図面 (/)

技術 車両検出装置

出願人 株式会社小糸製作所
発明者 遠藤修真野光治
出願日 2015年1月26日 (5年5ヶ月経過) 出願番号 2015-012220
公開日 2016年8月4日 (3年11ヶ月経過) 公開番号 2016-138755
状態 特許登録済
技術分野 光学的手段による測長装置 車両の外部照明装置、信号
主要キーワード 区画図 中央領 各受光レベル ハイブリッド画像 受光値 ワイド領域 道路標識灯 赤色光センサ
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2016年8月4日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (11)

課題

他車両を道路標識灯等から選別するとともに、先行車対向車を正確に判別することが可能な車両検出装置を提供するものである。

解決手段

車両検出装置1は、自車両の外部領域撮像する撮像装置4と、撮像した画像中の光点に基づいて当該外部領域に存在する他車両を検出する車両検出部5を備える。撮像装置4は緑色系の光を受光する緑色光センサ432Gと、赤色系の光を受光する赤色光センサ432Rとを備える撮像素子43を有する。車両検出部5は、緑色光センサ432Gと赤色光センサ432Rの受光値に基づいて他車両と他の物体とを選別する。また、これら受光値の演算結果から先行車と対向車を判別する。

概要

背景

夜間の走行中における自車両のヘッドランプ配光を適切に制御するために、自車両の前方に存在する先行車対向車を検出する車両検出の技術が提案されている。特に、近年は先行車や対向車に対する幻惑を防止する一方で自車両の前方領域を可及的に明るく照明するADB(Adaptive Driving Beam)等の配光制御が要求されており、このADB配光制御を実現するためには夜間における先行車や対向車を正確に検出する必要がある。

このような車両検出装置として、自動車に自車両の前方領域を撮像する撮像装置を配設し、当該撮像装置で撮像した前方領域の画像を画像解析して先行車や対向車を検出する技術が提案されている。例えば、特許文献1では、撮像装置に先行車のテールランプ赤色光波長領域Aを透過する光学フィルタと、対向車のヘッドランプの青白色光の波長領域Bを透過する光学フィルタを配設している。そして、撮像装置で撮像したランプ光点のうち、波長領域AとBの光点を検出することにより、当該光点をテールランプまたはヘッドランプの光による光点であるとして、先行車と対向車を検出している。

概要

他車両を道路標識灯等から選別するとともに、先行車と対向車を正確に判別することが可能な車両検出装置を提供するものである。車両検出装置1は、自車両の外部領域を撮像する撮像装置4と、撮像した画像中の光点に基づいて当該外部領域に存在する他車両を検出する車両検出部5を備える。撮像装置4は緑色系の光を受光する緑色光センサ432Gと、赤色系の光を受光する赤色光センサ432Rとを備える撮像素子43を有する。車両検出部5は、緑色光センサ432Gと赤色光センサ432Rの受光値に基づいて他車両と他の物体とを選別する。また、これら受光値の演算結果から先行車と対向車を判別する。

目的

本発明の目的は、他車両を道路標識灯等から選別するとともに、先行車と対向車を正確に判別することが可能であり、これにより自車両の前方領域を好適に照明することが可能な車両検出装置を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

自車両の外部領域撮像する撮像装置と、撮像した画像中の光点に基づいて当該外部領域に存在する他車両を検出する車両検出部を備える車両検出装置であって、前記撮像装置は第1の分光領域の光を受光する第1光センサと、前記第1の分光領域とは異なる第2の分光領域の光を受光する第2光センサを備え、前記車両検出部は、前記第1光センサと前記第2光センサの受光値に基づいて他車両と他の物体とを選別し、前記第1光センサと前記第2光センサの受光値の演算結果から先行車対向車判別することを特徴とする車両検出装置。

請求項2

前記撮像装置は、多数の光センサを配列した撮像素子を備え、これら多数の光センサの受光面側には、前記第1の分光領域の光を透過する第1の光学フィルタと、前記第2の分光領域の光を透過する第2の光学フィルタのいずれかが配設されていることを特徴とする請求項1に記載の車両検出装置。

請求項3

前記撮像装置は緑色系の分光領域の光を受光する緑色光センサと、赤色系の分光領域の光を受光する赤色光センサを備え、前記車両検出部は、前記緑色光センサと前記赤色光センサの受光値に基づいて他車両と他の物体とを選別し、前記緑色光センサと前記赤色光センサの受光値の演算結果から先行車と対向車を判別することを特徴とする請求項2に記載の車両検出装置。

請求項4

前記車両検出部は、前記緑色光センサの受光レベルまたは前記赤色光センサの受光レベルが基準値以上のときに、撮像した光点が他車両のランプ光であると選別することを特徴とする請求項3に記載の車両検出装置。

請求項5

前記車両検出部は、撮像した領域を複数の領域に区画し、撮像した光点の受光レベルと、当該光点が含まれる領域とに基づいて光点の選別を行うことを特徴とする請求項4に記載の車両検出装置。

請求項6

前記車両検出部は、前記緑色光センサの受光レベルと前記赤色光センサの受光レベが基準レベル以上のときに撮像した光点が対向車のランプ光であると判別し、前記緑色光センサの受光レベルが基準レベル未満で前記赤色光センサの受光レベが基準レベル以上のときに撮像した光点が先行車のランプ光であると判別することを特徴とする請求項4又は5に記載の車両検出装置。

技術分野

0001

本発明は夜間走行時等のように車両がランプ点灯している状況のときに自車両の周囲に存在する他車両を検出するための装置に関するものである。

背景技術

0002

夜間の走行中における自車両のヘッドランプ配光を適切に制御するために、自車両の前方に存在する先行車対向車を検出する車両検出の技術が提案されている。特に、近年は先行車や対向車に対する幻惑を防止する一方で自車両の前方領域を可及的に明るく照明するADB(Adaptive Driving Beam)等の配光制御が要求されており、このADB配光制御を実現するためには夜間における先行車や対向車を正確に検出する必要がある。

0003

このような車両検出装置として、自動車に自車両の前方領域を撮像する撮像装置を配設し、当該撮像装置で撮像した前方領域の画像を画像解析して先行車や対向車を検出する技術が提案されている。例えば、特許文献1では、撮像装置に先行車のテールランプ赤色光波長領域Aを透過する光学フィルタと、対向車のヘッドランプの青白色光の波長領域Bを透過する光学フィルタを配設している。そして、撮像装置で撮像したランプの光点のうち、波長領域AとBの光点を検出することにより、当該光点をテールランプまたはヘッドランプの光による光点であるとして、先行車と対向車を検出している。

先行技術

0004

特開2008−68700号公報

発明が解決しようとする課題

0005

特許文献1の技術は、撮像装置で撮像した波長領域AとBの光点の領域の大きさを計測し、この計測した領域の大きさに基づいて先行車と対向車を検出している。しかし、自車両の遠前方に存在する先行車や対向車による光点は小さい画像として撮像され、自車両の近傍に存在する白色あるいは赤色の建物照明光道路標識灯等は大きい画像として撮像されることもあるため、このような領域の大きさのみで全ての先行車と対向車を検出することは難しい。

0006

また、特許文献1では、撮像した光点が波長領域AまたはBのいずれの光点であるかを検出して先行車と対向車を判別している。この技術では、ヘッドランプとテールランプの光の分光特性が明確に区別されている場合には有効であるが、通常のヘッドランプの白色光赤色波長領域を含んでいることが多いため、波長領域Aの光として検出された光点は必ずしもテールランプの光点であるとは言えず、この点で先行車と対向車を確実に判別することは難しい。

0007

このように特許文献1の技術では、先行車と対向車を道路標識灯等と判別し、さらに先行車と対向車を正確に判別することが難しく、先行車あるいは対向車に対する幻惑を防止する一方で自車両の前方領域を明るく照明するという配光制御を実現することが難しいという問題がある。

0008

本発明の目的は、他車両を道路標識灯等から選別するとともに、先行車と対向車を正確に判別することが可能であり、これにより自車両の前方領域を好適に照明することが可能な車両検出装置を提供するものである。

課題を解決するための手段

0009

本発明は、自車両の外部領域を撮像する撮像装置と、撮像した画像中の光点に基づいて当該外部領域に存在する他車両を検出する車両検出部を備える車両検出装置であって、撮像装置は第1の分光領域の光を受光する第1光センサと、第1の分光領域とは異なる第2の分光領域の光を受光する第2光センサを備えている。その上で、車両検出部は、第1光センサと第2光センサの受光値に基づいて他車両と他の物体とを選別し、第1光センサと第2光センサの受光値の演算結果から先行車と対向車を判別することを特徴とする。

0010

本発明においては、撮像装置は、多数の光センサを配列した撮像素子を備え、これら多数の光センサの受光面側に、第1の分光領域の光を透過する第1の光学フィルタと、第2の分光領域の光を透過する第2の光学フィルタのいずれかが配設される構成とすることが好ましい。

0011

本発明の好ましい形態として、撮像装置は緑色系の分光領域の光を受光する緑色光センサと、赤色系の分光領域の光を受光する赤色光センサを備え、車両検出部は、緑色光センサと赤色光センサの受光値に基づいて他車両と他の物体とを選別し、緑色光センサと赤色光センサの受光値に基づく演算結果から先行車と対向車を判別する構成とする。

0012

例えば、車両検出部は、緑色光センサの受光レベルまたは赤色光センサの受光レベルが基準値以上のときに、撮像した光点が他車両のランプ光であると選別する。この場合、車両検出部は、撮像した領域を複数の領域に区画し、撮像した光点の受光レベルと、当該光点が含まれる領域とに基づいて光点の選別を行う。

0013

さらに、車両検出部は、緑色光センサの受光光量と赤色光センサの受光レベルが共に基準レベル以上のときに撮像した光点が対向車のランプ光(ヘッドランプ光)であると判別し、赤色光センサの受光レベルのみが基準レベル以上のときに撮像した光点が先行車のランプ光(テールランプ光)であるとする。

発明の効果

0014

本発明によれば、第1光センサと第2光センサの受光値、例えば受光レベルに基づいて他車両と他の物体とを選別することができる。また、第1光センサと第2光センサの受光値の演算結果、例えば受光量の差から先行車と対向車を判別することができる。

図面の簡単な説明

0015

本発明の車両検出装置を自動車のヘッドランプの配光制御システムに適用した実施形態の概略構成図。
撮像装置の断面図と撮像素子の拡大断面図。
ヘッドランプとテールランプの分光特性と撮像装置の光学フィルタの分光透過率の図。
光学フィルタの配列例を模式的に示す図。
実施形態の配光制御システムのブロック構成図。
撮像領域の第1領域〜第3領域の区画図
演算部の回路図。
光学フィルタの異なる配列の変形例を模式的に示す図。
撮像素子の変形例の拡大断面図。
撮像した画像を模式的に示す図。

実施例

0016

次に、本発明の実施の形態について図面を参照して説明する。図1は本発明の車両検出装置を自動車のヘッドランプの配光制御システムの構成要素の一つとして構成した実施形態の概略構成図である。自動車CARには自車両の前方に存在する先行車と対向車を検出する車両検出装置1が配設されている。また、当該自動車CARの車体前部の左右に配設されているヘッドランプHLは配光制御部2を備えており、この配光制御部2は前記車両検出装置1で検出された先行車と対向車に対応してヘッドランプHLの配光を制御する。

0017

この実施形態では、図5を参照すると分かるように、前記ヘッドランプHLは所要回路基板31に複数の発光ダイオードLED)32を搭載したLEDユニット3を備えており、前記配光制御部2において当該LEDユニット3の発光を制御することにより、ヘッドランプHLの配光を切り替えるようになっている。例えば、全てのLED32を発光させたときにハイビーム配光に制御し、この状態から一部のLED32を消光させることによりロービーム配光に制御し、あるいは先行車や対向車が存在している領域を照明しているLED32への光照射を停止することによりADB配光の制御を行うことが可能とされている。

0018

前記車両検出装置1は、前記自動車CARの車体前部、ここではフロントガラスの内側位置に配設されて自車両の前方領域を撮像する撮像装置4と、この撮像装置4で撮像した画像の画像信号に基づいて先行車と対向車を検出する車両検出部5を備えている。前記撮像装置4は、図2(a)に概略構成を示すように、撮像カメラとして構成されており、カメラケース41と、このカメラケース41に内装されて自動車の前方領域に存在する先行車や対向車を含む物体を光学的に結像するための撮像レンズ42と、この撮像レンズ42で結像された物体像光電変換して電気信号を出力するCCDやCMOS等からなる多数の受光セル(光センサ)をマトリクス配列した撮像素子43を備えている。

0019

図2(b)は図2(a)のB部の拡大断面図であり、前記撮像素子43は半導体基板431の表面にイントリンシックに多数の画素となる光センサ432がマトリクス状に形成されて受光面が形成され、この受光面上にインナーレンズ433、光学フィルタ434、マイクロレンズ435が積層された構成である。前記撮像レンズ42で結像される物体像光を画素単位でマイクロレンズ435およびインナーレンズ433で集光し、かつ光学フィルタ434で波長選択した光を光センサ432において受光するように構成されている。各光センサ432で得られる受光信号が物体の撮像信号、すなわち自動車の前方領域の画像信号として前記車両検出部5に出力される。

0020

前記光学フィルタ434は、図3に分光透過率を示すように、530〜570nmの緑色波長領域の光を選択的に透過する第1光学フィルタ(以下、緑色フィルタ)434Gと、590〜650nmの赤色波長領域の光を選択的に透過する第2光学フィルタ(以下、赤色フィルタ)434Rのいずれかで構成されている。なお、図3には、LEDを光源とするヘッドランプ(LED−HL)と、ハロゲンバルブを光源とするヘッドランプ(ハロゲンHL)と、LEDを光源とするテールランプ(LED−TL)と、白熱バルブを光源とするテールランプ(白熱TL)の分光特性を併せて示している。

0021

したがって、前記撮像素子43は、緑色フィルタ434Gが配設された光センサ(以下、緑色光センサ)432Gは、当該緑色フィルタ434Gを透過する光、すなわち前記LED−HLとハロゲンHLの光のみを受光して受光信号を出力する。一方、赤色フィルタ434Rが配設された光センサ(以下、赤色光センサ)432Rは、当該赤色フィルタ434Rを透過する光、すなわちLED−HLとハロゲンHLの光と、LED−TLと白熱TLの光の全てを受光して受光信号を出力する。

0022

換言すれば、緑色光センサ432Gは対向車のヘッドランプ光のみを検出し、赤色光センサ432Rは対向車のヘッドランプ光と先行車のテールランプ光を検出する。その一方で、これら緑色フィルタ434Gと赤色フィルタ434Rの分光透過率によって、緑色光センサ432Gと赤色光センサ432Rはそれぞれ530nm以下、570nm〜590nm、650nm以上の波長領域の光、例えば道路に設置されている道路照明用の黄色ないし橙色の光を発光する街路灯デリニエータ等の道路標識灯の光を検出することはない。

0023

前記緑色フィルタ434Gと赤色フィルタ434Rは、撮像素子43の撮像面側に所要のパターンに配列されている。図4はこれら緑色フィルタ434Gと赤色フィルタ434Rの配列を模式的に示す図で、撮像素子43の光センサ432の配列に対応する図である。ここでは、緑色フィルタを符号Gで、赤色フィルタを符号Rで示している。図4(a)の構成では、緑色フィルタGと赤色フィルタRは光センサの行方向および列方向に交互に配列している。あるいは、図4(b)のように、光センサの行単位で緑色フィルタGと赤色フィルタRを交互に配列してもよく、さらには図4(c)のように光センサの列単位で緑色フィルタGと赤色フィルタRを交互に配列してよい。いずれにしても緑色フィルタGと赤色フィルタRはそれぞれ隣接配置されることが好ましい。

0024

前記車両検出部5は、図5に示すように、前記緑色フィルタGが配設された緑色光センサ432Gの受光レベルを検出する緑色光検出部51と、前記赤色フィルタRが配設された赤色光センサ432Rの受光レベルを検出する赤色光検出部52を備えている。これらの緑色光検出部51と赤色光検出部52は、受光した緑色光センサ432G、赤色光センサ432Rの撮像画面上の座標位置(X,Y)を検出することも可能とされている。

0025

また、前記車両検出部5は前記緑色光検出部51と赤色光検出部52で検出された受光値に基づいて、受光した光が車両のヘッドランプまたはテールランプの光であることを選別する車両選別処理部53と、前記緑色光検出部51と赤色光検出部52の前記受光値に対して演算を実行する演算部54と、この演算部54の演算結果に基づいて前記車両選別処理部53において選別した光が対向車のヘッドランプの光あるいは先行車のテールランプの光のいずれであるかを判別する車両判別処理部55を備えている。

0026

さらに、前記車両検出部5は、例えば自車両に搭載しているナビゲーション装置(図示せず)からの道路情報に基づいて自車両の前方の道路情報を検出し、撮像装置4で撮像した撮像領域を複数の領域に区画する領域設定部56を備えている。

0027

図6(a)は領域設定部56で設定する領域の例を示しており、第1領域A1は先行車存在領域、第2領域A2は対向車存在領域、第3領域A3は除外領域である。例えば、自車両の前方の道路が直進路であるときには、自車両の直進方向の遠前方である基準点P1を通る水平線Hと、当該基準点P1を含む水平方向の所定幅領域の左右両端点からそれぞれ左右に斜め下方に延びる左側傾斜線Llと右側傾斜線Lrで囲まれる下側の領域を第1領域A1とする。この第1領域A1は自車両の前方領域に撮像される自車両の走行領域に対応する。また、この第1領域A1の右側の領域において、前記右側傾斜線Lrとその上側に沿って延びる右上側傾斜線Lrrとの間の領域を第2領域A2とする。この第2領域A2は対向車の走行領域に対応する。これら第1領域A1と第2領域A2に含まれない領域が第3領域A3となる。

0028

以上の構成の実施形態の車両検出装置1では、撮像装置4の撮像素子43が、図3(c)に示した分光受光特性の緑色光センサ432Gと赤色光センサ432Rで構成されているので、これらの緑色波長領域や赤色波長領域の光を含まない道路に設置されている道路照明用の黄色ないし橙色の光を発光する街路灯やデリニエータ等の道路標識灯による光点を検出することはない。したがって、撮像装置4で撮像される光点は、自動車のヘッドランプとテールランプによる光点、あるいは白色または赤色の街路灯や建物の照明光による光点に限られる。

0029

車両検出部5は、緑色光検出部51と赤色光検出部52において撮像素子43の全ての緑色光センサ432Gおよび赤色光センサ432Rについて受光値としての受光レベルを検出する。そして、この受光レベルを予め定めた基準値と比較し、基準値以上の受光レベルの光センサを検出する。また、これと同時に当該検出された光センサの前記した座標位置(X,Y)を検出する。

0030

車両選別処理部53は、検出された光センサ、換言すれば当該光センサで検出した光点BP1,BP2の座標位置を領域設定部56で設定された第1〜第3領域A1〜A3に対照させ、第1領域A1と第2領域A2に存在する光点を選別する。これにより、第3領域A3において検出された光点、すなわち白色または赤色の街路灯や建物の照明光による光点は除外される。ここでは、図6(b)のように、第1領域A1に存在する先行車のテールランプによる光点BP1と、第2領域A2に存在する対向車のヘッドランプによる光点BP2のみが選別される。

0031

一方、演算部54は、緑色光センサ432Gと赤色光センサ432Rの受光レベルについて所定の演算を実行する。この実施形態では、撮像素子43を構成する全ての光センサ432について、1つの緑色光センサ432Gと、これに隣接する1つの赤色光センサ432Bをそれぞれ1つのグループとして構成し、各グループを構成する緑色光センサ432Gと赤色光センサ432Bの各受光レベル論理演算を実行する。この論理演算処理により得られた減算値は車両判別処理部55に出力される。

0032

例えば、図7は演算部54の一例であり、2つの比較回路CMP1,CMP2と、2つの論理籍回路AND1,AND2と、1つの否定回路NOTで構成されている。ここでは、緑色光センサ432Gに基づく緑色光検出部51の出力レベルをCMP1で基準レベルref1と比較し、この基準レベルref1以上のときに「1」を出力する。また、赤色光センサ432Rに基づく赤色光検出部52の出力レベルをCMP2で基準レベルref2と比較し、この基準レベルref1以上のときに「1」を出力する。なお、これら基準レベルref1,ref2は必ずしも前記した他車両を検出する際の基準値とは一致しない。

0033

そして、CMP1の出力とCMP2の出力をAND1に入力し、CMP1の反転出力とCMP2の出力をAND2に入力する。AND1は入力される緑色光と赤色光がそれぞれ基準レベル以上のときに出力が「1」となる。また、AND2は緑色光が基準レベル以上のときには入力が「0」となるので、緑色光が基準レベル未満で赤色光が基準レベル以上のときに出力が「1」となる。すなわち、緑色光のレベルに応じてAND1またはAND2のいずれかの出力が「1」となる。換言すれば、AND1の出力が「1」のときには白色光であり、AND2の出力が「1」のときには赤色光となる。

0034

したがって、車両判別処理部55では、演算部54のAND1,AND2のいずれの出力が「1」であるかを判別することで光点、ここでは光点BP1,BP2が白色光であるか赤色光であるか、すなわちヘッドランプの光点であるかテールランプの光点であるかが判別できることになる。なお、この判別においては、判別対象とされた光点が、領域設定部56で設定された第1領域A1または第2領域A2のいずれに存在しているかを参照することによっても、さらに確実な判別が可能になる。

0035

そして、この車両判別処理部55で判別した判別信号を前記配光制御部2出力し、この配光制御部2において前記ヘッドランプHLの配光を制御する。このように車両検出装置1で対向車や先行車を検出したときには、配光制御部2において自車両のヘッドランプHLの配光を制御し、検出した対向車や先行車を幻惑することなく自車両の前方領域を明るく照明することが可能になることは言うまでもない。特に、ADB配光制御の場合には、対向車や先行車を除いた前方領域をハイビームと等価な配光で照明することができ、好適な配光制御が実現できる。

0036

ここで、本発明においては、自車両の遠前方に存在する先行車のテールランプや対向車のヘッドランプを撮像装置4で撮像して得られる光点は、撮像素子43の撮像画面に対して小さいため、この小さな光点に基づいての車両選別や車両判別の精度を高めることが難しいということがある。そこで、この変形実施形態では、車両選別処理部53において、検出した受光レベルに対する重み付け処理を行っている。

0037

例えば、図示は省略するが、前記した第1領域A1における光点については、緑色光センサ432Gで検出した受光レベルよりも赤色光センサ432Rで検出した受光レベルについて「1」よりも大きな値の重み付けをする。反対に、第2領域A2における光点については、赤色光センサ432Rで検出した受光レベルよりも緑色光センサ432Gで検出した受光レベルについて「1」よりも大きな値の重み付けをする。この重み付けは、例えば、「1」よりも大きな値を受光レベルあるいは受光量に乗算すればよい。換言すれば、赤色光センサまたは緑色光センサの受光レベルや受光量を選択的に増幅することになる。

0038

この重み付けを行うことにより、車両選別処理部53では、第1領域A1で検出した光点は赤色光センサ432Rの受光レベルが緑色光センサ432Gの受光レベルよりも顕著に大きくなる。したがって、検出される先行車のテールランプの光点のサイズが小さい場合でも、赤色光を増幅することが可能になる。先行車は第1領域A1に存在している蓋然性が高いので、第1領域A1の赤色光センサ432Rの受光信号に重み付けを行うことにより、車両判別処理における減算値は顕著なものとなる。

0039

第2領域A2で検出した光点についても同様であり、第2領域A2では検出した光点は緑色光センサ432Gの受光レベルが赤色光センサ432Rの受光レベルよりも顕著に大きくなる。したがって、検出される対向車のヘッドランプの光点のサイズが小さい場合でも、緑色光を増幅することが可能になる。これにより、車両選別処理部53での車両選別処理、ないしは車両判別処理部55での車両判別処理の確度を高めることが可能になる。

0040

なお、撮像装置4における自車両の前方領域の撮像領域が固定されているような場合、例えば、図6(a)に示したように第1領域A1〜第3領域A3の範囲が固定されている場合には、各領域に対応して撮像素子43における緑色フィルタ434Gと赤色フィルタ434Rの配列数比を相違させるようにしてもよい。

0041

すなわち、図8(a)に示す例では、第1領域A1に対応する撮像素子43の各光学フィルタ434は赤色フィルタRと緑色フィルタGの配列数比を3:1としている。反対に第2領域A2に対応する撮像素子43の各光学フィルタ434は、図8(b)のように、赤色フィルタRと緑色フィルタGの配列数比を1:3としている。

0042

その上で、第1領域A1では破線で囲んだ3つの赤色フィルタRと1つの緑色フィルタBを1つのブロックとし、各ブロックの3つの赤色フィルタRで構成される赤色光センサ432Rの受光値としての受光量の合計と、1つの緑色フィルタGで構成される緑色光センサ432Gの受光量を検出する。第2領域A2についてはこれと反対の構成とする。このようにすることで、緑色光センサ432Gと赤色光センサ432Rの受光レベルを増大して演算部54での演算をより明確に行うことができ、車両選別処理部53での車両選別処理、ないしは車両判別処理部55での車両判別処理の精度を高めることが可能になる。

0043

あるいは、撮像装置4の撮像素子43を、図9のように構成してもよい。図9図2(b)と同様の撮像素子の拡大断面図であり、同一の部分には同一の符号を付している。この撮像装置4では、撮像素子43の一部を構成しているマイクロレンズ435を光センサ432毎に同じあるいは異なる焦点距離のマイクロレンズとして構成している。ここでは、長焦点レンズ435tと、それよりも焦点距離の短い中焦点レンズ435mと、さらに焦点距離の短い短焦点レンズ435wの3種類のレンズで構成している。

0044

これらの焦点距離の異なるマイクロレンズ435t,435m,435wは、図10(a)に示すように、撮像装置4で撮像する自車両の前方領域における直進遠前方点を含む中央領域としての長焦点領域テレ領域)Tと、その外側を枠状に囲む中帯領域としての中焦点領域(ミドル領域)Mと、この中焦点領域の外側の短焦点領域(ワイド領域)Wに対応する。すなわち、テレ領域Tの光センサのマイクロレンズを長焦点レンズ435tで構成し、ミドル領域Mの光センサのマイクロレンズを中焦点レンズ435mで構成し、ワイド領域Wの光センサのマイクロレンズを短焦点レンズ435wで構成している。なお、これらのマイクロレンズ435のレンズ位置、すなわちそれぞれの光センサ432からの距離は各マイクロレンズ435の焦点距離に合わせて、被写体像が適切に合焦するように配設することは言うまでもない。

0045

このように撮像装置4の撮像素子43を構成することにより、図10(b)に示すように、撮像された自車両の前方領域の画像は、テレ領域T、ミドル領域M、ワイド領域Wの順で拡大された画像として撮像される。したがって、自車両の遠前方に存在する対向車や先行車はテレ領域Tにおいて拡大されて撮像されるため、これら対向車や先行車による光点も拡大されて撮像される。これにより、自車両の遠前方に存在する対向車や先行車のヘッドランプやテールランプによる光点を拡大し、前記した車両選別処理部53や車両判別処理部55における選別および判別の正確性を高めることが可能になる。

0046

また、ワイド領域Wは短焦点レンズにより広い画角で撮像されるので、自車両の極めて近くまで接近した対向車や先行車のヘッドランプやテールランプの光点を撮像することができ、これらの車両についても正確に検出することが可能になる。

0047

なお、マイクロレンズをフレネルレンズで構成すれば、焦点距離の異なるマイクロレンズを混載した場合、特に短焦点レンズの場合でもマイクロレンズのレンズ厚み寸法を低減し、撮像素子の薄型化が可能になる。また、このように構成することで、撮像装置の撮像レンズ42を多数レンズで構成しなくても、このような多焦点撮像画面を複合化したハイブリッド画像を得ることができ、撮像装置の高価格化が防止できる。

0048

1車両検出装置
2配光制御部
3LEDユニット
4撮像装置
5車両検出部
43撮像素子
51緑色光検出部
52赤色光検出部
53 車両選別処理部
54演算部
55車両判別処理部
56領域設定部
432光センサ
434光学フィルタ(緑色フィルタ、赤色フィルタ)
435 マイクロレンズ

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ