分類するようにしてもよい。

0251

(走行状態分析処理)
次に、図31のフローチャートを参照して、クライアント112により実行される走行状態分析処理について説明する。例えば、この処理は、走行状態を分析する対象となるユーザ(以下、この処理において対象ユーザと称する)が、携帯端末121又はウエアラブル端末122に走行状態分析処理の実行の指令を入力したとき開始される。

0252

ステップS301において、携帯端末121は、最新の走行特性を取得する。具体的には、携帯端末121の走行状態分析部361は、対象ユーザの最新の走行特性の送信をサーバ111に要求する。そして、走行状態分析部361は、要求に従ってサーバ111から送信されてきた対象ユーザの最新の走行特性を受信する。

0253

なお、対象ユーザの最新の走行特性を、携帯端末121の記憶部302に予め記憶させておくようにしてもよい。

0254

ステップS302において、クライアント112は、測定及び誘導を開始する。具体的には、携帯端末121の走行状態分析部361は、測定の開始をウエアラブル端末122に指令する。ウエアラブル端末122のデータ収集部471は、測定部406の各デバイスによる測定データの収集、及び、収集した測定データの携帯端末121への送信を開始する。

0255

走行状態分析部361は、受信した測定データに基づいて、スピード、ピッチ及びストライドの算出を開始する。また、走行状態分析部361は、対象ユーザのスピード、ピッチ、ストライド、心拍数等の測定データの記憶部302への記憶を開始する。

0256

また、走行状態分析部361は、対象ユーザのスピード、ピッチ、ストライド、心拍数、及び、後述するピッチストライドバランスの測定結果、測定時の環境情報、並びに、ユーザ情報等のサーバ111への送信を開始する。このとき送信された測定結果等は、サーバ111に蓄積され、例えば、対象ユーザの走行特性、心肺能力、及び、スタミナ特性の分析に用いられる。

0257

なお、走行状態分析部361は、測定結果等を後でまとめてサーバ111に送信するようにしてもよい。

0258

また、携帯端末121の誘導部352は、ウエアラブル端末122を介して、スピード、ピッチ、及び、ストライドの誘導を開始する。例えば、誘導部352は、トレーニングメニューが設定されている場合、そのトレーニングメニューに従って誘導を行う。

0259

例えば、誘導部352は、対象ユーザのスピードがストライド・ピッチ切替速度未満の場合、ストライドの誘導を行うことにより、対象ユーザのスピードが所定のスピードになるように誘導する。一方、誘導部352は、対象ユーザのスピードがストライド・ピッチ切替速度以上の場合、ピッチの誘導を行うことにより、対象ユーザのスピードが所定のスピードになるように誘導する。

0260

ここで、音声によるピッチ及びストライドの誘導方法の例について説明する。

0261

例えば、出力部405は、具体的な音声メッセージにより、対象ユーザのピッチ及びストライドの誘導を行う。

0262

また、例えば、出力部405は、誘導音の音色、メロディ、テンポ、音量、長さ、残響、高さ等を変化させることにより、対象ユーザのピッチ及びストライドの誘導を行う。

0263

例えば、出力部405は、ピッチの誘導を行う場合、誘導音をメトロノームのようなピッチ音に設定する。そして、出力部405は、ピッチを上げるときには、誘導音のテンポを速くし、ピッチを下げるときには、誘導音のテンポを遅くする。或いは、出力部405は、例えば、ピッチを上げるときには、誘導音を上昇音に設定し、ピッチを下げるときには、誘導音を下降音に設定する。また、出力部405は、ピッチが目標とする範囲内である場合、例えば、誘導音の出力を停止したり、ピッチの誘導音と異なる音声を出力したりして、現在のピッチを維持するように誘導する。

0264

或いは、例えば、出力部405は、誘導音と着地タイミングの位相差を用いて、対象ユーザのピッチを誘導する。例えば、出力部405は、ピッチを下げる場合、着地タイミングよりワンテンポ遅れたタイミングで誘導音を出力し、ピッチを上げる場合、着地タイミングよりワンテンポ早いタイミングで誘導音を出力する。また、出力部405は、ピッチが目標とする範囲内である場合、着地タイミングとほぼ同時に誘導音を出力して、現在のピッチを維持するように誘導する。この方法では、誘導音のテンポを制御する場合と異なり、誘導するタイミングのズレが蓄積されることがないため、対象ユーザの走りを邪魔することなく、適切にピッチを誘導することができる。

0265

一方、出力部405は、ストライドの誘導を行う場合、例えば、ストライドを伸ばすとき、誘導音を大きくしたり、長くしたり、又は、高くしたりして、ストライドを縮めるとき、誘導音を小さくしたり、短くしたり、又は、低くしたりする。また、出力部405は、ストライドが目標とする範囲内である場合、例えば、誘導音の出力を停止したり、ストライドの誘導音と異なる音声を出力したりして、現在のストライドを維持するように誘導する。

0266

或いは、例えば、出力部405は、誘導音の音像の位置により、対象ユーザのストライドを誘導する。例えば、出力部405は、誘導音の音像を目標とするストライドの位置に定位させることにより、ストライドの誘導を行う。或いは、例えば、出力部405は、ストライドを伸ばす場合、誘導音の音像を対象ユーザの前方に定位させ、ストライドを縮める場合、誘導音の音像を対象ユーザの後方に定位させる。また、出力部405は、ストライドが目標とする範囲内である場合、例えば、誘導音の音像を対象ユーザの体の近傍に定位させることにより、現在のストライドを維持するように誘導する。

0267

なお、出力部405は、誘導音以外の方法により、ピッチ及びストライドの誘導を行ってもよい。例えば、出力部405は、プロジェクションマッピング等により誘導光を路面に照射することにより、ピッチ及びストライドの誘導を行うようにしてもよい。例えば、出力部405は、誘導光の点滅スピードを変えることにより、ピッチを誘導するようにしてもよい。また、例えば、出力部405は、目標とするストライドの位置に誘導光を照射することにより、ストライドの誘導を行うようにしてもよい。

0268

なお、出力部405は、ピッチとストライドの誘導方法を組み合わせて、両方の誘導を同時に行ってもよい。例えば、出力部405は、ピッチの誘導音とストライドの誘導音を組み合わせて、ピッチとストライドの誘導を同時に行ってもよい。また、例えば、出力部405は、一方を誘導音により誘導し、他方を誘導光により誘導して、ピッチとストライドの誘導を同時に行ってもよい。

0269

また、出力部405は、ピッチ及びストライドを個別に誘導する代わりに、スピードを誘導するようにしてもよい。また、例えば、出力部405は、走行特性に従って走行するよう誘導する場合、スピードのみの誘導を行い、走行特性とは異なるピッチ及びストライドで走行するよう誘導する場合、ピッチ及びストライドの誘導を行うようにしてもよい。

0270

なお、特にトレーニングメニュー等が設定されていない場合、誘導部352は、必ずしも誘導を行う必要はない。

0271

ステップS303において、携帯端末121の走行状態分析部361は、現在の走行状態を走行特性と比較する。具体的には、走行状態分析部361は、対象ユーザの走行特性において、現在の対象ユーザのスピードの実測値に対応するストライド(以下、標準ストライドSmと称する)を算出する。そして、走行状態分析部361は、まず、次式(1)により、走行特性に対する現在のピッチとストライドのバランスを示す粗パラメータb0を算出する。

0272

b0=log10(Sr/Sm) ・・・(1)

0273

なお、Srは現在の対象ユーザのストライドの実測値である。

0274

次に、走行状態分析部361は、次式(2)により、粗パラメータの体感補正を行い、ピッチストライドバランスbrを算出する。

0275

br=f(b0)=p×b03+q×b0 ・・・(2)

0276

なお、p及びqは所定の定数である。

0277

ピッチストライドバランスbrは、現在のピッチとストライドのバランスが走行特性からどの程度かい離しているかを示す指数である。ストライド実測値Sr=標準ストライドSmの場合、すなわち、現在のピッチとストライドが走行特性に従っている場合、ピッチストライドバランスbrは0になる。なお、以下、ピッチとストライドが走行特性に従っている状態をニュートラルな状態とも称する。ストライド実測値Sr>標準ストライドSmの場合、すなわち、ニュートラルな状態よりストライドが長く、ピッチが遅い場合、ピッチストライドバランスbrは正の値になる。ストライド実測値Sr<標準ストライドSmの場合、すなわち、ニュートラルな状態よりストライドが短く、ピッチが速い場合、ピッチストライドバランスbrは負の値になる。

0278

また、ピッチストライドバランスbrは、式(2)の補正により、現在のピッチ及びストライドのバランスが走行特性からかい離するほど、変動率が大きくなる。これにより、ピッチストライドバランスbrは、対象ユーザの体感に近い変化を示すようになる。

0279

なお、以下、ニュートラルな状態よりストライドが長く、ピッチが遅い状態を、ストライドに偏った状態、ストライド寄りの状態、又は、ストライドが優位な状態とも称する。また、以下、ニュートラルな状態よりピッチが速く、ストライドが短い状態を、ピッチに偏った状態、ピッチ寄りの状態、又は、ピッチが優位な状態とも称する。

0280

なお、上述した式(1)及び(2)は、ピッチストライドバランスbrの算出方法の一例であり、ピッチストライドバランスbrには特に単位もないため、他の方法で算出することも可能である。

0281

また、走行状態分析部361は、算出したピッチストライドバランスbrを記憶部302に記憶させる。

0282

ステップS304において、クライアント112は、比較結果等を提示する。例えば、携帯端末121の出力部306は、図32又は図33の画面を表示する。

0283

図32は、例えば、ユーザがピッチとストライドのバランスを改善するトレーニングを行っている場合に表示される画面の例である。ピッチとストライドのバランスを改善するトレーニングとは、例えば、ピッチとストライドのバランスを、意図的にニュートラルな状態からずらした状態で走るようにするトレーニングである。図32の画面には、スピードメータ801、バランスメータ802、及び、吹き出し803aが表示されている。

0284

スピードメータ801は、現在の対象ユーザのスピードの実測値を表示する。

0285

バランスメータ802は、ピッチストライドバランスbrの値を示す矢印及び数値が表示される。ピッチストライドバランスbrが正の値の場合、その絶対値に応じた長さの右向きの矢印が表示される。ピッチストライドバランスbrが負の値の場合、その絶対値に応じた長さの左向きの矢印が表示される。ピッチストライドバランスbrが0の場合、矢印は表示されない。

0286

なお、上述したように、図32は、ピッチとストライドのバランスを改善するトレーニング中の画面なので、ピッチストライドバランスbrの絶対値を意図的に大きな値に補正し、強調して表示するようにしてもよい。

0287

吹き出し803aには、対象ユーザへのメッセージが表示されている。この例では、現在のストライドを保ったまま継続して走るように指示するメッセージが表示されている。

0288

図33は、例えば、対象ユーザが本番のレースで走っている場合に表示される画面の例である。図33の画面には、図32の画面と同様に、スピードメータ801及びバランスメータ802が表示されるとともに、吹き出し803aの代わりに吹き出し803bが表示されている。また、現在の対象ユーザの心拍数の実測値804が表示されている。

0289

吹き出し803bには、対象ユーザに対するメッセージが表示されている。この例では、ピッチに偏った状態なので、ピッチを落として、ストライドを伸ばすように促すメッセージが表示されている。

0290

図31戻り、ステップS305において、携帯端末121の走行状態分析部361は、測定及び誘導を終了するか否かを判定する。測定及び誘導を終了しないと判定された場合、処理はステップS303に戻る。その後、ステップS305において、測定及び誘導を終了すると判定されるまで、ステップS303乃至S305の処理が繰り返し実行される。これにより、対象ユーザに提示される走行状態がリアルタイムに更新されるとともに、走行状態に応じたメッセージが対象ユーザに提示される。

0291

一方、ステップS305において、例えば、対象ユーザが、携帯端末121又はウエアラブル端末122に測定及び誘導の停止の指令を入力した場合、走行状態分析部361は、測定及び誘導を終了すると判定し、処理はステップS306に進む。

0292

ステップS306において、クライアント112は、測定及び誘導を停止する。例えば、携帯端末121の走行状態分析部361は、測定の停止をウエアラブル端末122に指令する。ウエアラブル端末122のデータ収集部471は、測定部406の各デバイスによる測定データの収集、及び、収集した測定データの携帯端末121への送信を停止する。携帯端末121の走行状態分析部361は、測定結果等のサーバ111への送信を停止する。携帯端末121の誘導部352は、誘導を停止する。

0293

ステップS307において、携帯端末121の走行状態分析部361は、測定期間全体の分析を行う。例えば、走行状態分析部361は、測定期間中のスピード、ピッチ、ストライド、及び、ピッチストライドバランスbrの時系列の推移、並びに、対象ユーザのピッチとストライドのバランスの統計値等の分析を行う。

0294

ステップS308において、クライアント112は、分析結果等を提示し、走行状態分析処理は終了する。例えば、携帯端末121の出力部306は、分析結果等を提示するための画面を表示する。ここで、図34乃至図43を参照して、出力部306に表示される画面の例について説明する。

0295

図34の画面は、測定期間中の対象ユーザのペース、及び、ピッチストライドバランスbrの時系列の推移を示している。

0296

左側のグラフ821は、対象ユーザの走行期間中のペースの時系列の推移を示している。縦軸は時間軸であり、横軸はペース(単位はm/min)を示している。

0297

右側のグラフ822は、対象ユーザの走行期間中のピッチストライドバランスbrの時系列の推移を示している。縦軸は時間軸であり、横軸はピッチストライドバランスbrを示している。横軸の右方向が正の方向であり、左方向が負の方向である。従って、ストライドに偏った状態の場合、グラフが時間軸より右側に偏り、ピッチに偏った状態の場合、グラフが時間軸より左側に偏る。

0298

この画面により、対象ユーザは、走行期間中のペース、及び、ピッチとストライドのバランスの時系列の推移を容易に把握することができる。また、対象ユーザは、自分の走りの問題点等を分析することができる。

0299

図35は、図34のグラフ821及びグラフ822を横向きにして拡大した図である。例えば、このグラフから、スタートから約70分が経過するまでは、ピッチとストライドのバランスが取れ、快調な走りをしていたことが分かる。

0300

一方、スタートから約70分から約100分までの期間では、ピッチに偏った走りになり、徐々にピッチへの偏りが大きくなっている。この期間において、例えば、対象ユーザが苦しくなり、ストライドが縮んだ分、無理にピッチを上げて、ペースを維持しようとしていたことが想定される。

0301

そして、約100分が過ぎたあたりから約135分までの期間において、ピッチに偏った状態からニュートラルな状態に遷移し、ペースが大幅にダウンしている。この期間において、例えば、対象ユーザのスタミナが切れ、ピッチを維持できずに、ペースが大幅にダウンしたことが想定される。

0302

そして、約135分が経過した後は、ニュートラルな状態、かつ、遅いペースが維持されている。この期間において、例えば、対象ユーザは、スタミナが切れたものの、何とかスローペースで走り切ったことが想定される。

0303

総括すると、グラフ822の点線で囲まれたピッチとストライドのバランスが崩れた期間に、対象ユーザが無理な走りをしたことが分かる。

0304

また、図34の画面において、無理な走りをしたり、能力不足が現れたりしている期間823a及び823bが、他の期間と区別できるように表示されている。期間823aは、ピッチに偏った状態が継続した期間であり、期間823bは、ペースが大幅に落ち込んだ期間である。

0305

例えば、対象ユーザが期間823aを指定した場合、図36に示されるように、期間823aの近傍に吹き出し824aが表示される。吹き出し824a内には、期間823aにおいて、対象ユーザが無理な走りをした種類が、ペースを保つためにピッチに偏った走りであることを通知するメッセージが表示されている。

0306

また、例えば、ユーザが期間823bを指定した場合、図37に示されるように、期間823bの近傍に吹き出し824bが表示される。吹き出し824b内には、期間823bにおいて、直前(期間823a)に無理にピッチに偏ったバランスで走ったため、スタミナ切れが発生したことを通知するメッセージが表示されている。

0307

なお、出力部306は、例えば、無理な走りをした原因や能力不足の原因に応じて、推奨するトレーニングを提示するようにしてもよい。例えば、出力部306は、対象ユーザが、スピードが遅いのにも関わらず、心拍数が高くなりペースを維持でできない場合には、心肺トレーニングを推奨するようにしてもよい。また、例えば、出力部306は、対象ユーザがある程度高い心拍数を維持できるが、距離が伸ばせないには、ペースを落としてまず距離を伸ばすトレーニングを推奨するようにしてもよい。さらに、例えば、出力部306は、対象ユーザが体格から見込めるストライドを達成できていない場合には、ストライドを伸ばすトレーニングを推奨するようにしてもよい。

0308

図38乃至図41の画面は、対象ユーザの走行期間中のピッチとストライドのバランス、及び、ペースのバランスを示す画面である。図38乃至図41の画面には、メニュー841、グラフ842、及び、グラフ843がそれぞれ縦に並ぶように表示されている。

0309

メニュー841には、「全体」、「序盤」、「中盤」、及び、「終盤」の項目が含まれる。例えば、走行期間が所定の割合で序盤、中盤、及び、終盤の3つの期間に分類される。そして、メニュー841で「全体」が選択されている場合、走行期間全体におけるピッチとストライドのバランス、及び、ペースのバランスが表示される。メニュー841で「序盤」が選択されている場合、走行期間の序盤におけるピッチとストライドのバランス、及び、ペースのバランスが表示される。メニュー841で「中盤」が選択されている場合、走行期間の中盤におけるピッチとストライドのバランス、及び、ペースのバランスが表示される。メニュー841で「終盤」が選択されている場合、走行期間の終盤におけるピッチとストライドのバランス、及び、ペースのバランスが表示される。

0310

グラフ842は、メニュー841で指定された期間中のピッチとストライドのバランスの分布を示している。例えば、メニュー841で指定された期間が分単位に分割され、各単位期間のピッチストライドバランスbrの平均値が算出される。そして、各単位期間が、ピッチストライドバランスbrの平均値に基づいて、バランス期間、ストライド寄り期間、ピッチ寄り期間に分類される。

0311

例えば、−th1≦ピッチストライドバランスbrの平均値≦th1の単位期間は、バランス期間に分類される。ピッチストライドバランスbrの平均値>th1の単位期間は、ストライド寄り期間に分類される。ピッチストライドバランスbrの平均値<−th1の単位期間は、ピッチ寄り期間に分類される。なお、th1は所定の閾値である。そして、指定された期間内のバランス期間、ストライド寄り期間、及び、ピッチ寄り期間の各期間の合計時間の割合をグラフ化したものが、グラフ842となる。

0312

グラフ842により、対象ユーザは、走行期間全体、序盤、中盤、及び、終盤の各期間におけるピッチとストライドのバランスを容易に把握することが可能になる。すなわち、対象ユーザは、各期間において、ニュートラルな走り、ストライドに偏った走り、及び、ピッチに偏った走りをしていた割合を容易に把握することができる。

0313

グラフ843は、メニュー841で指定された期間中のペースの分布を示している。例えば、メニュー841で指定された期間内の分毎の単位期間内のペース(m/min)により、各単位期間がスロー期間、快走期間、ハイペース期間、スパート期間に分類される。

0314

例えば、ペース<対象ユーザの標準速度×(1−c1)の単位期間は、スロー期間に分類される。対象ユーザの標準速度×(1−c1)≦ペース≦対象ユーザの標準速度×(1+c1)の単位期間は、快走期間に分類される。対象ユーザの標準速度×(1+c1)≦ペース≦対象ユーザの標準速度×(1+c1+c2)の単位期間は、ハイペース期間に分類される。ペース>対象ユーザの標準速度×(1+c1+c2)の単位期間は、スパート期間に分類される。なお、c1、c2は所定の定数である。そして、指定された期間内のスロー期間、快走期間、ハイペース期間、及び、スパート期間の合計時間の割合をグラフ化したものが、グラフ843となる。

0315

グラフ843により、対象ユーザは、走行期間全体、序盤、中盤、及び、終盤の各期間におけるペースの分布を容易に把握することが可能になる。すなわち、対象ユーザは、各期間において、スローな走り、快調な走り、ハイペースな走り、及び、スパートしていた割合を容易に把握することができる。

0316

図42の画面は、対象ユーザの走行期間中のスピードの分布を示している。この画面には、グラフ861乃至863が縦に並ぶように表示されている。

0317

グラフ861は、対象ユーザのスピード−ピッチ特性曲線を示している。横軸はスピードを示し、縦軸はピッチを示している。また、点線によりストライド・ピッチ切替速度が示されている。さらに、ストライド・ピッチ切替速度より遅い範囲が、ストライド走法が行われる範囲であり、ストライド・ピッチ切替速度より速い範囲が、ピッチ走法が行われる範囲であることが示されている。

0318

そして、この例では、ストライド・ピッチ切替速度を基準にして、スピードが4つの範囲に分割されている。より具体的には、ストライド・ピッチ切替速度より遅い範囲が、2分割され、ストライド・ピッチ切替速度より速い範囲が、2分割されている。

0319

そして、グラフ862は、走行期間中に各範囲のスピードで走行した時間(又は、時間の割合)を棒グラフにより示している。グラフ863は、走行期間中に各範囲のスピードで走行した距離(又は、距離の割合)を棒グラフにより示している。

0320

これにより、対象ユーザは、走行期間中のスピードの分布、及び、ストライド走法とピッチ走法の分布を容易に把握することができる。

0321

なお、スピードの範囲の分割数は、この例に限定されるものではなく、任意の数に設定することができる。

0322

図43の画面は、対象ユーザの走行期間中のピッチとストライドのバランスの分布を示している。この画面には、グラフ881乃至883が縦に並ぶように表示されている。

0323

グラフ881は、図42のグラフ861と同様に、対象ユーザのスピード−ピッチ特性曲線を示している。また、グラフ881上に、A領域乃至C領域の3つの領域が示されている。A領域は、スピード−ピッチ特性曲線より上側の領域であり、ピッチに偏った走りが行われる領域である。B領域は、スピード−ピッチ特性曲線上の領域であり、ニュートラルな走りが行われる領域である。C領域は、スピード−ピッチ特性曲線より下側の領域であり、ストライドに偏った走りが行われる領域である。

0324

そして、グラフ862は、走行期間中にA領域乃至C領域の各領域で走行した時間(又は、時間の割合)を棒グラフにより示している。グラフ863は、走行期間中にA領域乃至C領域の各領域で走行した距離(又は、距離の割合)を棒グラフにより示している。

0325

これにより、対象ユーザは、走行期間中のピッチとストライドのバランスの分布を容易に把握することができる。

0326

なお、B領域は、厳密にスピード−ピッチ特性曲線上の領域だけではなく、スピード−ピッチ特性曲線の近傍の領域も含むようにしてもよい。

0327

以上のようにして、対象ユーザは、自分の走りのピッチとストライドのバランスを知ることができる。例えば、対象ユーザは、平均的なバランス、調子の良い時のバランス、調子の悪い時のバランスを知ることができる。

0328

また、対象ユーザは、自分のストライドが普段よりどの程度伸びているのか、自分のピッチが普段よりどの程度速くなっているか等を直感的に理解することができる。

0329

(データ比較処理)
次に、図44のフローチャートを参照して、クライアント112により実行されるデータ比較処理について説明する。例えば、この処理は、データの比較対象となるユーザ(以下、この処理において対象ユーザと称する)が、携帯端末121又はウエアラブル端末122にデータ比較処理の実行の指令を入力したとき開始される。

0330

ステップS401において、携帯端末121は、比較するデータを取得する。具体的には、携帯端末121のUI制御部353は、比較するデータの送信をサーバ111に要求する。そして、UI制御部353は、要求に従ってサーバ111から送信されてきたデータを受信する。

0331

ここで、比較するデータの組み合わせとして、例えば、複数の時点(例えば、現在と過去等)の対象ユーザの走行特性、心肺能力、スタミナ特性、又は、走行状態や、複数のユーザ(例えば、対象ユーザと他のユーザ等)の走行特性、心肺能力、スタミナ特性、又は、走行状態等が想定される。

0332

ステップS402において、携帯端末121は、データを比較した結果を提示し、データ比較処理は終了する。具体的には、携帯端末121のUI制御部353は、取得したデータを比較する表示データを生成し、生成した表示データに基づいて、取得したデータを比較する画面を出力部306に表示させる。ここで、図45乃至図48を参照して、出力部306に表示される画面の例について説明する。

0333

図45は、今週の対象ユーザ、3ヶ月前の対象ユーザ、及び、今週の他のユーザAのスピード、及び、ピッチとストライドのバランスを比較した結果を提示する画面例を示している。なお、今週の対象ユーザ及びユーザAのデータは、例えば、過去1週間の測定データに基づいて計算される。3ヶ月前の対象ユーザのデータは、例えば、今日から3ヶ月前の日から過去1週間の測定データに基づいて計算される。

0334

この画面には、グラフ901、ウインドウ902、及び、凡例903が表示されている。

0335

グラフ901は、3ヶ月前の対象ユーザを基準にして、今週の対象ユーザ及びユーザAのスピード、及び、ピッチとストライドのバランスを示すグラフである。横軸は、スピード示している。縦軸は、3ヶ月前の対象ユーザを基準にしたストライドとピッチのバランスを示しており、特に単位はなく、所定の数式により算出される。より具体的には、各スピードにおいて、基準となる3ヶ月前の対象ユーザと比較して、ストライドが長く、ピッチが遅い場合、縦軸の値が正になり、ストライドが短く、ピッチが速い場合、縦軸の値が負になる。すなわち、今週の対象ユーザ又はユーザAが、3ヶ月前の対象ユーザと比較して、ストライド寄りの走りをしている場合、縦軸の値が正になり、ピッチ寄りの走りをしている場合、縦軸の値が負になる。

0336

線911aは、3ヶ月前の対象ユーザのデータを示し、線911bは、今週の対象ユーザのデータを示し、線911cは、今週のユーザAのデータを示している。また、凡例903に示されるように、線911a乃至911c上の上向きの三角形は、基本ペースを示し、ひし形は、ストライド・ピッチ切替速度を示し、下向きの三角形は、心肺的限界速度を示し、丸は、最高速度を示している。

0337

なお、基本ペースとは、例えば、対象となる期間中に測定したスピードの分布を示すヒストグラムにおいて最頻値となるスピードのことである。なお、例えば、基本ペースの代わりに、標準速度を表示するようにしてもよい。

0338

また、線911a乃至911cの上向きの三角形、ひし形、下向きの三角形、及び、丸のいずれかのマークを指定すると、指定したマークに対応する速度におけるピッチとストライドのバランスを示す数値が、グラフ901の縦軸に表示される。例えば、ひし形のマークを指定すると、今週の対象ユーザのストライド・ピッチ切替速度におけるピッチとストライドのバランスを示す数値、及び、今週のユーザAのストライド・ピッチ切替速度におけるピッチとストライドのバランスを示す数値が表示される。

0339

グラフ901により、対象ユーザは、自分の走りの変化を容易に把握することができる。すなわち、対象ユーザは、過去と比較して、現在の基本ペース、ストライド・ピッチ切替速度、心肺限界速度、及び、最高速度の変化を容易に把握することができる。また、対象ユーザは、各スピードにおいて、過去と比較してストライド寄りの走りをしているのか、ピッチ寄りの走りをしているのかを容易に把握することができる。

0340

また、対象ユーザは、自分の走りと他のユーザの走りとを容易に比較することができる。すなわち、対象ユーザは、自分の基本ペース、ストライド・ピッチ切替速度、心肺限界速度、及び、最高速度を、他のユーザと容易に比較することができる。また、対象ユーザは、各スピードにおいて、他のユーザと比較して、ストライド寄りの走りをしているのか、ピッチ寄りの走りをしているのかを容易に把握することができる。

0341

ウインドウ902内には、対象ユーザに対するメッセージが表示される。例えば、この例に示されるように、3ヶ月前と比較した対象ユーザの走りの状態の変化の説明や、走行タイムを短縮したり、他のユーザの走行タイムに近づけたりするための具体的なアドバイス等が表示される。これにより、対象ユーザは、今後どのようなトレーニングをしたり、どのような走りを目指していけばよいのか等を具体的に知ることができる。

0342

図46は、今週の対象ユーザと3ヶ月前の対象ユーザのスピードを比較した結果を提示する画面例を示している。この画面には、グラフ931、ウインドウ932、及び、凡例933が表示されている。

0343

グラフ931は、今週の対象ユーザと3ヶ月前の対象ユーザのスピードを比較するグラフである。横軸は、スピード示している。

0344

線941aは、今週の対象ユーザのスピードを示し、線941bは、3ヶ月前の対象ユーザのスピードを示している。また、凡例933に示されるように、線941a及び941b上の上向きの三角形は、基本ペースを示し、ひし形は、ストライド・ピッチ切替速度を示し、下向きの三角形は、心肺的限界速度を示し、丸は、最高速度を示している。

0345

また、線941a及び線941bの丸で囲まれる領域は、ストライド・ピッチ切替速度と心肺限界速度との間の領域であり、対象ユーザがスパートを行う場合のスピードを示している。

0346

グラフ931により、対象ユーザは、自分のスピードの変化を容易に把握することができる。すなわち、対象ユーザは、過去と比較して、現在の基本ペース、ストライド・ピッチ切替速度、心肺限界速度、及び、最高速度の変化を容易に把握することができる。

0347

また、対象ユーザは、自分の基本ペースとストライド・ピッチ切替速度との関係を認識することができる。これにより、対象ユーザは、例えば、両者が離れている場合、基本ペースを維持する心肺能力が不足している等の情報を得ることができる。

0348

ウインドウ932内には、対象ユーザに対するメッセージが表示される。この例では、3ヶ月前と比較した対象ユーザの走りの状態の変化の説明が表示されている。より具体的には、対象ユーザのストライド・ピッチ切替速度が3ヶ月前より上がっていることが示されている。

0349

なお、図45のウインドウ902や図46のウインドウ932の表示内容は、その一例であり、対象ユーザの走りの変化等に基づいて、表示内容を自由に変更することができる。例えば、「同じペースをよりストライド寄りで走れるようになった」、「基本ペースが上がってきた」、「スパートのスピードが上がった」、「心肺能力が高まった」等の走りの変化を説明するメッセージを表示することができる。

0350

また、例えば、「基本ペースでのストライドを伸ばしてゆきましょう」、「ピッチとストライドのバランスはよいので、距離を伸ばしてゆきましょう」、「ピッチとストライドのバランスはよいので、ペースを上げてゆきましょう」等のアドバイスを表示することができる。

0351

図47は、今週の対象ユーザの走りを、3ヶ月前の対象ユーザの走行特性と比較した結果を提示する画面例を示している。この画面には、グラフ961及びウインドウ962が表示されている。

0352

グラフ961の横軸はスピードを示し、縦軸はストライドを示している。グラフ961には、3ヶ月前の対象ユーザのスピード−ストライド特性曲線が示されている。また、今週の対象ユーザのスピード及びピッチの実測値が、黒丸により示されている。

0353

ウインドウ962内には、対象ユーザのピッチとストライドのバランスを示す指数が表示されている。この指数は、例えば、各スピードにおいて、対象ユーザが3ヶ月前と比較してストライド優位又はピッチ優位のいずれの走りをしているかを示す。例えば、対象ユーザが、グラフ961の黒丸により示される実測値のいずれかを指定した場合、そのスピードにおける指数の値が、ウインドウ962内に表示される。

0354

指数の値は、対象ユーザが指定したスピードにおいて、3ヶ月前と比較してストライドが伸び、ピッチが遅くなっている場合、すなわち、3ヶ月前と比較して今週の走りがストライド優位の場合、正の値になる。また、ストライドの伸びが大きいほど、指数の値が大きくなる。一方、指数の値は、対象ユーザが指定したスピードにおいて、3ヶ月前と比較してストライドが縮み、ピッチが速くなっている場合、すなわち、3ヶ月前と比較して今週の走りがピッチ優位の場合、負の値になる。また、ストライドの縮みが大きいほど、指数の値が小さくなる。

0355

この画面により、対象ユーザは、自分の走行特性の変化を容易に把握することができる。すなわち、対象ユーザは、過去と比較して、自分のストライドが伸びているのか、縮んでいるのか等を容易に把握することができる。

0356

図48は、過去と現在の対象ユーザのスピードの分布を比較した結果を提示する画面例を示している。例えば、この画面では、図42のグラフ862と同様のグラフを、過去と現在で並べて表示している。白色の棒が、過去の対象ユーザのスピードの分布を示し、斜線のパターンの棒が、現在の対象ユーザのスピードの分布を示している。

0357

この画面により、対象ユーザは、スピードの分布の変化、並びに、ストライド走法及びピッチ走法の分布の変化を容易に把握することができる。

0358

なお、例えば、図42のグラフ863と同様のグラフを過去と現在で並べて表示するようにしてもよい。

0359

また、例えば、図43のグラフ882と同様のグラフを過去と現在で並べて表示したり、図43のグラフ883と同様のグラフを過去と現在で並べて表示したりしてもよい。これにより、対象ユーザは、ピッチとストライドのバランスの変化を容易に把握することができる。

0360

以上のようにして、対象ユーザは、現在と過去の自分のデータを比較することにより、トレーニングの成果や、自分の走りの安定度や癖の変化等を容易に把握することができる。

0361

また、対象ユーザは、自分と他のユーザのデータを比較することにより、他者の走りを参考にしたり、他者と自分の走りの癖の違いを具体的に把握したりすることができる。

0362

さらに、対象ユーザは、自分の走りのどの部分をどの方向に伸ばせば良いかを容易に把握することができる。例えば、対象ユーザは、ストライドを伸ばすトレーニング、ピッチを速くするトレーニング、心肺能力を鍛えるトレーニングのうち、いずれを重点的に行うべきかを把握することができる。

0363

なお、図45乃至図48において、比較するデータの組み合わせや数は、その一例であり、他の組み合わせや数に設定することができる。例えば、対象ユーザのデータと2人以上の他のユーザのデータとを比較したり、現在の対象ユーザのデータと2以上の過去の対象ユーザのデータとを比較するようにしてもよい。また、例えば、現在又は過去の対象ユーザのデータと過去の他のユーザのデータとを比較するようにしてもよい。

0364

また、比較対象となるユーザは、対象ユーザが指定するようにしてもよいし、或いは、サーバ111が自動的に選択するようにしてもよい。後者の場合、例えば、サーバ111は、対象ユーザと類似し、かつ、対象ユーザより優れた走りをするユーザを比較対象に選択する。より具体的には、例えば、サーバ111は、対象ユーザとスピード−ピッチ−ストライド特性が同じクラスタに属するユーザの中から、対象ユーザと比較して、同じスピードにおいてストライドが長く、かつ、基本ペースや心肺限界速度が速いユーザを比較対象に選択する。

0365

このように、対象ユーザと類似し、かつ、対象ユーザより優れた走りをするユーザの比較対象に選択することにより、対象ユーザに競争を促したり、対象ユーザが明確な目標を設定しやすくしたりすることができる。

0366

また、特定のユーザではなく、複数のユーザの平均値を比較対象に設定するようにしてもよい。例えば、対象ユーザと同じクラスタに属するユーザの平均値や、対象ユーザより少し走りが優れているクラスタに属するユーザの平均値等を比較対象に設定するようにしてもよい。

0367

(走行パラメータコントロールトレーニング支援処理)
次に、図49のフローチャートを参照して、クライアント112により実行される走行パラメータコントロールトレーニング支援処理について説明する。ここで、走行パラメータコントロールトレーニングとは、例えば、ピッチ、ストライド、スピードのうちの1つのパラメータを固定し、他のパラメータを変化させるトレーニングのことである。

0368

この処理は、例えば、走行パラメータコントロールトレーニングを行うユーザ(以下、この処理において対象ユーザと称する)が、携帯端末121又はウエアラブル端末122にトレーニングの開始の指令を入力したとき開始される。また、この処理は、例えば、対象ユーザが、携帯端末121又はウエアラブル端末122にトレーニングの終了の指令を入力したとき、或いは、トレーニングを終了するタイミングになったとき終了する。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

該当するデータがありません

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 土樋パルス株式会社の「 競技用計測システム」が 公開されました。( 2019/09/12)

    【課題】スタート地点とゴール地点との距離が長い場合であっても競技者のタイムを容易且つ正確に計測することの可能な競技用計測システムを提供する。【解決手段】本発明の競技用計測システムは、競技者Pがスタート... 詳細

  • セイコーエプソン株式会社の「 携帯型電子機器、および携帯型電子機器の制御方法」が 公開されました。( 2019/09/12)

    【課題】多くのセンサーや計測器が搭載されても、太陽電池の発電による充電も含む二次電池の電池切れを減少させることが可能な携帯型電子機器を提供する。【解決手段】体動センサーおよび生体センサーを有する測定部... 詳細

  • 住友ゴム工業株式会社の「 仮想ゴルフシミュレーション装置」が 公開されました。( 2019/09/12)

    【課題】ゴルファーの実際のゴルフの能力を反映した仮想ゴルフを簡易に実行することができる仮想ゴルフシミュレーション装置を提供する。【解決手段】仮想ゴルフシミュレーション装置が提供される。前記仮想ゴルフシ... 詳細

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

該当するデータがありません

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ