図面 (/)

技術 履歴データに基づく適合性の確度の決定

出願人 トゥルーフィットコーポレイション
発明者 ルー、ジドンシュタウファー、ジョン
出願日 2016年6月6日 (4年5ヶ月経過) 出願番号 2016-112636
公開日 2016年9月1日 (4年2ヶ月経過) 公開番号 2016-157489
状態 特許登録済
技術分野
  • -
主要キーワード 放物線関数 スクリプトツール 採寸値 対象消費者 消費者経験 記憶割当て 返却品 製品製造業者
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2016年9月1日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (7)

課題

1つ又は複数の他の品目に対する消費者の以前の経験に少なくとも部分的に基づき、衣料品目又は等が消費者に適合する確度を決定する。

解決手段

本発明の幾つかの実施形態は、消費者の経験の結果として生成された客観的データを用いて、フィット性及び/又はスタイル見地から、特定の品目が消費者に適合する可能性があるかどうか判断する。例えば、本発明の幾つかの実施形態は、或る品目の特定のサイズが如何に消費者に適合するかに関して予測し得るように、その製品に対する消費者の経験に関する情報(例えば、購入及び返品履歴、「好みの」品目の識別等)及び消費者の採寸値及びフィット性及び/又はスタイルの好みを決定するそれら品目の属性に関するデータ(例えば、技術的特性データ、スタイル及びフィット性属性等)を解析する。

概要

背景

特定のサイズの品目(例えば、衣料品目や等)が特定の消費者フィットするかどうか又はどのようにフィットするかを予測するための従来のシステムは、消費者によって提供された情報、例えば、自分自身採寸値体形スタイル及び/又はフィット性の好み等に関する情報に依拠する。

概要

1つ又は複数の他の品目に対する消費者の以前の経験に少なくとも部分的に基づき、衣料品目又は靴等が消費者に適合する確度を決定する。本発明の幾つかの実施形態は、消費者の経験の結果として生成された客観的データを用いて、フィット性及び/又はスタイルの見地から、特定の品目が消費者に適合する可能性があるかどうか判断する。例えば、本発明の幾つかの実施形態は、或る品目の特定のサイズが如何に消費者に適合するかに関して予測し得るように、その製品に対する消費者の経験に関する情報(例えば、購入及び返品履歴、「好みの」品目の識別等)及び消費者の採寸値及びフィット性及び/又はスタイルの好みを決定するそれら品目の属性に関するデータ(例えば、技術的特性データ、スタイル及びフィット性属性等)を解析する。

目的

消費者登録コントローラ101は、それによって消費者がフィット・プロファイル登録・生成し得る設備を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

該当するデータがありません

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

対象品目対象消費者適合する確度を決定するための、少なくとも一つのコンピュータプロセッサを備えたコンピュータシステムにおいて用いる、方法であって、(A)複数の品目に対する前記対象消費者による複数の以前の経験を記述するデータを受信することであって、前記複数の品目の各々及び前記対象品目は、複数の特性に従って特徴付けが可能であり、前記複数の特性は第1の特性と第2の特性とを含み、前記第1の特性はサイズを含み、前記第2の特性は対象年齢範囲及びフィットの容易さのうちの一つを含み、前記複数の特性の各々は複数の可能な値を有する、前記受信すること、(B)前記複数の品目の各々の前記第1の特性および前記第2の特性に対する値を示すデータを受信すること、(C)(A)および(B)において受信された前記データに少なくとも部分的に基づいて、前記少なくとも一つのコンピュータプロセッサを用いて、品目が、前記複数の特性の各々に従って前記対象消費者に適合する可能性があるかどうかを判断することであって、判断することは、複数の品目のうちの一つの品目に対する前記対象消費者による複数の以前の経験のうちの一つの以前の経験に対して、前記複数の品目のうちの別の品目に対する前記対象消費者による前記複数の以前の経験のうちの別の以前の経験よりも、大きな重要性を認めることを含む、前記判断すること、(D)(C)における判断に少なくとも部分的に基づいて、前記少なくとも一つのコンピュータプロセッサを用いて、対象品目が前記対象消費者に適合する可能性があるかどうかを判断することを含む方法。

請求項2

(C)は、前記複数の特性の各々に対する値を呈する品目が消費者に適合する確率を決定することを含む、請求項1に記載の方法。

請求項3

(A)において受信された前記データは、前記対象消費者の以前の前記複数の品目の各々の購入及び返品のうちの少なくとも一つを記述するデータを含む、請求項1に記載の方法。

請求項4

(A)において受信された前記データは、前記複数の品目の内の少なくとも1つが、消費者の好みであるという前記対象消費者による表示を含む、請求項1に記載の方法。

請求項5

(C)において判断することは、前記複数の特性のうちの1つの特性に従って前記対象品目が前記対象消費者に適合するかどうかに対して、前記複数の特性のうちの別の特性に従って前記対象品目が前記対象消費者に適合するかどうかよりも、大きな重要性を与えることを含む、請求項1に記載の方法。

請求項6

前記対象品目は、衣料品目又は一足である、請求項1に記載の方法。

請求項7

(C)において判断することは、消費者の採寸値体形フィット性の好み及びスタイルの好みのうちの少なくとも一つのモデルを生成することを含む、請求項1に記載の方法。

請求項8

符号化された命令を有する少なくとも1つの非一時的にコンピュータ読取可能な記憶媒体であって、前記命令は、実行時に(A)消費者に適合するあるサイズの特定の品目の推奨に対する要求を受信すること、(B)複数の品目に対する前記消費者の複数の以前の経験を記述するデータと、前記複数の品目の各々の複数の特徴を記述するデータとを解析して、前記消費者にフィットする前記特定の品目のサイズを特定することであって、前記複数の特徴は第1の特徴と第2の特徴とを含み、前記第1の特徴はサイズを含み、前記第2の特徴は対象年齢範囲及びフィットの容易さのうちの一つを含み、解析することは、複数の品目のうちの一つの品目に対する前記消費者による複数の以前の経験のうちの一つの以前の経験に対して、前記複数の品目のうちの別の品目に対する前記消費者による前記複数の以前の経験のうちの別の以前の経験よりも、大きな重要性を認めることを含む、前記特定すること、(C)前記特定の品目の特定されたサイズが前記消費者に適合するかを決定することを含む方法を実施する、少なくとも1つの非一時的にコンピュータ読取可能な記憶媒体。

請求項9

前記複数の品目の各々に対する前記消費者の以前の経験を記述する前記データは、前記複数の品目の各々の前記消費者の以前の購入及び返品のうちの少なくとも一つについて記述することを含む、請求項8に記載の少なくとも1つの非一時的にコンピュータ読取可能な記憶媒体。

請求項10

前記複数の品目の各々に対する前記消費者の以前の経験を記述する前記データは、前記複数の品目のうちの少なくとも1つの品目が前記消費者の好みであるという前記消費者の表示を含む、請求項8に記載の少なくとも1つの非一時的にコンピュータ読取可能な記憶媒体。

請求項11

(B)において解析することは、前記特定の品目の前記複数の特徴のうちの1つの特徴が前記消費者に適合するかどうかに対して、前記特定の品目の前記複数の特徴のうちの別の特徴が前記消費者に適合するかどうかよりも、大きな重要性を与えることを含む、請求項8に記載の少なくとも1つの非一時的にコンピュータ読取可能な記憶媒体。

請求項12

(B)において解析することは、前記特定の品目の様々なサイズが前記消費者に如何に適合するか決定することを含む、請求項8に記載の少なくとも1つの非一時的にコンピュータ読取可能な記憶媒体。

請求項13

前記特定の品目は、衣料品目又は一足の靴である、請求項8に記載の少なくとも1つの非一時的にコンピュータ読取可能な記憶媒体。

請求項14

ステムであって、少なくとも1つの記憶保管場所であって、複数の品目に対する複数の各消費者による以前の経験を記述する第1データと、複数の特性の各々に従って前記複数の品目の各々を特徴付ける第2データであって、前記複数の特性は第1の特性と第2の特性とを含み、前記第1の特性はサイズを含み、前記第2の特性は対象年齢範囲及びフィットの容易さのうちの一つを含み、前記複数の特性の各々は複数の可能な値を有し、前記第2データは、前記複数の特性の各々に従う前記複数の品目の各々の値を含む、前記第2データとを記憶する前記少なくとも1つの記憶保管場所と、前記少なくとも1つの記憶保管場所によって記憶された前記第1及び第2データを解析して、品目が前記複数の消費者のうちの1人に適合する可能性があるかどうか判断するように動作可能な少なくとも1つのコントローラであって、解析することは、複数の品目のうちの一つの品目に対する一人の消費者による複数の以前の経験のうちの一つの以前の経験に対して、前記複数の品目のうちの別の品目に対する前記一人の消費者による前記複数の以前の経験のうちの別の以前の経験よりも、大きな重要性を認めることを含む、前記少なくとも1つのコントローラとを備えるシステム。

請求項15

前記少なくとも1つのコントローラは、前記品目が前記複数の特性のうちの少なくとも1つに従って前記一人の消費者に適合する可能性がある確率を決定するように動作可能である請求項14に記載のシステム。

請求項16

前記一人の消費者から、前記一人の消費者の物理的な属性識別を受信するように動作可能な機器を更に備える請求項14に記載のシステム。

請求項17

前記一人の消費者から、前記複数の品目の1つ又は複数が、前記複数の特性の1つ又は複数に従って、前記一人の消費者に良く適合するという表示を受信するように動作可能な機器を更に備える請求項14に記載のシステム。

請求項18

前記一人の消費者から、前記複数の品目の1つ又は複数が、1つ又は複数の特性に従って、前記一人の消費者に如何に適合するかに関する情報を募るための機器を更に備える請求項14に記載のシステム。

技術分野

0001

本発明は、1つ又は複数の他の品目に対する消費者の以前の経験に少なくとも部分的に基づき、衣料品目又は等が消費者に適合する確度の決定に関する。

背景技術

0002

特定のサイズの品目(例えば、衣料品目や靴等)が特定の消費者にフィットするかどうか又はどのようにフィットするかを予測するための従来のシステムは、消費者によって提供された情報、例えば、自分自身採寸値体形スタイル及び/又はフィット性の好み等に関する情報に依拠する。

発明が解決しようとする課題

0003

この情報の提供を消費者に依拠すると(例えば、ウェブインターフェイスを介して)、フィット性予測を行うのに必要な情報を収集するために通常要求される長い登録プロセスのために、ユーザは最適とは言えない経験をしてしまうことがある。更に、ユーザから収集された情報は、正確でないことがある。例えば、ユーザは、情報収集の際(例えば、自分を採寸する際)又は情報入力の際、誤り犯すことがあり、また、指定してある方法で自分自身をどのように特徴付けるかについて確信が持てないことがある(例えば、ユーザは、「直線」ヒップと「曲線」ヒップの違いを知らないことがある)。

課題を解決するための手段

0004

本発明の実施形態は、情報の中でもとりわけ、消費者の以前の振舞いに関するデータを解析することによって、消費者に関する情報(例えば、自分自身の特性、体形、フィット性及び/又はスタイルの好み等)を生成する。その結果、消費者に対して、通常、間違いや誤った特徴付けを招くプロセスに時間や労力を費やすように求める必要がない。むしろ、本発明の実施形態は、消費者の実際の経験から結論を引き出す。

0005

本発明の幾つかの実施形態では、消費者の体形及び/又はフィット性/スタイルの好みは、それらの経験の結果として生成された客観的データを用いて決定し得る。例えば、特定の製品に対する消費者の経験に関する情報(例えば、購入及び返品履歴、「好みの」品目の識別等)は、それら品目の属性に関するデータ(例えば、胴回り、外側の縫い目長等の技術的特性データ、意図したフィット・プロファイル、意図した年齢範囲等のスタイル及びフィット性属性)と組み合わせて、消費者の採寸値、スタイル及びフィット性の好み、及び他の情報に関する結論を引き出し得る。そして、この情報は、フィット性及び/又はスタイルの見地から、特定のサイズの品目が消費者に適合する確度を決定するプロセスへの入力として提供し得る。このプロセスは、例えば、オンライン電子商取引システムによって用いられたり、(例えば、家屋売店内の)コンピュータシステム又はキオスクインストールされたり、移動装置を介したサービスとしてアクセス可能であったりする。本発明の実施形態は、いずれか特定の実施のやり方に限定されない。

0006

上記内容は、本発明の非限定的な概要であり、その幾つかの実施形態は、添付の請求項によって規定する。

図面の簡単な説明

0007

本発明の幾つかの実施形態に基づき、本発明の態様を実現するためのシステムの例示の構成要素を示すブロック図。
本発明の幾つかの実施形態による、少なくとも部分的に他の品目に対する消費者の以前の経験に基づき、品目が消費者に適合する確度を決定するための例示のプロセスを示すフローチャート
本発明の幾つかの実施形態による、対応する品目が所与の特性において消費者に適合する重み付け確率を示すグラフ
本発明の幾つかの実施形態に基づく、或る特徴を呈する品目が消費者に適合する確率を示すグラフ。
本発明の幾つかの実施形態を実現し得る例示のコンピュータを示すブロック図。
本発明の態様を具現する命令を記憶し得る例示のメモリを示すブロック図。

実施例

0008

本発明の実施形態は、消費者の経験の結果として生成された客観的データを用いて、フィット性及び/又はスタイルの見地から、特定のサイズの品目が消費者に適合する確度を決定し得る。その結果、消費者は、消費者の採寸値及び好みに関する情報を収集するように構成された長たらしく誤りが発生しがちな登録プロセスを我慢する必要がない。

0009

本発明の幾つかの実施形態は、特定の製品に対する消費者の経験に関する情報(例えば、購入及び返品履歴、「好みの」品目の識別表示等)及びそれら品目の属性に関するデータ(例えば、技術的特性データ、スタイル及びフィット性属性等)を解析して、特定のサイズの品目が、如何に消費者にフィットするか、もしくは、適合するかについて予測を行い得るように、消費者の採寸値及びフィット性及び/又はスタイルの好みを決定する。

0010

この解析の非限定的で簡略化した例について、表1及び2を参照して以下に述べる。この例は、本発明の幾つかの実施形態の或る態様を示すために提供するが、全ての本発明の実施形態が、表1及び2を参照して以下に述べる種類の解析に限定されるのではないことを、また、多くの実施形態が、異なる他の種類のデータに少なくとも部分的に基づき及び/又は異なる他の形式の解析を用いて、結論を引き出すことを規定することを認識されたい。

0011

この説明例において、表1には、5つの別個の製品(即ち、製品1、2、3、4及び5)に対する特定の消費者の(即ち、ユーザ1の)経験に関する情報が含まれる。これらの経験は、ユーザ1の5つの各製品の購入の結果である。

0012

表2には、上記表1に列記した5つを含む、6つの各製品に関する情報が含まれる。この情報には、各製品に関する技術的特性データ(即ち、胴回り及び股下長)並びに(例えば、製品の製造業者によって決定された)各製品の対象年齢範囲の識別が含まれる。幾つかの製品製造業者は、製造プロセスにおいて、ある範囲の特性を許容することから、表2では、技術的特性データは、範囲として指定される。

0013

数多くの結論のいずれも、少なくとも部分的に表1及び2に含まれるデータに基づき引き出し得る。例えば、表1の情報は、消費者が、製品1、2及び5に対する肯定的な経験を有し得たことを示し(即ち、消費者は、製品2を好みとして識別し、また、購入した後、製品1及び5を返品しなかった)、また、表2の情報は、これらの製品の特性及び対象年齢範囲を特定することから、フィット性及びスタイルの見地から、これらの及び他の品目が消費者に如何に適合し得るかを予測する際に用い得る消費者の採寸値及びフィット性及び/又はスタイルの好みに関して結論を引き出し得る。例えば、33.5(85.09センチインチと35インチ(88.9センチ)との間の股下と、25と35との間の対象年齢範囲と、を有する製品が、ユーザ1に適合する可能性が最も高いという結論を引き出し得る。

0014

勿論、上述した例は、説明のためだけに提供された過度単純化したものである。本発明の幾つかの実施形態は、特定の消費者に良く適合し得る品目を特定する際、消費者及び/又は例示の製品の数多くの属性を考慮し得る。この点において、本明細書に述べた手法は、(例えば、消費者が以前の経験を有さない)或る品目が、消費者に如何に適合する可能性があるか予測を行い得るように、消費者に特に良く適合する又は消費者に良く適合しない製品を規定する特定の属性の識別を可能にし得る。

0015

本発明の幾つかの実施形態は、或る消費者経験に他のものよりも大きい重要性を認め得る。例えば、消費者が自分自身の好みの1つとして第1製品を選択したという識別には、将来の予測を行う際、消費者が第2製品を購入し返品しなかったという識別より大きい配慮を与え得る。この理由は、非返却品は、第2製品に対する相性以外の理由で起こり得たかも知れないことから、肯定的な表現は、非返却品が第2製品に対して示すよりも、第1製品に対する消費者側のより大きい相性を示し得るためである。本発明の実施形態は、例えば、本明細書に述べた解析において、重みの割り当て及び/又は或る種類の経験により大きい又はより小さい配慮を与える他のやり方を採用し得る。本発明は、いずれか特定の実施方法に限定されない。

0016

図1は、少なくとも部分的に、衣料品目に対する消費者の以前の経験に基づき、消費者の採寸値及び/又はフィット性/スタイルの好みを推論するための例示のシステムを示す。図1に示す例示のシステムは、衣料品に関する情報を解析するが、本発明の態様を具現化する他のシステムは、任意の数多くの種類の製品及び/又はサービスに関する情報を解析し得ることを認識されたい。本発明の実施形態は、この点において限定されない。

0017

図1に示す例示のシステムには、各々、以下に述べる機能を実施するための1つ又は複数のコントローラであると全般的に見なし得る構成要素が含まれる。これらのコントローラは、例えば、専用のハードウェアによって、及び/又は記述された機能を実施するソフトウェア及び/又はマイクロコードを用いてプログラムされた1つ又は複数のプロセッサを用いることによって、任意の数多くのやり方で実現し得る。ソフトウェアを介して実現される場合、ソフトウェアコードは、単一のコンピュータに備えられたか又は複数のコンピュータに分散されたかどうかに関わらず、任意の適切なプロセッサ又は一群のプロセッサ上において実行し得る。コントローラがシステム運用のためのデータを受け取る又は提供する場合、そのデータは、中央保管場所又は複数の保管場所に記憶し得る。

0018

図1に示す例示のシステムには、消費者登録コントローラ101、消費者入力属性データ102、マイクローゼット・コントローラ103、消費者返品コントローラ104、消費者ポストセールスフィット調査コントローラ105、消費者販売/返品データ106、衣服技術属性記憶設備107、履歴推論コントローラ108、消費者フィット・プロファイル記憶設備109、及びフィット性推奨コントローラ110が含まれる。これらの構成要素の幾つかの例示機能及びそれらの間の通信については、以下に述べる。

0019

消費者登録コントローラ101は、それによって消費者がフィット・プロファイルを登録・生成し得る設備を提供する。例えば、消費者登録コントローラ101を用いて、消費者は、身体採寸値、体形属性等のフィット性関連の属性(例えば、腹形状、形状、体形等)及び/又は他の属性を自己申告し得る。示した例示のシステムでは、消費者入力属性データ102は、登録プロセス中、消費者が入力する属性を含む。

0020

マイ・クローゼット・コントローラ103によって、消費者は、消費者が自分自身良くフィットすると思う衣料品の1つ又は複数の品目を指定し得る。本発明の実施形態は、この点において限定されないが、指定された品目は、例えば、消費者が既に所有しているものであることもある。幾つかの実施形態では、マイ・クローゼット・コントローラ102によって、消費者は、個々の品目のサイズ(例えば、アロー(ARROW)防シワ加工フィット式ヘリンボン長袖、サイズ1534乃至35)、ブランドカテゴリ内の品目のサイズ(例えば、アロー(ARROW)ドレスシャツ、サイズ1534乃至35)、及び/又はいずれか他のグループの品目を指定し得る。

0021

消費者返品コントローラ104は、ユーザが品目の返品を開始する時、消費者から情報を収集する。幾つかの実施形態では、消費者返品コントローラ104は、フィット性関連の問題のために品目が返品されつつあるのかに関する情報を受け取り、そうであれば、問題(1つ又は複数)の性質(例えば、ウエストがきつ過ぎる、脚が短か過ぎる、大腿部が緩過ぎる等)に関する情報を受け取る。返品に関する数多くの種類の情報の如何なるものでも受け取ることができる。

0022

消費者ポストセールフィット調査コントローラ105は、消費者が購入した品目がどのようにフィットしたかに関して、消費者から情報を収集する。幾つかの実施形態では、消費者ポストセールフィット調査コントローラ105は、調査招待状を(例えば、電子メールを介して)生成して、消費者が購入を完了した後、サンプルグループの消費者に送る。この点において、比較的小さい組のデータが既に収集された消費者には、記入する調査状を送ることがある。調査は、キー特性に基づき、特定の品目を評価するように消費者に依頼し得る。例えば、ズボンを購入した消費者には、ウエスト、ヒップ大腿部及び又は長さ採寸値を評価するように依頼し、靴を購入した消費者には、靴の長さ、幅及び/又は踏まず心を評価するように依頼し得る。数多くの製品特性のいずれかに関する評点は、要求及び/又記憶し得る。

0023

幾つかの実施形態では、消費者登録コントローラ101、マイ・クローゼット・コントローラ103、消費者返品コントローラ104、及び消費者ポストセールフィット調査コントローラ105のいずれか又は全ては、消費者に対する(例えば、ウェブブラウザ、電子メールクライアント、及び/又は他の構成要素(1つ又は複数)による実行のための)インターフェイスの表示を規定するソフトウェアコードを介して、また、消費者によって提供された情報を受け取って記憶するソフトウェアコードを介して実現し得る。

0024

消費者販売/返品データ106には、消費者が以前購入した及び/又は(例えば、1つ又は複数の小売店に)返品した品目に関する情報が含まれる。図1には単一のデータ供給として示すが、消費者販売/返品データ106には、任意の適切な数のデータセットを含むことができ、その各々は、任意の適切な媒体に記憶し、また、任意の適切な技法(1つ又は複数)及び/又はインフラを用いて転送し得る。

0025

衣服技術属性記憶設備107は、或るサイズの品目に関する技術的特性データを記憶する。衣料品目に関する技術的特性データは、数多くの情報源のいずれか、例えば、その品目の製造業者及び/又は1つ又は複数の他の情報源から収集し得る。

0026

履歴推論コントローラ108は、マイ・クローゼット・コントローラ103、消費者返品コントローラ104、及び消費者ポストセールスフィット調査コントローラ105から入力を受信し、また、消費者販売/返品データ106を入力として受け取り、消費者の採寸値、体形、及びスタイル/フィット性の好みのモデルを生成する。このモデルを生成するための1つの例示の技法については、図2を参照して以下に述べる。この技法には、履歴推論コントローラ108及び/又は図1に示す1つ又は複数の他の構成要素によって実施されるステップを含み得る。

0027

消費者フィット・プロファイル記憶設備109は、消費者登録コントローラ101、マイ・クローゼット・コントローラ103、消費者返品コントローラ104、及び消費者ポストセールフィット調査コントローラ105によって消費者の好みについて収集された情報、特定した採寸値、クローゼット、フィット性調査、製品返品情報等を記憶する。図1には単一の保管場所として示すが、本発明の実施形態は、この点において限定されないため、消費者フィット・プロファイル記憶設備109は、データを任意の適切な数の保管場所に記憶し得る。

0028

図示した例示のシステムにおいて、フィット性推奨コントローラ110は、フィット性推奨要求100を受信して、サイズ推奨120を生成する。フィット性推奨要求を送出して、消費者にフィットすると予測されたあるサイズの特定の品目を要求し得る。予測を行う場合、フィット性推奨コントローラ110は、消費者フィット・プロファイル記憶設備109及び衣服技術属性記憶設備107に記憶された情報を利用して、例えば、消費者にフィットする可能性が最も高いサイズの品目を決定し得る。例えば、消費者に最も良くフィットする可能性があるサイズの品目の推奨に対する要求に応じて、フィット性推奨コントローラ110は、衣服技術属性記憶設備107に問い合わせて、その品目の利用可能なサイズの特性を決定し、消費者フィット・プロファイル記憶設備109に問い合わせて、(例えば、図2を参照して以下に述べるプロセスを用いて生成された)消費者の採寸値及び好みを決定し、また、この情報を用いて、消費者に最も良くフィットすると予測される品目のサイズを特定し得る。

0029

本発明の幾つかの実施形態は、フィット性に無関係な(即ち、品目が、消費者の適切な物理的な特性を有するかどうかに無関係な)推奨を生成することも可能であることを認識されたい。数多くの品目属性のいずれかを解析して、対象年齢範囲、フィットの容易さ等を含む任意の数の見地から、品目が特定の消費者に適合する確度を決定し得る。本発明の実施形態は、この点において限定されない。

0030

図2は、例示のプロセス200を示すが、これによって、履歴推論コントローラ108(図1)は、特定の消費者のための消費者プロファイルをその消費者に関するデータから生成する。図2に示すプロセス200は、或る品目に対する消費者の経験から収集された客観的データを用いて、消費者の採寸値及び/又はスタイル/フィット性の好みを推論するために用い得るアルゴリズム的手法の一例のみを表すことを認識されたい。ベイズネットワーク及び/又は1つ又は複数の他の手法を含む、数多くの他のアルゴリズム的手法のいずれかを他の選択肢として用いてよい。本発明の実施形態は、情報を解析するためのいずれか特定のプロセス又は技法を用いることに限定されない。

0031

プロセス200の開始時、衣料品目に対する特定の消費者の経験に関するデータが、ステップ201で収集される。このデータには、例えば、マイ・クローゼット・コントローラ103、消費者返品コントローラ104、消費者ポストセールスフィット調査コントローラ105を含む、図1に示す1つ又は複数の構成要素によって生成された情報並びに消費者販売/返品データ106に含まれる情報を含み得る。

0032

そして、プロセス200は、ステップ202に進み、そこで消費者のフィット・プロファイルが既に存在するかどうか判断する。この判断は、例えば、消費者フィット・プロファイル記憶設備109(図1)に問い合わせることによって行い、その消費者のフィット・プロファイルが記憶されているかどうか判断し得る。この判断の結果に基づき、プロセス200は、次に進み、ステップ204において、(もし以前のものが存在していれば)消費者のプロファイルを検索し、そして、ステップ205において、そのプロファイルを初期化して更新するか、又はステップ203において、(もし以前のものが存在していなければ)その消費者用の新しいプロファイルを初期化し得る。幾つかの実施形態では、消費者用の新しいプロファイルを初期化する段階には、いずれかの衣料品特性が消費者に適合するという発生確率の識別を生成する段階を伴い得るが、このことは、特性のいずれかの値が消費者にフィットすることを予測するのに充分な情報が収集されていないことを示す。

0033

ステップ203又は205のいずれかが終わると、プロセス200は、ステップ206に進み、そこで第1品目に対する消費者の経験を反映する第1のレコードが、ステップ201において収集されたデータから検索される。ステップ207において、そのレコードの重み付け係数が選択される。上述したように、本発明の幾つかの実施形態は、或る消費者経験に対して、例えば、品目が消費者に適合した又は適合しなかったという肯定的な表現になるものに対して、より大きい重要性を認めるように規定し得る。例えば、マイ・クローゼット・コントローラ103によって生成され或る品目が好みとして指定されたことを示すレコードは、その品目が購入され返品されていないことを示す消費者販売/返品データ106に反映された経験と比較して、(例えば、より大きい重みを割り当てることによって)より大きい重要性を認め得る。これは、マイ・クローゼット・コントローラ103からのデータに反映された肯定的な表現は、消費者販売/返品データ106からのデータより品目に対する消費者の気持ちをもっと示すとみなし得るためである。

0034

そして、プロセス200は、ステップ208に進み、そこでフィット性を予測すると知られているキー特性を特定する。数多くの技法のいずれかを用いてキー特性を特定し得る。幾つかの実施形態では、キー特性は、フィット性を予測できる品目のカテゴリに依存し得る。例えば、その品目がシャツであれば、首腕長さ及び全体的長さの特性をキー特性として特定し得る。品目が一着のズボンであれば、ウエスト、股上及び股下特性をキー特性として特定し得る。任意の1つ又は複数の特性を任意の品目カテゴリのキー特性として指定してよい。

0035

そして、プロセス200は、ステップ209に進み、そこでステップ208において特定されたキー特性に対応する第1品目の特性データを検索する。幾つかの実施形態では、特性は、衣服技術属性記憶設備107(図1)に問い合わせることによって検索し得る。例えば、幾つかの実施形態は、第1品目の各キー特性の値を検索し得る。場合によっては、幾つかの又は全てのキー特性の値を値の範囲として表してもよく、これが、製造時の特性許容範囲や、品目の意図したフィット性を反映する「ゆとり値」(例えば、きつい、ゆるい等)の根拠になる。

0036

そして、プロセス200は、ステップ210に進み、そこで品目が所与の特性で消費者にフィットする重み付け確率を算出する。重み付け確率を計算するための1つの例示の技法について、図3を参照して以下に述べる。勿論、任意の数多くの実施例が可能であり、図3を参照して説明する手法に加えて又はその代わりに他の技法を用いても良い。また、重み付け確率は、任意の数の特性について計算できるが、本発明は、この点において限定されないことを認識されたい。例えば、ステップ210は、ステップ208において特定された各キー特性の重み付け確率を計算する段階を伴う。

0037

ステップ211では、ステップ210で計算された重み付け確率が、ステップ211において、消費者の特性の最新の統計的なフィット性モデルに対して、加算(例えば、正の場合)又は減算(例えば、負の場合)される。品目が所与の特性で消費者にフィットする特性の重み付け確率を更新するための例示の手法について、図4を参照して以下に述べる。勿論、本発明の実施形態は、この点において限定されないため、図4を参照して説明する手法に加えて又はその代わりに他の技法を用いても良い。上述したように、フィット性モデルは、ステップ208において特定された各キー特性等、任意の適切な数の特性について更新し得る。

0038

ステップ212において、追加の品目の何らかの特性データがステップ201において収集されたかどうか判断する。そうであれば、プロセス200は、ステップ206に戻り、全ての特性データが処理されるまで繰り返される。

0039

そして、プロセス200は、ステップ213に進み、そこで消費者のフィット性モデルを正規化する。幾つかの実施形態では、他の技法も他の選択肢として用い得るが、正規化は、重み付け確率値を生成するために用いられる重みの和によって各特性のモデルを除算することによって実現し得る。その結果、ステップ213は、消費者に適合するという対応する確率を各々有する特性の範囲の推定をもたらす。既知の特性を有する品目又は特性を推定し得る品目は、これらの特性と比較して、それらの品目が如何に消費者に適合し得るかを推定し得る。

0040

ステップ214では、ステップ213で生成された正規化モデルが、消費者のプロファイルの一部として(例えば、図1の消費者フィット・プロファイル記憶設備109に)記憶される。本発明の幾つかの実施形態では、正規化モデルは、各特性で結果的に生じる曲線の形状を表すフォーマットで記憶し得る。例えば、正規化モデルは、各特性に対する曲線の推定形状を提供する一連の数として記憶し得る。他の実施形態は、所定の数学的な機能的形態として正規化モデルを記憶するパラメータ化曲線形状を利用し得る。更に他の本発明の実施形態は、他の技法を用い得る。数多くのいずれかの技法を用いて良い。

0041

そして、プロセス200が完了する。
上述したように、図3は、複数の各品目の重み付け確率を計算するための例示の手法を示す。この点において、図3は、2つの軸を有する直交座標系を示し、Y軸は、X軸に示した股下特性が消費者にフィットする確率を表す。各品目の曲線は、上記表2に示した股下特性データを表す。次に、異なる品目の曲線を組み合わせて、図4に示す複合曲線を生成し、この図から、特性データが既知の他の品目に関する結論を引き出すことができる。

0042

図3の各曲線は、表2の製品1乃至5の内の1つの股下データを表す。品目1は、(製造許容範囲及びデザイン上のゆとりを明らかにするように表した)股下特性33.5インチ(85.09センチ)乃至34.5インチ(87.63センチ)を有し、また、対象消費者によって一度購入されて問題が生じていないことが、表2から分かる。その結果、図3に示すグラフでは、品目1は、33.5インチ(85.09センチ)乃至34.5インチ(87.63センチ)範囲(即ち、34インチ(86.36センチ))を中心とする放物線関数として曲線301によって表される。図3において重み付け確率を表すために放物線関数用いたが、任意の数多くの他の関数形式(例えば、ガウス確率分布関数ガンマ関数等)を他の選択肢として用い得ることを認識されたい。

0043

図3において、品目2は、股下特性34(86.36センチ)乃至35インチ(88.9センチ)を有し、従って、品目2は、34インチ(86.36センチ)乃至35インチ(88.9センチ)範囲(即ち、34.5インチ(87.63センチ))を中心とする曲線302によって表されることが、表2の情報から分かる。表2のデータは、品目2が、消費者によって「好み」として(例えば、マイ・クローゼット・コントローラ3又は1つ又は複数の他の構成要素を介して)識別され、従って、品目2が、品目1と比較して、2倍の重みを与えられた(即ち、その股下特性において適切にフィットする確率として2倍の確率が割り当てられた)ことを示す。

0044

表2の情報は、品目3が、股下特性33インチ(83.82センチ)乃至34インチ(86.36センチ)を有し、短か過ぎるために返品されたことを示す。その結果、本例において、品目3の曲線303は、その品目がその股下特性において適切にフィットする負の確率を反映する。

0045

品目4は、消費者がその品目のスタイルを好きではなかったことから、返品されたことが、表2に示した情報から分かる。このデータは、品目4が、その股下特性で如何にフィットするかの識別を提供しないことから、品目4は、図3の図示例には示していない。しかしながら、品目4に関するデータを用いて、その品目が他の特性(例えば、「対象年齢範囲」特性)でその消費者に適合し、従って、それらの特性に関するデータを示す図3に類似する表現に出現し得る確率を計算し得ることを認識されたい。

0046

表2の情報は、品目5が、股下特性34インチ(86.36センチ)乃至34.5インチ(87.63センチ)を有し、返品されることなく購入されたことを示す。その結果、品目5の曲線305は、この範囲(即ち、34.25インチ(86.995センチ))を中心とする。図示した例では、品目5の曲線305は、品目1の曲線より高く、品目1も購入されて返品されなかったが、より広い特性範囲に中心がある。このことは、品目1及び品目5の曲線の真下の面積は、同じであり、各々、その股下特性でのフィット性の予測に関して、等しい重み付けが与えられる。

0047

図4は、図3において反映された重み付け確率を組み合わせることによって生成された例示の図を示す。図3の曲線は、本発明の実施形態は、この点において限定されないため、数多くの任意のやり方で組み合わせ得る。図示した例では、図4の曲線401が、図3に示す全ての曲線を加算し、そして、曲線重みの和によって除算することによって生成される。図示した例では、品目2の曲線302は、その品目が好みとして指定されているため、重み2.0を有し、また、それぞれ品目1、3及び5の曲線301、303及び305は、各々、重み1.0を有する。曲線をこのように組み合わせることによって、結果的に生じる曲線401は、その消費者の他の特性について計算し得るものと同じ倍率で正規化される。

0048

図4の曲線401は、股下特性(X軸に示す)が消費者にフィットする正規化確率(Y軸に示す)を表す曲線である。この情報を用いて、既知の特性を有する他の品目に関する結論を引き出すことができる。例えば、33.75インチ(85.725センチ)より短い股下特性を有する他の品目は、消費者に適切にフィットする確率がゼロであることが分かる。逆に、股下特性約34.25インチを有する品目は、消費者に適切にフィットする確率が最も大きい。

0049

図4に示すものと同様な曲線(及び/又は他の関数形式)は、本発明は、この点において限定されないため、任意の数の特性に対して生成し得る。更に、特性は、品目の物理的な特性を反映する必要がなく、消費者がスタイル属性等の好みを呈し得る任意の1つ又は複数の属性を反映し得る。本発明の実施形態は、この点において限定されない。

0050

多数の各特性の図4に示す曲線401と同様な曲線(及び/又は他の関数形式)を組み合わせて、全体的なフィット性の予測確率を反映し得る。幾つかの実施形態では、情報を組み合わせる際、より大きい又はより小さい重要性を、全体的なフィット性を予測する際の或る特性に認める。更に、各特性が全体的なフィット性に寄与する程度は、消費者毎に変動し得るため、或る特性には、或る属性を呈する消費者の場合、より大きな重みを割り当て得る。一例として、或る身長を超えると判断された消費者の場合、ズボンの股下又は外側の縫い目特性には、胴回り特性より大きい重要性を認め、これらの消費者が、そのウエストで適切にフィットすることよりも充分に長い脚のズボンを高く評価することを認識し得る。様々な数多くのバリエーションが、(例えば、消費者が属する消費者グループ毎に)可能である。

0051

本発明の特徴を実践するための様々な態様のシステム及び方法は、1つ又は複数のコンピュータシステム上に、例えば、図5に示す代表的なコンピュータシステム500上に実現し得る。コンピュータシステム500には、入力装置(1つ又は複数)502、出力装置(1つ又は複数)501、プロセッサ503、メモリシステム504、及び記憶装置506が含まれ、これらは、相互接続メカニズム505を介して直接又は間接的に全て結合されるが、これらには、1つ又は複数のバス、スイッチ、ネットワーク及び/又はいずれか他の適切な相互接続を含み得る。入力装置(1つ又は複数)502は、ユーザ又は機械(例えば、人間のオペレータ)から入力を受信し、出力装置(1つ又は複数)501は、情報を表示、又は、ユーザ又は機械(例えば、液晶表示装置)に情報を送信する。とりわけ、ユーザインターフェイスを提供するために入出力装置(1つ又は複数)を用いても良い。ユーザインターフェイスを提供するために用い得る出力装置の例としては、出力の視覚表出用のプリンタ又は表示画面、出力の可聴表出用のスピーカ又は他の音声生成装置が挙げられる。ユーザインターフェイスに用い得る入力装置例としては、キーボードや、マウスタッチパッド、及びデジタイジングタブレット等のポインティングデバイスが挙げられる。他の例として、コンピュータは、音声認識による又は他の可聴形式の入力情報を受信し得る。

0052

通常、プロセッサ503は、他のコンピュータプログラムの実行を制御するオペレーティング・システム(例えば、マイクロソフトウィンドウズ(登録商標)系のオペレーティング・システム又はいずれか他の適切なオペレーティング・システム)と呼ばれるコンピュータプログラムを実行し、スケジューリング入出力及び他の装置制御課金編集記憶割当てデータ管理メモリ管理、通信、及びデータフロー制御を行う。一括して、プロセッサ及びオペレーティング・システムは、このためにアプリケーションプログラムや他のコンピュータプログラム言語が作成されるコンピュータプラットホームを規定する。

0053

プロセッサ503は、更に1つ又は複数のコンピュータプログラムを実行して、様々な機能を実現し得る。これらのコンピュータプログラムは、手続プログラミング言語オブジェクト指向プログラミング言語マクロ言語、又はそれらの組合せを含む、あらゆる種類のコンピュータプログラム言語で作成し得る。これらのコンピュータプログラムは、記憶システム506に記憶し得る。記憶システム506は、揮発性又は不揮発性媒体上に情報を保持し、固定又は着脱可能であってよい。記憶システム506は、図6に更に詳細に示す。

0054

記憶システム506には、触れることのできるコンピュータ判読可能・書き込み可能不揮発性記録媒体601を含むことができ、この媒体上に、コンピュータプログラム又はこのプログラムによって用いられる情報を規定する信号が記憶される。記録媒体は、例えば、ディスクメモリフラッシュメモリ、及び/又は情報を記録し記憶するために使用可能ないずれか他の製造品(1つ又は複数)である。通常、動作時、プロセッサ503によって、データは、媒体601よりもプロセッサ503による情報へのより素早いアクセスを可能にする揮発性のメモリ602(例えば、ランダムアクセスメモリ、又はRAM)に不揮発性記録媒体601から読み出し得る。メモリ602は、図5に示す記憶システム506又はメモリシステム504に配置し得る。一般的に、プロセッサ503は、集積回路メモリ504、602内のデータを操作し、そして、処理が完了した後、データを媒体601にコピーする。媒体601と集積回路メモリ要素504、602との間のデータの動きを管理するための様々なメカニズムが知られており、本発明は、現在知られているか又は将来開発されるかどうかに関わらず、いずれかのメカニズムに限定されない。本発明は、特定のメモリシステム504又は記憶システム506にも限定されない。

0055

このように、本発明の少なくとも一実施形態の幾つかの態様について述べたが、様々な変更、修正、及び改善が当業者に容易に起こることを認識されたい。そのような変更、修正、及び改善は、本開示の一部であり、また、本発明の精神及び範囲内にあるものとする。従って、上記説明及び図面は、一例としてのみ示すものである。

0056

また、コンピュータは、ラックマウンティング・コンピュータ、デスクトップ・コンピュータ、ラップトップ・コンピュータ、又はタブレットコンピュータ等の、任意の多数の形態で具現化し得ることも認識されたい。更に、携帯情報端末(PDA)、スマートフォン、又はいずれか他の適切な携帯又は固定電子装置を含む、一般的にコンピュータと見なされない装置であるが適切な処理能力を備えた装置にコンピュータを内蔵してよい。

0057

更に、コンピュータは、1つ又は複数の入出力装置を有し得る。これらの装置は、とりわけ、ユーザインターフェイスを提示するために用いて良い。ユーザインターフェイスを提供するために用い得る出力装置の例としては、出力の視覚的表出用のプリンタ又は表示画面、出力の可聴表出用のスピーカ又は他の音声生成装置が挙げられる。ユーザインターフェイスに用い得る入力装置の例としては、キーボードや、マウス、タッチパッド、及びデジタイジング・タブレット等のポインティングデバイスが挙げられる。他の例として、コンピュータは、音声認識による又は他の可聴形式の入力情報を受信し得る。

0058

そのようなコンピュータは、ローカルエリアネットワーク又はワイドエリアネットワークとして含まれる、企業ネットワーク又はインターネット等の、1つ又は複数のネットワークによって任意の適切な形態で相互接続し得る。そのようなネットワークは、任意の適切な技術に基づくことができ、また、任意の適切なプロトコルにより動作し、更に、無線ネットワーク有線ネットワーク又は光ファイバネットワークを含み得る。

0059

また、本明細書において略述された様々な方法又はプロセスは、様々なオペレーティング・システム又はプラットホームの内の任意の1つを用いる1つ又は複数のプロセッサ上で実行可能なソフトウェアとしてコード化し得る。更に、そのようなソフトウェアは、任意の多数の適切なプログラミング言語及び/又はプログラミング又はスクリプトツールを用いて作成することができ、また、実行可能な機械言語コード又はフレームワーク又は仮想機械上で実行される中間コードとして編集し得る。

0060

この点において、本発明は、1つ又は複数のコンピュータ又は他のプロセッサ上で実行されると上述の様々な本発明の実施形態を実現する方法を実施する1つ又は複数のプログラムで符号化されたコンピュータ判読可能媒体(又は複数のコンピュータ判読可能媒体)(例えば、コンピュータメモリ、1つ又は複数のフロッピーディスク(登録商標)、コンパクトディスク(CD)、光ディスクデジタル映像ディスク(DVD)、磁気テープ、フラッシュメモリ、フィールドプログラマブルゲートアレイもしくは他の半導体装置回路構成、もしくは、1つ又は複数の他の非過渡的で触れることのできるコンピュータ判読可能記憶媒体)として具現化し得る。コンピュータ判読可能媒体又は複数の媒体は、例えば、可搬式であり、これにより、それに記憶されたプログラム又は複数のプログラムを1つ又は複数の異なるコンピュータ又は他のプロセッサにロードして、上述したように、本発明の様々な態様を実現し得る。

0061

用語「プログラム」又は「ソフトウェア」は、コンピュータ又は他のプロセッサをプログラムして、上述したように本発明の様々な態様を実現するために用い得る任意の種類のコンピュータコード又は任意の組のコンピュータ実行可能命令を指すために総称的な意味で本明細書において用いる。更に、本実施形態の1つの態様によると、実行されると本発明の方法を実施する1つ又は複数のコンピュータプログラムは、単一のコンピュータ又はプロセッサに常駐する必要がなく、多数の異なるコンピュータ又はプロセッサ間モジュール式に分散して、本発明の様々な態様を実現し得ることを認識されたい。

0062

コンピュータにより実行可能な命令は、1つ又は複数のコンピュータ又は他の装置によって実行されるプログラムモジュール等の、多くの形態であってよい。一般的に、プログラムモジュールには、特定のタスクを実施する又は特定の抽象データタイプを実現するルーチン、プログラム、オブジェクト、構成要素、データ構造等が含まれる。通常、プログラムモジュールの機能は、様々な実施形態において、望み通りに、組み合わせ又は分散し得る。

0063

更に、データ構造は、コンピュータ判読可能媒体に任意の適切な形態で記憶し得る。説明を簡単にするために、データ構造は、データ構造における位置により関連付けられるフィールドを有するように示すことができる。そのような関係は、同様に、フィールド間の関係を伝達するコンピュータ判読可能媒体における位置を備えたフィールドに記憶領域を指定することによって実現し得る。しかしながら、ポインタ、タグ、又はデータ要素間の関係を確立する他のメカニズムを利用することを含み、任意の適切なメカニズムを用いて、データ構造のフィールド中情報間の関係を確立してよい。

0064

本発明の様々な態様は、単独で、組合せて、又は上述した実施形態では具体的に議論しなかった様々な構成で、用いても良く、また、従って、その応用例において、上記説明において述べた又は図面に示した構成要素の詳細及び構成に限定されない。例えば、一実施形態において述べた態様は、他の実施形態において述べた態様と如何ようにも組み合わせてよい。

0065

更に、本発明は、方法として具現化し得るが、その例については、既に述べた。その方法の一部として実施されるステップは、何らかの適切な方法で順番付けしてよい。従って、実施形態は、例示し説明したものとは異なる順番でステップが実施されるように構成することができ、これには、本明細書に述べた例示の実施形態では連続したステップとして示したが、幾つかのステップを同時に実施する段階を含み得る。

0066

請求項において「第1」、「第2」、「第3」等の順序を表す用語を用いて請求項要素を修飾することは、それ自体、何らかの優先順位優先権、又は1つの請求項要素の他のものに対する順番、又は方法のステップが実施される時間的順番を暗示するものではなく、単に、(順序を表す用語の用途を除き)或る名前を有する1つの請求項要素を同じ名前を有する他の要素と区別するためのラベルとして用いて、それら請求項要素を区別する。

0067

更に、本明細書に用いる語句及び用語は、説明の目的のためであり、限定するものと見なすべきではない。「含む(including)」「含まれる(comprising)」又は「有する(having)」「含む(containing)」「伴う(involving)」及び本明細書におけるそれらの変形語は、その後に列記される項目及びその等価物並びに追加の項目を包含するものとする。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

該当するデータがありません

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

該当するデータがありません

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

この 技術と関連性が強い技術

該当するデータがありません

この 技術と関連性が強い法人

該当するデータがありません

この 技術と関連性が強い人物

該当するデータがありません

この 技術と関連する社会課題

該当するデータがありません

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ