図面 (/)

技術 掘削チップおよび掘削ビット

出願人 三菱マテリアル株式会社
発明者 アフマディエコワルドヨ松尾俊彦桜沢稚晃
出願日 2015年11月25日 (5年1ヶ月経過) 出願番号 2015-230103
公開日 2016年6月20日 (4年6ヶ月経過) 公開番号 2016-108937
状態 特許登録済
技術分野 地中削孔
主要キーワード チップ中心線 円錐台面状 低硬度層 ゲージ面 金属窒化物粒子 C粒子 回転圧力 層間クラック
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2016年6月20日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (3)

課題

掘削時に万一外層欠損チッピングが生じても、直ちに摩耗チップ本体に達することがなく、掘削性能を維持することが可能な掘削チップを提供するとともに、このような掘削チップを取り付けた長寿命掘削ビットを提供する。

解決手段

掘削ビットの先端部に取り付けられて掘削を行う掘削チップ1であって、チップ本体2と、このチップ本体2の少なくとも先端部に被覆されたチップ本体2よりも硬質ダイヤモンド焼結体よりなる硬質層3とを備え、この硬質層3は、硬質層3の表面側からチップ本体2側に向けて、少なくとも2層の高硬度層4と、これらの高硬度層4の間に配設された高硬度層4よりも硬度が低い低硬度層5とを有している。

概要

背景

掘削ビットの先端部に取り付けられて掘削を行う掘削チップとしては、超硬合金よりなるチップ本体の先端部に、このチップ本体よりも硬質多結晶ダイヤモンド焼結体よりなる硬質層被覆されたものが知られている。ここで、特許文献1〜5には、主に多結晶ダイヤモンド焼結体における応力緩和を目的として硬質層を多層構造としたものが提案されている。その多層構造では、硬質層表面の最外層からチップ本体側に向けて硬度は低く、靱性は高くなるように傾斜を持たせている。

一般的に、このような多層構造の硬質層の最外層はダイヤモンド粒子金属バインダー金属触媒)としてCo等を添加して焼結した組成の多結晶ダイヤモンド焼結体とされている。また、内側の層ではダイヤモンド含有量を減少させて代わりにWC等の金属炭化物を添加することにより、チップ本体よりも高い硬度を維持しつつ、靱性を高めている。この内側の層をさらに多層構造としたものも提案されており、内側の層になるほどダイヤモンド含有量を少なく、WC含有量を多くして硬度と靱性に傾斜を持たせている。

概要

掘削時に万一外層欠損チッピングが生じても、直ちに摩耗がチップ本体に達することがなく、掘削性能を維持することが可能な掘削チップを提供するとともに、このような掘削チップを取り付けた長寿命の掘削ビットを提供する。掘削ビットの先端部に取り付けられて掘削を行う掘削チップ1であって、チップ本体2と、このチップ本体2の少なくとも先端部に被覆されたチップ本体2よりも硬質なダイヤモンド焼結体よりなる硬質層3とを備え、この硬質層3は、硬質層3の表面側からチップ本体2側に向けて、少なくとも2層の高硬度層4と、これらの高硬度層4の間に配設された高硬度層4よりも硬度が低い低硬度層5とを有している。

目的

本発明は、このような背景の下になされたもので、掘削時に万一外層に欠損やチッピングが生じても、直ちに摩耗がチップ本体に達することがなく、掘削性能を維持することが可能な掘削チップを提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

掘削ビットの先端部に取り付けられて掘削を行う掘削チップであって、チップ本体と、このチップ本体の少なくとも先端部に被覆された該チップ本体よりも硬質ダイヤモンド焼結体よりなる硬質層とを備え、上記硬質層は、該硬質層の表面側から上記チップ本体側に向けて、少なくとも2層の高硬度層と、これらの高硬度層の間に配設された該高硬度層よりも硬度が低い低硬度層とを有している掘削チップ。

請求項2

上記硬質層には、該硬質層の表面側から上記チップ本体側に向けて、それぞれ複数層ずつの上記高硬度層と上記低硬度層とが交互に配設されている請求項1に記載の掘削チップ。

請求項3

上記高硬度層の厚さは、上記低硬度層の厚さの1/2以上で該低硬度層の厚さ以下の範囲とされている請求項1または請求項2に記載の掘削チップ。

請求項4

個々の上記高硬度層の厚さと上記低硬度層の厚さは、それぞれ最も薄い部分で150μm以上であり、最も厚い部分で800μm以下とされている請求項1から請求項3のうちいずれか一項に記載の掘削チップ。

請求項5

上記硬質層の表面側から上記チップ本体側に向けて、上記高硬度層と上記低硬度層との間には、該高硬度層よりも硬度が低く上記低硬度層よりも硬度が高い中間層が配設されている請求項1から請求項4のうちいずれか一項に記載の掘削チップ。

請求項6

請求項1から請求項5のうちいずれか一項に記載の掘削チップが先端部に取り付けられている掘削ビット。

技術分野

0001

本発明は、掘削ビットの先端部に取り付けられて掘削を行う掘削チップ、およびこのような掘削チップが先端部に取り付けられた掘削ビットに関する。

背景技術

0002

掘削ビットの先端部に取り付けられて掘削を行う掘削チップとしては、超硬合金よりなるチップ本体の先端部に、このチップ本体よりも硬質多結晶ダイヤモンド焼結体よりなる硬質層被覆されたものが知られている。ここで、特許文献1〜5には、主に多結晶ダイヤモンド焼結体における応力緩和を目的として硬質層を多層構造としたものが提案されている。その多層構造では、硬質層表面の最外層からチップ本体側に向けて硬度は低く、靱性は高くなるように傾斜を持たせている。

0003

一般的に、このような多層構造の硬質層の最外層はダイヤモンド粒子金属バインダー金属触媒)としてCo等を添加して焼結した組成の多結晶ダイヤモンド焼結体とされている。また、内側の層ではダイヤモンド含有量を減少させて代わりにWC等の金属炭化物を添加することにより、チップ本体よりも高い硬度を維持しつつ、靱性を高めている。この内側の層をさらに多層構造としたものも提案されており、内側の層になるほどダイヤモンド含有量を少なく、WC含有量を多くして硬度と靱性に傾斜を持たせている。

先行技術

0004

米国特許第4694918号明細書
米国特許第8573330号明細書
米国特許第8695733号明細書
米国特許第8292006号明細書
特許第4676700号公報

発明が解決しようとする課題

0005

ところで、このような掘削チップを取り付けた掘削ビットによる掘削作業では、例えば岩盤一面に深さ数メートル掘削孔を十数カ所掘削し、これらの掘削孔に爆薬仕込んで発破することにより、大きな掘削孔を形成してゆく。従って、掘削作業の効率化のためには、一面に十数カ所の掘削孔を掘削する際に、途中で交換を必要とすることのない長寿命の掘削ビットが求められる。

0006

しかしながら、上述のような多層構造の硬質層を有する掘削チップにおいては、掘削時に突発的に岩盤中の極めて硬い超硬岩等に当たって最外層の多結晶ダイヤモンド焼結体層に欠損チッピングが生じると、硬質層の内部の硬度が低くて比較的柔らかい層が露出する。そのように硬質層の内部が露出すると、この露出した部分から急激に摩耗が進行して、その摩耗がチップ本体に達してしまい、掘削が不可能となって掘削ビットの寿命が費えてしまう。

0007

本発明は、このような背景の下になされたもので、掘削時に万一外層に欠損やチッピングが生じても、直ちに摩耗がチップ本体に達することがなく、掘削性能を維持することが可能な掘削チップを提供する。また、このような掘削チップを取り付けた長寿命の掘削ビットを提供することを目的としている。

課題を解決するための手段

0008

上記課題を解決して、このような目的を達成するために、本発明の一態様である掘削チップは、掘削ビットの先端部に取り付けられて掘削を行う掘削チップであって、チップ本体と、このチップ本体の先端部に被覆された該チップ本体よりも硬質なダイヤモンド焼結体よりなる硬質層とを備え、上記硬質層は、該硬質層の表面側から上記チップ本体側に向けて、少なくとも2層の高硬度層と、これらの高硬度層の間に配設された該高硬度層よりも硬度が低い低硬度層とを有していることを特徴とする。

0009

このように構成された掘削チップにおいては、チップ本体の先端部に被覆されたダイヤモンド焼結体よりなる硬質層が、この硬質層の表面側からチップ本体側に向けて、すなわち該硬質層の外層側から内側に向けて、少なくとも2層の高硬度層と、これらの高硬度層の間に配設された高硬度層よりも硬度が低い低硬度層とを有しているので、掘削時に外層側の高硬度層に欠損やチッピングが生じて内部が露出し、この露出した部分から内側の低硬度層が摩耗しても、この低硬度層の内側に位置するチップ本体側の高硬度層によって摩耗の進行を抑えることができる。

0010

このため、上記構成の掘削チップによれば、硬質層に生じた摩耗が急激に進行してチップ本体に達するのを防ぐことができ、内側の高硬度層によって掘削チップの掘削性能を維持することができる。従って、このような掘削チップを先端部に取り付けた本発明の掘削ビットにおいては、その寿命の延長を図ることができて、多数の掘削孔を掘削する途中で掘削チップを交換する必要がなくなり、掘削作業の効率化を促すことが可能となる。

0011

また、硬質層に、該硬質層の表面側から上記チップ本体側に向けて、それぞれ複数層ずつの上記高硬度層と上記低硬度層とを交互に配設することにより、内側の高硬度層に対しても、そのさらに内側に配設される、高硬度層よりは硬度が低く、靱性は高くなる低硬度層によって応力の緩和を図ることができる。さらに、3層以上の高硬度層を低硬度層と交互に配設すれば、高硬度層の層数に応じて掘削チップの寿命を延長することができる。

0012

ここで、上記高硬度層の厚さは、上記低硬度層の厚さの1/2以上で該低硬度層の厚さ以下の範囲とされるのが望ましい。高硬度層の厚さを低硬度層の厚さの1/2以上とすることにより、相対的に低硬度層を高硬度層の2倍以上の厚さとすることができるので、外層の高硬度層に欠損等が生じたときに摩耗が内側の高硬度層に達するまでの掘削長や時間を確保することができる。ただし、高硬度層の厚さが低硬度層の厚さよりも厚いと、高硬度層の応力を十分に緩和することができなくなるおそれがある。

0013

また、具体的に、個々の上記高硬度層の厚さと上記低硬度層の厚さは、それぞれ最も薄い部分で150μm以上であり、最も厚い部分で800μm以下とされているのが望ましい。高硬度層および低硬度層ともに、最も薄い部分の厚さが150μm未満の場合には、層を均一に形成することが困難となって十分な耐摩耗性を得ることができなくなるおそれがある。一方、最も厚い部分の厚さが800μmを上回る場合には、この部分で外層の高硬度層が欠損してその内側の低硬度層が摩耗したときに、硬質層の表面が大きく剥がれ落ち、掘削チップ先端部の形状が歪になって所望の掘削性能を得ることができなくなるおそれがある。

0014

なお、上述のように高硬度層はダイヤモンド粒子にCo等の金属バインダー(金属触媒)を添加して焼結した多結晶ダイヤモンド焼結体の層とするとともに、低硬度層はダイヤモンド粒子の含有量を減少させて金属炭化物または金属窒化物等の粒子を添加したダイヤモンド焼結体よりなる層としてもよい。また、高硬度層と低硬度層をいずれもダイヤモンド粒子と金属バインダーおよび金属炭化物、金属窒化物、金属炭窒化物等の添加粒子を含有して焼結したダイヤモンド焼結体層として、高硬度層と低硬度層でダイヤモンド粒子の含有量や粒径、金属バインダーや金属炭化物等の添加粒子の含有量、種類、組成比等を調整して硬度を低くしてもよい。

0015

さらに、このように硬度を調整することにより、上記硬質層の表面側から上記チップ本体側に向けて、上記高硬度層と上記低硬度層との間に、該高硬度層よりも硬度が低く上記低硬度層よりも硬度が高い中間層を配設するようにしてもよい。このような中間層を設けることによって外層側の高硬度層の応力緩和を維持しつつ、高硬度層に欠損等が生じた際でも摩耗が低硬度層に至るまでの掘削性能を確保することができる。

発明の効果

0016

以上説明したように、本発明によれば、掘削時に突発的に岩盤中の極めて硬い超硬岩等に掘削チップが当たって硬質層外層の高硬度層に欠損やチッピングが生じ、露出した部分から内側の低硬度層に摩耗が進行しても、一気に摩耗がチップ本体まで達するのを防いで掘削性能を維持することができ、掘削ビットの寿命を延長して効率的な掘削作業を図ることができる。

図面の簡単な説明

0017

本発明の掘削チップの一実施形態を示す断面図である。
図1に示す実施形態の掘削チップを先端部に取り付けた本発明の掘削ビットの一実施形態を示す断面図である。

0018

図1は本発明の掘削チップ1の一実施形態を示す断面図である。図2はこの実施形態の掘削チップ1を取り付けた本発明の掘削ビットの一実施形態を示す断面図である。本実施形態の掘削チップ1は、超硬合金等の硬質材料よりなるチップ本体2と、このチップ本体2の先端部(図1において上側部分)に被覆された、チップ本体2よりも硬質のダイヤモンド焼結体よりなる硬質層3とを備えている。

0019

チップ本体2は、その後端部(図1において下側部分)がチップ中心線Cを中心とした円柱状をなしているとともに、先端部は、後端部がなす円柱の半径と等しい半径でチップ中心線C上に中心を有する半球状をなして、先端側に向かうに従いチップ中心線Cからの外径漸次小さくなるように形成されている。すなわち、本実施形態の掘削チップ1はボタンチップとされている。

0020

このような掘削チップ1が先端部に取り付けられる掘削ビットは、鋼材等により形成されて図2に示すように軸線Oを中心とした概略有底円筒状をなすビット本体11を有し、その有底部が先端部(図2において上側部分)とされて掘削チップ1が取り付けられる。
また、円筒状の後端部(図2において下側部分)の内周には雌ネジ部12が形成され、掘削装置に連結された掘削ロッドがこの雌ネジ部12にねじ込まれて軸線O方向先端側に向けての打撃力推力、および軸線O回りの回転力が伝達される。これにより、掘削チップ1によって岩盤を破砕して掘削孔を形成する。

0021

ビット本体11の先端部は後端部よりも僅かに外径が大径とされており、この先端部の外周には軸線Oに平行に延びる排出溝13が周方向に間隔をあけて複数形成されて、上記掘削チップ1により岩盤が破砕されて生成された破砕屑がこの排出溝13を通して後端側に排出される。また、有底とされたビット本体11の雌ネジ部12底面からは軸線Oに沿ってブロー孔14が形成されている。このブロー孔14はビット本体11先端部において斜めに分岐してビット本体11の先端面に開口し、上記掘削ロッドを介して供給される圧縮空気のような流体噴出して破砕屑の排出を促進する。

0022

さらに、ビット本体11の先端面は、内周側の軸線Oに垂直な軸線Oを中心とした円形フェイス面15と、このフェイス面15の外周に位置して外周側に向かうに従い後端側に向かう円錐台面状ゲージ面16とを備えている。ブロー孔14はフェイス面15に開口するとともに、排出溝13の先端はゲージ面16に開口している。

0023

そして、これらフェイス面15とゲージ面16には、それぞれブロー孔14と排出溝13の開口部を避けるようにして、断面円形の複数の取付孔17が形成されている。上記掘削チップ1は、その円柱状の後端部がこれらの取付孔17に圧入や焼き嵌め等によって締まり嵌めされたり、ロウ付けされたりすることにより固定され、チップ中心線Cがフェイス面15とゲージ面16に垂直となるように取り付けられる。

0024

このようにして掘削ビットの先端部に取り付けられる掘削チップ1においては、その先端部に被覆された上記硬質層3が、該硬質層3の表面側からチップ本体2側に向けて、少なくとも2層の高硬度層4と、これらの高硬度層4の間に配設された高硬度層4よりも硬度が低い低硬度層5とを有している。さらに、本実施形態では、チップ本体2側の高硬度層4とチップ本体2との間にも低硬度層5が配設されていて、それぞれ複数層の2層ずつの高硬度層4と低硬度層5とが、この順に硬質層3の表面からチップ本体2の表面に向けて交互に配設されている。

0025

このうち、高硬度層4は、ダイヤモンド粒子にCo、Ni、あるいはFe−Ni合金等の金属バインダー(金属触媒)を添加しただけで焼結した多結晶ダイヤモンド焼結体の層とする。一方、低硬度層5は、高硬度層4に対してダイヤモンド粒子の含有量を減少させるとともに、WC、TaC、TiC等の金属炭化物粒子、TiN、cBN等の金属窒化物粒子、あるいはTiCN等の金属炭窒化物粒子と、上述のような金属バインダーとを添加して焼結した焼結体層とする。これにより、高硬度層4よりも低硬度層5の硬度を低くすることができる。このように作製した場合には、高硬度層4のビッカース硬さは2500〜4000程度、低硬度層5のビッカース硬さは1500〜2500程度の範囲となる。

0026

さらに、高硬度層4と低硬度層5を、いずれもダイヤモンド粒子と、上述のような金属バインダーおよび金属炭化物、金属窒化物、金属炭窒化物等の添加物粒子とを含有して焼結した焼結体層としてもよい。このうち低硬度層5おいては、ダイヤモンド粒子の含有量や粒径を小さくしたり、金属炭化物等の添加物粒子の含有量、種類、組成比等を調整したりすることにより、高硬度層4よりも硬度を低くすることもできる。なお、このような硬質層3がチップ本体2の先端部に被覆された掘削チップ1の焼結は、基本的にダイヤモンド安定領域で行われ、例えば特許文献1〜5に記載されたような公知の焼結方法によって可能である。

0027

このような構成の掘削チップ1および該掘削チップ1を先端部に取り付けた掘削ビットでは、掘削チップ1が掘削時に突発的に岩盤中の極めて硬い超硬岩等に当たった場合に、チップ本体2の少なくとも先端部に被覆された硬質層3のうち最外層の第1の高硬度層4に欠損やチッピングが生じて硬質層3の内部が露出する。これにより内側の低硬度層5が摩耗するが、この低硬度層5のさらに内側には低硬度層5よりも高硬度となる第2の高硬度層4が配設されているので、摩耗がチップ本体2に達するまで急激に進行するのを、この第2の高硬度層4によって抑制することができる。

0028

従って、摩耗の進行によって第1、第2の高硬度層4の間の低硬度層5が摩滅した後でも、硬質層3のチップ本体2側すなわち内側の第2の高硬度層4によって掘削を続行することができるので、掘削性能を維持することが可能となる。このため、そのような掘削チップ1を先端部に取り付けた掘削ビットによれば、当該掘削ビットの寿命を延長させることができ、岩盤一面に数メートルの掘削孔を十数カ所形成するような場合でも、途中で掘削ビットを交換する必要がなくなって効率的な掘削作業を行うことが可能となる。

0029

また、これら第1、第2の高硬度層4の間には、これらの高硬度層4より硬度が低い反面、靱性は高い低硬度層5が介装されているので、特に高硬度層4がダイヤモンド粒子に金属バインダーのみを添加して焼結した多結晶ダイヤモンド焼結体である場合でも、高硬度層4に生じる残留応力の緩和を図ることができる。しかも、本実施形態では、高硬度層4と低硬度層5とがそれぞれ複数層(2層)ずつ、硬質層3の表面側からチップ本体2側に向けて交互に配設されている。そのため、内側の第2の高硬度層4の応力も、その内側すなわち第2の高硬度層4とチップ本体2との間に介装される低硬度層5により緩和することができる。

0030

なお、本実施形態では、このように2層ずつの高硬度層4と低硬度層5とが硬質層3の表面側からチップ本体2側に向けて交互に配設されているが、硬質層3においては少なくとも、2層の高硬度層4と、その間に配設される1層の低硬度層5とが備えられていればよい。すなわち、最もチップ本体2側の第2の高硬度層4はチップ本体2の先端部表面に直接被覆されたものであってもよい。また、3層以上の高硬度層4が低硬度層5を間にして交互に配設されていてもよく、例えば同数の高硬度層4と低硬度層5とが交互に積層された偶数層の硬質層3であってもよく、最外層と最内層が高硬度層4で各高硬度層4の間に低硬度層5が配設された奇数層の硬質層3であってもよい。硬質層3には、硬質層3の表面側からチップ本体2側に向けて、2〜6層ずつの高硬度層4と低硬度層5とが交互に配設されてもよい。また、高硬度層と低硬度層との合計層数は、4層以上12層以下としてもよい。

0031

さらに、硬質層3の表面側からチップ本体2側に向けて高硬度層4から低硬度層5の間に、硬度が高硬度層4よりも低く低硬度層5よりは高い中間層を配設するようにしてもよい。例えば、高硬度層4がダイヤモンド粒子に金属バインダーのみを添加して焼結した多結晶ダイヤモンド焼結体層である場合に、この高硬度層4と低硬度層5の間に、ダイヤモンド粒子の含有量や粒径、金属バインダーや金属炭化物等の添加粒子の含有量、種類、組成比等を調整することにより、硬度を低硬度層5よりも高く、高硬度層4よりは低くした中間層を配設してもよい。

0032

このような中間層は、外層側の高硬度層4に対しては硬度が低くて靱性を高くすることができるため、この高硬度層4の応力をある程度は緩和することができる。その一方で、内層側の低硬度層5に対しては高い硬度であるため、高硬度層4に欠損やチッピングが生じたときに摩耗が低硬度層5に達するまで掘削性能を維持することができ、結果的に掘削チップ1の長寿命化を図ることができる。なお、この中間層自体も、硬質層3の表面側からチップ本体2側すなわち外層側から内層側に向けて順次硬度が低くなる複数の層によって形成されていてもよい。

0033

ここで、各高硬度層4の厚さは、低硬度層5の厚さの1/2以上で低硬度層5の厚さ以下の範囲とされるのが望ましい。高硬度層4の厚さが低硬度層5の厚さよりも大きくなければ、この低硬度層5によって高硬度層4の応力を緩和するのに十分である。また、高硬度層4の厚さが低硬度層5の厚さの1/2以上であれば、相対的に低硬度層5の厚さは高硬度層4の厚さの2倍以上となるので、一層確実に高硬度層4の応力緩和を図ることができる。さらに、このように低硬度層5の厚さが確保されるのに伴い、低高度といえどもチップ本体2よりは硬質な低硬度層5により、該低硬度層5の内側の高硬度層4やチップ本体2に摩耗が達するまでの掘削長や時間を長く確保することができる。

0034

より具体的には、個々の高硬度層4の厚さと低硬度層5の厚さは、それぞれ最も薄い部分で150μm以上であり、最も厚い部分で800μm以下とされているのが望ましい。これら各高硬度層4および低硬度層5において、最も薄い部分の厚さが150μm未満であると、上述のように高硬度層4と低硬度層5がダイヤモンド粒子を含む焼結体層の場合には厚さを均一にすることが困難となり、十分な耐摩耗性を得ることができなくなるおそれがある。また、最も厚い部分の厚さが800μmを上回ると、この最も厚い部分で高硬度層4が欠損して低硬度層5が摩耗したときには、硬質層3の表面が大きく剥がれ落ち、掘削チップ1の先端部の形状が歪になって所望の掘削性能を得ることができなくなるおそれがある。これは、中間層についても同様である。

0035

硬質層3の全体の厚さは、450μm〜2500μmの範囲とされるのが望ましい。硬質層3全体の厚さが450μm未満であると、層の数が最も少ない2層の高硬度層4と1層の低硬度層5によって硬質層3が形成されている場合でも、いずれかの層に上述のように最も薄い部分の厚さが150μm未満の箇所が生じるとともに、絶対的な硬質層3の厚さが薄すぎて直ぐに摩耗してしまい、必要な掘削長の掘削孔を形成することができなくなるおそれがある。一方、硬質層3の厚さが2500μmを超えると、高硬度層4と低硬度層5がダイヤモンド焼結体層の場合は、低硬度層5によって応力が緩和されているとしても、残留応力によって掘削チップ1全体に割れが生じ易くなるおそれがある。

0036

なお、本実施形態の掘削チップ1では、上述のようにチップ本体2の先端部が半球状をなすボタンタイプの掘削チップに本発明を適用した場合について説明したが、チップ本体の先端部が砲弾状をなす、いわゆるバリスティックタイプの掘削チップや、先端部の後端側が円錐面状をなして先端側に向かうに従い縮径するとともに、その先端がチップ本体の円柱状の後端部よりも小さな半径の球面状をなす、いわゆるスパイクタイプの掘削チップに本発明を適用することも可能である。

0037

次に、本発明の掘削チップおよび掘削ビットにおける効果について、実施例を挙げて実証する。本実施例では、先端部がなす半球の直径が11mmのボタンタイプの掘削チップを5種製造した。前記切削チップは、硬質層の高硬度層と低硬度層と(実施例3では中間層も)におけるダイヤモンド粒子と金属炭化物等の添加物粒子との粒径および体積含有率、金属バインダーの組成および添加割合、層数および各層の厚さを種々に変えて被覆した。これらを実施例1〜5とした。本実施例の焼結はすべて、特許文献1〜5に記載された方法と同様に、超高圧高温発生装置を用いて、ダイヤモンド安定領域である、圧力5.8GPa、温度1500℃、焼結時間10分で行った。

0038

実施例1では、高硬度層を、粒径2〜4μmのダイヤモンド粒子を30vol%、粒径20〜40μmのダイヤモンド粒子を70vol%含有し、添加物粒子は含有せずに、Ni:100wt%の金属バインダーを15vol%(粒子を含んだ層全体に対する含有率。以下、同様。)含有した混合物によって、厚さ200μmに形成した。また、低硬度層を、粒径4〜6μmのダイヤモンド粒子を60vol%、添加物粒子として粒径0.5〜2μmのTaC粒子を40vol%、Co:100wt%の金属バインダーを10vol%含有した混合物によって厚さ400μmに形成した。これらを表面側からチップ本体側に向けて3層ずつ交互に配設した硬質層を先端部に被覆した。

0039

実施例2では、高硬度層を粒径10〜20μmのダイヤモンド粒子を100vol%含有し、添加物粒子は含有せずに、Co:100wt%の金属バインダーを10vol%を含有した混合物によって、厚さ150μmに形成した。また、低硬度層を、粒径4〜6μmのダイヤモンド粒子を50vol%、添加物粒子として粒径0.5〜2μmのWC粒子を50vol%、Co:100wt%の金属バインダーを15vol%含有した混合物によって厚さ200μmに形成した。これらを表面側からチップ本体側に向けて6層ずつ交互に配設した硬質層を先端部に被覆した。

0040

実施例3では、高硬度層を、粒径0.5〜2μmのダイヤモンド粒子を30vol%、粒径4〜6μmのダイヤモンド粒子を70vol%含有し、添加物粒子は含有せずに、Co:100wt%の金属バインダーを10vol%含有した混合物によって厚さ200μmに形成した。中間層を、粒径4〜6μmのダイヤモンド粒子を60vol%、添加物粒子として粒径0.5〜2μmのWC粒子を40vol%、Co:100wt%の金属バインダーを5vol%含有した混合物によって厚さ200μmに形成した。低硬度層を、粒径4〜6μmのダイヤモンド粒子を20vol%、添加物粒子として粒径0.5〜2μmのWC粒子を80vol%、Co:100wt%の金属バインダーを5vol%含有した混合物によって厚さ200μmに形成した。これらを表面側からチップ本体側に向けて順に2層ずつ配設した硬質層を先端部に被覆した。

0041

実施例4では、高硬度層を、粒径15〜30μmのダイヤモンド粒子を65vol%、添加物粒子として粒径0.5〜1.3μmのTiC粒子を35vol%、Co:100wt%の金属バインダーを15vol%含有した混合物によって厚さ400μmに形成した。また、低硬度層を、粒径15〜30μmのダイヤモンド粒子を30vol%、添加物粒子として粒径0.5〜2μmのTiCN粒子を70vol%、Co:100wt%の金属バインダーを10vol%含有した混合物によって厚さ800μmに形成した。これらを表面側からチップ本体側に向けて2層ずつ交互に配設した硬質層を先端部に被覆した。

0042

実施例5では、高硬度層を、粒径6〜12μmのダイヤモンド粒子を80vol%、添加物粒子として粒径2〜4μmのWC粒子を20vol%含有し、Fe:69wt%、Ni:31wt%の金属バインダーを15vol%含有した混合物によって厚さ200μmに形成した。また、低硬度層を、粒径15〜30μmのダイヤモンド粒子を40vol%、添加物粒子として粒径2〜4μmのcBN粒子を60vol%、Co:100wt%の金属バインダーを10vol%含有した混合物によって厚さ300μmに形成した。これらを表面側からチップ本体側に向けて2層ずつ交互に配設した硬質層を先端部に被覆した。

0043

一方、これらの実施例1〜5に対する比較例として、2層の高硬度層の間に低硬度層を有することのない硬質層が被覆された先端部がなす半球の直径が同じく11mmのボタンタイプの掘削チップを4種製造した。これらを比較例1〜4とする。本比較例の焼成も本実施例と同様に超高圧・高温発生装置を用いて、ダイヤモンド安定領域である、圧力5.8GPa、温度1500℃、焼結時間10分で行った。

0044

比較例1では、高硬度層を、粒径0.5〜2μmのダイヤモンド粒子を30vol%、粒径4〜6μmのダイヤモンド粒子を70vol%含有し、添加物粒子は含有せずに、Co:100wt%の金属バインダーを10vol%含有した混合物によって厚さ200μmに形成した。また、中間層を、粒径4〜6μmのダイヤモンド粒子を60vol%、添加物粒子として粒径0.5〜2μmのWC粒子を40vol%、Co:100wt%の金属バインダーを5vol%含有した混合物によって厚さ400μmに形成した。さらに、低硬度層を粒径4〜6μmのダイヤモンド粒子を20vol%、添加物粒子として粒径0.5〜2μmのWC粒子を80vol%含有してCo:100wt%の金属バインダーを5vol%含有した混合物によって厚さ600μmに形成した。これらを表面側からチップ本体側に向けて順に1層ずつだけ配設した硬質層を先端部に被覆した。

0045

比較例2では、硬質層を粒径0.5〜2μmのダイヤモンド粒子を30vol%、粒径4〜6μmのダイヤモンド粒子を70vol%含有し、添加物粒子は含有せずに、Co:100wt%の金属バインダーを10vol%含有した混合物によって厚さ800μmの1層だけ被覆した。

0046

比較例3では、高硬度層を粒径0.5〜2μmのダイヤモンド粒子を30vol%、粒径4〜6μmのダイヤモンド粒子を70vol%含有し、添加物粒子は含有せずに、Co:100wt%の金属バインダーを10vol%含有した混合物によって厚さ400μmに形成した。また、低硬度層を粒径4〜6μmのダイヤモンド粒子を60vol%、添加物粒子として粒径0.5〜2μmのWC粒子を40vol%、Co:100wt%の金属バインダーを5vol%含有した混合物によって厚さ600μmに形成した。これらを表面側からチップ本体側に向けて順に1層ずつだけ配設した硬質層を先端部に被覆した。

0047

比較例4では、高硬度層を、粒径0.5〜2μmのダイヤモンド粒子を30vol%、粒径4〜6μmのダイヤモンド粒子を70vol%含有し、添加物粒子は含有せずに、Co:100wt%の金属バインダーを10vol%含有した混合物によって厚さ400μmに形成した。また、低硬度層を、粒径4〜6μmのダイヤモンド粒子を20vol%、添加物粒子として粒径0.5〜2μmのWC粒子を80vol%、Co:100wt%の金属バインダーを5vol%含有した混合物によって厚さ600μmに形成した。これらを表面側からチップ本体側に向けて順に1層ずつだけ配設した硬質層を先端部に被覆した。

0048

このように製造した実施例1〜5と比較例1〜4の掘削チップ(ボタンチップ)を、ビット径45mmの掘削ビットのゲージ面に5つ、フェイス面に2つの合計で7つ取り付けた。これらを用いて硬岩と超硬岩とを含む平均一軸圧縮強度180MPaの銅鉱山に、掘削長4mの掘削孔を掘削する掘削作業を行い、掘削チップが寿命に至るまでのトータル掘削長(m)を測定するとともに掘削終了時の掘削チップの摩耗形態を確認した。なお、掘削条件は、掘削装置がTAMRCK社製型番H205D、打撃圧力が160bar、フィード送り)圧力が80bar、回転圧力が55barとした。また、ブロー孔からは水を供給してその水圧は18barであった。この結果を表1に示す。

0049

0050

この結果より、比較例1〜4の掘削チップを取り付けた掘削ビットでは、最も掘削長の長い比較例1でも、掘削チップに正常摩耗以外に一部チッピングが生じ、実施例1〜5の掘削チップを取り付けた掘削ビットのおよそ1/2の掘削長で寿命に達してしまった。特に、硬質層が1層の比較例2では、層剥離により10孔を掘削したところで寿命となり、1つの掘削ビットで岩盤の1面に十分な数の掘削孔を形成することはできなかった。

0051

これに対して、実施例1〜5の掘削チップを取り付けた掘削ビットでは、トータル掘削長が最も短い実施例3でも略60孔の掘削孔を形成することができ、岩盤1面に十数箇所の掘削孔を形成する場合には、略3面に対して掘削ビットを交換することなく効率的な掘削が可能であった。特に、高硬度層の層数が多い実施例2では、100以上の掘削孔を形成することができ、極めて効率的な掘削作業が可能であった。

実施例

0052

なお、実施例1と同じ高硬度層と低硬度層の組成で、高硬度層の厚さが1000μm、低硬度層の厚さが200μmで、高硬度層と低硬度層が交互に2層ずつ積層された硬質層を有する掘削チップを製造しようとしたところ、高硬度層の厚さが800μmを越えていて硬質層における高硬度層の残留応力が高く、焼結時に高硬度層に層間クラックが発生して製造することができなかった。

0053

以上説明したように、本発明では、掘削時に突発的に岩盤中の極めて硬い超硬岩等に掘削チップが当たって硬質層外層の高硬度層に欠損やチッピングが生じ、露出した部分から内側の低硬度層に摩耗が進行しても、一気に摩耗がチップ本体まで達するのを防いで掘削性能を維持することができ、掘削ビットの寿命を延長して効率的な掘削作業を図ることが可能となる。

0054

1掘削チップ
2チップ本体
3硬質層
4高硬度層
5低硬度層
11ビット本体
Cチップ中心線
O ビット本体11の軸線

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ