図面 (/)

この項目の情報は公開日時点(2016年10月27日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題

本発明は、抗体分子糖鎖構造を制御することが可能な、抗体組成物生産する宿主細胞ADCC活性が高い抗体組成物を生産することが可能な細胞、該細胞を用いた抗体組成物の製造方法、該製造方法で製造された抗体組成物を提供することを目的とする。

解決手段

本発明は、GDPフコース合成経路に影響を与える酵素を含み、N−グリコシド結合糖鎖還元末端N−アセチルグルコサミンの6位にフコースの1位がα結合する糖鎖修飾が低下又は欠失した動物細胞であって、抗体をコードするDNAが導入され、かつα1,6−フコースが結合していない抗体を生産する動物細胞に関する。

概要

背景

抗体は、高い結合活性、結合特異性及び血中での高い安定性を有することから、ヒトの
各種疾患の診断、予防及び治療への応用が試みられてきた(非特許文献1)。

また、遺伝子組換え技術を利用して、ヒト以外の動物の抗体からヒト型キメラ抗体或い
はヒト型相補性決定領域(以下、CDR表記する)移植抗体の様なヒト化抗体を作製す
ることが試みられている。

ヒト型キメラ抗体とは、抗体可変領域(以下、V領域と表記する)がヒト以外の動物の
抗体で、定常領域(以下、C領域と表記する)がヒト抗体である。ヒト型CDR移植抗体
とは、ヒト抗体のCDRをヒト以外の動物の抗体のCDRと置換した抗体である。

哺乳類の抗体には、IgMIgDIgGIgAIgEの5種類のクラスが存在
することが明らかとなっているが、ヒトの各種疾患の診断、予防及び治療には血中半減期
が長く、各種エフェクター機能を有する等の機能特性からヒトIgGクラスの抗体が主と
して利用されている(非特許文献1)。

ヒトIgGクラスの抗体は、更にIgG1、IgG2、IgG3、IgG4の4種類の
サブクラス分類されている。IgGクラスの抗体のエフェクター機能である抗体依存性
細胞傷害活性(以下、ADCC活性と表記する)や補体依存性細胞傷害活性(以下、CD
C活性と表記する)については、これまでに多数の研究が行われ、ヒトIgGクラスでは
、IgG1サブクラスの抗体が最も高いADCC活性、CDC活性を有していることが報
告されている(非特許文献2)。

以上の観点から、市販のリツキサンハーセプチンを始めとして、その効果発現に高い
エフェクター機能を必要とする抗腫瘍ヒト化抗体の殆どはヒトIgG1サブクラスの抗体
である。

ヒトIgG1サブクラスの抗体のADCC活性及びCDC活性の発現には、抗体Fc領
域と、キラー細胞ナチュラルキラー細胞、活性化されたマクロファージ等のエフェクタ
細胞表面上に存在する抗体レセプター(以下、FcγRと表記する)及び各種補体成分
との結合が必要であり、その結合については、抗体のヒンジ領域及びC領域の第2番目
ドメイン(以下、Cγ2ドメインと表記する)内のいくつかのアミノ酸残基重要性(非
特許文献2および3)の他、Cγ2ドメインに結合している糖鎖の重要性(非特許文献2
)が示唆されている。

糖鎖に関しては、ボイド(Boyd)らは、チャイニーズハムスター卵巣細胞(CHO
細胞)或いはマウスミエローマNS0細胞(NS0細胞)で生産したヒト型CDR移植抗
CAMPATH−1H(ヒトIgG1サブクラス)を各種糖分解酵素で処理し、糖鎖の
ADCC活性、CDC活性に対する影響を検討した結果、非還元末端シアル酸の除去は
、両活性に影響を与えないが、更にガラクトース残基を除去することでCDC活性のみが
影響を受け、約50%程度活性が低下すること、糖鎖の完全な除去は、両活性を消失させ
ることを報告した(非特許文献4)。また、ライフリー(Lifely)らは、CHO細
胞、NS0細胞或いはラットミエローマY0細胞で生産したヒト型CDR移植抗体CAM
PATH−1H(ヒトIgG1サブクラス)の糖鎖の分析及びADCC活性を測定した結
果、Y0細胞由来のCAMPATH−1Hが最も高いADCC活性を示し、その活性には
バイクティングに位置するN−アセチルグルコサミン(以下、GlcNAcとも表記す
る)が重要であることを示唆した(非特許文献5、特許文献1)。

これらの報告は、ヒトIgG1サブクラスの抗体のエフェクター機能に糖鎖の構造が極
めて重要な役割を果たしており、糖鎖の構造を変えることでより高いエフェクター機能を
有する抗体を作製することが可能であることを示している。しかし、実際には糖鎖の構造
は多様かつ複雑であり、エフェクター機能に真に重要な構造を特定できたとは言い難い。

糖タンパク質の糖鎖は、タンパク質部分との結合様式により、アスパラギンと結合する
糖鎖(N−グリコシド結合糖鎖)とセリンスレオニンなどと結合する糖鎖(O−グリコ
シル結合糖鎖)の2種類に大別される。N−グリコシド結合糖鎖は、様々な構造を有して
いるが[生物化学実験法23−糖タンパク質糖鎖研究法(学会出版センター)高橋禮子編
(1989年)]、いずれの場合も以下の構造式(I)に示す基本となる共通のコア構造
を有することが知られている。

アスパラギンと結合する糖鎖の末端還元末端、反対側が非還元末端と呼ばれている。
N−グリコシド結合糖鎖には、コア構造の非還元末端にマンノースのみが結合するハイ
ンノース型、コア構造の非還元末端側にガラクトース−N−アセチルグルコサミン(以下
、Gal−GlcNAcと表記する)の枝を並行して1ないしは複数本有し、更にGal
−GlcNAcの非還元末端側にシアル酸、バイセクティングのN−アセチルグルコサミ
ンなどの構造を有するコンプレックス型、コア構造の非還元末端側にハイマンノース型と
コンプレックス型の両方の枝を持つハイブリッド型などがあることが知られている。

抗体IgG分子Fc領域には、2個所のN−グリコシド型糖鎖結合部位が存在して
おり、血清中のIgGでは、通常、この部位に、シアル酸やバイセクティングのN−アセ
チルグルコサミンの付加の程度が少ない複数本の枝を持つコンプレックス型糖鎖が結合し
ている。このコンプレックス型糖鎖の非還元末端でのガラクトースの付加および還元末端
のN−アセチルグルコサミンへのフコースの付加に関しては多様性があることが知られて
いる(非特許文献6)。

このような糖鎖の構造は、糖鎖遺伝子、すなわち、糖鎖を合成する糖転移酵素と糖鎖を
分解する糖分解酵素の遺伝子によって規定されていると考えられている。

以下に、N−グリコシド結合糖鎖の生合成に関して述べる。糖タンパク質は、小胞体
以下、ERと表記する)内腔で糖鎖の修飾を受ける。N−グリコシド結合糖鎖の生合成過
程では、比較的大きな糖鎖が、ER内腔で伸長しつつあるポリペプチド鎖転移される。

この際、糖鎖はまず、ドリコールリン酸(以下、P−Dolとも表記する)と呼ばれる
α−イソプレン単位を20個程度含む長鎖脂質担体リン酸基に順次付加される。すな
わち、ドリコールリン酸にN−アセチル−グルコサミンが転移されGlcNAc−P−P
−Dolとなり、続いてもう1個GlcNAcが転移されGlcNAc−GlcNAc−
P−P−Dolとなる。

次いで、マンノース(以下、Manとも表記する)が5個転移され(Man)5−(G
lcNAc)2−P−P−Dolに、さらに、Manが4個、グルコース(以下、Glc
とも表記する)が3個転移される。このようにして、コアオリゴ糖と呼ばれる糖鎖の前駆
体(Glc)3−(Man)9−(GlcNAc)2−P−P−Dolができる。

この14個の糖からなる糖鎖の前駆体はアスパラギン−X−セリンまたはアスパラギン
−X−スレオニン配列を持ったポリペプチドへER内腔でひとかたまりのまま転移される
。この際、コアオリゴ糖に結合していたドリコールピロリン酸(P−P−Dol)は遊離
するが、ピロホスファターゼの分解を受けて再びドリコールリン酸となり再利用される。
糖鎖のトリミングは、糖鎖がポリペプチドに結合すると直ちに開始される。

すなわち、3個のGlcと1ないし2個のManがER上で除去され、この除去にはα
−1,2−グルコシダーゼI、α−1,3−グルコシダーゼIIおよびα−1,2−マン
シダーゼが関与することが知られている。

ER上でトリミングを受けた糖タンパク質はゴルジ体輸送され様々な修飾を受ける。
ゴルジ体シス部には、マンノースリン酸を付加するN−アセチルグルコサミンホスホトラ
スフェラーゼ、N−アセチルグルコサミン1−ホスホジエステルα−N−アセチルグル
コサミニダーゼおよびα−マンノシダーゼIが存在し、Man残基を5個にまで減少させ
る。ゴルジ体メディア部には、コンプレックス型のN−グリコシド結合糖鎖の最初の外側
のGlcNAcを付加するN−アセチルグルコサミン転移酵素I(GnTI)、2個のM
anを除去するα−マンノシダーゼII、外側から2個目のGlcNAcを付加するN−
アセチルグルコサミン転移酵素II(GnTII)、還元末端のN−アセチルグルコサミ
ンにフコースを付加するα−1,6−フコシルトランスフェラーゼが存在する。ゴルジ体
トランス部にはガラクトースを付加するガラクトース転移酵素、N−アセチルノイラミン
酸などのシアル酸を付加するシアル酸転移酵素が存在する。このような各種酵素の作用を
受けてN−グリコシド結合糖鎖が作られることが知られている。

一般的に、医薬への応用が考えられているヒト化抗体の多くは、遺伝子組換え技術を用
いて作製され、チャイニーズハムスター卵巣組織由来CHO細胞宿主細胞として用い製
造されているが、上述したように、抗体のエフェクター機能には糖鎖構造が極めて重要な
役割を担っていること、宿主細胞によって発現された糖タンパク質の糖鎖構造に違いが観
察されることから、より高いエフェクター機能を有する抗体を作製することが可能な宿主
細胞の開発が望まれている。

生産される糖タンパク質の糖鎖構造を改変するために、1)糖鎖の修飾に係わる酵素の
阻害剤の応用、2)突然変異体の選択、3)糖鎖の修飾に係わる酵素遺伝子の導入などの
方法が試みられている。

以下に、それら具体的例を述べる。

糖鎖の修飾に係わる酵素の阻害剤としては、N−グリコシド結合糖鎖の前駆体であるコ
アオリ糖形成の最初のステップであるGlcNAc−P−P−Dolの形成を選択的に
阻害するツニカマイシングリコシダーゼIの阻害剤であるカスタノスペルミンやN−メ
チル−1−デオキシノジリマイシン、グルコシダーゼIIの阻害剤であるブロモコンヅリ
トール、マンノシダーゼIの阻害剤である1−デオキシノジリマイシンや1,4−ジオ
シ−1,4−イミノ−D−マンニトール、マンノシダーゼIIの阻害剤であるスワンソニ
ンなどが知られている。

糖転移酵素の特異的な阻害剤としては、N−アセチルグルコサミン転移酵素V(GnT
V)などに対する基質デオキシ誘導体が知られている[グライコバイオロジーシリーズ
2—糖鎖の細胞における運命(講談社サンエンティフィック)永井克孝・箱守仙一朗・木
幡陽編(1993)]。

また、1−デオキシノジリマイシンはコンプレックス型糖鎖の合成を抑え、ハイマンノ
ース型やハイブリッド型糖鎖の割合を増加させることが知られている。実際に、これら阻
害剤を培地に添加することでIgGの糖鎖構造が変化し、抗原結合性などが変化すること
が報告されている(非特許文献7)。

糖鎖の修飾に係わる酵素の活性に関する突然変異体は、主に、レクチン耐性株として選
択され取得されている。例えば、WGA(T.vulgaris由来のwheat−ge
rm agglutinin)、ConA(C.ensiformis由来のconca
navalin A)、RIC(R.communis由来の毒素)、L−PHA(P.
vulgaris由来のleukoagglutinin)、LCA(L.culina
ris由来のlentil agglutinin)、PSA(P.sativum由来
のPea lectin)などのレクチンを用い、様々な糖鎖構造を有するCHO細胞変
異株がレクチン耐性株として取得されている(非特許文献8)。

糖鎖の修飾に係わる酵素の遺伝子を宿主細胞に導入して生産物の糖鎖構造を改変した例
としては、ラットのβ−ガラクトシド−α−2,6−シアリルトランスフェラーゼをCH
O細胞に導入することで糖鎖の非還元末端にシアル酸が多く付加されたタンパク質の製造
が可能であることが報告されている(非特許文献9)。

また、ヒトのβ−ガラクトシド−2−α−フコシルトランスフェラーゼをマウスL細胞
に導入することで糖鎖の非還元末端にフコース(以下、Fucとも表記する)が付加され
H抗原(Fucα1−2Galβ1−)の発現が確認されている(非特許文献10)。

さらに、ユマナ(Umana)らは、N−グリコシド結合糖鎖のバイセクティングに位
置するN−アセチルグルコサミンの付加が抗体のADCC活性に重要であるとの知見に基
づき、β−1,4−N−アセチルグルコサミン転移酵素III(GnTIII)を発現さ
せたCHO細胞を作製し親株との比較を行っている。

親株のCHO細胞ではGnTIIIの発現が観察されておらず(非特許文献11)、作
製したGnTIII発現CHO細胞を用いて発現させた抗体は親株で発現させた抗体と比
べ16倍高いADCC活性を有していることを確認している(非特許文献5、特許文献1
)。

またこの際、ユマナ(Umana)らは、β−1,4−N−アセチルグルコサミン転移
酵素V(GnTV)の遺伝子を導入したCHO細胞も作製しており、GnTIIIまたは
GnTVの過剰発現はCHO細胞に対して毒性を示すことを報告している。

概要

本発明は、抗体分子の糖鎖構造を制御することが可能な、抗体組成物を生産する宿主細胞、ADCC活性が高い抗体組成物を生産することが可能な細胞、該細胞を用いた抗体組成物の製造方法、該製造方法で製造された抗体組成物を提供することを目的とする。本発明は、GDP−フコースの合成経路に影響を与える酵素を含み、N−グリコシド結合糖鎖還元末端のN−アセチルグルコサミンの6位にフコースの1位がα結合する糖鎖修飾が低下又は欠失した動物細胞であって、抗体をコードするDNAが導入され、かつα1,6−フコースが結合していない抗体を生産する動物細胞に関する。なし

目的

一般的に、医薬への応用が考えられているヒト化抗体の多くは、遺伝子組換え技術を用
いて作製され、チャイニーズハムスター卵巣組織由来CHO細胞を宿主細胞として用い製
造されているが、上述したように、抗体のエフェクター機能には糖鎖構造が極めて重要な
役割を担っていること、宿主細胞によって発現された糖タンパク質の糖鎖構造に違いが観
察されることから、より高いエフェクター機能を有する抗体を作製することが可能な宿主
細胞の開発が望まれている

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

GDPフコース合成経路に影響を与える酵素を含み、N−グリコシド結合糖鎖還元末端N−アセチルグルコサミンの6位にフコースの1位がα結合する糖鎖修飾が低下又は欠失した動物細胞であって、抗体をコードするDNAが導入され、かつα1,6−フコースが結合していない抗体を生産する動物細胞。

請求項2

動物細胞が、細胞糖ヌクレオチドGDP-α4-ケト-6−デオキシマンノース、GDP-α4-ケト-6−デオキシガラクトースまたはGDP−フコースの少なくともいずれか1が低下又は欠失した細胞である、請求項1に記載の細胞。

請求項3

GDP−フコースの合成経路に影響を与える酵素が、GDP−フコースの合成経路に関与する酵素の基質の構造に影響を与える酵素である、請求項1または2に記載の細胞。

請求項4

α1,6−フコースが結合していない抗体が、生産される抗体の20%以上である、請求項1〜3のいずれか1項に記載の細胞。

請求項5

α1,6−フコースが結合していない抗体が、生産される抗体の50%以上である、請求項1〜4のいずれか1項に記載の細胞。

請求項6

α1,6−フコースが結合していない抗体が、α1,6−フコースが結合している抗体よりも高い抗体依存性傷害活性を有する抗体である、請求項1〜5のいずれか1項に記載の細胞。

請求項7

動物細胞が、CHO細胞である、請求項1〜6のいずれか1項に記載の細胞。

請求項8

請求項1〜7のいずれか1項に記載の細胞を用いて、抗体を製造する方法。

請求項9

抗体をコードするDNAを、GDPフコースの合成経路に影響を与える酵素を含む、N−グリコシド結合糖鎖還元末端のN−アセチルグルコサミンの6位にフコースの1位がα結合する糖鎖修飾が低下又は欠失した動物細胞へ導入し、該動物細胞を培地に培養し、培養上清中に抗体を生産させ、該培養上清から抗体を取得する工程を含む、抗体の細胞傷害活性(以下、ADCC活性と記す)を促進させる方法。

請求項10

動物細胞が、細胞内糖ヌクレオチドGDP-α4-ケト-6−デオキシマンノース、GDP-α4-ケト-6−デオキシガラクトースまたはGDP−フコースの少なくともいずれか1が低下又は欠失した細胞である、請求項9に記載の方法。

請求項11

GDPフコースの合成経路に影響を与える酵素が、GDP−フコースの合成経路に関与する酵素の基質の構造に影響を与える酵素である請求項9または10に記載の方法。

請求項12

動物細胞が、α1,6−フコースが結合していない抗体を生産する動物細胞である、請求項9〜11のいずれか1項に記載の方法。

請求項13

動物細胞が、α1,6−フコースが結合していない抗体を20%以上生産する動物細胞である、請求項9〜12のいずれか1項に記載の方法。

請求項14

動物細胞が、α1,6−フコースが結合していない抗体を50%以上生産する動物細胞である、請求項9〜13のいずれか1項に記載の方法。

請求項15

抗体が、α1,6−フコースが結合していない抗体である請求項9〜14のいずれか1項に記載の方法。

請求項16

抗体のADCC活性が、α1,6−フコースが結合している抗体よりも増加している活性である、請求項9〜15のいずれか1項に記載の方法。

請求項17

動物細胞がCHO細胞である、請求項9〜16のいずれか1項に記載の方法。

請求項18

N−グリコシド結合コンプレックス型またはハイブリッド型糖鎖の少なくとも一方が結合する抗体を含有する抗体組成物であって、全ての該抗体が還元末端のN−アセチルグルコサミンにフコースが結合しないN−グリコシド結合コンプレックス型またはハイブリッド型糖鎖の少なくとも一方を有する抗体である抗体組成物。

請求項19

抗体に結合する糖鎖が、すべてコンプレックス型糖鎖である請求項18に記載の抗体組成物。

請求項20

糖鎖が、 を含む糖鎖を含有する請求項18または19に記載の抗体組成物。

請求項21

抗体が、抗体のFc領域に結合する糖鎖の還元末端のN−アセチルグルコサミンにフコースが結合しているN−グリコシド結合コンプレックス型またはハイブリッド型糖鎖のいずれか一方を有する抗体よりも高い抗体依存性傷害活性を有する抗体である、請求項18〜20のいずれか1項に記載の抗体組成物。

請求項22

抗体が、ヒトCCR4に結合する抗体である、請求項18〜21のいずれか1項に記載の抗体組成物。

請求項23

抗体が、ヒトFc領域を有する抗体である、請求項18〜22のいずれか1項に記載の抗体組成物。

請求項24

抗体が、ヒトIgGクラスの抗体である、請求項18〜23のいずれか1項に記載の抗体組成物。

技術分野

0001

本発明は、種々の疾患に有用な抗体、抗体の断片、抗体のFc領域を有する融合タンパ
ク質などの抗体分子の製造に用いる細胞、該細胞を用いた抗体組成物の製造方法、該抗体
組成物、およびその用途に関する。

背景技術

0002

抗体は、高い結合活性、結合特異性及び血中での高い安定性を有することから、ヒトの
各種疾患の診断、予防及び治療への応用が試みられてきた(非特許文献1)。

0003

また、遺伝子組換え技術を利用して、ヒト以外の動物の抗体からヒト型キメラ抗体或い
はヒト型相補性決定領域(以下、CDR表記する)移植抗体の様なヒト化抗体を作製す
ることが試みられている。

0004

ヒト型キメラ抗体とは、抗体可変領域(以下、V領域と表記する)がヒト以外の動物の
抗体で、定常領域(以下、C領域と表記する)がヒト抗体である。ヒト型CDR移植抗体
とは、ヒト抗体のCDRをヒト以外の動物の抗体のCDRと置換した抗体である。

0005

哺乳類の抗体には、IgMIgDIgGIgAIgEの5種類のクラスが存在
することが明らかとなっているが、ヒトの各種疾患の診断、予防及び治療には血中半減期
が長く、各種エフェクター機能を有する等の機能特性からヒトIgGクラスの抗体が主と
して利用されている(非特許文献1)。

0006

ヒトIgGクラスの抗体は、更にIgG1、IgG2、IgG3、IgG4の4種類の
サブクラス分類されている。IgGクラスの抗体のエフェクター機能である抗体依存性
細胞傷害活性(以下、ADCC活性と表記する)や補体依存性細胞傷害活性(以下、CD
C活性と表記する)については、これまでに多数の研究が行われ、ヒトIgGクラスでは
、IgG1サブクラスの抗体が最も高いADCC活性、CDC活性を有していることが報
告されている(非特許文献2)。

0007

以上の観点から、市販のリツキサンハーセプチンを始めとして、その効果発現に高い
エフェクター機能を必要とする抗腫瘍ヒト化抗体の殆どはヒトIgG1サブクラスの抗体
である。

0008

ヒトIgG1サブクラスの抗体のADCC活性及びCDC活性の発現には、抗体Fc領
域と、キラー細胞ナチュラルキラー細胞、活性化されたマクロファージ等のエフェクタ
ー細胞表面上に存在する抗体レセプター(以下、FcγRと表記する)及び各種補体成分
との結合が必要であり、その結合については、抗体のヒンジ領域及びC領域の第2番目
ドメイン(以下、Cγ2ドメインと表記する)内のいくつかのアミノ酸残基重要性(非
特許文献2および3)の他、Cγ2ドメインに結合している糖鎖の重要性(非特許文献2
)が示唆されている。

0009

糖鎖に関しては、ボイド(Boyd)らは、チャイニーズハムスター卵巣細胞(CHO
細胞)或いはマウスミエローマNS0細胞(NS0細胞)で生産したヒト型CDR移植抗
CAMPATH−1H(ヒトIgG1サブクラス)を各種糖分解酵素で処理し、糖鎖の
ADCC活性、CDC活性に対する影響を検討した結果、非還元末端シアル酸の除去は
、両活性に影響を与えないが、更にガラクトース残基を除去することでCDC活性のみが
影響を受け、約50%程度活性が低下すること、糖鎖の完全な除去は、両活性を消失させ
ることを報告した(非特許文献4)。また、ライフリー(Lifely)らは、CHO細
胞、NS0細胞或いはラットミエローマY0細胞で生産したヒト型CDR移植抗体CAM
PATH−1H(ヒトIgG1サブクラス)の糖鎖の分析及びADCC活性を測定した結
果、Y0細胞由来のCAMPATH−1Hが最も高いADCC活性を示し、その活性には
バイクティングに位置するN−アセチルグルコサミン(以下、GlcNAcとも表記す
る)が重要であることを示唆した(非特許文献5、特許文献1)。

0010

これらの報告は、ヒトIgG1サブクラスの抗体のエフェクター機能に糖鎖の構造が極
めて重要な役割を果たしており、糖鎖の構造を変えることでより高いエフェクター機能を
有する抗体を作製することが可能であることを示している。しかし、実際には糖鎖の構造
は多様かつ複雑であり、エフェクター機能に真に重要な構造を特定できたとは言い難い。

0011

糖タンパク質の糖鎖は、タンパク質部分との結合様式により、アスパラギンと結合する
糖鎖(N−グリコシド結合糖鎖)とセリンスレオニンなどと結合する糖鎖(O−グリコ
シル結合糖鎖)の2種類に大別される。N−グリコシド結合糖鎖は、様々な構造を有して
いるが[生物化学実験法23−糖タンパク質糖鎖研究法(学会出版センター)高橋禮子編
(1989年)]、いずれの場合も以下の構造式(I)に示す基本となる共通のコア構造
を有することが知られている。

0012

0013

アスパラギンと結合する糖鎖の末端還元末端、反対側が非還元末端と呼ばれている。
N−グリコシド結合糖鎖には、コア構造の非還元末端にマンノースのみが結合するハイ
ンノース型、コア構造の非還元末端側にガラクトース−N−アセチルグルコサミン(以下
、Gal−GlcNAcと表記する)の枝を並行して1ないしは複数本有し、更にGal
−GlcNAcの非還元末端側にシアル酸、バイセクティングのN−アセチルグルコサミ
ンなどの構造を有するコンプレックス型、コア構造の非還元末端側にハイマンノース型と
コンプレックス型の両方の枝を持つハイブリッド型などがあることが知られている。

0014

抗体IgG分子のFc領域には、2個所のN−グリコシド型糖鎖結合部位が存在して
おり、血清中のIgGでは、通常、この部位に、シアル酸やバイセクティングのN−アセ
チルグルコサミンの付加の程度が少ない複数本の枝を持つコンプレックス型糖鎖が結合し
ている。このコンプレックス型糖鎖の非還元末端でのガラクトースの付加および還元末端
のN−アセチルグルコサミンへのフコースの付加に関しては多様性があることが知られて
いる(非特許文献6)。

0015

このような糖鎖の構造は、糖鎖遺伝子、すなわち、糖鎖を合成する糖転移酵素と糖鎖を
分解する糖分解酵素の遺伝子によって規定されていると考えられている。

0016

以下に、N−グリコシド結合糖鎖の生合成に関して述べる。糖タンパク質は、小胞体
以下、ERと表記する)内腔で糖鎖の修飾を受ける。N−グリコシド結合糖鎖の生合成過
程では、比較的大きな糖鎖が、ER内腔で伸長しつつあるポリペプチド鎖転移される。

0017

この際、糖鎖はまず、ドリコールリン酸(以下、P−Dolとも表記する)と呼ばれる
α−イソプレン単位を20個程度含む長鎖脂質担体リン酸基に順次付加される。すな
わち、ドリコールリン酸にN−アセチル−グルコサミンが転移されGlcNAc−P−P
−Dolとなり、続いてもう1個GlcNAcが転移されGlcNAc−GlcNAc−
P−P−Dolとなる。

0018

次いで、マンノース(以下、Manとも表記する)が5個転移され(Man)5−(G
lcNAc)2−P−P−Dolに、さらに、Manが4個、グルコース(以下、Glc
とも表記する)が3個転移される。このようにして、コアオリゴ糖と呼ばれる糖鎖の前駆
体(Glc)3−(Man)9−(GlcNAc)2−P−P−Dolができる。

0019

この14個の糖からなる糖鎖の前駆体はアスパラギン−X−セリンまたはアスパラギン
−X−スレオニン配列を持ったポリペプチドへER内腔でひとかたまりのまま転移される
。この際、コアオリゴ糖に結合していたドリコールピロリン酸(P−P−Dol)は遊離
するが、ピロホスファターゼの分解を受けて再びドリコールリン酸となり再利用される。
糖鎖のトリミングは、糖鎖がポリペプチドに結合すると直ちに開始される。

0020

すなわち、3個のGlcと1ないし2個のManがER上で除去され、この除去にはα
−1,2−グルコシダーゼI、α−1,3−グルコシダーゼIIおよびα−1,2−マン
シダーゼが関与することが知られている。

0021

ER上でトリミングを受けた糖タンパク質はゴルジ体輸送され様々な修飾を受ける。
ゴルジ体シス部には、マンノースリン酸を付加するN−アセチルグルコサミンホスホトラ
スフェラーゼ、N−アセチルグルコサミン1−ホスホジエステルα−N−アセチルグル
コサミニダーゼおよびα−マンノシダーゼIが存在し、Man残基を5個にまで減少させ
る。ゴルジ体メディア部には、コンプレックス型のN−グリコシド結合糖鎖の最初の外側
のGlcNAcを付加するN−アセチルグルコサミン転移酵素I(GnTI)、2個のM
anを除去するα−マンノシダーゼII、外側から2個目のGlcNAcを付加するN−
アセチルグルコサミン転移酵素II(GnTII)、還元末端のN−アセチルグルコサミ
ンにフコースを付加するα−1,6−フコシルトランスフェラーゼが存在する。ゴルジ体
トランス部にはガラクトースを付加するガラクトース転移酵素、N−アセチルノイラミン
酸などのシアル酸を付加するシアル酸転移酵素が存在する。このような各種酵素の作用を
受けてN−グリコシド結合糖鎖が作られることが知られている。

0022

一般的に、医薬への応用が考えられているヒト化抗体の多くは、遺伝子組換え技術を用
いて作製され、チャイニーズハムスター卵巣組織由来CHO細胞宿主細胞として用い製
造されているが、上述したように、抗体のエフェクター機能には糖鎖構造が極めて重要な
役割を担っていること、宿主細胞によって発現された糖タンパク質の糖鎖構造に違いが観
察されることから、より高いエフェクター機能を有する抗体を作製することが可能な宿主
細胞の開発が望まれている。

0023

生産される糖タンパク質の糖鎖構造を改変するために、1)糖鎖の修飾に係わる酵素の
阻害剤の応用、2)突然変異体の選択、3)糖鎖の修飾に係わる酵素遺伝子の導入などの
方法が試みられている。

0024

以下に、それら具体的例を述べる。

0025

糖鎖の修飾に係わる酵素の阻害剤としては、N−グリコシド結合糖鎖の前駆体であるコ
アオリ糖形成の最初のステップであるGlcNAc−P−P−Dolの形成を選択的に
阻害するツニカマイシングリコシダーゼIの阻害剤であるカスタノスペルミンやN−メ
チル−1−デオキシノジリマイシン、グルコシダーゼIIの阻害剤であるブロモコンヅリ
トール、マンノシダーゼIの阻害剤である1−デオキシノジリマイシンや1,4−ジオ
シ−1,4−イミノ−D−マンニトール、マンノシダーゼIIの阻害剤であるスワンソニ
ンなどが知られている。

0026

糖転移酵素の特異的な阻害剤としては、N−アセチルグルコサミン転移酵素V(GnT
V)などに対する基質デオキシ誘導体が知られている[グライコバイオロジーシリーズ
2—糖鎖の細胞における運命(講談社サンエンティフィック)永井克孝・箱守仙一朗・木
幡陽編(1993)]。

0027

また、1−デオキシノジリマイシンはコンプレックス型糖鎖の合成を抑え、ハイマンノ
ース型やハイブリッド型糖鎖の割合を増加させることが知られている。実際に、これら阻
害剤を培地に添加することでIgGの糖鎖構造が変化し、抗原結合性などが変化すること
が報告されている(非特許文献7)。

0028

糖鎖の修飾に係わる酵素の活性に関する突然変異体は、主に、レクチン耐性株として選
択され取得されている。例えば、WGA(T.vulgaris由来のwheat−ge
rm agglutinin)、ConA(C.ensiformis由来のconca
navalin A)、RIC(R.communis由来の毒素)、L−PHA(P.
vulgaris由来のleukoagglutinin)、LCA(L.culina
ris由来のlentil agglutinin)、PSA(P.sativum由来
のPea lectin)などのレクチンを用い、様々な糖鎖構造を有するCHO細胞変
異株がレクチン耐性株として取得されている(非特許文献8)。

0029

糖鎖の修飾に係わる酵素の遺伝子を宿主細胞に導入して生産物の糖鎖構造を改変した例
としては、ラットのβ−ガラクトシド−α−2,6−シアリルトランスフェラーゼをCH
O細胞に導入することで糖鎖の非還元末端にシアル酸が多く付加されたタンパク質の製造
が可能であることが報告されている(非特許文献9)。

0030

また、ヒトのβ−ガラクトシド−2−α−フコシルトランスフェラーゼをマウスL細胞
に導入することで糖鎖の非還元末端にフコース(以下、Fucとも表記する)が付加され
H抗原(Fucα1−2Galβ1−)の発現が確認されている(非特許文献10)。

0031

さらに、ユマナ(Umana)らは、N−グリコシド結合糖鎖のバイセクティングに位
置するN−アセチルグルコサミンの付加が抗体のADCC活性に重要であるとの知見に基
づき、β−1,4−N−アセチルグルコサミン転移酵素III(GnTIII)を発現さ
せたCHO細胞を作製し親株との比較を行っている。

0032

親株のCHO細胞ではGnTIIIの発現が観察されておらず(非特許文献11)、作
製したGnTIII発現CHO細胞を用いて発現させた抗体は親株で発現させた抗体と比
べ16倍高いADCC活性を有していることを確認している(非特許文献5、特許文献1
)。

0033

またこの際、ユマナ(Umana)らは、β−1,4−N−アセチルグルコサミン転移
酵素V(GnTV)の遺伝子を導入したCHO細胞も作製しており、GnTIIIまたは
GnTVの過剰発現はCHO細胞に対して毒性を示すことを報告している。

0034

国際公開第99/54342号

先行技術

0035

モノクローナルアンティディズ:プリンシプルズ・アンドアプリケーションズ(Monoclonal Antibodies:Principles and Applications),Wiley−Liss,Inc.,Chapter 2.1(1995)
ケミカルイムノロジー(Chemical Immunology),65,88(1997)
ヨーロピアン・ジャーナルオブ・イムノロジー(Eur.J.Immunol.),23,1098(1993)、イムノロジー(Immunology),86,319(1995)
モレキュラー・イムノロジー(Molecular Immunol.),32,1311(1995)
グリコバイオロジー(Glycobiology),5,813(1995)
バイオケミストリー(Biochemistry),36,130,1997
モレキュラー・イムノロジー(Molecular.Immunol.),26,1113(1989)
マティク・セル・アンド・モレキュラー・ジェネティクス(Somatic Cell Mol.Genet.),12,51(1986)
ジャーナル・オブ・バイオロジカル・ケミストリー(J.Biol.Chem.),261,13848,1989
サイエンス(Science),252,1668,1991
ジャーナル・オブ・バイオロジカル・ケミストリー(J.Biol.Chem.),261,13370,1984

発明が解決しようとする課題

0036

このように、生産される糖タンパク質の糖鎖構造を改変するために、宿主細胞の糖鎖の
修飾に係わる酵素の活性を調節する試みがなされているが、実際には糖鎖の構造は多様か
つ複雑であり、かつ糖鎖が持つ生理的な役割の解明も十分とは言い難いため試行錯誤を繰
り返しているのが現状である。

0037

特に、抗体のエフェクター機能は糖鎖構造により大きな影響を受ける事が明らかになり
つつあるが、真に重要な糖鎖構造の特定には至っていない。従って、抗体のエフェクター
機能に影響を及ぼす糖鎖構造の同定と、そのような糖鎖構造の付加が可能な宿主細胞の開
発が医薬開発の上で求められている。

0038

本発明は、抗体分子の糖鎖構造を制御することが可能な、抗体組成物を生産する宿主細
胞、ADCC活性が高い抗体組成物を生産することが可能な細胞、該細胞を用いた抗体組
成物の製造方法、該製造方法で製造された抗体組成物を提供することを目的とする。

課題を解決するための手段

0039

本発明は、以下に関する。
1.ラットミエローマ細胞YB2/0を除く、N−グリコシド結合糖鎖還元末端のN−ア
セチルグルコサミンの6位とフコースの1位がα結合した糖鎖構造を認識する1mg/m
lのレクチンを含む培地で培養した時に、親株と比べて2倍以上の生存率を示すレクチン
に耐性である動物細胞を用いて製造された抗体組成物。
2.動物細胞が、親株から得られる抗体組成物よりも、抗体依存性細胞傷害活性が高い抗
体組成物を生産する細胞である、前項1に記載の抗体組成物。
3.動物細胞が、細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素の活性ま
たはN−グリコシド結合糖鎖還元末端のN−アセチルグルコサミンの6位にフコースの1
位がα結合する糖鎖修飾に関与する酵素の活性が、親株の酵素活性よりも低下または欠失
した細胞である、前項1または2に記載の抗体組成物。
4.細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素が、以下の(a)、(
b)及び(c)からなる群から選ばれる酵素である、前項1〜3のいずれか1項に記載の
抗体組成物。
(a)GMD(GDP−mannose 4,6−dehydratase);
(b)Fx(GDP−keto−6−deoxymannose 3,5−epimer
ase,4−reductase);
(c)GFPP(GDP−beta−L−fucose pyrophosphoryl
ase)。
5.GMDが、以下の(a)または(b)であるDNAがコードする蛋白質である、前項
4に記載の抗体組成物。
(a)配列番号65で表される塩基配列からなるDNA;
(b)配列番号65で表される塩基配列からなるDNAとストリンジェントな条件でハイ
ブリダイズし、かつGMD活性を有する蛋白質をコードするDNA。
6.GMDが、以下の(a)または(b)の蛋白質である、前項4に記載の抗体組成物。
(a)配列番号71で表されるアミノ酸配列からなる蛋白質;
(b)配列番号71で表されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列
からなり、かつGMD活性を有する蛋白質。
7.Fxが、以下の(a)または(b)であるDNAがコードする蛋白質である、前項4
に記載の抗体組成物。
(a)配列番号48で表される塩基配列からなるDNA;
(b)配列番号48で表される塩基配列からなるDNAとストリンジェントな条件でハイ
ブリダイズし、かつFxを有する蛋白質をコードするDNA。
8.Fxが、以下の(a)または(b)の蛋白質である、前項4に記載の抗体組成物。
(a)配列番号72で表されるアミノ酸配列からなる蛋白質;
(b)配列番号72で表されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列
からなり、かつFx活性を有する蛋白質。
9.GFPPが、以下の(a)または(b)であるDNAがコードする蛋白質である、前
項4に記載の抗体組成物。
(a)配列番号51で表される塩基配列からなるDNA;
(b)配列番号51で表される塩基配列からなるDNAとストリンジェントな条件でハイ
ブリダイズし、かつGFPP活性を有する蛋白質をコードするDNA。
10.GFPPが、以下の(a)または(b)の蛋白質である、前項4に記載の抗体組成
物。
(a)配列番号73で表されるアミノ酸配列からなる蛋白質;
(b)配列番号73で表されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列
からなり、かつGFPP活性を有する蛋白質。
11.N−グリコシド結合糖鎖還元末端のN−アセチルグルコサミンの6位にフコースの
1位がα結合する糖鎖修飾に関与する酵素がα−1,6−フコシルトランスフェラーゼで
ある、前項1〜3のいずれか1項に記載の抗体組成物。
12.α−1,6−フコシルトランスフェラーゼが、以下の(a)、(b)、(c)及び
(d)からなる群から選ばれるDNAがコードする蛋白質である、前項11に記載の抗体
組成物。
(a)配列番号1で表される塩基配列からなるDNA;
(b)配列番号2で表される塩基配列からなるDNA;
(c)配列番号1で表される塩基配列からなるDNAとストリンジェントな条件でハイブ
リダイズし、かつα−1,6−フコシルトランスフェラーゼ活性を有する蛋白質をコード
するDNA;
(d)配列番号2で表される塩基配列からなるDNAとストリンジェントな条件でハイブ
リダイズし、かつα−1,6−フコシルトランスフェラーゼ活性を有する蛋白質をコード
するDNA。
13.α−1,6−フコシルトランスフェラーゼが、以下の(a)、(b)、(c)およ
び(d)からなる群から選ばれる蛋白質である、前項11に記載の抗体組成物。
(a)配列番号23で表されるアミノ酸配列からなる蛋白質;
(b)配列番号24で表されるアミノ酸配列からなる蛋白質;
(c)配列番号23で表されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列
からなり、かつα−1,6−フコシルトランスフェラーゼ活性を有する蛋白質;
(d)配列番号24で表されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列
からなり、かつα−1,6−フコシルトランスフェラーゼ活性を有する蛋白質。
14.動物細胞が、下記の(a)、(c)〜(i)からなる群から選ばれる細胞である、
前項1〜13のいずれか1項に記載の抗体組成物。
(a)チャイニーズハムスター卵巣組織由来CHO細胞;
(c)マウスミエローマ細胞株NS0細胞;
(d)マウスミエローマ細胞株SP2/0−Ag14細胞;
(e)シリアンハムスター腎臓組織由来BHK細胞
(f)抗体を産生するハイブリドーマ細胞
(g)ヒト白血病細胞ナマルバ細胞;
(h)胚性幹細胞
(i)受精卵細胞
15.抗体分子のクラスがIgGである、前項1〜14のいずれか1項に記載の抗体組成
物。
16.N−グリコシド結合糖鎖還元末端のN−アセチルグルコサミンの6位とフコースの
1位がα結合した糖鎖構造を認識するレクチンが、下記(a)〜(d)から選ばれる前項
1〜15のいずれか1項に記載の抗体組成物。
(a)レンズマメレクチンLCA
(b)エンドウマメレクチンPSA
(c)ソラマメレクチンVFA
(d)ヒイロチャワンタケレクチンAAL

発明の効果

0040

本発明によれば、抗体組成物を生産することが可能な細胞、該細胞を用いた抗体組成物
の製造方法、抗体組成物、ならびにその用途を提供することができる。

図面の簡単な説明

0041

第1図は、精製した5種類の抗GD3キメラ抗体のSDS−PAGE(4〜15%グラジエントゲルを使用)の電気泳動パターンを示した図である。1A図が非還元条件、1B図が還元条件でそれぞれ電気泳動を行った図である。レーン1が高分子量マーカー、2がYB2/0−GD3キメラ抗体、3がCHO/DG44−GD3キメラ抗体、4がSP2/0−GD3キメラ抗体、5がNS0−GD3キメラ抗体(302)、6がNS0−GD3キメラ抗体(GIT)、7が低分子量マーカー泳動パターンをそれぞれ示す。
第2図は、精製した5種類の抗GD3キメラ抗体のGD3との結合活性を抗体濃度を変化させて測定した図である。縦軸はGD3との結合活性、横軸は抗体濃度をそれぞれ示す。○がYB2/0−GD3キメラ抗体、●がCHO/DG44−GD3キメラ抗体、□がSP2/0−GD3キメラ抗体、■がNS0−GD3キメラ抗体(302)、△がNS0−GD3キメラ抗体(GIT)の活性をそれぞれ示す。
第3図は、精製した5種類の抗GD3キメラ抗体のヒトメラノーマ細胞株G−361に対するADCC活性を示した図である。縦軸に細胞傷害活性、横軸に抗体濃度をそれぞれ示す。○がYB2/0−GD3キメラ抗体、●がCHO/DG44−GD3キメラ抗体、□がSP2/0−GD3キメラ抗体、■がNS0−GD3キメラ抗体(302)、△がNS0−GD3キメラ抗体(GIT)の活性をそれぞれ示す。
第4図は、精製した3種類の抗hIL−5RαCDR移植抗体のSDS−PAGE(4〜15%グラジエントゲルを使用)の電気泳動パターンを示した図である。4A図が非還元条件、4B図が還元条件でそれぞれ電気泳動を行った図である。レーン1が高分子量マーカー、2がYB2/0−hIL−5RCDR抗体、3がCHO/d−hIL−5RCDR抗体、4がNS0−hIL−5RCDR抗体、5が低分子量マーカーの泳動パターンをそれぞれ示す。
第5図は、精製した3種類の抗hIL−5RαCDR移植抗体のhIL−5Rαとの結合活性を抗体濃度を変化させて測定した結果を示した図である。縦軸はhIL−5Rαとの結合活性、横軸は抗体濃度をそれぞれ示す。○がYB2/0−hIL−5RCDR抗体、●がCHO/d−hIL−5RCDR抗体、□がNS0−hIL−5RCDR抗体の活性をそれぞれ示す。
第6図は、精製した3種類の抗hIL−5RαCDR移植抗体のhIL−5R発現マウス細胞株TLL−2(h5R)に対するADCC活性を示した図である。縦軸に細胞傷害活性、横軸に抗体濃度をそれぞれ示す。○がYB2/0−hIL−5RCDR抗体、●がCHO/d−hIL−5RCDR抗体、□がNS0−hIL−5RCDR抗体の活性をそれぞれ示す。
第7図は、精製した3種類の抗hIL−5RαCDR移植抗体のカニクイザルのhIL−5誘発好酸球増加モデルに対する抑制作用を示した図である。縦軸に末梢血好酸球数、横軸に日数(抗体及びhIL−5の投与開始日を0日とした)をそれぞれ示す。101、102が抗体非投与群、301、302、303がYB2/0−hIL−5RCDR抗体投与群、401、402、403がCHO/d−hIL−5RCDR抗体投与群、501、502、503がNS0−hIL−5RCDR抗体投与群の結果をそれぞれ示す。
第8図は、YB2/0が生産した精製抗hIL−5RαCDR移植抗体(8A図)およびNS0が生産した精製抗hIL−5RαCDR移植抗体(8B図)のPA化糖鎖の逆相HPLC溶離の溶離図(左図)とそのPA化糖鎖をα−L−フコシダーゼ処理した後に逆相HPLCで分析して得た溶離図(右図)を示したものである。縦軸に相対蛍光強度、横軸に溶出時間をそれぞれ示す。
第9図は、CHO/d細胞が生産した精製抗hIL−5RαCDR移植抗体からPA化糖鎖を調製し、逆相HPLCで分析して得た溶離図を示したものである。縦軸に相対蛍光強度、横軸に溶出時間をそれぞれ示す。
第10図で、10A図は、非吸着画分吸着画分の一部のGD3との結合活性を、抗体濃度を変化させて測定した図である。縦軸はGD3との結合活性、横軸は抗体濃度をそれぞれ示す。●が非吸着画分、○が吸着画分の一部をそれぞれ示す。10B図は非吸着画分、吸着画分の一部のヒトメラノーマ細胞株G−361に対するADCC活性を示した図である。縦軸に細胞傷害活性、横軸に抗体濃度をそれぞれ示す。●が非吸着画分、○が吸着画分の一部をそれぞれ示す。
第11図は、非吸着画分、吸着画分の一部から調製したPA化糖鎖を逆相HPLCで分析して得た溶離図を示した図である。11A図に非吸着画分の溶離図、11B図に吸着画分の一部の溶離図をそれぞれ示す。縦軸に相対蛍光強度、横軸に溶出時間をそれぞれ示す。
第12図は、6種類の抗GD3キメラ抗体(12A図〜12F図)から調製したPA化糖鎖を、逆相HPLCで分析して得た溶離図を示した図である。縦軸に相対蛍光強度、横軸に溶出時間をそれぞれ示す。
第13図は、α−1,6−フコースを持たない糖鎖の割合が異なる6種類の抗GD3キメラ抗体のGD3に対する結合活性を抗体濃度を変化させて測定した図である。縦軸はGD3との結合活性、横軸は抗体濃度をそれぞれ示す。●が抗GD3キメラ抗体(50%)、□が抗GD3キメラ抗体(45%)、■が抗GD3キメラ抗体(29%)、△が抗GD3キメラ抗体(24%)、▲が抗GD3キメラ抗体(13%)、×が抗GD3キメラ抗体(7%)の活性をそれぞれ示す。
第14図は、ドナーAのエフェクター細胞を用いた、α−1,6−フコースを持たない糖鎖の割合が異なる6種類の抗GD3キメラ抗体のヒトメラノーマ細胞株G−361に対するADCC活性を示した図である。縦軸に細胞傷害活性、横軸に抗体濃度をそれぞれ示す。●が抗GD3キメラ抗体(50%)、□が抗GD3キメラ抗体(45%)、■が抗GD3キメラ抗体(29%)、△が抗GD3キメラ抗体(24%)、▲が抗GD3キメラ抗体(13%)、×が抗GD3キメラ抗体(7%)の活性をそれぞれ示す。
第15図は、ドナーBのエフェクター細胞を用いた、α−1,6−フコースを持たない糖鎖の割合が異なる6種類の抗GD3キメラ抗体のヒトメラノーマ細胞株G−361に対するADCC活性を示した図である。縦軸に細胞傷害活性、横軸に抗体濃度をそれぞれ示す。●が抗GD3キメラ抗体(50%)、□が抗GD3キメラ抗体(45%)、■が抗GD3キメラ抗体(29%)、△が抗GD3キメラ抗体(24%)、▲が抗GD3キメラ抗体(13%)、×が抗GD3キメラ抗体(7%)の活性をそれぞれ示す。
第16図は、6種類の抗CCR4キメラ抗体から調製したPA化糖鎖を、逆相HPLCで分析して得た溶離図を示したものである。縦軸に相対蛍光強度、横軸に溶出時間をそれぞれ示す。
第17図は、α−1,6−フコースを持たない糖鎖の割合が異なる6種類の抗CCR4キメラ抗体のCCR4に対する結合活性を抗体濃度を変化させて測定した図である。縦軸はCCR4との結合活性、横軸は抗体濃度をそれぞれ示す。■が抗CCR4キメラ抗体(46%)、□が抗CCR4キメラ抗体(39%)、▲が抗CCR4キメラ抗体(27%)、△が抗CCR4キメラ抗体(18%)、●が抗CCR4キメラ抗体(9%)、○が抗CCR4キメラ抗体(8%)の活性をそれぞれ示す。
第18図は、ドナーAのエフェクター細胞を用いた、α−1,6−フコースを持たない糖鎖の割合が異なる抗CCR4キメラ抗体のCCR4/EL−4細胞に対するADCC活性を示した図である。縦軸に細胞傷害活性、横軸に抗体濃度をそれぞれ示す。■が抗CCR4キメラ抗体(46%)、□が抗CCR4キメラ抗体(39%)、▲が抗CCR4キメラ抗体(27%)、△が抗CCR4キメラ抗体(18%)、●が抗CCR4キメラ抗体(9%)、○が抗CCR4キメラ抗体(8%)の活性をそれぞれ示す。
第19図は、ドナーBのエフェクター細胞を用いた、α−1,6−フコースを持たない糖鎖の割合が異なる抗CCR4キメラ抗体のCCR4/EL−4細胞に対するADCC活性を示した図である。縦軸に細胞傷害活性、横軸に抗体濃度をそれぞれ示す。■が抗CCR4キメラ抗体(46%)、□が抗CCR4キメラ抗体(39%)、▲が抗CCR4キメラ抗体(27%)、△が抗CCR4キメラ抗体(18%)、●が抗CCR4キメラ抗体(9%)、○が抗CCR4キメラ抗体(8%)の活性をそれぞれ示す。
第20図は、プラスミドCHFT8−pCR2.1およびYBFT8−pCR2.1の構築を示した図である。
第21図は、プラスミドCHAc−pBSおよびYBAc−pBSの構築を示した図である。
第22図は、プラスミドCHFT8d−pCR2.1およびYBFT8d−pCR2.1の構築を示した図である。
第23図は、プラスミドCHAcd−pBSおよびYBAcd−pBSの構築を示した図である。
第24図は、競合RTPCR法を用いた各宿主細胞株におけるFUT転写産物量定量結果を示した図である。ラットFUT8配列をスタンダード内部コントロールに用いた場合の各宿主細胞株におけるFUT8転写産物の量を示す。■がCHO細胞株、□がYB2/0細胞株を宿主細胞として用いた結果をそれぞれ示す。
第25図は、プラスミドmfFUT8−pCR2.1の構築を示した図である。
第26図は、プラスミドpBSmfFUT8の構築を示した図である。
第27図は、プラスミドpAGEmfFUT8の構築を示した図である。
第28図は、競合的RT−PCR法を用いたFUT8遺伝子過剰発現株の該遺伝子発現量解析結果を示した図である。縦軸にβ−アクチン転写量に対するFUT8転写量の相対値を示す。
第29図は、FUT8遺伝子過剰発現株より精製した抗GD3キメラ抗体のヒトメラノーマ細胞株G−361に対するADCC活性を示した図である。縦軸に細胞傷害活性、横軸に抗体濃度をそれぞれ示す。
第30図は、mfFUT8−6、pAGE249導入株によって産生した抗体から調製したPA化糖鎖を、それぞれ逆相HPLCで分析して得た溶離図を示したものである。30A図にmfFUT8−6株によって産生した抗体から調製したPA化糖鎖、30B図にpAGE249導入株によって産生した抗体から調製したPA化糖鎖の溶離図をそれぞれ示す。縦軸に相対蛍光強度、横軸に溶出時間をそれぞれ示す。
第31図は、Herceptinから調製したPA化糖鎖を、逆相HPLCで分析して得た溶離図を示したものである。縦軸に相対蛍光強度、横軸に溶出時間をそれぞれ示す。
第32図は、プラスミドCHfFUT8−pCR2.1の構築を示した図である。
第33図は、プラスミドploxPPuroの構築を示した図である。
第34図は、プラスミドpKOFUT8gE2−1の構築を示した図である。
第35図は、プラスミドpKOFUT8gE2−2の構築を示した図である。
第36図は、プラスミドpscFUT8gE2−3の構築を示した図である。
第37図は、プラスミドpKOFUT8gE2−3の構築を示した図である。
第38図は、プラスミドpKOFUT8gE2−4の構築を示した図である。
第39図は、プラスミドpKOFUT8gE2−5の構築を示した図である。
第40図は、プラスミドpKOFUT8Puroの構築を示した図である。
第41図は、α−1,6−フコシルトランスフェラーゼ遺伝子破壊CHO細胞株である1st.△FUT8 2−46−1株及び1st.△FUT8 2−46株のゲノムサザン解析結果を示した図である。
第42図は、FUT8対立遺伝子破壊株より精製した抗CCR4キメラ抗体のADCC活性を示した図である。縦軸に細胞傷害活性、横軸に抗体濃度をそれぞれ示す。▲、■はそれぞれ、抗CCR4キメラ抗体産生CHO細胞5−03株由来の精製抗体および1st.△FUT8 2−46−1株由来の精製抗体の活性をそれぞれ示す。
第43図は、レクチン耐性株が生産した抗CCR4ヒト型キメラ抗体のADCC活性を評価した結果を示した図である。縦軸に細胞傷害活性、横軸に抗体濃度をそれぞれ示す。□は5−03株、■はCHO/CCR4−LCA株、◆はCHO/CCR4−AAL株、▲はCHO/CCR4−PHA株が生産した抗体の活性をそれぞれ示す。
第44図は、レクチン耐性株が生産した抗CCR4ヒト型キメラ抗体のADCC活性を評価した結果を示したものである。縦軸に細胞傷害活性、横軸に抗体濃度をそれぞれ示す。□はYB2/0株(KM2760#58−35−16)、△は5−03株、●はCHO/CCR4−LCA株が生産した抗体の活性をそれぞれ示す。
第45図は、精製した抗CCR4ヒト型キメラ抗体から調製したPA化糖鎖を、逆相HPLCで分析して得た溶離図を示した図である。縦軸に相対蛍光強度、横軸に溶出時間をそれぞれ示す。45A図は5−03株が生産する抗体、45B図はCHO/CCR4−LCA株が生産する抗体、45C図はCHO/CCR4−AAL株が生産する抗体、および45D図はCHO/CCR4−PHA株が生産した抗体の分析結果を示す。
第46図は、CHO細胞由来GMDの発現ベクター構築(全6工程)の第1の工程を示した図である。
第47図は、CHO細胞由来GMDの発現ベクター構築(全6工程)の第2の工程を示した図である。
第48図は、CHO細胞由来GMDの発現ベクター構築(全6工程)の第3の工程を示した図である。
第49図は、CHO細胞由来GMDの発現ベクター構築(全6工程)の第4の工程を示した図である。
第50図は、CHO細胞由来GMDの発現ベクター構築(全6工程)の第5の工程を示した図である。
第51図は、CHO細胞由来GMDの発現ベクター構築(全6工程)の第6の工程を示した図である。
第52図は、GMDを発現させたCHO/CCR4−LCA株のLCAレクチンに対する耐性度を示した図である。LCAレクチンを添加せずに培養した細胞群の生存率を100%とし、2回測定を行った図である。図中249は、発現ベクターpAGE249を導入したCHO/CCR4−LCA株のLCAレクチンに対する生存率を示す。GMDはGMD発現ベクターpAGE249GMDを導入したCHO/CCR4−LCA株のLCAレクチンに対する耐性度を示す。
第53図は、GMDを発現させたCHO/CCR4−LCA株の細胞群が生産した抗CCR4キメラ抗体のADCC活性を示した図である。縦軸に細胞傷害活性、横軸に抗体濃度をそれぞれ示す。
第54図は、CHO細胞由来のGMDcDNAクローン22−8の5’末端にクローン34−2の5’末端を導入したプラスミドCHO−GMDの作製工程を示した図である。
第55図は、GMD遺伝子を発現させたCHO/CCR4−LCA株より精製した抗CCR4キメラ抗体から調製したPA化糖鎖を、逆相HPLCで分析して得た溶離図を示した図である。縦軸に相対蛍光強度、横軸に溶出時間をそれぞれ示す。

0042

本発明の抗体分子をコードする遺伝子を導入したチャイニーズハムスター卵巣組織由来
CHO細胞とは、N−グリコシド結合複合型糖鎖をFc領域に有する抗体分子からなる組
成物であって、該組成物中に含まれるFc領域に結合する全N−グリコシド結合複合型糖
鎖のうち、糖鎖還元末端のN−アセチルグルコサミンにフコースが結合していない糖鎖の
割合が20%以上である抗体組成物を生産する、抗体分子をコードする遺伝子を導入した
チャイニーズハムスター卵巣組織由来のCHO細胞であればいかなるCHO細胞も包含
れる。

0043

本発明において、抗体分子とは、抗体のFc領域を含む分子であればいかなる分子も包
含される。具体的には、抗体、抗体の断片、Fc領域を含む融合タンパク質などをあげる
ことができる。

0044

抗体とは、外来抗原刺激の結果、免疫反応によって生体内に産生される蛋白質で、抗原
と特異的に結合する活性を有するものをいう。抗体としては動物に抗原を免疫し、免疫動
物の脾臓細胞より作製したハイブリドーマ細胞が分泌する抗体のほか、遺伝子組換え技術
により作製された抗体、すなわち、抗体遺伝子を挿入した抗体発現ベクターを、宿主細胞
へ導入することにより取得された抗体などがあげられる。具体的には、ハイブリドーマ
生産する抗体、ヒト化抗体、ヒト抗体などをあげることができる。

0045

ハイブリドーマとは、ヒト以外の哺乳動物に抗原を免疫して取得されたB細胞と、マウ
ス等に由来するミエローマ細胞とを細胞融合させて得られる、所望の抗原特異性を有した
モノクローナル抗体を産生する細胞を意味する。

0046

ヒト化抗体としては、ヒト型キメラ抗体、ヒト型CDR移植抗体などがあげられる。

0047

ヒト型キメラ抗体は、ヒト以外の動物の抗体重鎖可変領域(以下、可変領域はV領域と
してHVまたはVHとも称す)および抗体軽鎖可変領域(以下、軽鎖L鎖としてLVま
たはVLとも称す)とヒト抗体の重鎖定常領域(以下、CHとも称す)およびヒト抗体の
軽鎖定常領域(以下、CLとも称す)とからなる抗体を意味する。ヒト以外の動物として
は、マウス、ラット、ハムスターラビット等、ハイブリドーマを作製することが可能で
あれば、いかなるものも用いることができる。

0048

ヒト型キメラ抗体は、モノクローナル抗体を生産するハイブリドーマより、VHおよび
VLをコードするcDNAを取得し、ヒト抗体CHおよびヒト抗体CLをコードする遺伝
子を有する宿主細胞用発現ベクターにそれぞれ挿入してヒト型キメラ抗体発現ベクターを
構築し、宿主細胞へ導入することにより発現させ、製造することができる。

0049

ヒト型キメラ抗体のCHとしては、ヒトイムノグロブリン(以下、hIgと表記する)
に属すればいかなるものでもよいが、hIgGクラスのものが好適であり、更にhIgG
クラスに属するhIgG1、hIgG2、hIgG3、hIgG4といったサブクラスの
いずれも用いることができる。また、ヒト型キメラ抗体のCLとしては、hIgに属すれ
ばいかなるものでもよく、κクラスあるいはλクラスのものを用いることができる。

0050

ヒト型CDR移植抗体は、ヒト以外の動物の抗体のVHおよびVLのCDRのアミノ酸
配列をヒト抗体のVHおよびVLの適切な位置に移植した抗体を意味する。

0051

ヒト型CDR移植抗体は、ヒト以外の動物の抗体のVHおよびVLのCDR配列を任意
のヒト抗体のVHおよびVLのCDR配列に移植したV領域をコードするcDNAを構築
し、ヒト抗体のCHおよびヒト抗体のCLをコードする遺伝子を有する宿主細胞用発現ベ
クターにそれぞれ挿入してヒト型CDR移植抗体発現ベクターを構築し、該発現ベクター
を宿主細胞へ導入することによりヒト型CDR移植抗体を発現させ、製造することができ
る。

0052

ヒト型CDR移植抗体のCHとしては、hIgに属すればいかなるものでもよいが、h
IgGクラスのものが好適であり、更にhIgGクラスに属するhIgG1、hIgG2
、hIgG3、hIgG4といったサブクラスのいずれも用いることができる。また、ヒ
ト型CDR移植抗体のCLとしては、hIgに属すればいかなるものでもよく、κクラス
あるいはλクラスのものを用いることができる。

0053

ヒト抗体は、元来、ヒト体内に天然に存在する抗体を意味するが、最近の遺伝子工学的
細胞工学的、発生工学的な技術の進歩により作製されたヒト抗体ファージライブラリー
ならびにヒト抗体産生トランスジェニック動物あるいはヒト抗体産生トランスジェニック
植物から得られる抗体等も含まれる。

0054

ヒト体内に存在する抗体は、例えば、ヒト末梢血リンパ球を単離し、EBウイルス等を
感染させ不死化クローニングすることにより、該抗体を産生するリンパ球を培養でき、
培養物中より該抗体を精製することができる。

0055

ヒト抗体ファージライブラリーは、ヒトB細胞から調製した抗体遺伝子をファージ遺伝
子に挿入することによりFab一本鎖抗体等の抗体断片をファージ表面に発現させたラ
イブラリーである。該ライブラリーより、抗原を固定化した基質に対する結合活性を指標
として所望の抗原結合活性を有する抗体断片を発現しているファージを回収することがで
きる。該抗体断片は、更に遺伝子工学的手法により、2本の完全なH鎖および2本の完全
なL鎖からなるヒト抗体分子へも変換することができる。

0056

ヒト抗体産生トランスジェニック非ヒト動物は、ヒト抗体遺伝子が細胞内に組込まれた
動物を意味する。具体的には、マウスES細胞へヒト抗体遺伝子を導入し、該ES細胞
他のマウスの初期胚へ移植後、発生させることによりヒト抗体産生トランスジェニック動
物を作製することができる。また、動物の受精卵にヒト抗体遺伝子を導入し、該受精卵を
発生させることによってヒト抗体産生トランスジェニック動物を作製することもできる。
ヒト抗体産生トランスジェニック動物からのヒト抗体の作製方法は、通常のヒト以外の哺
乳動物で行われているハイブリドーマ作製方法によりヒト抗体産生ハイブリドーマを得、
培養することで培養物中にヒト抗体を産生蓄積させることができる。

0057

トランスジェニック非ヒト動物は、ウシヒツジヤギブタウマ、マウス、ラット
ニワトリサル又はウサギ等があげられる。

0058

また、本発明において、抗体が、腫瘍関連抗原を認識する抗体、アレルギーあるいは炎
症に関連する抗原を認識する抗体、循環器疾患に関連する抗原を認識する抗体、自己免疫
疾患に関連する抗原を認識する抗体、またはウイルスあるいは細菌感染に関連する抗原を
認識する抗体であることが好ましく、抗体のクラスがIgGのヒト抗体が好ましい。

0059

抗体の断片とは、上記抗体のFc領域を含んだ断片を意味する。抗体の断片としては、
H鎖の単量体、H鎖の2量体などがあげられる。

0060

Fc領域を含む融合タンパク質とは、抗体のFc領域を含んだ抗体あるいは抗体の断片
と、酵素、サイトカインなどのタンパク質とを融合させた物質を意味する。

0061

本発明において、抗体分子のFc領域に結合する糖鎖としては、N−グリコシド結合糖
鎖が挙げられ、そのN−グリコシド結合糖鎖としては、コア構造の非還元末端側にガラ
トース−N−アセチルグルコサミン(以下、Gal−GlcNAcと表記する)の枝を並
行して1ないしは複数本有し、更にGal−GlcNAcの非還元末端側にシアル酸、バ
イセクティングのN−アセチルグルコサミンなどの構造を有するコンプレックス型(複合
型)をあげることができる。

0062

抗体分子のFc領域には、N−グリコシド結合糖鎖がそれぞれ1カ所ずつ結合する領域
を有しているので、抗体1分子あたり2本の糖鎖が結合している。抗体に結合するN−グ
ルコシド結合糖鎖としては、前記構造式(I)で示されるコア構造を有するいかなる糖鎖
も包含されるので、抗体に結合する2本のN−グルコシド結合糖鎖には多数の糖鎖の組み
合わせが存在することになる。したがって、Fc領域に結合した糖鎖構造の観点から物質
同一性を判断することができる。

0063

本発明において、N−グリコシド結合複合型糖鎖をFc領域に有する抗体分子からなる
組成物(以下、本発明の抗体組成物と称する)とは、本発明の効果が得られる範囲であれ
ば、単一の糖鎖構造を有する抗体から構成されていてもよいし、複数の異なる糖鎖構造を
有する糖鎖から構成されていてもよい。

0064

本発明において、抗体組成物中に含まれるFc領域に結合する全N−グリコシド結合複
合型糖鎖のうち、糖鎖還元末端のN−アセチルグルコサミンにフコースが結合していない
糖鎖の割合とは、該組成物中に含まれるFc領域に結合する全てのN−グリコシド結合複
合型糖鎖の合計数に対して、糖鎖還元末端のN−アセチルグルコサミンにフコースが結合
していない糖鎖の数が占める割合をいう。

0065

本発明において、N−グリコシド結合複合型糖鎖還元末端のN−アセチルグルコサミン
にフコースが結合していない糖鎖とは、該フコースが、N−グリコシド結合複合型糖鎖還
元末端のN−アセチルグルコサミンにα結合していない糖鎖を意味する。具体的には、該
フコースの1位がN−グリコシド結合複合型糖鎖のN−アセチルグルコサミンの6位にα
結合していない糖鎖があげられる。

0066

本発明の抗体組成物中に含まれるFc領域に結合する全N−グリコシド結合複合型糖鎖
のうち、糖鎖還元末端のN−アセチルグルコサミンにフコースが結合していない糖鎖の割
合が、好ましくは20%以上、より好ましくは25%以上、さらに好ましくは30%以上
、特に好ましくは40%以上、最も好ましくは50%以上である抗体組成物は、高いAD
CC活性を有する。抗体濃度が低下すれば、それに伴ってADCC活性が低下するが、糖
鎖還元末端のN−アセチルグルコサミンにフコースが結合していない糖鎖の割合が20%
以上の場合、抗体濃度が低くても高いADCC活性を獲得することができる。

0067

N−グリコシド結合複合型糖鎖をFc領域に有する抗体分子からなる組成物中に含まれ
る、糖鎖還元末端のN−アセチルグルコサミンにフコースが結合していない糖鎖の割合は
、抗体分子からヒドラジン分解酵素消化などの公知の方法[生物化学実験法23—糖タ
ンパク質糖鎖研究法(学会出版センター)高橋禮子編(1989)]を用い、糖鎖を遊離
させ、遊離させた糖鎖を蛍光標識又は同位元素標識し、標識した糖鎖をクロマトグラフィ
ー法にて分離することによって決定することができる。また、遊離させた糖鎖をHPAE
D−PAD法[ジャーナル・オブ・リキッドクロマトグラフィー(J.Liq.Chr
omatogr.),6,1577(1983)]によって分析することによっても決定
することができる。

0068

本発明において、チャイニーズハムスター卵巣組織由来のCHO細胞とは、チャイニー
ズハムスター(Chinese hamster;Cricetulus griseu
s)の卵巣組織から樹立された株化細胞であればいかなる細胞も包含される。その具体的
な例としては、Journal of Experimental Medicine,
108,945(1958)、Proc.Natl.Acad.Sci.USA,60,
1275(1968)、Genetics,55,513(1968)、Chromos
oma,41,129(1973)、Methodsin Cell Science
,18,115(1996)、Radiation Research,148,260
(1997)、Proc.Natl.Acad.Sci.USA,77,4216(19
80)、Proc.Natl.Acad.Sci.60,1275(1968)、Cel
l,6,121(1975)、Molecular Cell Genetics,Ap
pendix I,II(p883−900)等の文献に記載されているCHO細胞をあ
げることができる。また、ATCC(The American Type Cultu
re Collection)に登録されているCHO−K1株(ATCC CCL−6
1)、DUXB11株(ATCC CRL−9096)、Pro−5株(ATCC CR
L−1781)や、市販のCHO−S株(Lifetechnologies社 Cat
#11619)、あるいはこれら株を様々な培地に馴化させた亜株なども具体的な例とし
てあげることができる。

0069

本発明において、細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素とは、
細胞内で糖鎖へのフコースの供給源である糖ヌクレオチドGDP−フコースの合成に関与
する酵素であればいかなる酵素も包含される。細胞内糖ヌクレオチドGDP−フコースの
合成に係わる酵素とは、細胞内糖ヌクレオチドGDP−フコースの合成に影響を与える酵
素のことを意味する。

0070

細胞内の糖ヌクレオチドGDP−フコースは、de novoの合成経路あるいはSa
lvage合成経路により供給されている。したがって、これら合成経路に関与する酵素
はすべて細胞内GDP−フコースの合成に係わる酵素に包含される。

0071

細胞内の糖ヌクレオチドGDP−フコースのde novoの合成経路に関与する酵素
としては、具体的には、GDP−mannose 4,6−dehydratase(G
DP−マンノース4,6−デヒドラターゼ;以下、GMDと表記する)、GDP−ket
o−6−deoxymannose 3,5−epimerase,4−reducta
se(GDP−ケト−デオキシマンノース 3,5−エピメラーゼ,4−リダクターゼ;
以下、Fxと表記する)などがあげられる。

0072

細胞内の糖ヌクレオチドGDP−フコースのSalvage合成経路に関与する酵素と
しては、具体的には、GDP−beta−L−fucose pyrophosphor
ylase(GDP−ベータL−フコースピロホスフォリラーゼ;以下、GFPPと
表記する)、Fucokinase(フコキナーゼ)などがあげられる。

0073

細胞内糖ヌクレオチドGDP−フコースの合成に影響を与える酵素としては、上述の細
胞内の糖ヌクレオチドGDP−フコースの合成経路に関与する酵素の活性に影響を与えた
り、該酵素の基質となる物質の構造に影響を与える酵素も包含される。

0074

本発明において、GMDとしては、下記(a)または(b)のDNAがコードする蛋白
質、
(a)配列番号65で表される塩基配列からなるDNA
(b)配列番号65で表される塩基配列からなるDNAとストリンジェントな条件でハイ
ブリダイズし、かつGMD活性を有する蛋白質をコードするDNAまたは、
(c)配列番号71で表されるアミノ酸配列からなる蛋白質
(d)配列番号71で表されるアミノ酸配列において、1以上のアミノ酸が欠失、置換、
挿入および/または付加されたアミノ酸配列からなり、かつGMD活性を有する蛋白質
(e)配列番号71で表されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列
からなり、かつGMD活性を有する蛋白質等があげられる。
また、GMDのアミノ酸配列をコードするDNAとしては、配列番号65で表される塩
基配列を有するDNA、配列番号65で表される塩基配列を有するDNAとストリンジェ
ントな条件でハイブリダイズし、かつGMD活性を有するアミノ酸配列をコードするDN
Aなどがあげられる。

0075

本発明において、Fxとしては、下記(a)または(b)のDNAがコードする蛋白質

(a)配列番号48で表される塩基配列からなるDNA
(b)配列番号48で表される塩基配列からなるDNAとストリンジェントな条件でハイ
ブリダイズし、かつFx活性を有する蛋白質をコードするDNAまたは、
(c)配列番号72で表されるアミノ酸配列からなる蛋白質
(d)配列番号72で表されるアミノ酸配列において、1以上のアミノ酸が欠失、置換、
挿入および/または付加されたアミノ酸配列からなり、かつFx活性を有する蛋白質
(e)配列番号72で表されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列
からなり、かつFx活性を有する蛋白質等があげられる。

0076

また、Fxのアミノ酸配列をコードするDNAとしては、配列番号48で表される塩基
配列を有するDNA、配列番号48で表される塩基配列を有するDNAとストリンジェン
トな条件でハイブリダイズし、かつFx活性を有するアミノ酸配列をコードするDNAな
どがあげられる。

0077

本発明において、GFPPとしては、下記(a)または(b)のDNAがコードする蛋
白質
(a)配列番号51で表される塩基配列からなるDNA
(b)配列番号51で表される塩基配列からなるDNAとストリンジェントな条件でハイ
ブリダイズし、かつGFPP活性を有する蛋白質をコードするDNAまたは、
(c)配列番号73で表されるアミノ酸配列からなる蛋白質
(d)配列番号73で表されるアミノ酸配列において、1以上のアミノ酸が欠失、置換、
挿入および/または付加されたアミノ酸配列からなり、かつGFPP活性を有する蛋白質
(e)配列番号73で表されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列
からなり、かつGFPP活性を有する蛋白質等があげられる。

0078

また、GFPPのアミノ酸配列をコードするDNAとしては、配列番号51で表される
塩基配列を有するDNA、配列番号51で表される塩基配列を有するDNAとストリンジ
ェントな条件でハイブリダイズし、かつGFPP活性を有するアミノ酸配列をコードする
DNAなどがあげられる。

0079

本発明において、N−グリコシド結合複合型糖鎖還元末端のN−アセチルグルコサミン
の6位にフコースの1位がα結合する糖鎖修飾に関与する酵素とは、N−グリコシド結合
複合型糖鎖還元末端のN−アセチルグルコサミンの6位とフコースの1位がα結合する反
応に関与する酵素であればいかなる酵素も包含される。N−グリコシド結合複合型糖鎖還
元末端のN−アセチルグルコサミンの6位とフコースの1位がα結合する反応に関与する
酵素とは、N−グリコシド結合複合型糖鎖還元末端のN−アセチルグルコサミンの6位と
フコースの1位がα結合する反応に影響を与える酵素を意味する。

0080

N−グリコシド結合複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフコース
の1位がα結合する反応に関与する酵素としては、具体的には、α−1,6−フコシル
ランスフェラーゼやα−L−フコシダーゼなどがあげられる。

0081

また、上述のN−グリコシド結合複合型糖鎖還元末端のN−アセチルグルコサミンの6
位とフコースの1位がα結合する反応に関与する酵素の活性に影響を与えたり、該酵素の
基質となる物質の構造に影響を与える酵素も包含される。

0082

本発明において、α−1,6−フコシルトランスフェラーゼとしては、下記(a)、(
b)、(c)または(d)のDNAがコードする蛋白質、
(a)配列番号1で表される塩基配列からなるDNA
(b)配列番号2で表される塩基配列からなるDNA
(c)配列番号1で表される塩基配列からなるDNAとストリンジェントな条件でハイブ
リダイズし、かつα−1,6−フコシルトランスフェラーゼ活性を有する蛋白質をコード
するDNA
(d)配列番号2で表される塩基配列からなるDNAとストリンジェントな条件でハイブ
リダイズし、かつα−1,6−フコシルトランスフェラーゼ活性を有する蛋白質をコード
するDNAまたは、
(e)配列番号23で表されるアミノ酸配列からなる蛋白質
(f)配列番号24で表されるアミノ酸配列からなる蛋白質
(g)配列番号23で表されるアミノ酸配列において、1以上のアミノ酸が欠失、置換、
挿入および/または付加されたアミノ酸配列からなり、かつα−1,6−フコシルトラン
スフェラーゼ活性を有する蛋白質
(h)配列番号24で表されるアミノ酸配列において、1以上のアミノ酸が欠失、置換、
挿入および/または付加されたアミノ酸配列からなり、かつα−1,6−フコシルトラン
スフェラーゼ活性を有する蛋白質
(i)配列番号23で表されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列
からなり、かつα−1,6−フコシルトランスフェラーゼ活性を有する蛋白質
(j)配列番号24で表されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列
からなり、かつα−1,6−フコシルトランスフェラーゼ活性を有する蛋白質等があげら
れる。

0083

また、α−1,6−フコシルトランスフェラーゼのアミノ酸配列をコードするDNAと
しては、配列番号1または2で表される塩基配列を有するDNA、配列番号1または2で
表される塩基配列を有するDNAとストリンジェントな条件でハイブリダイズし、かつα
−1,6−フコシルトランスフェラーゼ活性を有するアミノ酸配列をコードするDNAな
どがあげられる。

0084

本発明において、ストリンジェントな条件下でハイブリダイズするDNAとは、例えば
配列番号1、2、48、51または65で表される塩基配列を有するDNAなどのDNA
またはその一部の断片をプローブとして、コロニーハイブリダイゼーション法プラー
ク・ハイブリダイゼーション法あるいはサザンブロットハイブリダイゼーション法等を用
いることにより得られるDNAを意味し、具体的には、コロニーあるいはプラーク由来の
DNAを固定化したフィルターを用いて、0.7〜1.0Mの塩化ナトリウム存在下、6
5℃でハイブリダイゼーションを行った後、0.1〜2倍濃度のSS溶液(1倍濃度の
SSC溶液の組成は、150mM塩化ナトリウム、15mMクエン酸ナトリウムよりなる
)を用い、65℃条件下でフィルターを洗浄することにより同定できるDNAをあげるこ
とができる。

0085

ハイブリダイゼーションは、Molecular Cloning,A Labora
tory Manual,Second Edition,Cold Spring H
arbor Laboratory Press,1989(以下、モレキュラー・クロ
ニング第2版と略す)、Current Protocols in Molecul
ar Biology,John Wiley & Sons,1987−1997(以
下、カレントプロトコールズ・イン・モレキュラー・バイオロジーと略す)、DNA
Cloning 1: Core Techniques,A Practical A
pproach,Second Edition,Oxford University
(1995)等に記載されている方法に準じて行うことができる。

0086

ハイブリダイズ可能なDNAとして具体的には、配列番号1、2、48、51または6
5で表される塩基配列と少なくとも60%以上の相同性を有するDNA、好ましくは70
%以上、より好ましくは80%以上、さらに好ましくは90%以上、特に好ましくは95
%以上、最も好ましくは98%以上の相同性を有するDNAをあげることができる。

0087

本発明において、配列番号23、24、71、72または73で表されるアミノ酸配列
において1以上のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列か
らなり、かつα−1,6−フコシルトランスフェラーゼ活性、GMD活性、Fx活性また
はGFPP活性を有する蛋白質は、モレキュラー・クローニング第2版、カレント・プロ
トコールズ・イン・モレキュラー・バイオロジー、Nucleic AcidsRes
earch,10,6487(1982)、Proc.Natl.Acad.Sci.,
USA,79,6409(1982)、Gene,34,315(1985)、Nucl
eic Acids Research,13,4431(1985)、Proc.Na
tl.Acad.Sci USA,82,488(1985)等に記載の部位特異的変異
導入法を用いて、例えば、配列番号1、2、65、48または51で表されるDNAに部
特異的変異を導入することにより取得することができる。

0088

欠失、置換、挿入および/または付加されるアミノ酸の数は1個以上でありその数は特
に限定されないが、上記の部位特異的変異導入法等の周知の技術により、欠失、置換もし
くは付加できる程度の数であり、例えば、1〜数十個、好ましくは1〜20個、より好ま
しくは1〜10個、さらに好ましくは1〜5個である。

0089

また、本発明において、α−1,6−フコシルトランスフェラーゼ活性、GMD活性、
Fx活性またはGFPP活性を有するためには、それぞれ配列番号23、24、71、7
2または73で表されるアミノ酸配列とBLAST〔J.Mol.Biol.,215,
403(1990)〕やFASTA〔Methodsin Enzymology,1
83,63(1990)〕等の解析ソフトを用いて計算したときに、少なくとも80%以
上、好ましくは85%以上、より好ましくは90%以上、さらに好ましくは95%以上、
特に好ましくは97%以上、最も好ましくは99%以上の相同性を有する。

0090

本発明のCHO細胞としては、上述の酵素活性が低下または欠失した細胞があげられる

0091

上述の酵素活性が低下または欠失した細胞としては、すなわち、細胞内糖ヌクレオチド
GDP−フコースの合成に関与する酵素の活性またはN−グリコシド結合複合型糖鎖還元
末端のN−アセチルグルコサミンの6位にフコースの1位がα結合する糖鎖修飾に関与す
る酵素の活性が親株より低下または欠失した細胞を包含する。

0092

このような細胞を取得する方法としては、目的とする酵素活性を低下または欠失させる
ことができる手法であれば、いずれの手法でも用いることができる。上述の酵素活性を低
下または欠失させる手法としては、(a)酵素の遺伝子を標的した遺伝子破壊の手法;(
b)酵素の遺伝子のドミナントネガティブ体を導入する手法;(c)酵素についての突然
変異を導入する手法;(d)酵素の遺伝子の転写又は翻訳を抑制する手法;(e)N−グ
リコシド結合糖鎖還元末端のN−アセチルグルコサミンの6位とフコースの1位がα結合
した糖鎖構造を認識するレクチンに耐性である株を選択する手法などがあげられる。

0093

ここで、レクチンに耐性である株は、ある一定濃度のレクチンを含む培地中で培養した
場合に、親株に比べて統計的な有意差を伴って少なくとも2倍、好ましくは3倍、より好
ましくは5倍以上生存率に差が生じる性質を獲得する株を選択することで取得することが
できる。また、レクチンを含む培地中で培養した場合に、ある一定の生存率、例えば80
%の生存率、で培養可能なレクチンの濃度が、親株に比べ少なくとも2倍、好ましくは5
倍、より好ましくは10倍、さらに好ましくは20倍以上の濃度となる株を選択すること
でも取得することができる。

0094

N−グリコシド結合糖鎖還元末端のN−アセチルグルコサミンの6位とフコースの1位
がα結合した糖鎖構造を認識するレクチンとしては、該糖鎖構造を認識できるレクチンで
あれば、いずれのレクチンでも用いることができる。その具体的な例としては、レンズ
メレクチンLCA(Lens Culinaris由来のLentil Aggluti
nin)、エンドウマメレクチンPSA(Pisum sativum由来のPea L
ectin)、ソラマメレクチンVFA(Vicia faba由来のAgglutin
in)、ヒイロチャワンタケレクチンAAL(Aleuria aurantia由来の
Lectin)等をあげることができる。

0095

本発明のCHO細胞は、上記の目的とする酵素活性を低下または欠失させる手法を施す
前の親株であるCHO細胞が生産する抗体組成物より、ADCC活性が高い抗体組成物を
生産することができる。

0096

また、本発明のCHO細胞は、抗体組成物中に含まれるFc領域に結合する全N−グリ
コシド結合複合型糖鎖のうち、糖鎖還元末端のN−アセチルグルコサミンとフコースが結
合していない糖鎖の割合が20%未満である抗体組成物よりもADCC活性が高い抗体組
成物を生産することができる。

0097

本発明において親株としては、例えば、細胞内糖ヌクレオチドGDP−フコースの合成
に関与する酵素の活性またはN−グリコシド結合複合型糖鎖還元末端のN−アセチルグル
サミンの6位にフコースの1位がα結合する糖鎖修飾に関与する酵素の活性が低下して
いない細胞があげられる。具体的には、細胞内糖ヌクレオチドGDP−フコースの合成に
関与する酵素の活性またはN−グリコシド結合複合型糖鎖還元末端のN−アセチルグルコ
サミンの6位にフコースの1位がα結合する糖鎖修飾に関与する酵素の活性を低下または
欠失させるような処理を施していない細胞が用いられる。

0098

本発明において、ADCC活性とは、生体内で、腫瘍細胞等の細胞表面抗原などに結合
した抗体が、抗体Fc領域とエフェクター細胞表面上に存在するFcレセプターとの結合
を介してエフェクター細胞を活性化し、腫瘍細胞等を傷害する活性を意味する[モノクロ
ナル・アンティボディズ:プリンシプルズ・アンド・アプリケーションズ(Monoc
lonal Antibodies: Principles and Applica
tions),Wiley−Liss,Inc.,Capter 2.1(1995)]
。エフェクター細胞としては、キラー細胞、ナチュラルキラー細胞、活性化されたマクロ
ファージ等があげられる。

0099

本発明は、また、細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素の活性
またはN−グリコシド結合糖鎖還元末端のN−アセチルグルコサミンの6位にフコースの
1位がα結合する糖鎖修飾に関与する酵素の活性またはN−グリコシド結合糖鎖修飾に関
与する酵素の活性が、遺伝子工学的な手法により低下した細胞(以下、本発明の宿主細胞
略記する)に関する。本発明の宿主細胞は、ADCC活性が高い抗体組成物を生産する
ための宿主細胞として有用である。

0100

本発明の宿主細胞としては、抗体分子を発現できる宿主細胞であればいかなる細胞も包
含する。その例として、酵母、動物細胞、昆虫細胞植物細胞などがあげられる。これら
の細胞の具体的な例としては、後述の3.に記載のものがあげられる。特に、動物細胞の
中でも、チャイニーズハムスター卵巣組織由来のCHO細胞、ラットミエローマ細胞株Y
B2/3HL.P2.G11.16Ag.20細胞、マウスミエローマ細胞株NS0細胞
、マウスミエローマ細胞株SP2/0−Ag14細胞、シリアンハムスター腎臓組織由来
BHK細胞、抗体を産生するハイブリドーマ細胞、ヒト白血病細胞株ナマルバ細胞、胚性
幹細胞、受精卵細胞などが好ましい。

0101

以下、本発明を詳細に説明する。

0102

1.本発明の宿主細胞の作製
本発明の宿主細胞は、以下に述べる手法により作製することができる。
(1)酵素の遺伝子を標的とした遺伝子破壊の手法
本発明の宿主細胞は、細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素ま
たはN−グリコシド結合複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフコー
スの1位がα結合する糖鎖修飾に関与する酵素の遺伝子を標的とし、遺伝子破壊の方法を
用いることにより作製することができる。細胞内糖ヌクレオチドGDP−フコースの合成
に関与する酵素としては、具体的には、GMD、Fx、GFPP、Fucokinase
などがあげられる。N−グリコシド結合複合型糖鎖還元末端のN−アセチルグルコサミン
の6位にフコースの1位がα結合する糖鎖修飾に関与する酵素としては、具体的には、α
−1,6−フコシルトランスフェラーゼ、α−L−フコシダーゼなどがあげられる。

0103

ここでいう遺伝子とは、DNAまたはRNAを含む。

0104

遺伝子破壊の方法としては、標的とする酵素の遺伝子を破壊することができる方法であ
ればいかなる方法も包含される。その例としては、アンチセンス法、リボザイム法、相同
組換え法、RDO法、RNAi法、レトロウイルスを用いた方法、トランスポゾンを用い
た方法等があげられる。以下これらを具体的に説明する。

0105

(a)アンチセンス法又はリボザイム法による本発明の宿主細胞の作製
本発明の宿主細胞は、細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素ま
たはN−グリコシド結合複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフコー
スの1位がα結合する糖鎖修飾に関与する酵素遺伝子を標的とし、細胞工学,12,23
9,(1993)、バイオ/テクノロジー(BIO/TECHNOLOGY),17,1
097,(1999)、ヒューマン・モレキュラー・ジェネティクス(Hum.Mol.
Genet.),5,1083,(1995)、細胞工学,13,255,(1994)
、プロシーディングス・オブ・ザ・ナショナル・アカデミー・オブ・サイエンス(Pro
c.Natl.Acad.Sci.U.S.A.),96,1886(1999)等に記
載されたアンチセンス法又はリボザイム法を用いて、例えば、以下のように作製すること
ができる。

0106

細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素またはN−グリコシド
合複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフコースの1位がα結合する
糖鎖修飾に関与する酵素をコードするcDNAあるいはゲノムDNAを調製する。

0107

調製したあるいはゲノムDNAの塩基配列を決定する。
決定したDNAの配列に基づき、細胞内糖ヌクレオチドGDP−フコースの合成に関与
する酵素またはN−グリコシド結合複合型糖鎖還元末端のN−アセチルグルコサミンの6
位にフコースの1位がα結合する糖鎖修飾に関与する酵素をコードするDNA部分、非翻
訳領域の部分あるいはイントロン部分を含む適当な長さのアンチセンス遺伝子またはリボ
ザイムのコンストラクトを設計する。

0108

該アンチセンス遺伝子、またはリボザイムを細胞内で発現させるために、調製したDN
Aの断片、または全長を適当な発現ベクターのプロモーターの下流に挿入することにより
組換えベクターを作製する。

0109

該組換えベクターを、該発現ベクターに適合した宿主細胞に導入することにより形質
換体を得る。

0110

細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素の活性またはN−グリコ
シド結合複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフコースの1位がα結
合する糖鎖修飾に関与する酵素の活性を指標として形質転換体を選択することにより、本
発明の宿主細胞を得ることができる。また、細胞膜上の糖タンパク質の糖鎖構造または産
生抗体分子の糖鎖構造を指標として形質転換体を選択することにより、本発明の宿主細胞
を得ることもできる。

0111

本発明の宿主細胞を作製するために用いられる宿主細胞としては、酵母、動物細胞、昆
虫細胞、植物細胞など、標的とする細胞内糖ヌクレオチドGDP−フコースの合成に関与
する酵素またはN−グリコシド結合複合型糖鎖還元末端のN−アセチルグルコサミンの6
位にフコースの1位がα結合する糖鎖修飾に関与する酵素の遺伝子を有しているものであ
ればいずれも用いることができる。具体的には、後述の3.に記載の宿主細胞があげられ
る。

0112

発現ベクターとしては、上記宿主細胞において自立複製可能ないしは染色体中への組み
込みが可能で、設計したアンチセンス遺伝子、またはリボザイムを転写できる位置にプロ
モーターを含有しているものが用いられる。具体的には、後述の3.に記載の発現ベクタ
ーがあげられる。

0113

各種宿主細胞への遺伝子の導入方法としては、後述の3.に記載の各種宿主細胞に適し
た組換えベクターの導入方法を用いることができる。

0114

細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素の活性またはN−グリコ
シド結合複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフコースの1位がα結
合する糖鎖修飾に関与する酵素の活性を指標として形質転換体を選択する方法としては、
例えば、以下の方法があげられる。

0115

形質転換体を選択する方法
細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素の活性またはN−グリコ
シド結合複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフコースの1位がα結
合する糖鎖修飾に関与する酵素の活性が低下した細胞を選択する方法としては、文献[新
生化学実験講座3—糖質I,糖タンパク質(東京化学同人)日本生化学会編(1988)
]、文献[細胞工学,別冊実験プロトコールシリーズ,グライコバイオロジー実験プロ
トコール,糖タンパク質・糖脂質プロテオグリカン(秀潤社製)谷口直之・鈴木明美・
古川清・菅原一幸監修(1996)]、モレキュラー・クローニング第2版、カレント・
プロトコールズ・イン・モレキュラー・バイオロジー等に記載された生化学的な方法ある
いは遺伝子工学的な方法などがあげられる。

0116

生化学的な方法としては、例えば、酵素特異的な基質を用いて酵素活性を評価する方法
があげられる。遺伝子工学的な方法としては、例えば、酵素遺伝子のmRNA量を測定す
ノーザン解析やRT−PCR法等があげられる。

0117

細胞膜上の糖タンパク質の糖鎖構造を指標として形質転換体を選択する方法としては、
例えば、後述の1の(5)に記載の方法があげられる。産生抗体分子の糖鎖構造を指標と
して形質転換体を選択する方法としては、例えば、後述の5または後述の6に記載の方法
があげられる。

0118

細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素またはN−グリコシド結
合複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフコースの1位がα結合する
糖鎖修飾に関与する酵素をコードするcDNAを調製する方法としては、例えば、以下に
記載の方法があげられる。

0119

DNAの調製方法
ヒト又は非ヒト動物組織又は細胞、各種宿主細胞から全RNA又はmRNAを調製す
る。調製した全RNA又はmRNAからcDNAライブラリーを作製する。

0120

細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素またはN−グリコシド結
合複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフコースの1位がα結合する
糖鎖修飾に関与する酵素のアミノ酸配列に基づいて、デジェネレイティブプライマーを作
製し、作製したcDNAライブラリーを鋳型としてPCR法にて細胞内糖ヌクレオチドG
DP−フコースの合成に関与する酵素またはN−グリコシド結合複合型糖鎖還元末端のN
アセチルグルコサミンの6位にフコースの1位がα結合する糖鎖修飾に関与する酵素を
コードする遺伝子断片を取得する。

0121

取得した遺伝子断片をプローブとして用い、cDNAライブラリーをスクリーニング
、細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素またはN−グリコシド結
合複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフコースの1位がα結合する
糖鎖修飾に関与する酵素をコードするDNAを取得することができる。

0122

ヒト又は非ヒト動物の組織又は細胞のmRNAは市販のもの(例えばClontech
社)を用いてもよいし、以下のごとくヒト又は非ヒト動物の組織又は細胞から調製しても
よい。ヒト又は非ヒト動物の組織又は細胞から全RNAを調製する方法としては、チオ
アン酸グアニジントリフルオロ酢酸セシウム法[メソッズ・イン・エンザイモロジー(
Methodsin Enzymology),154,3(1987)]、酸性チオ
シアン酸グアニジン・フェノールクロロホルム(AGPC)法[アナリティカル・バイ
オケミストリー(Analytical Biochemistry),162,156
(1987);実験医学、9,1937(1991)]などがあげられる。

0123

また、全RNAからpoly(A)+RNAとしてmRNAを調製する方法としては、
オリゴ(dT)固定化セルロースカラム法(モレキュラー・クローニング第2版)等があ
げられる。

0124

さらに、Fast TrackmRNAIsolation Kit(Invit
rogen社)、Quick Prep mRNA Purification Kit
(Pharmacia社)などのキットを用いることによりmRNAを調製することがで
きる。

0125

調製したヒト又は非ヒト動物の組織又は細胞mRNAからcDNAライブラリーを作製
する。cDNAライブラリー作製法としては、モレキュラー・クローニング第2版、カレ
ント・プロトコールズ・イン・モレキュラー・バイオロジー、A Laboratory
Manual,2nd Ed.(1989)等に記載された方法、あるいは市販のキッ
ト、例えばSuperScript Plasmid System for cDNA
Synthesis and Plasmid Cloning(Life Tech
nologies社)、ZAP−cDNA Synthesis Kit(STRATA
GENE社)を用いる方法などがあげられる。

0126

cDNAライブラリーを作製するためのクローニングベクターとしては、大腸菌K12
株中で自立複製できるものであれば、ファージベクタープラスミドベクター等いずれで
も使用できる。具体的には、ZAPExpress[STRATAGENE社、ストラ
テジーズ(Strategies),5,58(1992)]、pBluescript
IISK(+)[ヌクレイック・アシッドリサーチ(Nucleic Acids
Research),17,9494(1989)]、Lambda ZAP II(
STRATAGENE社)、λgt10、λgt11[ディーエヌエー・クローニング・
ア・プラクティカル・アプローチ(DNA cloning,A Practical
Approach),1,49(1985)]、λTriplEx(Clontech社
)、λExCell(Pharmacia社)、pT7T318U(Pharmacia
社)、pcD2[モレキュラー・セルラー・バイオロジー(Mol.Cell.Biol
.),3,280(1983)]およびpUC18[ジーン(Gene),33,103
(1985)]等をあげることができる。

0127

宿主微生物としては、微生物であればいずれでも用いることができるが、好ましくは大
腸菌が用いられる。具体的には、Escherichia coli XL1−Blue
MRF’[STRATAGENE社、ストラテジーズ(Strategies),5,
81(1992)]、Escherichia coli C600[ジェネティクス(
Genetics),39,440(1954)]、Escherichia coli
Y1088[サイエンス(Science),222,778(1983)]、Esc
herichia coli Y1090[サイエンス(Science),222,7
78(1983)]、Escherichia coli NM522[ジャーナル・オ
ブ・モレキュラー・バイオロジー(J.Mol.Biol.),166,1(1983)
]、Escherichia coli K802[ジャーナル・オブ・モレキュラー・
バイオロジー(J.Mol.Biol.),16,118(1966)]およびEsch
erichia coli JM105[ジーン(Gene),38,275(1985
)]等が用いられる。

0128

このcDNAライブラリーを、そのまま以降の解析に用いてもよいが、不完全長cDN
Aの割合を下げ、なるべく完全長cDNAを効率よく取得するために、菅野らが開発した
オリゴキャップ法[ジーン(Gene),138,171(1994);ジーン(Gen
e),200,149(1997);蛋白質核酸酵素,41,603(1996);実験
医学,11,2491(1993);cDNAクローニング(土社)(1996);
遺伝子ライブラリーの作製法(羊土社)(1994)]を用いて調製したcDNAライブ
ラリーを以下の解析に用いてもよい。

0129

細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素またはN−グリコシド結
合複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフコースの1位がα結合する
糖鎖修飾に関与する酵素のアミノ酸配列に基づいて、該アミノ酸配列をコードすることが
予測される塩基配列の5’端および3’端の塩基配列に特異的なデジェネレイティブプラ
イマーを作製し、作製したcDNAライブラリーを鋳型としてPCR法[ピーシーアール
・プロトコールズ(PCRProtocols),Academic Press(1
990)]を用いてDNAの増幅を行うことにより、細胞内糖ヌクレオチドGDP−フコ
ースの合成に関与する酵素またはN−グリコシド結合複合型糖鎖還元末端のN−アセチル
グルコサミンの6位にフコースの1位がα結合する糖鎖修飾に関与する酵素をコードする
遺伝子断片を取得することができる。

0130

取得した遺伝子断片が細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素ま
たはN−グリコシド結合複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフコー
スの1位がα結合する糖鎖修飾に関与する酵素をコードするDNAであることは、通常用
いられる塩基配列解析方法、例えばサンガー(Sanger)らのジデオキシ法[プロシ
ディングス・オブ・ザ・ナショナル・アカデミー・オブ・サイエンス(Proc.Na
tl.Acad.Sci.U.S.A.),74,5463(1977)]あるいはAB
IPRISM377DNAシークエンサー(PE Biosystems社製)等の塩基
配列分析装置を用いて分析することにより、確認することができる。

0131

該遺伝子断片DNAをプローブとして、ヒト又は非ヒト動物の組織又は細胞に含まれる
mRNAから合成したcDNAあるいはcDNAライブラリー対してコロニー・ハイブリ
ダイゼーションやプラーク・ハイブリダイゼーション(モレキュラー・クローニング第2
版)を行うことにより、細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素ま
たはN−グリコシド結合複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフコー
スの1位がα結合する糖鎖修飾に関与する酵素のDNAを取得することができる。

0132

また、細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素またはN−グリコ
シド結合複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフコースの1位がα結
合する糖鎖修飾に関与する酵素をコードする遺伝子断片を取得するために用いたプライマ
ーを用い、ヒト又は非ヒト動物の組織又は細胞に含まれるmRNAから合成したcDNA
あるいはcDNAライブラリーを鋳型として、PCR法を用いてスクリーニングを行うこ
とにより、細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素またはN−グリ
コシド結合複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフコースの1位がα
結合する糖鎖修飾に関与する酵素のDNAを取得することもできる。

0133

取得した細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素またはN−グリ
コシド結合複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフコースの1位がα
結合する糖鎖修飾に関与する酵素をコードするDNAの塩基配列を末端から、通常用いら
れる塩基配列解析方法、例えばサンガー(Sanger)らのジデオキシ法[プロシーデ
ィングス・オブ・ザ・ナショナル・アカデミー・オブ・サイエンス(Proc.Natl
.Acad.Sci.U.S.A.),74,5463(1977)]あるいはABI
PRISM377DNAシークエンサー(PE Biosystems社製)等の塩基配
分析装置を用いて分析することにより、該DNAの塩基配列を決定する。

0134

決定したcDNAの塩基配列をもとに、BLAST等の相同性検索プログラムを用いて
GenBankEMBLおよびDDBJなどの塩基配列データベース検索すること
により、データベース中の遺伝子の中で細胞内糖ヌクレオチドGDP−フコースの合成に
関与する酵素またはN−グリコシド結合複合型糖鎖還元末端のN−アセチルグルコサミン
の6位にフコースの1位がα結合する糖鎖修飾に関与する酵素をコードしている遺伝子を
決定することもできる。

0135

上記の方法で得られる細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素を
コードする遺伝子の塩基配列としては、例えば、配列番号48、51または65に記載の
塩基配列があげられる。N−グリコシド結合複合型糖鎖還元末端のN−アセチルグルコサ
ミンの6位にフコースの1位がα結合する糖鎖修飾に関与する酵素をコードする遺伝子の
塩基配列としては、例えば、配列番号1または2に記載の塩基配列があげられる。

0136

決定されたDNAの塩基配列に基づいて、フォスフォアミダイト法を利用したパーキン
エルマー社のDNA合成機model 392等のDNA合成機で化学合成することに
より、細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素またはN−グリコシ
ド結合複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフコースの1位がα結合
する糖鎖修飾に関与する酵素のcDNAを取得することもできる。

0137

細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素またはN−グリコシド結
合複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフコースの1位がα結合する
糖鎖修飾に関与する酵素のゲノムDNAを調製する方法としては、例えば、以下に記載の
方法があげられる。

0138

ゲノムDNAの調製方法
ゲノムDNAを調製する方法としては、モレキュラー・クローニング第2版やカレント
・プロトコールズ・イン・モレキュラー・バイオロジー等に記載された公知の方法があげ
られる。また、ゲノムDNAライブラリースクリーニングシステム(Genome Sy
stems社)やUniversal GenomeWalkerTM Kits(CL
NTECH社)などを用いることにより、細胞内糖ヌクレオチドGDP−フコースの合
成に関与する酵素またはN−グリコシド結合複合型糖鎖還元末端のN−アセチルグルコサ
ミンの6位にフコースの1位がα結合する糖鎖修飾に関与する酵素のゲノムDNAを単離
することもできる。

0139

上記の方法で得られる細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素の
ゲノムDNAの塩基配列として、例えば配列番号67または70に記載の塩基配列があげ
られる。N−グリコシド結合複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフ
コースの1位がα結合する糖鎖修飾に関与する酵素のゲノムDNAの塩基配列として、例
えば配列番号3に記載の塩基配列があげられる。

0140

また、発現ベクターを用いず、細胞内糖ヌクレオチドGDP−フコースの合成に関与す
る酵素またはN−グリコシド結合複合型糖鎖還元末端のN−アセチルグルコサミンの6位
にフコースの1位がα結合する糖鎖修飾に関与する酵素の塩基配列に基づいて設計したア
ンチセンスオリゴヌクレオチドまたはリボザイムを、直接宿主細胞に導入することで、本
発明の宿主細胞を得ることもできる。

0141

アンチセンスオリゴヌクレオチドまたはリボザイムは、常法またはDNA合成機を用い
ることにより調製することができる。具体的には、細胞内糖ヌクレオチドGDP−フコー
スの合成に関与する酵素またはN−グリコシド結合複合型糖鎖還元末端のN−アセチルグ
ルコサミンの6位にフコースの1位がα結合する糖鎖修飾に関与する酵素をコードするc
DNAおよびゲノムDNAの塩基配列のうち、連続した5〜150塩基、好ましくは5〜
60塩基、より好ましくは10〜40塩基に相当する配列を有するオリゴヌクレオチド
配列情報に基づき、該オリゴヌクレオチドと相補的な配列に相当するオリゴヌクレオチド
(アンチセンスオリゴヌクレオチド)または該オリゴヌクレオチドの配列を含むリボザイ
ムを合成することで調製することができる。

0142

オリゴヌクレオチドとしては、オリゴRNAおよび該オリゴヌクレオチドの誘導体(以
下、オリゴヌクレオチド誘導体という)等があげられる。

0143

オリゴヌクレオチド誘導体としては、オリゴヌクレオチド中のリン酸ジエステル結合
ホスフォロチオエート結合に変換されたオリゴヌクレオチド誘導体、オリゴヌクレオチド
中のリン酸ジエステル結合がN3’−P5’ホスフォアミデート結合に変換されたオリゴ
ヌクレオチド誘導体、オリゴヌクレオチド中のリボースとリン酸ジエステル結合がペプチ
核酸結合に変換されたオリゴヌクレオチド誘導体、オリゴヌクレオチド中のウラシル
C−5プロピニルウラシルで置換されたオリゴヌクレオチド誘導体、オリゴヌクレオチド
中のウラシルがC−5チアゾールウラシルで置換された誘導体オリゴヌクレオチド、オリ
ヌクレオチド中のシトシンがC−5プロピニルシトシンで置換されたオリゴヌクレオ
ド誘導体、オリゴヌクレオチド中のシトシンがフェノキサジン修飾シトシン(pheno
xazine−modified cytosine)で置換されたオリゴヌクレオチド
誘導体、オリゴヌクレオチド中のリボースが2’−O−プロピルリボースで置換されたオ
リゴヌクレオチド誘導体、あるいはオリゴヌクレオチド中のリボースが2’−メトキシ
トキシリボースで置換されたオリゴヌクレオチド誘導体等があげられる[細胞工学,16
,1463(1997)]。

0144

(b)相同組換え法による本発明の宿主細胞の作製
本発明の宿主細胞は、細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素ま
たはN−グリコシド結合複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフコー
スの1位がα結合する糖鎖修飾に関与する酵素の遺伝子を標的とし、染色体上の標的遺伝
子を相同組換え法を用い改変することによって作製することができる。

0145

染色体上の標的遺伝子の改変は、Manipulating the Mouse E
mbryo A Laboratory Manual,Second Edition
,Cold Spring Harbor Laboratory Press(199
4)(以下、「マニピュレティング・ザ・マウス・エンブリオ・ア・ラボラトリー・マ
ニュアル」と略す)、Gene Targeting,A Practical App
roach,IRL Press at Oxford University Pre
ss(1993)、バイオマニュアルシリーズ8ジーンターゲッティング,ES細胞を
用いた変異マウスの作製,羊土社(1995)(以下、「ES細胞を用いた変異マウスの
作製」と略す)等に記載の方法を用い、例えば以下のように行うことができる。

0146

細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素またはN−グリコシド結
合複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフコースの1位がα結合する
糖鎖修飾に関与する酵素のゲノムDNAを調製する。

0147

ゲノムDNAの塩基配列にも基づき、改変する標的遺伝子(例えば、細胞内糖ヌクレオ
チドGDP−フコースの合成に関与する酵素またはN−グリコシド結合複合型糖鎖還元末
端のN−アセチルグルコサミンの6位にフコースの1位がα結合する糖鎖修飾に関与する
酵素の構造遺伝子、あるいはプロモーター遺伝子)を相同組換えするためのターゲット
クターを作製する。

0148

作製したターゲットベクターを宿主細胞に導入し、標的遺伝子とターゲットベクターの
間で相同組換えを起こした細胞を選択することにより、本発明の宿主細胞を作製すること
ができる。

0149

宿主細胞としては、酵母、動物細胞、昆虫細胞、植物細胞等、標的とする細胞内糖ヌク
レオチドGDP−フコースの合成に関与する酵素またはN−グリコシド結合複合型糖鎖還
元末端のN−アセチルグルコサミンの6位にフコースの1位がα結合する糖鎖修飾に関与
する酵素の遺伝子を有しているものであればいずれも用いることができる。具体的には、
後述の3.に記載の宿主細胞があげられる。

0150

細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素またはN−グリコシド結
合複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフコースの1位がα結合する
糖鎖修飾に関与する酵素のゲノムDNAを調製する方法としては、上記1の(1)の(a
)に記載の「ゲノムDNAの調製方法」などがあげられる。

0151

上記の方法で得られる細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素の
ゲノムDNAの塩基配列として、例えば配列番号67または70に記載の塩基配列があげ
られる。N−グリコシド結合複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフ
コースの1位がα結合する糖鎖修飾に関与する酵素のゲノムDNAの塩基配列として、例
えば配列番号3に記載の塩基配列があげられる。

0152

標的遺伝子を相同組換えするためのターゲットベクターは、Gene Targeti
ng,A Practical Approach,IRL Press at Oxf
ord University Press(1993)、バイオマニュアルシリーズ8
ジーンターゲッティング,ES細胞を用いた変異マウスの作製(羊土社)(1995)
等に記載の方法にしたがって作製することができる。ターゲットベクターは、リプレース
メント型、インサーション型いずれでも用いることができる。

0153

各種宿主細胞へのターゲットベクターの導入には、後述の3.に記載の各種宿主細胞に
適した組換えベクターの導入方法を用いることができる。

0154

相同組換え体を効率的に選別する方法として、例えば、Gene Targeting
,A Practical Approach,IRL Press at Oxfor
d University Press(1993)、バイオマニュアルシリーズ8 ジ
ーンターゲッティング,ES細胞を用いた変異マウスの作製(羊土社)(1995)等に
記載のポジティブ選択、プロモーター選択、ネガティブ選択ポリA選択などの方法を用
いることができる。選別した細胞株の中から目的とする相同組換え体を選択する方法とし
ては、ゲノムDNAに対するサザンハイブリダイゼーション法(モレキュラー・クロー
ング第2版)やPCR法[ピーシーアール・プロトコールズ(PCRProtocol
s),Academic Press(1990)]等があげられる。

0155

(c)RDO方法による本発明の宿主細胞の作製
本発明の宿主細胞は、細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素ま
たはN−グリコシド結合複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフコー
スの1位がα結合する糖鎖修飾に関与する酵素の遺伝子を標的とし、RDO(RNA−D
NA oligonucleotide)法を用い、例えば、以下のように作製すること
ができる。

0156

細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素またはN−グリコシド結
合複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフコースの1位がα結合する
糖鎖修飾に関与する酵素のcDNAあるいはゲノムDNAを調製する。

0157

調製したcDNAあるいはゲノムDNAの塩基配列を決定する。

0158

決定したDNAの配列に基づき、細胞内糖ヌクレオチドGDP−フコースの合成に関与
する酵素またはN−グリコシド結合複合型糖鎖還元末端のN−アセチルグルコサミンの6
位にフコースの1位がα結合する糖鎖修飾に関与する酵素をコードする部分、非翻訳領域
の部分あるいはイントロン部分を含む適当な長さのRDOのコンストラクトを設計し合成
する。

0159

合成したRDOを宿主細胞に導入し、標的とした酵素、すなわち細胞内糖ヌクレオチド
GDP−フコースの合成に関与する酵素またはN−グリコシド結合複合型糖鎖還元末端の
N−アセチルグルコサミンの6位にフコースの1位がα結合する糖鎖修飾に関与する酵素
に変異が生じた形質転換体を選択することにより、本発明の宿主細胞を作製することがで
きる。

0160

宿主細胞としては、酵母、動物細胞、昆虫細胞、植物細胞等、標的とする細胞内糖ヌク
レオチドGDP−フコースの合成に関与する酵素またはN−グリコシド結合複合型糖鎖還
元末端のN−アセチルグルコサミンの6位にフコースの1位がα結合する糖鎖修飾に関与
する酵素の遺伝子を有しているものであればいずれも用いることができる。具体的には、
後述の3.に記載の宿主細胞があげられる。

0161

各種宿主細胞へのRDOの導入には、後述の3.に記載の各種宿主細胞に適した組み換
ベクターの導入方法を用いることができる。

0162

細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素またはN−グリコシド結
合複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフコースの1位がα結合する
糖鎖修飾に関与する酵素のcDNAを調製する方法としては、例えば、上記1の(1)の
(a)に記載の「DNAの調製方法」などがあげられる。

0163

細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素またはN−グリコシド結
合複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフコースの1位がα結合する
糖鎖修飾に関与する酵素のゲノムDNAを調製する方法としては、例えば、上記1の(1
)の(a)に記載の「ゲノムDNAの調製方法」などがあげられる。

0164

DNAの塩基配列は、適当な制限酵素などで切断後、pBluescriptSK(
−)(Stratagene社製)等のプラスミドにクローニングし、通常用いられる塩
配列解析方法、例えば、サンガー(Sanger)らのジデオキシ法[プロシーディン
グス・オブ・ザ・ナショナル・アカデミー・オブ・サイエンス(Proc.Natl.A
cad.Sci.,U.S.A.),74,5463(1977)]等の反応を行い、塩
基配列自動分析装置、例えば、A.L.F.DNAシークエンサー(Pharmacia
社製)等を用いて解析することで該DNAの塩基配列を決定することができる。

0165

RDOは、常法またはDNA合成機を用いることにより調製することができる。

0166

RDOを宿主細胞に導入し、標的とした酵素、細胞内糖ヌクレオチドGDP−フコース
の合成に関与する酵素またはN−グリコシド結合複合型糖鎖還元末端のN−アセチルグル
コサミンの6位にフコースの1位がα結合する糖鎖修飾に関与する酵素の遺伝子に変異が
生じた細胞を選択する方法としては、モレキュラー・クローニング第2版、カレント・プ
ロトコールズ・イン・モレキュラー・バイオロジー等に記載された染色体上の遺伝子の変
異を直接検出する方法があげられる。

0167

また、前記1の(1)の(a)に記載の、導入した細胞内糖ヌクレオチドGDP−フコ
ースの合成に関与する酵素の活性またはN−グリコシド結合複合型糖鎖還元末端のN−ア
セチルグルコサミンの6位にフコースの1位がα結合する糖鎖修飾に関与する酵素の活性
を指標として形質転換体を選択する方法、後述の1の(5)に記載の細胞膜上の糖タンパ
ク質の糖鎖構造を指標として形質転換体を選択する方法、あるいは、後述の5または後述
の6に記載の産生抗体分子の糖鎖構造を指標として形質転換体を選択する方法も用いるこ
とができる。

0168

RDOのコンストラクトは、サイエンス(Science),273,1386,(1
996);ネイチャー・メディシン(Nature Medicine),4,285,
(1998);へパトロジー(Hepatology),25,1462,(1997)
;ジーン・セラピー(Gene Therapy),5,1960,(1999);ジー
ン・セラピー(Gene Therapy),5,1960,(1999);ジャーナル
・オブ・モレキュラー・メディシン(J.Mol.Med.),75,829,(199
7);プロシーディングス・オブ・ザ・ナショナル・アカデミー・オブ・サイエンス(P
roc.Natl.Acad.Sci.USA),96,8774,(1999);プロ
シーディングス・オブ・ザ・ナショナル・アカデミー・オブ・サイエンス(Proc.N
atl.Acad.Sci.USA),96,8768,(1999);ヌクレイック・
アシッド・リサーチ(Nuc.Acids.Res.),27,1323,(1999)
;インベスティゲーション・オブ・ダーマトロジー(Invest.Dematol.)
,111,1172,(1998);ネイチャー・バイオテクノロジー(Nature
Biotech.),16,1343,(1998);ネイチャー・バイオテクノロジー
(Nature Biotech.),18,43,(2000);ネイチャー・バイオ
テクノロジー(Nature Biotech.),18,555,(2000)等の記
載に従って設計することができる。

0169

(d)RNAi方法による本発明の宿主細胞の作製
本発明の宿主細胞は、細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素ま
たはN−グリコシド結合複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフコー
スの1位がα結合する糖鎖修飾に関与する酵素の遺伝子を標的とし、 RNAi(RNA
interference)法を用い、例えば、以下のように作製することができる。

0170

細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素またはN−グリコシド結
合複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフコースの1位がα結合する
糖鎖修飾に関与する酵素のcDNAを調製する。

0171

調製したcDNAの塩基配列を決定する。

0172

決定したDNAの配列に基づき、細胞内糖ヌクレオチドGDP−フコースの合成に関与
する酵素またはN−グリコシド結合複合型糖鎖還元末端のN−アセチルグルコサミンの6
位にフコースの1位がα結合する糖鎖修飾に関与する酵素をコードする部分あるいは非翻
訳領域の部分を含む適当な長さのRNAi遺伝子のコンストラクトを設計する。

0173

該RNAi遺伝子を細胞内で発現させるために、調製したDNAの断片、または全長を
適当な発現ベクターのプロモーターの下流に挿入することにより、組換えベクターを作製
する。

0174

該組換えベクターを、該発現ベクターに適合した宿主細胞に導入することにより形質転
換体を得る。

0175

導入した細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素の活性またはN
−グリコシド結合複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフコースの1
位がα結合する糖鎖修飾に関与する酵素の活性、あるいは産生抗体分子または細胞表面上
の糖タンパク質の糖鎖構造を指標に形質転換体を選択することで、本発明の宿主細胞を得
ることができる。

0176

宿主細胞としては、酵母、動物細胞、昆虫細胞、植物細胞等、標的とする細胞内糖ヌク
レオチドGDP−フコースの合成に関与する酵素またはN−グリコシド結合複合型糖鎖還
元末端のN−アセチルグルコサミンの6位にフコースの1位がα結合する糖鎖修飾に関与
する酵素の遺伝子を有しているものであればいずれも用いることができる。具体的には、
後述の3.に記載の宿主細胞があげられる。

0177

発現ベクターとしては、上記宿主細胞において自立複製可能ないしは染色体中への組み
込みが可能で、設計したRNAi遺伝子を転写できる位置にプロモーターを含有している
ものが用いられる。具体的には、後述の3.に記載の発現ベクターがあげられる。

0178

各種宿主細胞への遺伝子の導入には、後述の3.に記載の各種宿主細胞に適した組換え
ベクターの導入方法を用いることができる。

0179

細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素の活性またはN−グリコ
シド結合複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフコースの1位がα結
合する糖鎖修飾に関与する酵素の活性を指標として形質転換体を選択する方法としては、
例えば、前記1の(1)の(a)に記載の方法があげられる。

0180

細胞膜上の糖タンパク質の糖鎖構造を指標として形質転換体を選択する方法としては、
例えば、後述の1の(5)に記載の方法があげられる。産生抗体分子の糖鎖構造を指標と
して形質転換体を選択する方法としては、例えば、後述の5または後述の6に記載の方法
があげられる。

0181

細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素またはN−グリコシド結
合複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフコースの1位がα結合する
糖鎖修飾に関与する酵素のcDNAを調製する方法としては、例えば、前記1の(1)の
(a)に記載されたDNAの調製方法などがあげられる。

0182

また、発現ベクターを用いず、細胞内糖ヌクレオチドGDP−フコースの合成に関与す
る酵素またはN−グリコシド結合複合型糖鎖還元末端のN−アセチルグルコサミンの6位
にフコースの1位がα結合する糖鎖修飾に関与する酵素の塩基配列に基づいて設計したR
NAi遺伝子を、直接宿主細胞に導入することで、本発明の宿主細胞を得ることもできる

0183

RNAi遺伝子は、常法またはDNA合成機を用いることにより調製することができる

0184

RNAi遺伝子のコンストラクトは、[ネイチャー(Nature),391,806
,(1998);プロシーディングス・オブ・ザ・ナショナル・アカデミー・オブ・サイ
エンス(Proc.Natl.Acad.Sci.USA),95,15502,(19
98);ネイチャー(Nature),395,854,(1998);プロシーディン
グス・オブ・ザ・ナショナル・アカデミー・オブ・サイエンス(Proc.Natl.A
cad.Sci.USA),96,5049,(1999);セル(Cell),95,
1017,(1998);プロシーディングス・オブ・ザ・ナショナル・アカデミー・オ
ブ・サイエンス(Proc.Natl.Acad.Sci.USA),96,1451,
(1999);プロシーディングス・オブ・ザ・ナショナル・アカデミー・オブ・サイエ
ンス(Proc.Natl.Acad.Sci.USA),95,13959,(199
8);ネイチャー・セル・バイオロジー(Nature Cell Biol.),2,
70,(2000)]等の記載に従って設計することができる。

0185

(e)トランスポゾンを用いた方法による、本発明の宿主細胞の作製
本発明の宿主細胞は、ネイチャー・ジェネティク(Nature Genet.),2
5,35,(2000)等に記載のトランスポゾンのシステムを用い、細胞内糖ヌクレオ
チドGDP−フコースの合成に関与する酵素の活性またはN−グリコシド結合複合型糖鎖
還元末端のN−アセチルグルコサミンの6位にフコースの1位がα結合する糖鎖修飾に関
与する酵素の活性、あるいは産生抗体分子または細胞膜上の糖タンパク質の糖鎖構造を指
標に突然変異体を選択することで、本発明の宿主細胞を作製することができる。

0186

トランスポゾンのシステムとは、外来遺伝子ランダムに染色体上に挿入させることで
突然変異を誘発させるシステムであり、通常、トランスポゾンに挿まれた外来遺伝子を突
然変異を誘発させるベクターとして用い、この遺伝子を染色体上にランダムに挿入させる
ためのトランスポゼースの発現ベクターを同時に細胞の中に導入する。

0187

トランスポゼースは、用いるトランスポゾンの配列に適したものであればいかなるもの
も用いることができる。外来遺伝子としては、宿主細胞のDNAに変異を誘起するもので
あればいかなる遺伝子も用いることができる。

0188

宿主細胞としては、酵母、動物細胞、昆虫細胞、植物細胞等、標的とする細胞内糖ヌク
レオチドGDP−フコースの合成に関与する酵素またはN−グリコシド結合複合型糖鎖還
元末端のN−アセチルグルコサミンの6位にフコースの1位がα結合する糖鎖修飾に関与
する酵素の遺伝子を有しているものであればいずれも用いることができる。具体的には、
後述の3.に記載の宿主細胞があげられる。各種宿主細胞への遺伝子の導入には、後述の
3.に記載の各種宿主細胞に適した組み換えベクターの導入方法を用いることができる。

0189

細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素の活性またはN−グリコ
シド結合複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフコースの1位がα結
合する糖鎖修飾に関与する酵素の活性を指標として突然変異体を選択する方法としては、
例えば、前記1の(1)の(a)に記載の方法があげられる。

0190

細胞膜上の糖タンパク質の糖鎖構造を指標として突然変異体を選択する方法としては、
例えば、後述の1の(5)に記載の方法があげられる。産生抗体分子の糖鎖構造を指標と
して突然変異体を選択する方法としては、例えば、後述の5または後述の6に記載の方法
があげられる。

0191

(2)酵素の遺伝子のドミナントネガティブ体を導入する手法
本発明の宿主細胞は、細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素ま
たはN−グリコシド結合複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフコー
スの1位がα結合する糖鎖修飾に関与する酵素の遺伝子を標的とし、該酵素のドミナント
ネガティブ体を導入する手法を用いることにより作製することができる。細胞内糖ヌクレ
オチドGDP−フコースの合成に関与する酵素としては、具体的には、GMD、Fx、G
FPP、Fucokinaseなどがあげられる。

0192

N−グリコシド結合複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフコース
の1位がα結合する糖鎖修飾に関与する酵素としては、具体的には、α−1,6−フコシ
トランスフェラーゼ、α−L−フコシダーゼなどがあげられる。

0193

これらの酵素は、基質特異性を有したある特定の反応を触媒する酵素であり、このよう
な基質特異性を有した触媒作用を有する酵素の活性中心を破壊することで、これらの酵素
のドミナントネガティブ体を作製することができる。標的とする酵素のうち、GMDを例
として、そのドミナントネガティブ体に作製について具体的に以下に述べる。

0194

大腸菌由来のGMDの立体構造を解析した結果、4つのアミノ酸(133番目のトレオ
ニン、135番目のグルタミン酸、157番目のチロシン、161番目のリシン)が酵素
活性に重要な機能を担っていることが明らかにされている(Structure,8,2
,2000)。

0195

すなわち、立体構造の情報にもとづきこれら4つのアミノ酸を異なる他のアミノ酸に置
換した変異体を作製した結果、いずれの変異体においても有意に酵素活性が低下していた
ことが示されている。

0196

一方、GMDの補酵素NADPや基質であるGDP−マンノースとの結合能に関しては
、いずれの変異体においてもほとんど変化が観察されていない。従って、GMDの酵素活
性を担うこれら4つのアミノ酸を置換することによりドミナントネガティブ体を作製する
ことができる。

0197

大腸菌由来のGMDの結果に基づき、アミノ酸配列情報をもとにした相同性比較や立体
構造予測を行うことにより、例えば、CHO細胞由来のGMD(配列番号65)では、1
55番目のトレオニン、157番目のグルタミン酸、179番目のチロシン、183番目
のリシンを他のアミノ酸に置換することによりドミナントネガティブ体を作製することが
できる。

0198

このようなアミノ酸置換を導入した遺伝子の作製は、モレキュラー・クローニング第2
版、カレント・プロトコールズ・イン・モレキュラー・バイオロジー等に記載された部位
特異的変異導入法を用いて行うことができる。

0199

本発明の宿主細胞は、上述のように作製した標的酵素のドミナントネガティブ体遺伝子
を用い、モレキュラー・クローニング第2版、カレント・プロトコールズ・イン・モレキ
ュラー・バイオロジー、マニピュレーティング・マウス・エンブリオ第2版等に記載され
遺伝子導入の方法に従って、例えば、以下のように作製することができる。

0200

細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素またはN−グリコシド結
合複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフコースの1位がα結合する
糖鎖修飾に関与する酵素のドミナントネガティブ体をコードする遺伝子(以下、ドミナン
トネガティブ体遺伝子と略記する)を調製する。

0201

調製したドミナントネガティブ体遺伝子の全長DNAをもとにして、必要に応じて、該
タンパク質をコードする部分を含む適当な長さのDNA断片を調製する。

0202

該DNA断片、または全長DNAを適当な発現ベクターのプロモーターの下流に挿入す
ることにより、組換えベクターを作製する。
該組換えベクターを、該発現ベクターに適合した宿主細胞に導入することにより、形質
転換体を得る。

0203

細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素の活性またはN−グリコ
シド結合複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフコースの1位がα結
合する糖鎖修飾に関与する酵素の活性、あるいは産生抗体分子または細胞膜上の糖タンパ
ク質の糖鎖構造を指標に形質転換体を選択することで、本発明の宿主細胞を作製すること
ができる。

0204

宿主細胞としては、酵母、動物細胞、昆虫細胞、植物細胞等、標的とする細胞内糖ヌク
レオチドGDP−フコースの合成に関与する酵素またはN−グリコシド結合複合型糖鎖還
元末端のN−アセチルグルコサミンの6位にフコースの1位がα結合する糖鎖修飾に関与
する酵素の遺伝子を有しているものであればいずれも用いることができる。具体的には、
後述の3.に記載の宿主細胞があげられる。

0205

発現ベクターとしては、上記宿主細胞において自立複製可能ないしは染色体中への組み
込みが可能で、目的とするドミナントネガティブ体をコードするDNAを転写できる位置
にプロモーターを含有しているものが用いられる。具体的には、後述の3.に記載の発現
ベクターがあげられる。

0206

各種宿主細胞への遺伝子の導入には、後述の3.に記載の各種宿主細胞に適した組み換
えベクターの導入方法を用いることができる。

0207

細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素の活性またはN−グリコ
シド結合複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフコースの1位がα結
合する糖鎖修飾に関与する酵素の活性を指標として形質転換体を選択する方法としては、
例えば、前記1の(1)の(a)に記載の方法があげられる。

0208

細胞膜上の糖タンパク質の糖鎖構造を指標として形質転換体を選択する方法としては、
例えば、後述の1の(5)に記載の方法があげられる。産生抗体分子の糖鎖構造を指標と
して形質転換体を選択する方法としては、例えば、後述の5または後述の6に記載の方法
があげられる。

0209

(3)酵素についての突然変異を導入する手法
本発明の宿主細胞は、細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素ま
たはN−グリコシド結合複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフコー
スの1位がα結合する糖鎖修飾に関与する酵素の遺伝子について突然変異を導入し、該酵
素に突然変異を生じた所望の細胞株を選択する手法を用いることにより作製できる。

0210

細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素としては、GMD、Fx
、GFPP、Fucokinaseなどがあげられる。N−グリコシド結合複合型糖鎖還
元末端のN−アセチルグルコサミンの6位にフコースの1位がα結合する糖鎖修飾に関与
する酵素としては、具体的には、α−1,6−フコシルトランスフェラーゼ、α−L−フ
コシダーゼなどがあげられる。

0211

方法としては、1)突然変異誘発処理で親株を処理した突然変異体あるいは自然発生
に生じた突然変異体から、細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素
の活性またはN−グリコシド結合複合型糖鎖還元末端のN−アセチルグルコサミンの6位
にフコースの1位がα結合する糖鎖修飾に関与する酵素の活性を指標として所望の細胞株
を選択する方法、2)突然変異誘発処理で親株を処理した突然変異体あるいは自然発生的
に生じた突然変異体から、生産抗体分子の糖鎖構造を指標として所望の細胞株を選択する
方法、3)突然変異誘発処理で親株を処理した突然変異体あるいは自然発生的に生じた突
然変異体から、該細胞の細胞膜上の糖タンパク質の糖鎖構造を指標として所望の細胞株を
選択する方法などがあげられる。

0212

突然変異誘発処理としては、親株の細胞のDNAに点突然変異、欠失あるいはフレーム
シフト突然変異を誘起するものであればいかなる処理も用いることができる。

0213

具体的には、エチルニトロソウレアニトロソグアニジンベンゾピレンアクリジン
色素による処理、放射線照射などがあげられる。また、種々のアルキル化剤発癌物質
突然変異誘発物質として用いることができる。突然変異誘発物質を細胞に作用させる方
法としては、例えば、組織培養の技術 第三版(書店)日本組織培養学会編(199
6)、ネイチャー・ジェネティクス(Nature Genet.),24,314,(
2000)等に記載の方法をあげることができる。

0214

自然発生的に生じた突然変異体としては、特別な突然変異誘発処理を施さないで、通常
細胞培養の条件で継代培養を続けることによって自然発生的に生じる突然変異体をあげ
ることができる。

0215

細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素の活性またはN−グリコ
シド結合複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフコースの1位がα結
合する糖鎖修飾に関与する酵素の活性を測定する方法としては、例えば、前記1の(1)
の(a)に記載の方法があげられる。産生抗体分子の糖鎖構造を識別する方法としては、
例えば、後述の5または後述の6に記載の方法があげられる。細胞膜上の糖タンパク質の
糖鎖構造を識別する方法としては、例えば、後述の1の(5)に記載の方法があげられる

0216

(4)酵素の遺伝子の転写又は翻訳を抑制する手法
本発明の宿主細胞は、細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素ま
たはN−グリコシド結合複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフコー
スの1位がα結合する糖鎖修飾に関与する酵素の遺伝子を標的とし、アンチセンスRNA
/DNA技術[バイオサイエンスとインダストリー,50,322(1992)、化学,
46,681(1991)、Biotechnology,9,358(1992)、T
rendsin Biotechnology,10,87(1992)、Trend
s in Biotechnology,10,152(1992)、細胞工学,16,
1463(1997)]、トリプルヘリックス技術[Trends in Biote
chnology,10,132(1992)]等を用い、標的とする遺伝子の転写また
は翻訳を抑制することで作製することができる。

0217

細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素としては、具体的には、
GMD、Fx、GFPP、Fucokinaseなどがあげられる。N−グリコシド結合
複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフコースの1位がα結合する糖
鎖修飾に関与する酵素としては、具体的には、α−1,6−フコシルトランスフェラーゼ
、α−L−フコシダーゼなどがあげられる。

0218

(5)N−グリコシド結合糖鎖還元末端のN−アセチルグルコサミンの6位とフコースの
1位がα結合した糖鎖構造を認識するレクチンに耐性である株を選択する手法
本発明の宿主細胞は、N−グリコシド結合糖鎖還元末端のN−アセチルグルコサミンの
6位とフコースの1位がα結合した糖鎖構造を認識するレクチンに耐性である株を選択す
る手法を用いることにより作製することができる。

0219

N−グリコシド結合糖鎖還元末端のN−アセチルグルコサミンの6位とフコースの1位
がα結合した糖鎖構造を認識するレクチンに耐性である株を選択する手法としては、例え
ば、ソマティク・セル・アンド・モレキュラー・ジェネティクス(Somatic Ce
ll Mol.Genet.),12,51,(1986)等に記載のレクチンを用いた
方法があげられる。

0220

レクチンとしては、N−グリコシド結合糖鎖還元末端のN−アセチルグルコサミンの6
位とフコースの1位がα結合した糖鎖構造を認識するレクチンであればいずれのレクチン
でも用いることができるが、その具体的な例としては、レンズマメレクチンLCA(Le
ns Culinaris由来のLentil Agglutinin)エンドウマメレ
クチンPSA(Pisum sativum由来のPea Lectin)、ソラマメレ
クチンVFA(Vicia faba由来のAgglutinin)、ヒイロチャワンタ
ケレクチンAAL(Aleuria aurantia由来のLectin)等をあげる
ことができる。

0221

具体的には、1μg/ml〜1mg/mlの濃度の上述のレクチンを含む培地で1日〜
2週間、好ましくは1日〜1週間培養し、生存している細胞を継代培養あるいはコロニー
ピックアップし別の培養器に移し、さらに引き続きレクチンを含む培地で培養を続ける
ことによってことで、本発明のN−グリコシド結合糖鎖還元末端のN−アセチルグルコサ
ミンの6位とフコースの1位がα結合した糖鎖構造を認識するレクチンに耐性である株を
選択することができる。

0222

上記方法で得られる株としては、例えば、後述の実施例14(2)で取得したCHO/
CCR4−LCA株Nega−13(FERM BP−7756)があげられる。

0223

2.本発明の、トランスジェニック非ヒト動物あるいは植物またはそれら子孫の作製
本発明の、抗体分子の糖鎖の修飾に係わる酵素の活性が制御されるようにゲノム遺伝子
が改変されたトランスジェニック非ヒト動物あるいは植物またはそれら子孫は、細胞内糖
ヌクレオチドGDP−フコースの合成に係る酵素またはN−グリコシド結合複合型糖鎖還
元末端のN−アセチルグルコサミンの1位にフコースの6位がα結合する糖鎖修飾に関与
する酵素の遺伝子を標的として、1.に記載の手法を用いて作製した本発明の胚性幹細胞
、受精卵細胞、植物カルス細胞より、例えば以下のように作製することができる。

0224

トランスジェニック非ヒト動物の場合、目的とする非ヒト動物、例えばウシ、ヒツジ、
ヤギ、ブタ、ウマ、マウス、ラット、ニワトリ、サル、ウサギ等の胚性幹細胞に、1.に
記載の手法と同様の手法を用いることにより、細胞内糖ヌクレオチドGDP−フコースの
合成に関与する酵素の活性またはN−グリコシド結合複合型糖鎖還元末端のN−アセチル
グルコサミンの6位にフコースの1位がα結合する糖鎖修飾に関与する酵素の活性が制御
された本発明の胚性幹細胞を作製することができる。

0225

具体的には、染色体上の細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素
の活性またはN−グリコシド結合複合型糖鎖還元末端のN−アセチルグルコサミンの6位
にフコースの1位がα結合する糖鎖修飾に関与する酵素をコードする遺伝子を公知の相同
組換えの手法[例えば、Nature,326,6110,295(1987)、Cel
l,51,3,503(1987)等]により不活化または任意の配列と置換した変異ク
ローンを作製する。

0226

作製した該変異クローンを用い、動物の受精卵の胚盤胞(blastcyst)への注
キメラ法または集合キメラ法等の手法により、胚性幹細胞クローンと正常細胞からなる
キメラ個体を調製することができる。このキメラ個体と正常個体の掛け合わせにより、全
身の細胞で細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素の活性またはN
−グリコシド結合複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフコースの1
位がα結合する糖鎖修飾に関与する酵素の活性が低下または欠失したトランスジェニック
非ヒト動物を得ることができる。

0227

また、目的とする非ヒト動物、例えばウシ、ヒツジ、ヤギ、ブタ、ウマ、マウス、ラッ
ト、ニワトリ、サル、ウサギ等の受精卵細胞に、1.に記載の手法と同様の手法を用いる
ことにより、細胞内糖ヌクレオチドGDP−フコースの合成に関与する酵素の活性または
N−グリコシド結合複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフコースの
1位がα結合する糖鎖修飾に関与する酵素の活性が低下または欠失した本発明の受精卵細
胞を作製することができる。

0228

作製した受精卵細胞を、マニピューレーティング・マウス・エンブリオ第2版等に記載
胚移植の方法を用いて偽妊娠雌の卵管あるいは子宮に移植し出産させることで、細胞内
糖ヌクレオチドGDP−フコースの合成に関与する酵素の活性またはN−グリコシド結合
複合型糖鎖還元末端のN−アセチルグルコサミンの6位にフコースの1位がα結合する糖
鎖修飾に関与する酵素の活性が低下したトランスジェニック非ヒト動物を作製することが
できる。

0229

トランスジェニック植物の場合、目的とする植物体カルス又は細胞に、1.に記載の手
法と同様の手法を用いることにより、細胞内糖ヌクレオチドGDP−フコースの合成に関
与する酵素の活性またはN−グリコシド結合複合型糖鎖還元末端のN−アセチルグルコサ
ミンの6位あるいは3位にフコースの1位がα結合する糖鎖修飾に関与する酵素の活性が
低下または欠失した本発明のカルスを作製することができる。

0230

作製したカルスを、公知の方法[組織培養,20(1994);組織培養,21(19
95);トレンズ・イン・バイオテクノロジー(Trendsin Biotechn
ology),15,45(1997)]に準じてオーキシン及びサイトカイニンを含む
培地で培養することで再分化させ、細胞内糖ヌクレオチドGDP−フコースの合成に関与
する酵素の活性またはN−グリコシド結合複合型糖鎖還元末端のN−アセチルグルコサミ
ンの6位あるいは3位にフコースの1位がα結合する糖鎖修飾に関与する酵素の活性が低
下したトランスジェニック植物を作製することができる。

0231

3.抗体組成物の製造方法
抗体組成物は、モレキュラー・クローニング第2版、カレント・プロトコールズ・イン
・モレキュラー・バイオロジー、Antibodies,A Laboratory m
anual,Cold Spring Harbor Laboratory,1988
(以下、アンチボディズと略す)、Monoclonal Antibodies: p
rinciples and practice,Third Edition,Aca
d.Press,1993(以下、モノクローナルアンチボディズと略す)、Antib
ody Engineering,A Practical Approach,IRL
Press at Oxford University Press,1996(以
下、アンチボディエンジニアリングと略す)等に記載された方法を用い、例えば、以下の
ように宿主細胞中で発現させて取得することができる。

0232

抗体分子の全長cDNAを調製し、該抗体分子をコードする部分を含む適当な長さのD
NA断片を調製する。

0233

該DNA断片、または全長cDNAを適当な発現ベクターのプロモーターの下流に挿入
することにより、組換えベクターを作製する。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 国立大学法人北海道大学の「 メラノーマのがん治療耐性を判定する方法」が 公開されました。( 2021/03/18)

    【課題】 本発明は、がん治療耐性を有するメラノーマを判別することにより、効果的なメラノーマの治療を実現することを目的とする。【解決手段】 本発明は、IL-34タンパク質又はこれをコードするmRNA... 詳細

  • 国立大学法人京都大学の「 低抗原性細胞の製造方法」が 公開されました。( 2021/03/18)

    【課題・解決手段】レシピエントに他家移植した場合の拒絶反応が低減された低抗原性細胞を、ドナー細胞から製造する製造方法であって、前記ドナー細胞及び前記レシピエントのHuman Leukocyte A... 詳細

  • 第一三共株式会社の「 KLK5阻害ペプチド」が 公開されました。( 2021/03/18)

    【課題・解決手段】新規ペプチドを提供すること配列番号61で示されるアミノ酸配列を含み、且つ、プロテアーゼを阻害するペプチド。... 詳細

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ