図面 (/)

この項目の情報は公開日時点(2016年5月12日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題

破骨細胞で強く発現する遺伝子を用いた骨代謝異常の検出方法、骨代謝異常治療及び/又は予防効果を有する化合物スクリーニング法、及び骨代謝異常治療及び/又は予防用医薬組成物を提供すること。

解決手段

ヒトSiglec−15遺伝子の発現を指標とした骨代謝異常の検出方法、及びヒトSiglec−15を特異的に認識し、破骨細胞の形成を抑制する活性を有する抗体を含む医薬組成物の提供等。

概要

背景

骨は、自らの形態変化や血中カルシウム濃度の維持のため、常に形成と吸収を繰り返し再構築を行う動的な器官として知られている。正常な骨では骨芽細胞による骨形成破骨細胞による骨吸収とは平衡関係にあり、骨量は一定に保たれている。一方、骨形成と骨吸収との平衡関係が崩れると、骨粗鬆症などの骨代謝異常になる(Endocrinological Review,(1992)13,p66−80, Principles
of Bone Biology, Academic Press, New York,(1996)p87−102)。

骨代謝を調節する因子としては、全身性ホルモン局所性サイトカインが数多く報告されており、それらの因子の共同作用により骨の形成と維持が営まれている(Endocrinological Review,(1992)13,p66−80, Endocrinological Review),(1996)17,p308−332)。加齢による骨組織の変化としては、骨粗鬆症の発症が広く知られているが、その発症機構は性ホルモンの分泌低下やそのレセプター異常、骨局所におけるサイトカイン発現の変動、老化遺伝子の発現、破骨細胞や骨芽細胞の分化あるいは機能不全など多岐にわたっており、加齢による単純な生理現象として理解するのは困難である。原発性骨粗鬆症エストロゲンの分泌低下による閉経後骨粗鬆症と加齢による老人性骨粗鬆症に大別されているが、その発症機構の解明治療薬開発の為には、骨吸収と骨形成の調節機構についての基礎的研究の進展が必須である。

破骨細胞は、造血幹細胞由来する多核細胞であり、骨との接着面に塩素イオン水素イオンを放出することによって、細胞と骨の接着面の間隙酸性化すると共に酸性プロテアーゼであるカテプシンKなどを分泌する(American Journal of
Physiology,(1991)260,C1315−C1324)。この結果、リン酸カルシウムの分解、酸性プロテアーゼの活性化と骨基質蛋白質の分解が引き起こされ、骨吸収が進行する。

破骨細胞の前駆細胞骨表面の骨芽細胞/ストローマ細胞細胞膜上に発現するRANKL(Receptor activator of NF−κB ligand)の刺激を受けて、破骨細胞へ分化することが明らかにされた(Proceedings of
the National Academy of Science of the United States of America,(1998)95,p3597−3602, Cell,(1998)93,p165−176,)。RANKLは骨芽細胞/ストローマ細胞が産生する膜蛋白質であり、その発現は骨吸収因子により調節されること、及びRANKLは破骨細胞前駆細胞から多核破骨細胞への分化を誘導することなどが明らかにされた(Proceedings of the National Academy of Science of the United States of America,(1998)95,p3597−3602, Journal of Bone and Mineral Research,(1998)23,S222)。さらに、RANKLをノックアウトしたマウスが、大理石骨病様の病態を発症することが見出され、RANKLが生理的な破骨細胞分化誘導因子であることが証明された(Na
ture,(1999)397,p315−323)。

骨代謝疾患治療や治療期間の短縮を図る医薬品として、ビスホスホネート活性型ビタミンD3、カルシトニン及びその誘導体エストラジオール等のホルモン製剤、SERMs(Selective estrogen receptor modulators)、イプリフラボンビタミンK2メナテトレノン)、PTH製剤及びカルシウム製剤等が使用されている。しかし、これらの薬剤は、治療結果において必ずしも満足できるものではなく、より治療効果の高い薬剤の開発が望まれていた。

免疫系細胞の細胞膜上はシアル酸などの多様な糖鎖によって高度に覆われており、様々な糖鎖結合蛋白質によって認識されている。シアル酸結合免疫グロブリン様レクチン(Sialic−acid−binding immunoglobulin−like lectins、以下、「Siglecs」という。)は、シアル酸含有糖鎖を認識して結合するI型膜蛋白質ファミリーである。Siglecsは免疫系細胞の細胞膜上で多く発現しており、同じく免疫系細胞の細胞膜上に存在するシアル酸を認識して細胞間相互作用細胞機能を調節し、免疫応答関与していると考えられているが(Nature Reviews Immunology,(2007)7,p255−266)、生理的機能が明らかとなっていないSiglecs分子も多い。Siglec−15(Sialic−acid binding immunoglobulin−like lectin
15)は、Siglecsに属することが新たに報告された分子で(Glycobiology,(2007)17,p838−846)、CD33L3(CD33 molecule−like 3)と呼ばれる分子と同一である。この分子は魚類からヒトまで進化的保存度が高く、ヒト脾臓及びリンパ節において、樹状細胞マクロファージ系の細胞に強く発現することが明らかにされた。またシアル酸プローブを用いた結合試験の結果、ヒトSiglec−15はNeu5Acα2−6GalNAcと、マウスSiglec−15はさらにNeu5Acα2−3Galβ1−4Glcと結合することなども明らかにされた(Glycobiology,(2007)17,p838−846)。最近まで、Siglec−15の生理的役割は明らかではなかったが、破骨細胞の分化、成熟に伴ってSiglec−15の発現が亢進し、RNA干渉によってSiglec−15の発現を低下させることによって破骨細胞の分化が抑制されることが報告された(国際公開パンフレットWO2007/093042)。しかし、抗Siglec−15抗体が破骨細胞分化におよぼす作用については、これまで明らかにされていなかった。

概要

破骨細胞で強く発現する遺伝子を用いた骨代謝異常の検出方法、骨代謝異常治療及び/又は予防効果を有する化合物スクリーニング法、及び骨代謝異常治療及び/又は予防用医薬組成物を提供すること。 ヒトSiglec−15遺伝子の発現を指標とした骨代謝異常の検出方法、及びヒトSiglec−15を特異的に認識し、破骨細胞の形成を抑制する活性を有する抗体を含む医薬組成物の提供等。 なし

目的

しかし、これらの薬剤は、治療結果において必ずしも満足できるものではなく、より治療効果の高い薬剤の開発が望まれていた

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

以下の(a)乃至(i)のいずれか一つに記載のアミノ酸配列からなる一つ又は二つ以上のポリペプチドを特異的に認識し、破骨細胞の形成及び/又は破骨細胞による骨吸収を抑制する抗体又は該抗体の機能性断片:(a)配列表の配列番号2に示されるアミノ酸配列;(b)配列表の配列番号2に示されるアミノ酸配列の21番目から328番目のアミノ酸残基からなるアミノ酸配列;(c)配列表の配列番号2に示されるアミノ酸配列の1番目から260番目のアミノ酸残基からなるアミノ酸配列;(d)配列表の配列番号2に示されるアミノ酸配列の21番目から260番目のアミノ酸残基からなるアミノ酸配列;(e)配列表の配列番号4に示されるアミノ酸配列;(f)配列表の配列番号4に示されるアミノ酸配列の21番目から341番目のアミノ酸残基からなるアミノ酸配列;(g)配列表の配列番号4に示されるアミノ酸配列の1番目から258番目のアミノ酸残基からなるアミノ酸配列;(h)配列表の配列番号4に示されるアミノ酸配列の21番目から258番目のアミノ酸残基からなるアミノ酸配列;(i)(a)乃至(h)に記載のアミノ酸配列に1乃至数アミノ酸残基の置換欠失又は付加を伴うアミノ酸配列。

請求項2

以下の(j)乃至(n)のいずれか一つに記載のヌクレオチド配列にコードされるアミノ酸配列からなる一つ又は二つ以上のポリペプチドを特異的に認識し、破骨細胞の形成及び/又は破骨細胞による骨吸収を抑制する抗体又は該抗体の機能性断片:(j)配列番号1に示されるヌクレオチド配列;(k)配列番号3に示されるヌクレオチド配列;(l)配列番号19に示されるヌクレオチド配列;(m)配列番号43に示されるヌクレオチド配列;(n)(j)乃至(m)に記載のヌクレオチド配列と相補的なヌクレオチド配列からなるポリヌクレオチドストリンジェントな条件でハイブリダイズするポリヌクレオチドが保有するヌクレオチド配列。

請求項3

破骨細胞の細胞融合過程を抑制する請求項1又は2に記載の抗体又は該抗体の機能性断片。

請求項4

TNFαによって誘導される破骨細胞の形成を抑制する請求項1乃至3のいずれか一つに記載の抗体又は該抗体の機能性断片。

請求項5

30μg/ml以下の濃度において、invitroでの破骨細胞の形成を抑制する請求項1乃至4のいずれか一つに記載の抗体又は該抗体の機能性断片。

請求項6

3μg/ml以下の濃度において、invitroでの破骨細胞の形成を抑制する請求項5に記載の抗体又は該抗体の機能性断片。

請求項7

1μg/ml以下の濃度において、invitroでの破骨細胞の形成を抑制する請求項6に記載の抗体又は該抗体の機能性断片。

請求項8

63ng/mlから1μg/mlの濃度において、invitroでの破骨細胞の形成を抑制する請求項7に記載の抗体又は該抗体の機能性断片。

請求項9

破骨細胞による骨吸収を抑制する請求項1乃至4のいずれか一つに記載の抗体又は該抗体の機能性断片。

請求項10

3μg/ml以下の濃度において、invitroでの破骨細胞による骨吸収を抑制する請求項9に記載の抗体又は該抗体の機能性断片。

請求項11

0.3μg/mlから3μg/mlの濃度において、invitroでの破骨細胞による骨吸収を抑制する請求項10に記載の抗体又は該抗体の機能性断片。

請求項12

以下の工程1)および2)を含む方法により得られる、請求項1乃至11のいずれか一つに記載の抗体又は該抗体の機能性断片:1)以下の(a)乃至(i)のいずれか一つに記載のアミノ酸配列:(a)配列表の配列番号2に示されるアミノ酸配列;(b)配列表の配列番号2に示されるアミノ酸配列の21番目から328番目のアミノ酸残基からなるアミノ酸配列;(c)配列表の配列番号2に示されるアミノ酸配列の1番目から260番目のアミノ酸残基からなるアミノ酸配列;(d)配列表の配列番号2に示されるアミノ酸配列の21番目から260番目のアミノ酸残基からなるアミノ酸配列;(e)配列表の配列番号4に示されるアミノ酸配列;(f)配列表の配列番号4に示されるアミノ酸配列の21番目から341番目のアミノ酸残基からなるアミノ酸配列;(g)配列表の配列番号4に示されるアミノ酸配列の1番目から258番目のアミノ酸残基からなるアミノ酸配列;(h)配列表の配列番号4に示されるアミノ酸配列の21番目から258番目のアミノ酸残基からなるアミノ酸配列;(i)(a)乃至(h)に記載のアミノ酸配列に1乃至数アミノ酸残基の置換、欠失又は付加を伴うアミノ酸配列;からなる一つ又は二つ以上のポリペプチドを特異的に認識する抗体を作製する工程;2)破骨細胞形成抑制活性及び/又は骨吸収抑制活性を示す抗体を選別する工程。

請求項13

以下の工程1)および2)を含む方法により得られる、請求項1乃至11のいずれか一つに記載の抗体又は該抗体の機能性断片:1)以下の(j)乃至(n)のいずれか一つに記載のヌクレオチド配列にコードされるアミノ酸配列:(j)配列番号1に示されるヌクレオチド配列;(k)配列番号3に示されるヌクレオチド配列;(l)配列番号19に示されるヌクレオチド配列;(m)配列番号43に示されるヌクレオチド配列;(n)(j)乃至(m)に記載のヌクレオチド配列と相補的なヌクレオチド配列からなるポリヌクレオチドとストリンジェントな条件でハイブリダイズするポリヌクレオチドが保有するヌクレオチド配列;からなる一つ又は二つ以上のポリペプチドを特異的に認識する抗体を作製する工程;2)破骨細胞形成抑制活性及び/又は骨吸収抑制活性を示す抗体を選別する工程。

請求項14

モノクローナル抗体であることを特徴とする、請求項1乃至13のいずれか一つに記載の抗体又は該抗体の機能性断片。

請求項15

ハイブリドーマ#32A1(FERMBP−10999)の産生する抗体と同じエピトープ特異性を持つことを特徴とする、請求項14に記載の抗体又は該抗体の機能性断片。

請求項16

ハイブリドーマ#32A1(FERMBP−10999)の産生する抗体と競合することを特徴とする、請求項14に記載の抗体又は該抗体の機能性断片。

請求項17

ハイブリドーマ#32A1(FERMBP−10999)の産生する抗体であることを特徴とする、請求項14に記載の抗体又は該抗体の機能性断片。

請求項18

ハイブリドーマ#41B1(FERMBP−11000)の産生する抗体と同じエピトープ特異性を持つことを特徴とする、請求項14に記載の抗体又は該抗体の機能性断片。

請求項19

ハイブリドーマ#41B1(FERMBP−11000)の産生する抗体と競合することを特徴とする、請求項14に記載の抗体又は該抗体の機能性断片。

請求項20

ハイブリドーマ#41B1(FERMBP−11000)の産生する抗体であることを特徴とする、請求項14に記載の抗体又は該抗体の機能性断片。

請求項21

キメラ抗体であることを特徴とする、請求項1乃至20のいずれか一つに記載の抗体又は該抗体の機能性断片。

請求項22

ヒト化されていることを特徴とする、請求項1乃至21のいずれか一つに記載の抗体又は該抗体の機能性断片。

請求項23

ヒト抗体であることを特徴とする、請求項1乃至16、18、又は19のいずれか一つに記載の抗体又は該抗体の機能性断片。

請求項24

IgG抗体であることを特徴とする、請求項1乃至23のいずれか一つに記載の抗体又は該抗体の機能性断片。

請求項25

Fab、F(ab’)2、Fab’及びFvからなる群から選択される、請求項1乃至24に記載の抗体の機能性断片。

請求項26

scFvであることを特徴とする、請求項1乃至16、18、又は19のいずれか一つに記載の抗体。

請求項27

請求項1乃至26に記載の抗体又は該抗体の機能性断片の少なくともいずれか一つを含有することを特徴とする、医薬組成物

請求項28

骨代謝異常の治療及び/又は予防剤であることを特徴とする、請求項27に記載の医薬組成物。

請求項29

請求項1乃至26に記載の抗体又は該抗体の機能性断片の少なくともいずれか一つ、並びに、ビスホスホネート活性型ビタミンD3、カルシトニン及びその誘導体エストラジオール等のホルモン製剤、SERMs(selectiveestrogenreceptormodulators)、イプリフラボンビタミンK2メナテトレノン)、カルシウム製剤PTH(parathyroidhormone)製剤、非ステロイド性抗炎症剤、可溶性TNFレセプター製剤、抗TNFα抗体又は該抗体の機能性断片、抗PTHrP(parathyroidhormone−relatedprotein)抗体又は該抗体の機能性断片、IL−1レセプターアンタゴニスト、抗IL−6レセプター抗体又は該抗体の機能性断片、抗RANKL抗体又は該抗体の機能性断片、及びOCIF(osteoclastogenesisinhibitoryfactor)からなる群から選択される少なくともいずれか一つを含有することを特徴とする、骨代謝異常の治療及び/又は予防用医薬組成物

請求項30

骨代謝異常が、骨粗鬆症関節リウマチに伴う骨破壊癌性高カルシウム血症多発性骨髄腫や癌の骨転移に伴う骨破壊、巨細胞腫歯根膜炎による歯の喪失人工関節周囲の骨融解慢性骨髄炎における骨破壊、骨ページェット病腎性骨異栄養症、及び骨形成不全症からなる群から選択される、請求項28又は29に記載の医薬組成物。

請求項31

骨代謝異常が、骨粗鬆症、関節リウマチに伴う骨破壊、又は癌の骨転移に伴う骨破壊であることを特徴とする、請求項30に記載の医薬組成物。

請求項32

骨粗鬆症が、閉経後骨粗鬆症、老人性骨粗鬆症ステロイド免疫抑制剤等の治療用薬剤の使用による続発性骨粗鬆症、又は関節リウマチに伴う骨粗鬆症であることを特徴とする請求項31に記載の医薬組成物。

請求項33

請求項1乃至26に記載の抗体又は該抗体の機能性断片の少なくともいずれか一つを投与することを特徴とする、骨代謝異常の治療及び/又は予防方法

請求項34

請求項1乃至26に記載の抗体又は該抗体の機能性断片の少なくともいずれか一つ、並びに、ビスホスホネート、活性型ビタミンD3、カルシトニン及びその誘導体、エストラジオール等のホルモン製剤、SERMs(selectiveestrogenreceptormodulators)、イプリフラボン、ビタミンK2(メナテトレノン)、カルシウム製剤、PTH(parathyroidhormone)製剤、非ステロイド性抗炎症剤、可溶性TNFレセプター製剤、抗TNFα抗体又は該抗体の機能性断片、抗PTHrP(parathyroidhormone−relatedprotein)抗体又は該抗体の機能性断片、IL−1レセプターアンタゴニスト、抗IL−6レセプター抗体又は該抗体の機能性断片、抗RANKL抗体又は該抗体の機能性断片、及びOCIF(osteoclastogenesisinhibitoryfactor)からなる群から選択される少なくともいずれか一つを同時又は連続して投与することを特徴とする、骨代謝異常の治療及び/又は予防方法。

請求項35

骨代謝異常が、骨粗鬆症、関節リウマチに伴う骨破壊、又は癌の骨転移に伴う骨破壊であることを特徴とする、請求項33又は34に記載の治療及び/又は予防方法。

請求項36

骨粗鬆症が、閉経後骨粗鬆症、老人性骨粗鬆症、ステロイドや免疫抑制剤等の治療用薬剤の使用による続発性骨粗鬆症、又は関節リウマチに伴う骨粗鬆症であることを特徴とする請求項35に記載の治療及び/又は予防方法。

請求項37

ハイブリドーマ#32A1(FERMBP−10999)。

請求項38

ハイブリドーマ#41B1(FERMBP−11000)。

技術分野

0001

本発明は、骨代謝異常の治療及び/又は予防薬として有用な物質、骨代謝異常の治療及び/又は予防薬として有用な物質のスクリーニング方法、骨代謝異常の検査方法並びに骨代謝異常の治療及び/又は予防方法に関する。

背景技術

0002

骨は、自らの形態変化や血中カルシウム濃度の維持のため、常に形成と吸収を繰り返し再構築を行う動的な器官として知られている。正常な骨では骨芽細胞による骨形成破骨細胞による骨吸収とは平衡関係にあり、骨量は一定に保たれている。一方、骨形成と骨吸収との平衡関係が崩れると、骨粗鬆症などの骨代謝異常になる(Endocrinological Review,(1992)13,p66−80, Principles
of Bone Biology, Academic Press, New York,(1996)p87−102)。

0003

骨代謝を調節する因子としては、全身性ホルモン局所性サイトカインが数多く報告されており、それらの因子の共同作用により骨の形成と維持が営まれている(Endocrinological Review,(1992)13,p66−80, Endocrinological Review),(1996)17,p308−332)。加齢による骨組織の変化としては、骨粗鬆症の発症が広く知られているが、その発症機構は性ホルモンの分泌低下やそのレセプター異常、骨局所におけるサイトカイン発現の変動、老化遺伝子の発現、破骨細胞や骨芽細胞の分化あるいは機能不全など多岐にわたっており、加齢による単純な生理現象として理解するのは困難である。原発性骨粗鬆症エストロゲンの分泌低下による閉経後骨粗鬆症と加齢による老人性骨粗鬆症に大別されているが、その発症機構の解明治療薬開発の為には、骨吸収と骨形成の調節機構についての基礎的研究の進展が必須である。

0004

破骨細胞は、造血幹細胞由来する多核細胞であり、骨との接着面に塩素イオン水素イオンを放出することによって、細胞と骨の接着面の間隙酸性化すると共に酸性プロテアーゼであるカテプシンKなどを分泌する(American Journal of
Physiology,(1991)260,C1315−C1324)。この結果、リン酸カルシウムの分解、酸性プロテアーゼの活性化と骨基質蛋白質の分解が引き起こされ、骨吸収が進行する。

0005

破骨細胞の前駆細胞骨表面の骨芽細胞/ストローマ細胞細胞膜上に発現するRANKL(Receptor activator of NF−κB ligand)の刺激を受けて、破骨細胞へ分化することが明らかにされた(Proceedings of
the National Academy of Science of the United States of America,(1998)95,p3597−3602, Cell,(1998)93,p165−176,)。RANKLは骨芽細胞/ストローマ細胞が産生する膜蛋白質であり、その発現は骨吸収因子により調節されること、及びRANKLは破骨細胞前駆細胞から多核破骨細胞への分化を誘導することなどが明らかにされた(Proceedings of the National Academy of Science of the United States of America,(1998)95,p3597−3602, Journal of Bone and Mineral Research,(1998)23,S222)。さらに、RANKLをノックアウトしたマウスが、大理石骨病様の病態を発症することが見出され、RANKLが生理的な破骨細胞分化誘導因子であることが証明された(Na
ture,(1999)397,p315−323)。

0006

骨代謝疾患の治療や治療期間の短縮を図る医薬品として、ビスホスホネート活性型ビタミンD3、カルシトニン及びその誘導体エストラジオール等のホルモン製剤、SERMs(Selective estrogen receptor modulators)、イプリフラボンビタミンK2メナテトレノン)、PTH製剤及びカルシウム製剤等が使用されている。しかし、これらの薬剤は、治療結果において必ずしも満足できるものではなく、より治療効果の高い薬剤の開発が望まれていた。

0007

免疫系細胞の細胞膜上はシアル酸などの多様な糖鎖によって高度に覆われており、様々な糖鎖結合蛋白質によって認識されている。シアル酸結合免疫グロブリン様レクチン(Sialic−acid−binding immunoglobulin−like lectins、以下、「Siglecs」という。)は、シアル酸含有糖鎖を認識して結合するI型膜蛋白質ファミリーである。Siglecsは免疫系細胞の細胞膜上で多く発現しており、同じく免疫系細胞の細胞膜上に存在するシアル酸を認識して細胞間相互作用細胞機能を調節し、免疫応答関与していると考えられているが(Nature Reviews Immunology,(2007)7,p255−266)、生理的機能が明らかとなっていないSiglecs分子も多い。Siglec−15(Sialic−acid binding immunoglobulin−like lectin
15)は、Siglecsに属することが新たに報告された分子で(Glycobiology,(2007)17,p838−846)、CD33L3(CD33 molecule−like 3)と呼ばれる分子と同一である。この分子は魚類からヒトまで進化的保存度が高く、ヒト脾臓及びリンパ節において、樹状細胞マクロファージ系の細胞に強く発現することが明らかにされた。またシアル酸プローブを用いた結合試験の結果、ヒトSiglec−15はNeu5Acα2−6GalNAcと、マウスSiglec−15はさらにNeu5Acα2−3Galβ1−4Glcと結合することなども明らかにされた(Glycobiology,(2007)17,p838−846)。最近まで、Siglec−15の生理的役割は明らかではなかったが、破骨細胞の分化、成熟に伴ってSiglec−15の発現が亢進し、RNA干渉によってSiglec−15の発現を低下させることによって破骨細胞の分化が抑制されることが報告された(国際公開パンフレットWO2007/093042)。しかし、抗Siglec−15抗体が破骨細胞分化におよぼす作用については、これまで明らかにされていなかった。

0008

WO2007/093042

先行技術

0009

Endocrinological Review,(1992)13,p66−80
Principles of Bone Biology, Academic Press, New York,(1996)p87−102
Endocrinological Review,(1996)17,p308−332
American Journal of Physiology,(1991)260,C1315−C1324
Proceedings of the National Academy of Science of the United States of America,(1998)95,p3597−3602
Cell,(1998)93,p165−176
Journal of Bone and Mineral Research,(1998)23,S222
Nature,(1999)397,p315−323
Nature Reviews Immunology,(2007)7,p255−266
Glycobiology,(2007)17,p838−846

発明が解決しようとする課題

0010

本発明の目的は、骨粗鬆症、関節リウマチ、癌の骨転移等に見られる、骨破壊等の種々の骨代謝異常の際に特異的に発現する遺伝子、破骨細胞の分化成熟と活性を阻害する物質、骨代謝異常の治療及び/又は予防剤スクリーニングするための新規な方法、及び破骨細胞の分化成熟と活性を阻害する物質、骨代謝異常の治療及び/又は予防剤を提供することにある。

課題を解決するための手段

0011

本発明者らは、骨代謝異常の治療及び/又は予防効果を有する物質を探索する目的で、破骨細胞の分化、成熟及び活性化の機構(メカニズム)の解明を目指した研究を行った結果、破骨細胞の分化、成熟に伴いSiglec−15遺伝子の発現が上昇することを見出し、Siglec−15と特異的に結合する抗体により、破骨細胞の分化が抑制されることを見出し、本発明を完成させた。
すなわち、本発明は、以下の発明を包含する。
(1)以下の(a)乃至(i)のいずれか一つに記載のアミノ酸配列からなる一つ又は二つ以上のポリペプチドを特異的に認識し、破骨細胞の形成及び/又は破骨細胞による骨吸収を抑制する抗体又は該抗体の機能性断片
(a)配列表の配列番号2に示されるアミノ酸配列;
(b)配列表の配列番号2に示されるアミノ酸配列の21番目から328番目のアミノ酸残基からなるアミノ酸配列;
(c)配列表の配列番号2に示されるアミノ酸配列の1番目から260番目のアミノ酸残基からなるアミノ酸配列;
(d)配列表の配列番号2に示されるアミノ酸配列の21番目から260番目のアミノ酸残基からなるアミノ酸配列;
(e)配列表の配列番号4に示されるアミノ酸配列;
(f)配列表の配列番号4に示されるアミノ酸配列の21番目から341番目のアミノ酸残基からなるアミノ酸配列;
(g)配列表の配列番号4に示されるアミノ酸配列の1番目から258番目のアミノ酸残基からなるアミノ酸配列;
(h)配列表の配列番号4に示されるアミノ酸配列の21番目から258番目のアミノ酸残基からなるアミノ酸配列;
(i)(a)乃至(h)に記載のアミノ酸配列に1乃至数アミノ酸残基の置換欠失又は付加を伴うアミノ酸配列。
(2)以下の(j)乃至(n)のいずれか一つに記載のヌクレオチド配列にコードされるアミノ酸配列からなる一つ又は二つ以上のポリペプチドを特異的に認識し、破骨細胞の形成及び/又は破骨細胞による骨吸収を抑制する抗体又は該抗体の機能性断片:
(j)配列番号1に示されるヌクレオチド配列;
(k)配列番号3に示されるヌクレオチド配列;
(l)配列番号19に示されるヌクレオチド配列;
(m)配列番号43に示されるヌクレオチド配列;
(n)(j)乃至(m)に記載のヌクレオチド配列と相補的なヌクレオチド配列からなる
ポリヌクレオチドストリンジェントな条件でハイブリダイズするポリヌクレオチドが保有するヌクレオチド配列。
(3)破骨細胞の細胞融合過程を抑制する(1)又は(2)に記載の抗体又は該抗体の機能性断片。
(4)TNFαによって誘導される破骨細胞の形成を抑制する(1)乃至(3)のいずれか一つに記載の抗体又は該抗体の機能性断片。
(5)30μg/ml以下の濃度において、in vitroでの破骨細胞の形成を抑制する(1)乃至(4)のいずれか一つに記載の抗体又は該抗体の機能性断片。
(6)3μg/ml以下の濃度において、in vitroでの破骨細胞の形成を抑制する(5)に記載の抗体又は該抗体の機能性断片。
(7)1μg/ml以下の濃度において、in vitroでの破骨細胞の形成を抑制する(6)に記載の抗体又は該抗体の機能性断片。
(8)63ng/mlから1μg/mlの濃度において、in vitroでの破骨細胞の形成を抑制する(7)に記載の抗体又は該抗体の機能性断片。
(9)破骨細胞による骨吸収を抑制する(1)乃至(4)のいずれか一つに記載の抗体又は該抗体の機能性断片。
(10)3μg/ml以下の濃度において、in vitroでの破骨細胞による骨吸収を抑制する(9)に記載の抗体又は該抗体の機能性断片。
(11)0.3μg/mlから3μg/mlの濃度において、in vitroでの破骨細胞による骨吸収を抑制する(10)に記載の抗体又は該抗体の機能性断片。
(12)以下の工程1)および2)を含む方法により得られる、(1)乃至(11)のいずれか一つに記載の抗体又は該抗体の機能性断片:
1)以下の(a)乃至(i)のいずれか一つに記載のアミノ酸配列:
のいずれか一つ又は二つ以上の配列を特異的に認識する抗体を作製する工程;
(a)配列表の配列番号2に示されるアミノ酸配列;
(b)配列表の配列番号2に示されるアミノ酸配列の21番目から328番目のアミノ酸残基からなるアミノ酸配列;
(c)配列表の配列番号2に示されるアミノ酸配列の1番目から260番目のアミノ酸残基からなるアミノ酸配列;
(d)配列表の配列番号2に示されるアミノ酸配列の21番目から260番目のアミノ酸残基からなるアミノ酸配列;
(e)配列表の配列番号4に示されるアミノ酸配列;
(f)配列表の配列番号4に示されるアミノ酸配列の21番目から341番目のアミノ酸残基からなるアミノ酸配列;
(g)配列表の配列番号4に示されるアミノ酸配列の1番目から258番目のアミノ酸残基からなるアミノ酸配列;
(h)配列表の配列番号4に示されるアミノ酸配列の21番目から258番目のアミノ酸残基からなるアミノ酸配列;
(i)(a)乃至(h)に記載のアミノ酸配列に1乃至数アミノ酸残基の置換、欠失又は付加を伴うアミノ酸配列。
2)破骨細胞形成抑制活性及び/又は骨吸収抑制活性を示す抗体を選別する工程。
(13)以下の工程1)および2)を含む方法により得られる、(1)乃至(11)のいずれか一つに記載の抗体又は該抗体の機能性断片:
1)以下の(j)乃至(n)のいずれか一つに記載のヌクレオチド配列にコードされるアミノ酸配列:
(j)配列番号1に示されるヌクレオチド配列;
(k)配列番号3に示されるヌクレオチド配列;
(l)配列番号19に示されるヌクレオチド配列;
(m)配列番号43に示されるヌクレオチド配列;
(n)(j)乃至(m)に記載のヌクレオチド配列と相補的なヌクレオチド配列からなる
ポリヌクレオチドとストリンジェントな条件でハイブリダイズするポリヌクレオチドが保有するヌクレオチド配列;
からなる一つ又は二つ以上のポリペプチドを特異的に認識する抗体を作製する工程;
2)破骨細胞形成抑制活性及び/又は骨吸収抑制活性を示す抗体を選別する工程。
(14)モノクローナル抗体であることを特徴とする、(1)乃至(13)のいずれか一つに記載の抗体又は該抗体の機能性断片。
(15)ハイブリドーマ#32A1(FERM BP−10999)の産生する抗体と同じエピトープ特異性を持つことを特徴とする、(14)に記載の抗体又は該抗体の機能性断片。
(16)ハイブリドーマ#32A1(FERM BP−10999)の産生する抗体と競合することを特徴とする、(14)に記載の抗体又は該抗体の機能性断片。
(17)ハイブリドーマ#32A1(FERM BP−10999)の産生する抗体であることを特徴とする、(14)に記載の抗体又は該抗体の機能性断片。
(18)ハイブリドーマ#41B1(FERM BP−11000)の産生する抗体と同じエピトープ特異性を持つことを特徴とする、(14)に記載の抗体又は該抗体の機能性断片。
(19)ハイブリドーマ#41B1(FERM BP−11000)の産生する抗体と競合することを特徴とする、(14)に記載の抗体又は該抗体の機能性断片。
(20)ハイブリドーマ#41B1(FERM BP−11000)の産生する抗体であることを特徴とする、(14)に記載の抗体又は該抗体の機能性断片。
(21)キメラ抗体であることを特徴とする、(1)乃至(20)のいずれか一つに記載の抗体又は該抗体の機能性断片。
(22)ヒト化されていることを特徴とする、(1)乃至(21)のいずれか一つに記載の抗体又は該抗体の機能性断片。
(23)ヒト抗体であることを特徴とする、(1)乃至(16)、(18)、又は(19)のいずれか一つに記載の抗体又は該抗体の機能性断片。
(24)IgG抗体であることを特徴とする、(1)乃至(23)のいずれか一つに記載の抗体又は該抗体の機能性断片。
(25)Fab、F(ab’)2、Fab’及びFvからなる群から選択される、(1)乃至(24)に記載の抗体の機能性断片。
(26)scFvであることを特徴とする、(1)乃至(16)、(18)、又は(19)のいずれか一つに記載の抗体。
(27)(1)乃至(26)に記載の抗体又は該抗体の機能性断片の少なくともいずれか一つを含有することを特徴とする、医薬組成物
(28)骨代謝異常の治療及び/又は予防剤であることを特徴とする、(27)に記載の医薬組成物。
(29)(1)乃至(26)に記載の抗体又は該抗体の機能性断片の少なくともいずれか一つ、並びに、ビスホスホネート、活性型ビタミンD3、カルシトニン及びその誘導体、エストラジオール等のホルモン製剤、SERMs(selective estrogen receptor modulators)、イプリフラボン、ビタミンK2(メナテトレノン)、カルシウム製剤、PTH(parathyroid hormone)製剤、非ステロイド性抗炎症剤、可溶性TNFレセプター製剤、抗TNFα抗体又は該抗体の機能性断片、抗PTHrP(parathyroid hormone−related protein)抗体又は該抗体の機能性断片、IL−1レセプターアンタゴニスト、抗IL−6レセプター抗体又は該抗体の機能性断片、抗RANKL抗体、及び該抗体の機能性断片及びOCIF(osteoclastogenesis inhibitory factor)からなる群から選択される少なくともいずれか一つを含有することを特徴とする、骨代謝異常の治療及び/又は予防用医薬組成物
(30)骨代謝異常が、骨粗鬆症、関節リウマチに伴う骨破壊、癌性高カルシウム血症多発性骨髄腫や癌の骨転移に伴う骨破壊、巨細胞腫歯根膜炎による歯の喪失人工関節
周囲の骨融解慢性骨髄炎における骨破壊、骨ページェット病腎性骨異栄養症、及び骨形成不全症からなる群から選択される、(28)又は(29)に記載の医薬組成物。
(31)骨代謝異常が、骨粗鬆症、関節リウマチに伴う骨破壊、又は癌の骨転移に伴う骨破壊であることを特徴とする、(28)に記載の医薬組成物。
(32)骨粗鬆症が、閉経後骨粗鬆症、老人性骨粗鬆症、ステロイド免疫抑制剤等の治療用薬剤の使用による続発性骨粗鬆症、又は関節リウマチに伴う骨粗鬆症であることを特徴とする(29)に記載の医薬組成物。
(33)(1)乃至(26)に記載の抗体又は該抗体の機能性断片の少なくともいずれか一つを投与することを特徴とする、骨代謝異常の治療及び/又は予防方法。
(34)(1)乃至(26)に記載の抗体又は該抗体の機能性断片の少なくともいずれか一つ、並びに、ビスホスホネート、活性型ビタミンD3、カルシトニン及びその誘導体、エストラジオール等のホルモン製剤、SERMs(selective estrogen receptor modulators)、イプリフラボン、ビタミンK2(メナテトレノン)、カルシウム製剤、PTH(parathyroid hormone)製剤、非ステロイド性抗炎症剤、可溶性TNFレセプター製剤、抗TNFα抗体又は該抗体の機能性断片、抗PTHrP(parathyroid hormone−related protein)抗体又は該抗体の機能性断片、IL−1レセプターアンタゴニスト、抗IL−6レセプター抗体又は該抗体の機能性断片、抗RANKL抗体又は該抗体の機能性断片、及びOCIF(osteoclastogenesis inhibitory factor)からなる群から選択される少なくともいずれか一つを同時又は連続して投与することを特徴とする、骨代謝異常の治療及び/又は予防方法。
(35)骨代謝異常が、骨粗鬆症、関節リウマチに伴う骨破壊、又は癌の骨転移に伴う骨破壊であることを特徴とする、(33)又は(34)に記載の治療及び/又は予防方法。(36)骨粗鬆症が、閉経後骨粗鬆症、老人性骨粗鬆症、ステロイドや免疫抑制剤等の治療用薬剤の使用による続発性骨粗鬆症、又は関節リウマチに伴う骨粗鬆症であることを特徴とする(35)に記載の治療及び/又は予防方法。
(37)ハイブリドーマ#32A1(FERM BP−10999)。
(38)ハイブリドーマ#41B1(FERM BP−11000)。

発明の効果

0012

本発明によれば、破骨細胞の分化成熟と活性の阻害を作用機序とする、骨代謝異常の治療剤及び/又は予防剤を得ることができる。

図面の簡単な説明

0013

ヒト巨細胞腫組織におけるRANK、RANKL、カテプシンK及びTRAP遺伝子発現プロファイル解析を示したグラフである。
ヒト巨細胞腫組織におけるSiglec−15遺伝子の発現プロファイル解析を示したグラフである。
RAW264.7あるいはマウス骨髄細胞から破骨細胞分化を誘導した際のSiglec−15遺伝子発現量の変化を示したグラフである。
RAW264.7細胞の破骨細胞分化に伴うカテプシンK及びTRAP遺伝子の発現を示したグラフである。
RAW264.7細胞の破骨細胞分化に伴うSiglec−15遺伝子の発現を示したグラフである。
293F細胞によるマウスSiglec−15−Hisの発現の培養時間による変動を、SDS−ポリアクリルアミド電気泳動と抗6 His−HRP抗体を用いたウェスタンブロッティングで検出した結果である。
293F細胞によるマウスSiglec−15−Fcの発現の培養時間による変動を、SDS−ポリアクリルアミド電気泳動と抗ヒトIgGFc−HRP抗体を用いたウェスタンブロッティングで検出した結果である。
HisTrap HPカラムクロマトとResource Qカラムクロマトで精製したマウスSiglec−15−Hisの純度をSDS−ポリアクリルアミド電気泳動と銀染色で評価した結果である。
HisTrap HPカラムクロマトとResource Qカラムクロマトで精製したマウスSiglec−15−Hisの挙動を、SDS−ポリアクリルアミド電気泳動と抗V5−HRP抗体を用いたウェスタンブロッティングで検出した結果である。
HiTrap protein A カラムクロマトで精製したマウスSiglec−15−Fcの純度をSDS−ポリアクリルアミド電気泳動と銀染色で評価した結果である。
精製した抗マウスSiglec−15ポリクローナル抗体がSiglec−15−FcだけでなくSiglec−15−Hisにも結合することを、SDS−ポリアクリルアミド電気泳動と抗マウスSiglec−15ポリクローナル抗体と抗ウサギIgG−HRP抗体を用いたウェスタンブロッティングで確認した結果である。
抗マウスSiglec−15ポリクローナル抗体をマウスSiglec−15−Fcを固相化したアフィニティーカラムで精製したクロマトグラムである。
マウスSiglec−15−Fc固相化アフィニティーカラムクロマトで精製したマウスSiglec−15−Fcの純度をSDS−ポリアクリルアミド電気泳動と銀染色で評価した結果である。
抗マウスSiglec−15ポリクローナル抗体をSuperose 6・ゲルろ過カラムで精製したクロマトグラムである。
アフィニティー精製した抗マウスSiglec−15ポリクローナル抗体の添加による、マウス骨髄付着細胞の破骨細胞分化(RANKL刺激)への影響を試験した結果である(N=3)。
ゲルろ過精製した抗マウスSiglec−15ポリクローナル抗体の添加による、マウス骨髄非付着細胞の破骨細胞分化(RANKL刺激)への影響をTRAP酵素活性で試験した結果である(N=3)。
抗マウスSiglec−15ポリクローナル抗体の添加によるマウス骨髄非付着細胞の破骨細胞分化(RANKL刺激)の抑制の抗原による中和をTRAP酵素活性で試験した結果である(N=3)。
抗マウスSiglec−15ポリクローナル抗体の添加による、マウス骨髄非付着細胞の破骨細胞分化(TNFα刺激)への影響をTRAP酵素活性で試験した結果である(N=3)。
抗マウスSiglec−15ポリクローナル抗体の添加による、マウス骨髄非付着細胞の破骨細胞分化(TNFα刺激)への影響をTRAP染色で評価した顕微鏡写真である。
抗マウスSiglec−15ポリクローナル抗体の添加による、マウス骨髄細胞からの破骨細胞分化(活性型ビタミンD3刺激)の抑制をTRAP酵素活性で示したグラフである(N=6)。
抗マウスSiglec−15ポリクローナル抗体の添加による、マウス骨髄細胞からの巨大破骨細胞形成(活性型ビタミンD3刺激)の抑制をTRAP染色で示した顕微鏡写真である。
抗マウスSiglec−15ポリクローナル抗体の添加による、マウス骨髄細胞からの巨大破骨細胞形成(ヒトRANKL刺激)の抑制をTRAP染色で示した顕微鏡写真である。
抗マウスSiglec−15ポリクローナル抗体の添加による、RAW264.7細胞からの巨大破骨細胞形成(ヒトRANKL刺激)の抑制及び可溶型Siglec−15による該抑制作用解除をTRAP染色で示した顕微鏡写真である。
マウスSiglec−15−Fc固相化プレートに対するラット抗マウスSiglec−15モノクローナル抗体の結合をELISA法で試験した結果である。シンボル(◆)は#1A1抗体を、シンボル(■)は#3A1抗体を、シンボル(▲)は#8A1抗体を、シンボル(×)は#24A1抗体を、シンボル(●)は#32A1抗体を、シンボル(○)は#34A1抗体を、シンボル(+)は#39A1抗体を、シンボル(−)は#40A1抗体を、シンボル(−)は#41B1抗体を、シンボル(◇)は#61A1抗体を、シンボル(□)はコントロールIgGをそれぞれ表している。
抗マウスSiglec−15モノクローナル抗体(#3A1、#8A1又は#32A1)の添加による、マウス骨髄非付着細胞の破骨細胞分化(RANKL刺激)への影響を試験した結果である。なお、図中のラットコントロールIgGは、図25及び26で共通の陰性コンロールである。
抗マウスSiglec−15モノクローナル抗体(#34A1、#39A1又は#40A1)の添加による、マウス骨髄非付着細胞の破骨細胞分化(RANKL刺激)への影響を試験した結果である。なお、図中のウサギ抗マウスSiglec−15ポリクローナル抗体No.3は、図25及び26で共通の陽性コントロールである。
正常ヒト破骨前駆細胞から破骨細胞分化を誘導した際のカテプシンK、TRAPおよびSiglec−15遺伝子の発現変化を示したグラフである。
HisTrap HPカラムクロマトとResource Qカラムクロマトで精製したヒトSiglec−15−Hisの純度を、SDS−ポリアクリルアミド電気泳動で検討した結果である。
Protein Aカラムクロマトで精製したヒトSiglec−15−Fcの純度を、SDS−ポリアクリルアミド電気泳動で検討した結果である。
抗ヒトSiglec−15ポリクローナル抗体をヒトSiglec−15−Fcを固相化したアフィニティーカラムで精製したクロマトグラムである。
抗ヒトSiglec−15ポリクローナル抗体の添加による、正常ヒト破骨前駆細胞からの巨大破骨細胞形成の抑制をTRAP染色で示した顕微鏡写真である。
抗ヒトSiglec−15ポリクローナル抗体の添加による、正常ヒト破骨前駆細胞からの多核破骨細胞の形成への影響を、5個以上の核を有するTRAP陽性細胞倒立顕微鏡計数することによって評価した結果である。
ヒトSiglec−15−Fc固相化プレートに対するラット抗マウスSiglec−15モノクローナル抗体の結合をELISA法で試験した結果である。シンボル(◆)は#1A1抗体を、シンボル(■)は#3A1抗体を、シンボル(▲)は#8A1抗体を、シンボル(×)は#24A1抗体を、シンボル(●)は#32A1抗体を、シンボル(○)は#34A1抗体を、シンボル(+)は#39A1抗体を、シンボル(−)は#40A1抗体を、シンボル(−)は#41B1抗体を、シンボル(◇)は#61A1抗体を、シンボル(□)はコントロールIgGをそれぞれ表している。
ラット抗マウスSiglec−15モノクローナル抗体の添加による、正常ヒト破骨前駆細胞からの巨大破骨細胞形成の抑制をTRAP染色で示した顕微鏡写真である。
ラット抗マウスSiglec−15モノクローナル抗体(#32A1抗体)の添加による、正常ヒト破骨前駆細胞からの巨大破骨細胞形成の抑制をTRAP染色で示した顕微鏡写真である。
ラット抗マウスSiglec−15モノクローナル抗体(#32A1抗体)の添加による、正常ヒト破骨細胞の骨吸収活性の抑制を示したグラフである(N=6)。

0014

明細書中において、「遺伝子」という語には、DNAのみならずmRNAcDNA及びcRNAも含まれるものとする。

0015

本明細書中において、「ポリヌクレオチド」という語は核酸と同じ意味で用いており、DNA、RNA、プローブ、オリゴヌクレオチド、及びプライマーも含まれている。

0016

本明細中においては、「ポリペプチド」と「蛋白質」は区別せずに用いている。

0017

本明細書中において、「RNA画分」とは、RNAを含んでいる画分をいう。

0018

本明細書中において、「細胞」には、動物個体内の細胞、培養細胞も含んでいる。

0019

本明細書中において、「Siglec−15」は、Siglec−15蛋白質と同じ意味で用いている。

0020

本明細書中において、「破骨細胞の形成」は、「破骨細胞の分化」又は「破骨細胞の成熟」と同じ意味で用いている。

0021

本明細書中における「抗体の機能性断片」とは、抗原との結合活性を有する抗体の部分断片を意味しており、Fab、F(ab’)2、scFv等を含む。また、F(ab’)2を還元条件下で処理した抗体の可変領域の一価の断片であるFab’も抗体の機能性断片に含まれる。但し、抗原との結合能を有している限りこれらの分子に限定されない。また、これらの機能性断片には、抗体蛋白質の全長分子を適当な酵素で処理したもののみならず、遺伝子工学的改変された抗体遺伝子を用いて適当な宿主細胞において産生された蛋白質も含まれる。

0022

本明細書における、「エピトープ」とは、特定の抗Siglec−15抗体の結合するSiglec−15の部分ペプチドを意味する。前記のSiglec−15の部分ペプチドであるエピトープは、免疫アッセイ法等当業者によく知られている方法によって決定することができるが、例えば以下の方法によって行うことが出来る。Siglec−15の様々な部分構造を作製する。部分構造の作製にあたっては、公知のオリゴペプチド合成技術を用いることが出来る。例えば、Siglec−15のC末端あるいはN末端から適当な長さで順次短くした一連のポリペプチドを当業者に周知の遺伝子組み換え技術を用いて作製した後、それらに対する抗体の反応性を検討し、大まかな認識部位を決定した後に、さらに短いペプチドを合成してそれらのペプチドとの反応性を検討することによって、エピトープを決定することが出来る。第一の抗Siglec−15抗体の結合する部分ペプチドに第二の抗Siglec−15抗体が結合すれば、第一の抗体と第二の抗体が共通のエピトープを有すると判定することができる。また、第一の抗Siglec−15抗体のSiglec−15に対する結合に対して第二の抗Siglec−15抗体が競合する(すなわち、第二の抗体が第一の抗体とSiglec−15の結合を妨げる)ことを確認することによって、具体的なエピトープの配列が決定されていなくても、第一の抗体と第二の抗体が共通のエピトープを有すると判定することができる。さらに、第一の抗体と第二抗体が共通のエピトープに結合し、かつ第一の抗体が抗原の中和活性等の特殊な効果を有する場合、第二の抗体も同様な活性を有することが期待できる。

0023

本発明において、「ストリンジェントな条件下でハイブリダイズする」とは、市販のハイブリダイゼーション溶液ExpressHyb Hybridization Solution(クロンテック社製)中、68℃でハイブリダイズすること、又は、DNAを固定したフィルターを用いて0.7−1.0MのNaCl存在下68℃でハイブリダイゼーションを行った後、0.1−2倍濃度のSS溶液(1倍濃度SSCとは150 mM
NaCl、15 mMクエン酸ナトリウムからなる)を用い、68℃で洗浄することにより同定することができる条件又はそれと同等の条件でハイブリダイズすることをいう。

0024

1.Siglec−15
本発明者らによって、Siglec−15遺伝子は巨細胞腫において特異的に発現していることが見出された。また、本発明者らによってSiglec−15遺伝子は単球由来細胞株が破骨細胞に分化する際に発現量が増加することも見出された。

0025

本発明で用いるSiglec−15は、ヒト、非ヒト哺乳動物(例えば、モルモット、ラット、マウス、ウサギ、ブタヒツジウシサルなど)あるいはニワトリ単球細胞あるいは骨髄細胞から直接精製して使用するか、あるいは上記の細胞の細胞膜画分を調製して使用することができ、また、Siglec−15をin vitroにて合成する、あるいは遺伝子操作により宿主細胞に産生させることによって得ることができる。遺伝子操作では、具体的には、Siglec−15cDNAを発現可能なベクターに組み込んだ後、転写翻訳に必要な酵素、基質及びエネルギー物質を含む溶液中で合成する、あるいは他の原核生物、又は真核生物の宿主細胞を形質転換させることによってSiglec−15を発現させることにより、該蛋白質を得ることが出来る。

0026

ヒトSiglec−15のcDNAのヌクレオチド配列は、GenBankアクセッション番号:NM_213602で登録され、配列表の配列番号1にも示されており、そのアミノ酸配列は配列表の配列番号2に示されている。マウスSiglec−15のcDNAのヌクレオチド配列は、GenBankにアクセッション番号:XM_884636で登録され、配列表の配列番号3にも示されており、そのアミノ酸配列は配列表の配列番号4に示されている。シグナル配列が除かれた成熟ヒトSiglec−15は、配列番号2に示されるアミノ酸配列の21番目から328番目のアミノ酸残基からなるアミノ酸配列に相当する。また、シグナル配列が除かれたマウスSiglec−15は、配列番号4に示されるアミノ酸配列の21番目から341番目のアミノ酸残基からなるアミノ酸配列に相当する。なお、Siglec−15は、CD33 antigen−like 3、CD33 molecule−like 3、CD33−like 3又はCD33L3と呼ばれることがあり、これらは全て同じ分子を示している。

0027

Siglec−15のcDNAは例えば、Siglec−15のcDNAを発現しているcDNAライブラリー鋳型として、Siglec−15のcDNAを特異的に増幅するプライマーを用いてポリメラーゼ連鎖反応(以下「PCR」という)(Saiki,R. K.,et al.,Science,(1988)239,487−49)を行なう、いわゆるPCR法により取得することができる。

0028

なお、配列表の配列番号1及び3から選択される少なくともいずれか一つに示されるヌクレオチド配列と相補的なヌクレオチド配列からなるポリヌクレオチドとストリンジェントな条件でハイブリダイズし、かつ、Siglec−15と同等の生物活性を有する蛋白質をコードするポリヌクレオチドもSiglec−15のcDNAに含まれる。さらに、ヒト若しくはマウスSiglec−15遺伝子座から転写されるスプライシングバリアント又はこれにストリンジェントな条件でハイブリダイズするポリヌクレオチドであって、かつ、Siglec−15と同等の生物活性を有する蛋白質をコードするポリヌクレオチドもSiglec−15のcDNAに含まれる。

0029

また、配列表の配列番号2及び4から選択される少なくともいずれか一つに示されるアミノ酸配列、又はこれらの配列からシグナル配列が除かれたアミノ酸配列において、1若しくは数個アミノ酸が置換、欠失、又は付加されたアミノ酸配列からなり、Siglec−15と同等の生物活性を有する蛋白質もSiglec−15に含まれる。さらに、ヒト若しくはSiglec−15遺伝子座から転写されるスプライシングバリアントにコードされるアミノ酸配列又は該アミノ酸配列において、1若しくは数個のアミノ酸が置換、欠失、又は付加されたアミノ酸配列からなり、かつ、Siglec−15と同等の生物活性を有する蛋白質もSiglec−15に含まれる。

0030

2.骨代謝異常の検出
Siglec−15遺伝子は、ヒト各種骨組織検体群における遺伝子の発現量の解析をすると、破骨細胞様の多核巨細胞が多数出現する骨腫瘍であり、臨床的所見として骨溶解性の骨破壊を特徴とする(Bullough et al.,Atlas of Orthopedic Pathology 2nd edition, pp17.6−17.8,Lippincott Williams & Wilkins Publishers(1992))巨細胞腫(Giant cell tumor;GCT)において有意に発現量が増加していることが見出された。

0031

また、Siglec−15遺伝子は単球由来細胞株が破骨細胞に分化する際に発現量が増加することも見出された。

0032

したがって、Siglec−15はGCTのような骨吸収が亢進するヒトの病態に関与していると考えられる。すなわち、Siglec−15遺伝子及び/又はSiglec−15の各細胞、及び/又は各組織における発現量を測定することでSiglec−15の過剰発現を伴う骨代謝異常の状態を判定することができる。なお、本明細書における骨代謝異常とは、骨粗鬆症(閉経後骨粗鬆症、老人性骨粗鬆症、ステロイドや免疫抑制剤等の治療用薬剤の使用による続発性骨粗鬆症、関節リウマチに伴う骨粗鬆症)、関節リウマチに伴う骨破壊、癌性高カルシウム血症、多発性骨髄腫や癌の骨転移に伴う骨破壊、巨細胞腫、歯根膜炎による歯の喪失、人工関節周囲の骨融解、慢性骨髄炎における骨破壊、骨ページェット病、腎性骨異栄養症、骨形成不全症などを挙げることができるが、これらに限定されない。

0033

なお、本発明においてSiglec−15遺伝子及び/又はSiglec−15の発現量を調べる対象となる「検体」とは、被験者臨床検体等から得られた、骨髄、骨、前立腺精巣陰茎膀胱腎臓口腔咽頭口唇歯肉鼻咽頭食道小腸大腸結腸肝臓胆嚢膵臓軟部組織、皮膚、乳房子宮卵巣、脳、甲状腺、リンパ節、筋肉脂肪組織等の組織、血液、体液又は排泄物等の試料を意味するが、本発明においては血液又は骨髄がより好ましい。

0034

3.破骨細胞への分化抑制物質のスクリーニング方法
本発明の一つの態様として、Siglec−15遺伝子及び/又は、Siglec−15の発現量を測定することによる、破骨細胞の分化抑制物質のスクリーニング方法を挙げることができる。

0035

本発明の一つの態様として、Siglec−15が持つ成熟破骨細胞への分化誘導活性を阻害する物質を同定することによって、骨代謝異常の治療効果及び/又は予防効果を有する物質をスクリーニングする方法を挙げることができる。

0036

なお、「被験物質」とは、本発明のスクリーニング方法で破骨細胞への分化抑制活性を調べる対象となる物質をいう。被験物質としては、化合物微生物代謝産物、植物や動物組織抽出物、それらの誘導体又はそれらの混合物等を挙げることができる。また、Siglec−15の発現量を低下するように設計された核酸又はその誘導体(アンチセンスオリゴヌクレオチドリボザイムdsRNA、siRNA等を含む)を、被験物質として使用することも可能である。被験物質の投与量や濃度は適宜設定するか、又は例えば希釈系列を作製するなどして複数種の投与量を設定してもよく、固体液体等適当な状態で投与することができ、適当なバッファーに溶解するか、あるいは安定化剤等を加えてもよい。培養細胞を用いるスクリーニング方法の場合には、培地に添加して培養することができる。培地に添加する場合には培養開始時から添加してもよいし、培養途中で添加して
も良く、また、添加の回数も1回に限らない。被験物質存在下で培養する期間も適宜設定してよいが、好ましくは30分乃至2週間であり、より好ましくは、30分乃至72時間である。哺乳動物個体に被験物質を投与する場合は、被験物質の物性等により経口投与静脈注射腹腔内注射経皮投与皮下注射等の投与形態使い分ける。なお被験物質の投与から、検体を得るまでの時間は適当に選択することができる。

0037

本発明のスクリーニング方法において用いられる培養細胞は、Siglec−15を発現する哺乳動物細胞である限りにおいて、正常な細胞でも、樹立細胞株でも、癌細胞等の異常な増殖を示す細胞でもよく、例えば、正常ヒト破骨前駆細胞(Normal Human Natural Osteoclast Precursor Cells、三光純薬より購入可能、カタログ番号2T−110)、マウス単球由来細胞RAW264.7(ATCCCat.No. TIB−71)、RAW264細胞(ECACCCat.No. 85062803)、マウス骨髄由来初代培養細胞等を挙げることができるがこれらに限定されない。培養細胞の動物種としては、ヒト、マウス又はその他の哺乳動物(モルモット、ラット、ウサギ、ブタ、ヒツジ、ウシ、サルなど)、及びニワトリなどが好ましいが、これらに限定されない。なお、培養細胞としてはSiglec−15を過剰発現している哺乳動物細胞を用いるのがより好ましく、例えばSiglec−15遺伝子をそのプロモーター領域とともに導入し、Siglec−15を過剰発現するRAW264.7細胞、RAW264細胞、293細胞、CHO細胞、COS7細胞などを挙げることができる。

0038

本発明のスクリーニング方法には、培養細胞を用いず、哺乳動物個体に被験物質を投与して、その後該動物個体から摘出されたその臓器又は組織細胞におけるSiglec−15遺伝子の発現を検出する方法も含まれる。遺伝子発現検出対象となる臓器又は組織は、Siglec−15を発現するものであればよいが、好ましくは骨代謝異常に関係している組織であり、より好ましくは骨組織及び骨髄である。哺乳動物種としては非ヒト哺乳動物を用いることができ、マウス、ラット又はハムスターが好ましく、マウス又はラットがより好ましい。なお、骨代謝異常を呈する動物モデルとして、卵巣摘除動物、精巣摘除動物、腫瘍細胞を皮下、皮内、左心室、骨髄、静脈あるいは腹腔等に移植した担癌動物、坐骨神経切除動物、アジュバント関節炎モデル動物コラーゲン誘発性関節炎モデル動物、グルココルチコイド誘発性骨粗鬆症モデル動物、老化促進マウス(SAMP6マウス、Matsushita et al.,Am.J.Pathol.125,276−283(1986))、甲状腺・副甲状腺摘除動物、副甲状腺ホルモン関連ペプチド(PTHrP)持続注入動物、破骨細胞形成抑制因子(OCIF)ノックアウトマウス(Mizuno et al.,Biochem.Biophys.Res.Commun.,(1998)247,610−615)、可溶型RANKL投与動物などを用いることができる。更に、歯周病による歯の喪失モデル動物や、Siglec−15を過剰発現させた動物を用いることもできる。さらにスクリーニングで選択された被検物質を上記の動物モデルに投与し、骨組織における成熟破骨細胞の数、骨密度骨強度骨形態計測により取得可能な各パラメーター、血中及び尿中における骨代謝パラメーター(CTx、NTxなど)、あるいは血中Ca濃度等、骨代謝異常により変動するパラメーターを測定することによって、該被検物質の骨代謝異常に対する治療効果及び/又は予防効果を評価することができる。

0039

本発明の方法において用いられる培養細胞は、被験物質を添加しない場合にSiglec−15を発現可能な条件であれば、いかなる条件で培養してもよい。例えば、該培養細胞について公知の培養条件が知られており、該条件下において該細胞がSiglec−15を発現する場合は、該条件で培養してもよい。また、哺乳動物個体から摘出した臓器又は組織におけるSiglec−15の発現を検出する場合における、該動物の飼育条件も、被験物質を添加しない場合にSiglec−15を発現可能な条件であればよい。

0040

なお、被験物質の、Siglec−15の発現に対する影響を調べるためには、Siglec−15遺伝子の発現量を測定する方法と、Siglec−15遺伝子の翻訳産物である、Siglec−15の発現量を測定する方法がある。Siglec−15遺伝子、及び/又は、Siglec−15の発現を抑える被験物質は骨代謝異常、好適には骨粗鬆症、関節リウマチ及び/又は癌の骨転移に伴う骨破壊に対する治療効果及び/又は予防効果を有する物質であると考えられる。

0041

培養細胞におけるSiglec−15遺伝子の発現量の測定、Siglec−15の発現量の測定については、Northern解析、定量的PCR法、ELISA法等により行うことができる。なお、哺乳動物由来培養細胞を用いる場合には、必要に応じて培地には被験物質と共にRANKL、TNF−α、M−CSFあるいは活性型ビタミンD3等を適当量添加し、被験物質を添加しないコントロールにおいてもRANKL、TNF−α、M−CSFあるいは活性型ビタミンD3等を適当量添加する。

0042

また、Siglec−15に対する内在性リガンドの結合量を測定する実験系を構築し、被験物質の添加によって該内在性リガンドのSiglec−15への結合が阻害されるか否かを評価することによって破骨細胞への分化抑制物質のスクリーニングを行うことが可能である。

0043

以下の(1)から(3)において各スクリーニング法について述べる。

0044

(1)Siglec−15遺伝子を用いる方法
本発明のスクリーニング方法としては例えば、哺乳動物由来培養細胞を用いる方法、及び哺乳動物個体を用いる方法についてそれぞれ以下のようになる。

0045

(a)哺乳動物由来培養細胞を用いる方法
(i)以下の工程a)乃至c)を含む:
a)被験物質を添加した培地で培養した哺乳動物由来培養細胞より、全RNAを抽出する工程;
b)a)由来の全RNAと被験物質を添加しないで培養した哺乳動物培養細胞由来全RNAの間における、Siglec−15遺伝子の発現量の差を検出する工程;
c)b)に記載の遺伝子の発現量の差を解析し、被験物質の骨代謝異常に対する治療及び/又は予防効果を判定する工程。

0046

(ii)以下の工程a)乃至d)を含む:
a)被験物質を添加した培地で培養した哺乳動物由来培養細胞より、全RNAを抽出する工程;
b)被験物質を添加しない培地で培養した哺乳動物由来培養細胞より、全RNAを抽出する工程;
c)上記a)由来の全RNAとb)由来の全RNAにおける、Siglec−15遺伝子の発現量を測定する工程;
d)上記a)由来の全RNAとb)由来の全RNAとの間における上記c)によって測定された遺伝子の発現量の差を解析し、被験物質の骨代謝異常に対する治療及び/又は予防効果を判定する工程。

0047

(b)哺乳動物個体を用いる方法
(i)以下の工程a)乃至c)を含む:
a)被験物質を投与した哺乳動物個体より採取した検体より、全RNAを抽出する工程;b)a)由来の全RNAと被験物質を投与しなかった動物個体より採取した検体より得た
全RNAの間における、Siglec−15遺伝子の発現量の差を検出する工程;
c)上記b)に記載の遺伝子の発現量の差を解析し、被験物質の骨代謝異常に対する治療及び/又は予防効果を判定する工程。

0048

(ii)以下の工程a)乃至d)を含む:
a)被験物質を投与した哺乳動物個体より採取した検体より、全RNAを抽出する工程;b)被験物質を投与しなかった哺乳動物個体より採取した検体より、全RNAを抽出する工程;
c)上記工程a)由来の全RNAと上記工程b)由来の全RNAにおける、Siglec−15遺伝子の発現量を測定する工程;
d)c)に記載の遺伝子の発現量の差を解析し、被験物質の骨代謝異常に対する治療及び/又は予防効果を判定する工程。

0049

(2)Siglec−15を用いる方法
Siglec−15の発現量を測定することを利用したスクリーニング方法については哺乳動物培養細胞を用いた方法と動物個体を用いた方法についてそれぞれ以下の工程を含む。

0050

(a)哺乳動物由来培養細胞を用いる方法
(i)以下の工程a)及びb)を含む:
a)被験物質を添加した培地で培養した哺乳動物由来培養細胞における、Siglec−15の発現量を測定する工程;
b)a)で測定された蛋白質の発現量と、被験物質を添加しない培地で培養した哺乳動物由来培養細胞における該蛋白質の発現量の差を解析し、被験物質の骨代謝異常に対する治療効果及び/又は予防効果を判定する工程。

0051

(ii)以下の工程a)乃至c)を含む:
a)被験物質を添加した培地で培養した哺乳動物由来培養細胞における、Siglec−15の発現量を測定する工程;
b)被験物質を添加しない培地で培養した哺乳動物由来培養細胞における、上記a)に記載の蛋白質の発現量を測定する工程;
c)上記a)で測定された蛋白質の発現量と、上記b)で測定された該蛋白質の発現量の差を検出し、被験物質の骨代謝異常に対する治療効果及び/又は予防効果を判定する工程。

0052

(iii)以下の工程a)乃至c)を含む:
a)被験物質を添加した培地で培養した哺乳動物由来培養細胞から得た全蛋白質を固相化する工程;
b)上記固相化蛋白質における、Siglec−15の発現量を測定する工程;
c)上記b)で検出されたSiglec−15の発現量と、被験物質を添加しない培地で培養した哺乳動物由来培養細胞から得た全蛋白質における該蛋白質の発現量の差を解析し、被験物質の骨代謝異常に対する治療効果及び/又は予防効果を判定する工程。

0053

(iv)以下の工程a)乃至e)を含む:
a)被験物質を添加した培地で培養した哺乳動物由来培養細胞から得た全蛋白質を固相化する工程;
b)被験物質を添加しない培地で培養した哺乳動物由来培養細胞から得た全蛋白質を固相化する工程;
c)上記工程a)に記載の固相化蛋白質におけるSiglec−15の発現量を該蛋白質に特異的に結合する抗体又はリガンドを用いて測定する工程;
d)上記工程b)に記載の固相化蛋白質におけるSiglec−15の発現量を該蛋白質に特異的に結合する抗体又はリガンドを用いて測定する工程;
e)上記工程c)で測定された蛋白質の発現量と、上記工程d)で測定された蛋白質の発現量の差を解析し、被験物質の、骨代謝異常に対する治療効果及び/又は予防効果を判定する工程。

0054

(b)哺乳動物個体を用いる方法
(i)以下の工程a)及びb)を含む:
a)被験物質を投与された哺乳動物個体より採取した検体における、Siglec−15の発現量を測定する工程;
b)上記工程a)で測定されたSiglec−15の発現量と、被験物質を投与されなかった哺乳動物個体から採取した検体における該蛋白質の発現量の差を解析し、被験物質の骨代謝異常に対する治療効果及び/又は予防効果を判定する工程。

0055

(ii)以下の工程a)乃至c)を含む:
a)被験物質を投与された哺乳動物個体より採取した検体における、Siglec−15の発現量を該蛋白質に特異的に結合する抗体又はリガンドを用いて測定する工程;
b)被験物質を投与されなかった哺乳動物個体より採取した検体における、該蛋白質の発現量を測定する工程;
c)a)で測定されたSiglec−15の発現量と、b)で測定された該蛋白質の発現量の差を解析し、被験物質の骨代謝異常に対する治療効果及び/又は予防効果を判定する工程。

0056

(iii)以下の工程a)乃至c)を含む:
a)被験物質を投与された哺乳動物個体より採取した検体中の全蛋白質を固相化する工程;
b)上記固相化蛋白質における、Siglec−15の発現量を測定する工程;
c)上記b)で検出されたSiglec−15の発現量と、被験物質を投与されなかった哺乳動物個体より採取した検体中における該蛋白質の発現量の差を解析し、被験物質の骨代謝異常に対する治療及び/又は予防効果を判定する工程。

0057

(iv)以下の工程a)乃至e)を含む:
a)被験物質を投与された哺乳動物個体より採取した検体中の全蛋白質を固相化する工程;
b)被験物質を投与されなかった哺乳動物個体より採取した検体中の全蛋白質を固相化する工程;
c)上記工程a)に記載の固相化蛋白質における、Siglec−15の発現量を該蛋白質に特異的に結合する抗体又はリガンドを用いて検出する工程;
d)上記b)に記載の固相化蛋白質における、Siglec−15の発現量を該蛋白質に特異的に結合する抗体又はリガンドを用いて検出する工程;
e)上記c)で検出された蛋白質の発現量と、上記d)で検出された該蛋白質の発現量の差を解析し、被験物質の骨代謝異常に対する治療効果及び/又は予防効果を判定する工程。

0058

(3)内在性リガンドを用いたスクリーニング方法
被験物質の添加によって内在性リガンドのSiglec−15への結合が阻害されるか否かを観察することによっても破骨細胞の分化抑制物質のスクリーニングを行うことが可能である。Siglec−15に対する内在性リガンドとして働くシアル酸含有糖鎖としては、ヒト及びマウスSiglec−15に結合するNeu5Acα2−6GalNAc及びマウスSiglec−15に結合するNeu5Acα2−3Galβ1−4Glcを
挙げることができるが、Siglec−15への結合能を有する限りこれらの糖鎖に限定されない。これらの内在性リガンドは、Siglec−15との結合を試験する目的で、適当なタグ、ラジオアイソトープ又は蛍光物質によってラベルすることができる。例えば、Neu5Acα2−6GalNAcといったシアル酸含有オリゴ糖を結合させたビオチン化ポリアクリルアミドは、Siglec−15に結合するプローブとしてスクリーニングに利用することができる。内在性リガンドを結合させるSiglec−15としては、Siglec−15発現細胞又は該細胞から調製された膜画分を使用することができる。また、Siglec−15発現細胞からSiglec−15を単離、精製してスクリーニングに供することも可能である。なお、Siglec−15発現細胞としては、Siglec−15を発現している培養細胞株、適当な培養細胞にSiglec−15遺伝子を遺伝子工学的に一過的又は恒常的に発現させた細胞、又は生体内から得られるSiglec−15を発現する細胞のいずれを用いることもできる。このような内在性リガンドを用いたスクリーニング法は以下のような工程によって行うことができる。

0059

(i)以下の工程a)及びb)を含む:
a)Siglec−15の内在性リガンド及び被験物質をSiglec−15発現細胞に添加する工程;
b)被験物質の添加時と非添加時における内在性リガンドのSiglec−15発現細胞に対する結合量を比較することによって、被験物質の、骨代謝異常に対する治療及び/又は予防効果を判定する工程。

0060

(ii)以下の工程a)乃至c)を含む:
a)Siglec−15発現細胞の細胞膜画分を調製する工程;
b)Siglec−15の内在性リガンド及び被験物質を該細胞膜画分に添加する工程;c)被験物質の添加時と非添加時における内在性リガンドの該細胞膜画分に対する結合量を比較することによって、被験物質の、骨代謝異常に対する治療及び/又は予防効果を判定する工程。

0061

(iii)以下のa)乃至c)の工程を含む:
a)Siglec−15を調製する工程;
b)Siglec−15の内在性リガンド及び被験物質をa)のSiglec−15に添加する工程;
c)被験物質の添加時と非添加時における内在性リガンドのSiglec−15に対する結合量を比較することによって、被験物質の骨代謝異常に対する治療及び/又は予防効果を判定する工程。

0062

適当な細胞に遺伝子工学的にSiglec−15を発現させ、これを精製してスクリーニングに供する場合、スクリーニングの標的となるSiglec−15は以下の(a)乃至(i)に示すアミノ酸配列からなるポリペプチドから選択することができる;
(a)配列表の配列番号2に示されるアミノ酸配列;
(b)配列表の配列番号2に示されるアミノ酸配列の21番目から328番目のアミノ酸残基からなるアミノ酸配列;
(c)配列表の配列番号2に示されるアミノ酸配列の1番目から260番目のアミノ酸残基からなるアミノ酸配列;
(d)配列表の配列番号2に示されるアミノ酸配列の21番目から260番目のアミノ酸残基からなるアミノ酸配列;
(e)配列表の配列番号4に示されるアミノ酸配列;
(f)配列表の配列番号4に示されるアミノ酸配列の21番目から341番目のアミノ酸残基からなるアミノ酸配列;
(g)配列表の配列番号4に示されるアミノ酸配列の1番目から258番目のアミノ酸残
基からなるアミノ酸配列;
(h)配列表の配列番号4に示されるアミノ酸配列の21番目から258番目のアミノ酸残基からなるアミノ酸配列;
(i)(a)乃至(h)に記載のアミノ酸配列に1乃至数アミノ酸残基の置換、欠失又は付加を伴うアミノ酸配列。

0063

スクリーニングの標的となるSiglec−15は以下の(j)乃至(n)に示すヌクレオチド配列にコードされるアミノ酸配列からなるポリペプチドからも選択することが出来る;
(j)配列番号1に示されるヌクレオチド配列;
(k)配列番号3に示されるヌクレオチド配列;
(l)配列番号19に示されるヌクレオチド配列;
(m)配列番号43に示されるヌクレオチド配列;
(n)(j)乃至(m)に記載のヌクレオチド配列と相補的なヌクレオチド配列からなるポリヌクレオチドとストリンジェントな条件でハイブリダイズするポリヌクレオチドが保有するヌクレオチド配列。

0064

また、これらのポリペプチドに適切なタグを連結したポリペプチド、又は他の可溶性蛋白質と融合させたポリペプチドもスクリーニングの標的として使用することが可能である。なお、配列表の配列番号2に記載アミノ酸配列の1番目から20番目のアミノ酸残基からなるポリペプチドはヒトSiglec−15のシグナルペプチドに相当し、21番目から260番目のアミノ酸残基からなるポリペプチドはヒトSiglec−15の成熟蛋白質の細胞外領域に相当する。また、配列表の配列番号4に記載のアミノ酸配列の1番目から20番目のアミノ酸残基からなるポリペプチドはマウスSiglec−15のシグナルペプチドに相当し、21番目から258番目のアミノ酸残基からなるポリペプチドはマウスSiglec−15の成熟蛋白質の細胞外領域に相当する。さらに、配列番号43に示されるヌクレオチド配列は配列番号1に示されるヌクレオチド配列にコードされるヒトSiglec−15の細胞外領域をコードしており、配列番号19に示されるヌクレオチド配列は配列番号3に示されるヌクレオチド配列にコードされるマウスSiglec−15の細胞外領域をコードしている。

0065

(1)乃至(3)のスクリーニング法で選抜された破骨細胞の分化抑制物質の候補物質に対して、実施例17、19及び20に示される破骨細胞の酒石酸耐性酸性フォスファターゼ(Tartrate−Resistant Acid Phosphatase:TRAP)活性の抑制を指標として二次評価を行うことができる。また、実施例19、21、22及び35に示されるように、TRAP陽性多核破骨細胞の形成の抑制、すなわち破骨細胞の細胞融合の抑制を指標としても、二次評価を行うことができる。

0066

(4)その他の方法
Siglec−15を過剰発現させた哺乳動物個体に被験物質を投与した場合と投与しなかった場合について、経時的に骨代謝異常の発生率、骨代謝異常の程度、及び/又は生存率等を測定する。被験物質を投与した哺乳動物で骨代謝異常の発生率が有意に低下している、骨代謝異常の程度が有意に小さい、及び/又は、生存率が約10%以上、好ましくは約30%以上、より好ましくは、約50%以上上昇した場合に、被験物質は骨代謝異常に対する治療及び/又は予防効果を有する化合物として選択することができる。

0067

4.抗Siglec−15抗体の製造
本発明のSiglec−15に対する抗体は、常法を用いて、Siglec−15又はSiglec−15のアミノ酸配列から選択される任意のポリペプチドを動物に免疫し、生体内に産生される抗体を採取、精製することによって得ることができる。抗原となるS
iglec−15の生物種はヒトに限定されず、マウス、ラット等のヒト以外の動物に由来するSiglec−15を動物に免疫することもできる。この場合には、取得された異種Siglec−15に結合する抗体とヒトSiglec−15との交差性を試験することによって、ヒトの疾患に適用可能な抗体を選別できる。

0068

また、公知の方法(例えば、Kohler and Milstein,Nature
(1975)256,p.495−497、Kennet,R.ed.,Monoclonal Antibody,p.365−367,Prenum Press,N.Y.(1980))に従って、Siglec−15に対する抗体を産生する抗体産生細胞ミエローマ細胞とを融合させることによりハイブリドーマを樹立し、モノクローナル抗体を得ることもできる。

0069

なお、抗原となるSiglec−15はSiglec−15遺伝子を遺伝子操作により宿主細胞に産生させることによって得ることができる。

0070

具体的には、Siglec−15遺伝子を発現可能なベクターを作製し、これを宿主細胞に導入して該遺伝子を発現させ、発現したSiglec−15を精製すればよい。以下、具体的にSiglec−15に対する抗体の取得方法を説明する。
(1)抗原の調製
抗Siglec−15抗体を作製するための抗原としては、Siglec−15又はその少なくとも6個の連続した部分アミノ酸配列からなるポリペプチド、あるいはこれらに任意のアミノ酸配列や担体が付加された誘導体を挙げることができる。また、「3.破骨細胞への分化抑制物質のスクリーニング方法」において、スクリーニングの標的として例示したSiglec−15も抗Siglec−15抗体を作製するための抗原として挙げる事ができる。

0071

Siglec−15は、ヒトの腫瘍組織あるいは腫瘍細胞から直接精製して使用することができ、また、Siglec−15をin vitroにて合成する、あるいは遺伝子操作により宿主細胞に産生させることによって得ることができる。

0072

遺伝子操作では、具体的には、Siglec−15のcDNAを発現可能なベクターに組み込んだ後、転写と翻訳に必要な酵素、基質及びエネルギー物質を含む溶液中で合成する、あるいは他の原核生物、又は真核生物の宿主細胞を形質転換させることによってSiglec−15を発現させることにより、抗原を得ることが出来る。

0073

また、膜蛋白質であるSiglec−15の細胞外領域と抗体の定常領域とを連結した融合蛋白質を適切な宿主ベクター系において発現させることによって、分泌蛋白質として抗原を得ることも可能である。

0074

Siglec−15のcDNAは例えば、Siglec−15のcDNAを発現しているcDNAライブラリーを鋳型として、Siglec−15 cDNAを特異的に増幅するプライマーを用いてポリメラーゼ連鎖反応(以下「PCR」という)(Saiki,R. K.,et al.Science(1988)239,p.487−489 参照)を行なう、いわゆるPCR法により取得することができる。

0075

ポリペプチドのインビトロ(in vitro)合成としては、例えばロシュダイアグスティックス社製のラピッドトランスレーションステムRTS)を挙げることができるが、これに限定されない。

0076

原核細胞の宿主としては、例えば、大腸菌(Escherichia coli)や枯
草菌(Bacillus subtilis)などを挙げることができる。目的の遺伝子をこれらの宿主細胞内で形質転換させるには、宿主と適合し得る種由来のレプリコンすなわち複製起点と、調節配列を含んでいるプラスミドベクターで宿主細胞を形質転換させる。また、ベクターとしては、形質転換細胞表現形質表現型)の選択性を付与することができる配列を有するものが好ましい。

0077

真核細胞の宿主細胞には、脊椎動物昆虫酵母などの細胞が含まれ、脊椎動物細胞としては、例えば、サルの細胞であるCOS細胞(Gluzman,Y.Cell(1981)23,p.175−182、ATCCCRL−1650)、マウス線維芽細胞NIH3T3(ATCC No.CRL−1658)やチャニーズ・ハムスター卵巣細胞(CHO細胞、ATCC CCL−61)のジヒドロ葉酸還元酵素欠損株(Urlaub,G. and Chasin,L.A.Proc.Natl.Acad.Sci.USA(1980)77,p.4126−4220)等がよく用いられているが、これらに限定されない。

0078

上記のようにして得られる形質転換体は、常法に従い培養することができ、該培養により細胞内、又は細胞外に目的のポリペプチドが産生される。

0079

該培養に用いられる培地としては、採用した宿主細胞に応じて慣用される各種のものを適宜選択でき、大腸菌であれば、例えば、LB培地に必要に応じて、アンピシリン等の抗生物質IPMGを添加して用いることができる。

0080

上記培養により、形質転換体の細胞内又は細胞外に産生される組換え蛋白質は、該蛋白質の物理的性質や化学的性質などを利用した各種の公知の分離操作法により分離・精製することができる。

0081

該方法としては、具体的には例えば、通常の蛋白質沈殿剤による処理、限外濾過分子ふるいクロマトグラフィーゲル濾過)、吸着クロマトグラフィーイオン交換クロマトグラフィーアフィニティークロマトグラフィーなどの各種液体クロマトグラフィー透析法、これらの組合せなどを例示できる。

0082

また、発現させる組換え蛋白質に6残基からなるヒスチジンを繋げることにより、ニッケルアフィニティーカラムで効率的に精製することができる。あるいは、発現させる組換え蛋白質にIgGのFc領域を繋げることにより、プロテインAカラムで効率的に精製することができる。
上記方法を組合せることにより容易に高収率高純度で目的とするポリペプチドを大量に製造できる。
(2) 抗Siglec−15モノクローナル抗体の製造
Siglec−15と特異的に結合する抗体の例として、Siglec−15と特異的に結合するモノクローナル抗体を挙げることができるが、その取得方法は、以下に記載する通りである。

0083

モノクローナル抗体の製造にあたっては、一般に下記のような作業工程が必要である。すなわち、
(a)抗原として使用する生体高分子の精製、
(b)抗原を動物に注射することにより免疫した後、血液を採取しその抗体価検定して脾臓摘出の時期を決定してから、抗体産生細胞を調製する工程、
(c)骨髄腫細胞(以下「ミエローマ」という)の調製、
(d)抗体産生細胞とミエローマとの細胞融合、
(e)目的とする抗体を産生するハイブリドーマ群の選別、
(f)単一細胞クローンへの分割(クローニング)、
(g)場合によっては、モノクローナル抗体を大量に製造するためのハイブリドーマの培養、又はハイブリドーマを移植した動物の飼育、
(h)このようにして製造されたモノクローナル抗体の生理活性、及びその結合特異性の検討、あるいは標識試薬としての特性の検定、等である。

0084

以下、モノクローナル抗体の作製法を上記工程に沿って詳述するが、該抗体の作製法はこれに制限されず、例えば脾細胞以外の抗体産生細胞及びミエローマを使用することもできる。

0085

(a)抗原の精製
抗原としては、前記したような方法で調製したSiglec−15又はその一部を使用することができる。

0086

また、Siglec−15発現組換え体細胞より調製した膜画分、又はSiglec−15発現組換え体細胞自身、さらに、当業者に周知の方法を用いて、化学合成した本発明の蛋白質の部分ペプチドを抗原として使用することもできる。

0087

(b)抗体産生細胞の調製
工程(a)で得られた抗原と、フロインドの完全又は不完全アジュバント、又はカリミョウバンのような助剤とを混合し、免疫原として実験動物に免疫する。実験動物は公知のハイブリドーマ作製法に用いられる動物を支障なく使用することができる。具体的には、たとえばマウス、ラット、ヤギ、ヒツジ、ウシ、ウマ等を使用することができる。ただし、摘出した抗体産生細胞と融合させるミエローマ細胞の入手容易性等の観点から、マウス又はラットを被免疫動物とするのが好ましい。

0088

また、実際に使用するマウス及びラットの系統は特に制限はなく、マウスの場合には、たとえば各系統 A、AKR、BALB/c、BDP、BA、CE、C3H、57BL、C57BL、C57L、DBA、FLHTH、HT1、LP、NZB、NZW、RF、R III、SJL、SWR、WB、129等が、またラットの場合には、たとえば、Wistar、Low、Lewis、Spraque、Daweley、ACI、BN、Fischer等を用いることができる。

0089

これらのマウス及びラットは例えば日本クレア、日本チャ−ルスリバー、等実験動物飼育販売業者より入手することができる。

0090

このうち、後述のミエローマ細胞との融合適合性案すれば、マウスでは BALB/c系統が、ラットではWistar及びLow 系統が被免疫動物として特に好ましい。

0091

また、抗原のヒトとマウスでの相同性を考慮し、自己抗体を除去する生体機構を低下させたマウス、すなわち自己免疫疾患マウスを用いることも好ましい。

0092

なお、これらマウス又はラットの免疫時の週齢は、好ましくは5〜12週齢、さらに好ましくは6〜8週齢である。

0093

Siglec−15又はこの組換え体によって動物を免疫するには、例えば、Weir, D.M.,Handbook of Experimental Immunology Vol.I.II.III.,Blackwell Scientific Publications,Oxford(1987)、Kabat,E.A.and Ma
yer,M.M.,Experimental Immunochemistry,Charles C Thomas Publisher Spigfield,Illinois(1964) 等に詳しく記載されている公知の方法を用いることができる。

0094

これらの免疫法のうち、本発明において好適な方法を具体的に示せば、たとえば以下のとおりである。

0095

すなわち、まず、抗原である膜蛋白質画分、もしくは抗原を発現させた細胞を動物の皮内又は腹腔内に投与する。

0096

ただし、免疫効率を高めるためには両者の併用が好ましく、前半は皮内投与を行い、後半又は最終回のみ腹腔内投与を行うと、特に免疫効率を高めることができる。

0097

抗原の投与スケジュールは、被免疫動物の種類、個体差等により異なるが、一般には、抗原投与回数3〜6回、投与間隔2〜6週間が好ましく、投与回数3〜4回、投与間隔2〜4週間がさらに好ましい。

0098

また、抗原の投与量は、動物の種類、個体差等により異なるが、一般には0.05〜5mg、好ましくは0.1〜0.5mg程度とする。

0099

追加免疫は、以上の通りの抗原投与の1〜6週間後、好ましくは2〜4週間後、さらに好ましくは2〜3週間後に行う。

0100

なお、追加免疫を行う際の抗原投与量は、動物の種類、大きさ等により異なるが、一般に、例えばマウスの場合には0.05〜5mg、好ましくは0.1〜0.5mg、さらに好ましくは0.1〜0.2mg程度とする。

0101

上記追加免疫から1〜10日後、好ましくは2〜5日後、さらに好ましくは2〜3日後に被免疫動物から抗体産生細胞を含む脾臓細胞又はリンパ球無菌的に取り出す。

0102

なお、その際に抗体価を測定し、抗体価が十分高くなった動物を抗体産生細胞の供給源として用いれば、以後の操作の効率を高めることができる。

0103

ここで用いられる抗体価の測定法としては、例えば、RIA法又はELISA法を挙げることができるがこれらの方法に制限されない。

0104

本発明における抗体価の測定は、例えばELISA法によれば、以下に記載するような手順により行うことができる。

0105

まず、精製又は部分精製した抗原をELISA96穴プレート等の固相表面に吸着させ、さらに抗原が吸着していない固相表面を抗原と無関係な蛋白質、例えばウシ血清アルブミン(以下「BSA」という)により覆い、該表面を洗浄後、第一抗体として段階希釈した試料(例えばマウス血清)に接触させ、上記抗原に試料中の抗体を結合させる。

0106

さらに第二抗体として酵素標識されたマウス抗体に対する抗体を加えてマウス抗体に結合させ、洗浄後該酵素の基質を加え、基質分解に基づく発色による吸光度の変化等を測定することにより、抗体価を算出する。

0107

これらの脾臓細胞又はリンパ球からの抗体産生細胞の分離は、公知の方法(例えば、Kohler et al.,Nature(1975)256,p.495,;Kohl
er et al.,Eur.J.Immnol.(1977)6,p.511,;Milstein et al.,Nature(1977),266,p.550,;Walsh,Nature,(1977)266,p.495,)に従って行うことができる。

0108

例えば、脾臓細胞の場合には、脾臓を細切して細胞をステンレスメッシュ濾過した後、イーグル最小必須培地MEM)に浮遊させて抗体産生細胞を分離する一般的方法を採用することができる。

0109

(c)骨髄腫細胞(以下、「ミエローマ」という)の調製
細胞融合に用いるミエローマ細胞には特段の制限はなく、公知の細胞株から適宜選択して用いることができる。ただし、融合細胞からハイブリドーマを選択する際の利便性を考慮して、その選択手続確立しているHGPRT(Hipoxanthine−guanine phosphoribosyl transferase)欠損株を用いるのが好ましい。

0110

すなわち、マウス由来のX63−Ag8(X63)、NS1−ANS/1(NS1)、P3X63−Ag8.Ul(P3Ul)、X63−Ag8.653(X63.653)、SP2/0−Ag14(SP2/0)、MPC11−45.6TG1.7(45.6TG)、FO、S149/5XXO、BU.1等、ラット由来の210.RSY3.Ag.1.2.3(Y3)等、ヒト由来のU266AR(SKO−007)、GM1500・GTG−A12(GM1500)、UC729−6、LICR−LOW−HMy2(HMy2)、8226AR/NIP4−1(NP41)等である。

0111

これらのHGPRT欠損株は例えば、American Type Culture Collection (ATCC)等から入手することができる。

0112

これらの細胞株は、適当な培地、例えば8−アザグアニン培地[RPMI−1640培地にグルタミン2−メルカプトエタノールゲンタマイシン、及びウシ胎児血清(以下「FCS」という)を加えた培地に8−アザグアニンを加えた培地]、イスコフ改変ダルベッコ培地(Iscove’s Modified Dulbecco’s Medium;以下「IMDM」という)、又はダルベッコ改変イーグル培地(Dulbecco’s Modified Eagle Medium;以下「DMEM」という)で継代培養するが、細胞融合の3乃至4日前に正常培地[例えば、10% FCSを含むASF104培地(味の素(株)社製)]で継代培養し、融合当日に2×107以上の細胞数を確保しておく。

0113

(d)細胞融合
抗体産生細胞とミエローマ細胞との融合は、公知の方法(Weir,D.M.,Handbookof Experimental Immunology Vol.I.II.III.,Blackwell Scientific Publications,Oxford(1987)、Kabat,E.A.and Mayer,M.M.,Experimental Immunochemistry,Charles C Thomas Publisher Spigfield,Illinois(1964)等)に従い、細胞の生存率を極度に低下させない程度の条件下で適宜実施することができる。

0114

そのような方法は、例えば、ポリエチレングリコール等の高濃度ポリマー溶液中で抗体産生細胞とミエローマ細胞とを混合する化学的方法電気的刺激を利用する物理的方法等を用いることができる。

0115

このうち、上記化学的方法の具体例を示せば以下のとおりである。
すなわち、高濃度ポリマー溶液としてポリエチレングリコールを用いる場合には、分子量1500〜6000、好ましくは2000〜4000のポリエチレングリコール溶液中で、30〜40℃、好ましくは35〜38℃の温度で抗体産生細胞とミエローマ細胞とを1〜10分間、好ましくは5〜8分間混合する。

0116

(e)ハイブリドーマ群の選択
上記細胞融合により得られるハイブリドーマの選択方法は特に制限はないが、通常HAT(ヒポキサンチンアミノブテリンチミジン選択法(Kohler et al., Nature(1975)256,p.495;Milstein et al.,Nature(1977)266,p.550)が用いられる。

0117

この方法は、アミノブテリンで生存し得ないHGPRT欠損株のミエローマ細胞を用いてハイブリドーマを得る場合に有効である。

0118

すなわち、未融合細胞及びハイブリドーマをHAT培地で培養することにより、アミノブテリンに対する耐性を持ち合わせたハイブリドーマのみを選択的に残存させ、かつ増殖させることができる。

0119

(f)単一細胞クローンへの分割(クローニング)
ハイブリドーマのクローニング法としては、例えばメチルセルロース法、軟アガロース法、限界希釈法等の公知の方法を用いることができる(例えばBarbara, B.M. and Stanley, M.S.:Selected Methodsin Cellular Immunology,W.H. Freeman and Company,San Francisco(1980)参照)。これらの方法のうち、特に限界希釈法が好適である。

0120

この方法では、マイクロプレートにラット胎児由来線維芽細胞株、あるいは正常マウス脾臓細胞胸腺細胞腹水細胞などのフィーダー(feeder)を接種しておく。

0121

一方、あらかじめハイブリドーマを0.2〜0.5個/0.2mlになるように培地中で希釈し、この希釈したハイブリドーマの浮遊液を各ウェルに0.1mlずつ入れ、一定期間毎(例えば3日毎)に約1/3の培地を新しいものに交換しながら2週間程度培養を続けることによってハイブリドーマのクローンを増殖させることができる。

0122

抗体価の認められたウェルについて、例えば限界希釈法によるクローニングを2〜4回繰返し、安定して抗体価の認められたものを抗Siglec−15モノクローナル抗体産生ハイブリドーマ株として選択する。

0123

このようにしてクローニングされたハイブリドーマ株の例としては、ハイブリドーマ#32A1及びハイブリドーマ#41B1を挙げることができる。ハイブリドーマ#32A1及びハイブリドーマ#41B1は、日本国独立行政法人産業技術総合研究所特許生物寄託センター所在地郵便番号305−8566 日本国県つくば市東1丁目1番地1 中央第6)に2008年8月28日付け寄託され、ハイブリドーマ#32A1はanti−Siglec−15 Hybridoma #32A1の名称で寄託番号FERM BP−10999が付与され、ハイブリドーマ#41B1はanti−Siglec−15 Hybridoma #41B1の名称で寄託番号FERM BP−11000が付与されている。なお、本明細書中においては、ハイブリドーマ#32A1が産生する抗体を、「#32A1抗体」又は単に「#32A1」と記載し、ハイブリドーマ#41B1が産生する抗体を、「#41B1抗体」又は単に「#41B1」と記載する。また、
本明細書の実施例において#32A1抗体及び#41B1抗体以外に取得された抗体についても、同様な方法で抗体名を記載する。

0124

(g)ハイブリドーマの培養によるモノクローナル抗体の調製
このようにして選択されたハイブリドーマは、これを培養することにより、モノクローナル抗体を効率よく得ることができるが、培養に先立ち、目的とするモノクローナル抗体を産生するハイブリドーマをスクリーニングすることが望ましい。

0125

このスクリーニングにはそれ自体既知の方法が採用できる。

0126

本発明における抗体価の測定は、例えば上記(b)の項目で説明したELISA法により行うことができる。

0127

以上の通りの方法によって得たハイブリドーマは、液体窒素中又は−80℃以下の冷凍庫中に凍結状態で保存することができる。

0128

クローニングを完了したハイブリドーマは、培地をHT培地から正常培地に換えて培養される。

0129

大量培養は、大型培養瓶を用いた回転培養、あるいはスピナー培養で行われる。
この大量培養における上清から、ゲル濾過等、当業者に周知の方法を用いて精製することにより、本発明の蛋白質に特異的に結合するモノクローナル抗体を得ることができる。

0130

また、同系統のマウス(例えば、上記のBALB/c)、あるいはNu/Nuマウスの腹腔内にハイブリドーマを注射し、該ハイブリド−マを増殖させることにより、本発明のモノクローナル抗体を大量に含む腹水を得ることができる。

0131

腹腔内に投与する場合には、事前(3〜7日前)に2,6,10,14−テトラメチルペンタデカン(2,6,10,14−tetramethyl pentadecane)(プリスタン)等の鉱物油を投与すると、より多量の腹水が得られる。

0132

たとえば,ハイブリドーマと同系統のマウスの腹腔内に予め免疫抑制剤を注射し、T細胞を不活性化した後、20日後に106〜107個のハイブリドーマ・クローン細胞を、血清を含まない培地中に浮遊(0.5ml)させて腹腔内に投与し、通常腹部膨満し、腹水がたまったところでマウスより腹水を採取する。

0133

この方法により、培養液中に比べて約100倍以上の濃度のモノクローナル抗体が得られる。

0134

上記方法により得たモノクローナル抗体は、例えばWeir,D.M.:Handbook of Experimental Immunology,Vol.I,II,III,Blackwell Scientific Publications,Oxford(1978)に記載されている方法で精製することができる。

0135

すなわち、硫安塩析法、ゲル濾過法イオン交換クロマトグラフィー法、アフィニティークロマトグラフィー法等である。

0136

精製の簡便な方法としては、市販のモノクローナル抗体精製キット(例えば、MAbTrapGIIキット;ファルマシア社製)等を利用することもできる。

0137

かくして得られるモノクローナル抗体は、Siglec−15に対して高い抗原特異性を有する。

0138

(h)モノクローナル抗体の検定
かくして得られたモノクローナル抗体のアイソタイプ及びサブクラスの決定は以下のように行うことができる。

0139

まず、同定法としてはオクテルロニー(Ouchterlony)法、ELISA法、又はRIA法を挙げることができる。

0140

オクテルロニー法は簡便ではあるが、モノクローナル抗体の濃度が低い場合には濃縮操作が必要である。

0141

一方、ELISA法又はRIA法を用いた場合は、培養上清をそのまま抗原吸着固相と反応させ、さらに第二次抗体として各種イムノグロブリンアイソタイプ、サブクラスに対応する抗体を用いることにより、モノクローナル抗体のアイソタイプ、サブクラスを同定することが可能である。

0142

また、さらに簡便な方法として、市販の同定用のキット(例えば、マウスタイパーキット;バイオラッド社製)等を利用することもできる。

0143

さらに、蛋白質の定量は、フォーリンロウリー法、及び280nmにおける吸光度[1.4(OD280)=イムノグロブリン1mg/ml]より算出する方法により行うことができる。

0144

(3)その他の抗体
本発明の抗体には、上記Siglec−15に対するモノクローナル抗体に加え、ヒトに対する異種抗原性を低下させること等を目的として人為的に改変した遺伝子組換え型抗体、例えば、キメラ(Chimeric)抗体、ヒト化(Humanized)抗体、ヒト抗体なども含まれる。これらの抗体は、既知の方法を用いて製造することができる。

0145

キメラ抗体としては、抗体の可変領域と定常領域が互いに異種である抗体、例えばマウス由来抗体の可変領域をヒト由来の定常領域に接合したキメラ抗体を挙げることができる(Proc.Natl.Acad.Sci.U.S.A.,81,6851−6855,
(1984)参照)。

0146

ヒト化抗体としては、相補性決定領域(CDR;complementarity determining region)のみをヒト由来の抗体に組み込んだ抗体(Nature(1986)321,p.522−525参照)、CDR移植法によって、CDRの配列に加え一部のフレームワークのアミノ酸残基もヒト抗体に移植した抗体(国際公開パンフレットWO90/07861)を挙げることができる。

0147

さらに、ヒト抗体を挙げることができる。抗Siglec−15ヒト抗体とは、ヒト染色体由来の抗体の遺伝子配列のみを有するヒト抗体を意味する。抗Siglec−15ヒト抗体は、ヒト抗体のH鎖L鎖の遺伝子を含むヒト染色体断片を有するヒト抗体産生マウスを用いた方法(Tomizuka,K.et al.,Nature Genetics(1997)16,p.133−143,; Kuroiwa,Y.et.al.,Nuc.AcidsRes.(1998)26,p.3447−3448;Yoshida, H.et.al.,Animal Cell Technology:Basic and Applied Aspects vol.10,p.69−73(Kit
agawa, Y.,Matuda,T.and Iijima,S.eds.),Kluwer Academic Publishers,1999.;Tomizuka,K.et.al.,Proc.Natl.Acad.Sci.USA(2000)97,p.722−727等を参照。)によって取得することができる。

0148

このようなトランスジェニック動物は、具体的には、非ヒト哺乳動物の内在性免疫グロブリン重鎖及び軽鎖の遺伝子座が破壊され、代わりに酵母人工染色体(Yeast artificial chromosome,YAC)ベクターなどを介してヒト免疫グロブリン重鎖及び軽鎖の遺伝子座が導入された遺伝子組み換え動物を、ノックアウト動物及びトランスジェニック動物の作製、及びこれらの動物同士を掛け合わせることにより作り出すことができる。

0149

また、遺伝子組換え技術により、そのようなヒト抗体の重鎖及び軽鎖の各々をコードするcDNA、好ましくは該cDNAを含むベクターにより真核細胞を形質転換し、遺伝子組換えヒトモノクローナル抗体を産生する形質転換細胞を培養することにより、この抗体を培養上清中から得ることもできる。

0150

ここで、宿主としては例えば真核細胞、好ましくはCHO細胞、リンパ球やミエローマ等の哺乳動物細胞を用いることができる。

0151

また、ヒト抗体ライブラリーより選別したファージディスプレイ由来のヒト抗体を取得する方法(Wormstone,I.M.et.al,Investigative Ophthalmology & Visual Science.(2002)43(7),p.2301−2308;Carmen,S.et.al.,Briefings in Functional Genomics and Proteomics(2002),1(2),p.189−203;Siriwardena,D.et.al.,Opthalmology(2002)109(3),p.427−431等参照。)も知られている。

0152

例えば、ヒト抗体の可変領域を一本鎖抗体(scFv)としてファージ表面に発現させて、抗原に結合するファージを選択するファージディスプレイ法(Nature Biotechnology(2005),23,(9),p.1105−1116)を用いることができる。

0153

抗原に結合することで選択されたファージの遺伝子を解析することによって、抗原に結合するヒト抗体の可変領域をコードするDNA配列を決定することができる。

0154

抗原に結合するscFvのDNA配列が明らかになれば、当該配列を有する発現ベクターを作製し、適当な宿主に導入して発現させることによりヒト抗体を取得することができる(WO92/01047,WO92/20791,WO93/06213,WO93/11236,WO93/19172,WO95/01438,WO95/15388、Annu.Rev.Immunol(1994)12,p.433−455、Nature
Biotechnology(2005)23(9),p.1105−1116)。

0155

抗体遺伝子を一旦単離した後、適当な宿主に導入して抗体を作製する場合には、適当な宿主と発現ベクターの組み合わせを使用することができる。

0156

真核細胞を宿主として使用する場合、動物細胞植物細胞真核微生物を用いることができる。

0157

動物細胞としては、(1)哺乳類細胞、例えば、サルの細胞であるCOS細胞(Gluzman,Y.Cell(1981)23,p.175−182、ATCCCRL−1650)、マウス線維芽細胞NIH3T3(ATCC No.CRL−1658)やチャイニーズ・ハムスター卵巣細胞(CHO細胞、ATCC CCL−61)のジヒドロ葉酸還元酵素欠損株(Urlaub,G.and Chasin,L.A.Proc.Natl.Acad.Sci.U.S.A.(1980)77,p.4126−4220)を挙げることができる。

0158

原核細胞を使用する場合は、例えば、大腸菌、枯草菌を挙げることができる。

0159

これらの細胞に、目的とする抗体遺伝子を形質転換により導入し、形質転換された細胞をin vitroで培養することにより抗体が得られる。

0160

本発明の抗体のアイソタイプとしての制限はなく、例えばIgG(IgG1,IgG2,IgG3,IgG4)、IgMIgA(IgA1,IgA2)、IgDあるいはIgE等を挙げることができるが、好ましくはIgG又はIgMを挙げることができる。

0161

また本発明の抗体は、抗体の抗原結合部を有する抗体の機能性断片又はその修飾物であってもよい。抗体をパパインペプシン等の蛋白質分解酵素で処理するか、あるいは抗体遺伝子を遺伝子工学的手法によって改変し適当な培養細胞において発現させることによって、該抗体の断片を得ることができる。このような抗体断片のうちで、抗体全長分子の持つ機能の全て又は一部を保持している断片を抗体の機能性断片と呼ぶことができる。抗体の機能としては、一般的には抗原結合活性、抗原の活性を中和する活性、抗原の活性を増強する活性、抗体依存性細胞障害活性補体依存性細胞傷害活性及び補体依存性細胞性細胞傷害活性を挙げることができる。本発明における抗体の機能性断片が保持する機能は、好ましくは破骨細胞の形成を抑制する活性であり、より好ましくは破骨細胞の細胞融合の過程を抑制する活性である。

0162

例えば、抗体の断片としては、Fab、F(ab’)2、Fv、又は重鎖及び軽鎖のFvを適当なリンカーで連結させたシングルチェインFv(scFv)、diabody(diabodies)、線状抗体、及び抗体断片より形成された多特異性抗体などを挙げることができる。また、F(ab’)2を還元条件下で処理した抗体の可変領域の一価の断片であるFab’も抗体の断片に含まれる。

0163

さらに、本発明の抗体は少なくとも2種類の異なる抗原に対して特異性を有する多特異性抗体であってもよい。

0164

通常このような分子は2個の抗原を結合するものであるが(即ち、二重特異性抗体(bispecific antibody))、本発明における「多特異性抗体」は、それ以上(例えば、3種類)の抗原に対して特異性を有する抗体を包含するものである。

0165

本発明の抗体は、多特異性抗体は全長からなる抗体、又はそのような抗体の断片(例えば、F(ab’)2二特異性抗体)でもよい。二重特異性抗体は2種類の抗体の重鎖と軽鎖(HL対)を結合させて作製することもできるし、異なるモノクローナル抗体を産生するハイブリドーマを融合させて、二重特異性抗体産生融合細胞を作製することによっても、作製することができる(Millstein et al.,Nature(1983)305,p.537−539)。

0166

本発明の抗体は一本鎖抗体(scFvとも記載する)でもよい。一本鎖抗体は、抗体の重鎖V領域と軽鎖V領域とをポリペプチドのリンカーで連結することにより得られる(P
luckthun,The Pharmacology of Monoclonal Antibodies,113(Rosenburg及びMoore編、Springer Verlag,New York,p.269−315(1994)、Nature
Biotechnology(2005),23,p.1126−1136)。また、2つのscFvをポリペプチドリンカーで結合させて作製されるBiscFv断片を二重特異性抗体として使用することもできる。

0167

一本鎖抗体を作成する方法は当技術分野において周知である(例えば、米国特許第4,946,778号、米国特許第5,260,203号、米国特許第5,091,513号、米国特許第5,455,030号等を参照)。このscFvにおいて、重鎖V領域と軽鎖V領域は、コンジュゲートを作らないようなリンカー、好ましくはポリペプチドリンカーを介して連結される(Huston,J.S.et al.,Proc.Natl.Acad.Sci.U.S.A.(1988),85,p.5879−5883)。scFvにおける重鎖V領域及び軽鎖V領域は、同一の抗体に由来してもよく、別々の抗体に由来してもよい。
V領域を連結するポリペプチドリンカーとしては、例えば12〜19残基からなる任意の一本鎖ペプチドが用いられる。

0168

scFvをコードするDNAは、前記抗体の重鎖又は重鎖V領域をコードするDNA、及び軽鎖又は軽鎖V領域をコードするDNAのうち、それらの配列のうちの全部又は所望のアミノ酸配列をコードするDNA部分を鋳型とし、その両端を規定するプライマー対を用いてPCR法により増幅し、次いで、さらにポリペプチドリンカー部分をコードするDNA、及びその両端が各々重鎖、軽鎖と連結されるように規定するプライマー対を組み合わせて増幅することにより得られる。

0169

また、一旦scFvをコードするDNAが作製されると、それらを含有する発現ベクター、及び該発現ベクターにより形質転換された宿主を常法に従って得ることができ、また、その宿主を用いることにより、常法に従ってscFvを得ることができる。

0170

これらの抗体断片は、前記と同様にして遺伝子を取得し発現させ、宿主により産生させることができる。

0171

本発明の抗体は、多量化して抗原に対する親和性を高めたものであってもよい。多量化する抗体としては、1種類の抗体であっても、同一の抗原の複数のエピトープを認識する複数の抗体であってもよい。抗体を多量化する方法としては、IgGCH3ドメインと2つのscFvとの結合、ストレプトアビシンとの結合、へリックスターン−へリックスモチーフの導入等を挙げることができる。

0172

本発明の抗体は、アミノ酸配列が異なる複数種類の抗Siglec−15抗体の混合物である、ポリクローナル抗体であってもよい。ポリクローナル抗体の一例としては、CDRが異なる複数種類の抗体の混合物を挙げることができる。そのようなポリクローナル抗体としては、異なる抗体を産生する細胞の混合物を培養し、該培養物から精製された抗体を用いることが出来る(WO2004/061104号参照)。

0173

抗体の修飾物として、ポリエチレングリコール(PEG)等の各種分子と結合した抗体を使用することもできる。

0174

本発明の抗体は、更にこれらの抗体と他の薬剤がコンジュゲートを形成しているもの(Immunoconjugate)でもよい。このような抗体の例としては、該抗体が放射性物質薬理作用を有する化合物と結合している物を挙げることができる(Natur
e Biotechnology(2005)23,p.1137−1146)。

0175

得られた抗体は、均一にまで精製することができる。抗体の分離、精製は通常の蛋白質で使用されている分離、精製方法を使用すればよい。

0176

例えばクロマトグラフィーカラム、フィルター、限外濾過、塩析透析調製用ポリアクリルアミドゲル電気泳動等電点電気泳動等を適宜選択、組み合わせれば、抗体を分離、精製することができる(Strategies for Protein Purification and Charcterization:A Laboratoy Course Manual,Daniel R.Marshak et al.eds.,Cold Spring Harbor Laboratory Press(1996);Antibodies:A Laboratory Manual.Ed Harlow and David Lane,Cold Spring Harbor Laboratory(1988))が、これらに限定されるものではない。

0177

クロマトグラフィーとしては、アフィニティークロマトグラフィー、イオン交換クロマトグラフィー、疎水性クロマトグラフィーゲル濾過クロマトグラフィー逆相クロマトグラフィー、吸着クロマトグラフィー等を挙げることができる。

0178

これらのクロマトグラフィーは、HPLCFPLC等の液体クロマトグラフィーを用いて行うことができる。

0179

アフィニティークロマトグラフィーに用いるカラムとしては、プロテインAカラム、プロテインGカラムを挙げることができる。

0180

例えばプロテインAカラムを用いたカラムとして、Hyper D,POROS,Sepharose F.F.(Pharmacia)等を挙げることができる。
また抗原を固定化した担体を用いて、抗原への結合性を利用して抗体を精製することも可能である。

0181

5.抗Siglec−15抗体を含有する医薬
上述の「4.抗Siglec−15抗体の製造」の項に記載された方法で得られる抗Siglec−15抗体の中から、Siglec−15の生物活性を中和する抗体を得ることができる。これらSiglec−15の生物活性を中和する抗体は、生体内でのSiglec−15の生物活性、即ち、破骨細胞の分化及び/又は成熟を阻害することから、医薬として、破骨細胞の分化及び/又は成熟異常に起因する骨代謝異常に対する治療及び/又は予防剤として用いることができる。骨代謝異常は正味骨喪失骨減少症又は骨溶解症)によって特徴付けられるいずれの障害であってもよい。一般に、抗Siglec−15抗体による治療及び/又は予防は、骨吸収を抑制する必要がある場合に適用される。抗Siglec−15抗体で治療及び/又は予防可能な骨代謝異常としては、骨粗鬆症(閉経後骨粗鬆症、老人性骨粗鬆症、ステロイドや免疫抑制剤等の治療用薬剤の使用による続発性骨粗鬆症、関節リウマチに伴う骨粗鬆症)、関節リウマチに伴う骨破壊、癌性高カルシウム血症、多発性骨髄腫や癌の骨転移に伴う骨破壊、巨細胞腫、歯根膜炎による歯の喪失、人工関節周囲の骨融解、慢性骨髄炎における骨破壊、骨ページェット病、腎性骨異栄養症、骨形成不全症などを挙げることができるが、破骨細胞による正味の骨喪失を伴う疾患であれば、これらに限定されない。上記の医薬としての抗Siglec−15抗体の例として、#32A1抗体又は#41B1抗体から4.(3)「その他の抗体」に記載の方法によって作製されたキメラ抗体又はヒト化抗体を挙げることができる。また、#32A1抗体又は#41B1抗体と同じエピトープを有するキメラ抗体、ヒト化抗体及びヒト抗体も医薬として使用可能である。ある抗Siglec−15抗体が、#32A1抗体又は
#41B1抗体と同じエピトープを持つことは、Siglec−15の特定の部分ペプチドに対してこれらの抗体が共通に結合するか否かを観察することによって確認できる。また、ある抗Siglec−15抗体が、Siglec−15との結合において#32A1抗体又は#41B1抗体と競合するのであれば、これらの抗体が共通のエピトープを持つと判定することができる。

0182

in vitroでの抗Siglec−15抗体によるSiglec−15の生物活性の中和活性は例えば、Siglec−15を過剰発現している細胞の破骨細胞への分化の抑制活性で測定することができる。例えば、マウス単球由来細胞株RAW264.7細胞又はRAW264細胞に種々の濃度で抗Siglec−15抗体を添加し、RANKLあるいはTNF−α刺激による、破骨細胞への分化の抑制活性を測定することができる。また、骨髄由来の初代培養細胞に種々の濃度で抗Siglec−15抗体を添加し、RANKL、TNF−αあるいは活性型ビタミンD3刺激による、破骨細胞への分化の抑制活性を測定することができる。さらに、正常ヒト破骨前駆細胞(Normal Human Natural Osteoclast Precursor Cells、三光純薬より購入可能、カタログ番号2T−110)に種々の濃度で抗Siglec−15抗体を添加し、RANKLおよびM−CSF刺激による、破骨細胞への分化の抑制活性を測定することができる。このような破骨細胞の分化抑制効果は、実施例17、19、20及び26に示される破骨細胞の酒石酸耐性酸性フォスファターゼ(TRAP)活性の抑制を指標として測定できる。また、実施例19、21、22及び35に示されるように、TRAP陽性多核破骨細胞の形成の抑制、すなわち破骨細胞の細胞融合の抑制を指標としても、破骨細胞の分化抑制効果を測定することができる。上記の破骨細胞分化の試験系に対して、本発明の抗体は30μg/ml以下の濃度で細胞融合の抑制効果を示し、いくつかの抗体は3μg/ml以下、あるいは1μg/ml以下の濃度においても抑制効果を示した。さらに低濃度側での効果を試験した場合に、63ng/mlから1μg/mlの範囲でも破骨細胞の分化抑制効果が複数の抗体において観察された。さらに、大腿骨及び/又は脛骨由来の細胞を用いたピットアッセイ(Takada et al.,Bone and Mineral,(1992)17,347−359)実験において、大腿骨及び/又は脛骨由来の細胞に種々の濃度で抗Siglec−15抗体を添加して象牙切片上のピットの形成を観察することによって、in vitroにおける破骨細胞による骨吸収の抑制活性を測定することができる。in vitroにおける破骨細胞による骨吸収の抑制活性を測定系としては、実施例37に示されているように、ユーロピウムが結合したヒトコラーゲンコーティングしたプレートを使用することも可能である。上記の破骨細胞による骨吸収の試験系において、本発明の抗体は3μg/ml以下の濃度、すなわち0.3μg/mlから3μg/mlの範囲で骨吸収を抑制した。in vivoでの実験動物を利用した抗Siglec−15抗体の骨代謝異常に対する治療又は予防効果は、例えば、骨粗鬆症モデル動物又はSiglec−15を過剰に発現しているトランスジェニック動物に抗Siglec−15抗体を投与し、破骨細胞の変化を測定することで確認することができる。

0183

このようにして得られたSiglec−15の生物活性を中和する抗体は、医薬として、特に骨粗鬆症、関節リウマチに伴う骨破壊、癌の骨転移に伴う骨破壊等の骨代謝異常の治療又は予防を目的とした医薬組成物として、あるいはこのような疾患の免疫学的診断のための抗体として有用である。

0184

関節リウマチ(RA)の治療において、疾患の発症に伴って発生する骨喪失が大きな課題になっている。RAに伴うこの骨喪失においては、破骨細胞が中心的な役割を果たしていることが報告されている。RAにおける破骨細胞の誘導(分化、成熟)、活性化、及び骨破壊の原因として最も重要と考えられているサイトカインはRANKLとTNF−αである(Romas E et al., Bone 30, p340−346, 20
02)。本明細書の実施例19でも示したように、RANKLのデコイレセプターであるOCIF/OPGではRANKLで誘導される破骨細胞形成は抑制できるが、TNF−αで誘導される破骨細胞形成は抑制されない。その一方で、本発明における抗Siglec−15抗体によって、RANKLで誘導される破骨細胞形成とTNF−αで誘導される破骨細胞形成の両方が効果的に抑制された。したがって、本発明の抗Siglec−15抗体によって、RAなどにおけるTNF−αで誘導される骨喪失と骨破壊が、RANKLブロッカー(OCIF/OPG、抗RANKL抗体など)以上に強力に抑制できることが期待される。

0185

抗Siglec−15抗体は、一つの例としては、骨代謝異常の治療又は予防に対しては該抗体単独で、あるいは少なくとも一つの骨に関する疾患の治療剤と一緒に投与することができる。また一つの例として、抗Siglec−15抗体は治療上有効な量の抗骨代謝異常治療薬剤と一緒に投与することができる。抗Siglec−15抗体と一緒に投与できる治療剤としては、ビスホスホネート、活性型ビタミンD3、カルシトニン及びその誘導体、エストラジオール等のホルモン製剤、SERMs(Selective estrogen receptor modulators)、イプリフラボン、ビタミンK2(メナテトレノン)、カルシウム製剤、PTH(parathyroid hormone)製剤、非ステロイド性抗炎症剤、可溶性TNFレセプター製剤、抗TNFα抗体又は該抗体の機能性断片、抗PTHrP(parathyroid hormone−related protein)抗体又は該抗体の機能性断片、IL−1レセプターアンタゴニスト、抗IL−6レセプター抗体又は該抗体の機能性断片、抗RANKL抗体又は該抗体の機能性断片、及びOCIF(osteoclastogenesis inhibitory factor)等を挙げることができるがこれらに限定されない。骨代謝異常の状態やどの程度の治療及び/又は予防を目指すかによって、2、3あるいはそれ以上の種類の薬剤を投与することもできるし、それらの薬剤は同じ製剤の中に封入することによって一緒に供給することができる。それらの薬剤と抗Siglec−15抗体は同じ製剤の中に封入することによって一緒に供給することもできる。また、それらの薬剤は治療及び/又は予防用キットとして封入することによって一緒に供給することもできる。また、それらの薬剤と抗Siglec−15抗体は別々に供給することもできる。遺伝子治療において投与する場合には、蛋白質性の骨疾患治療剤の遺伝子と抗Siglec−15抗体の遺伝子は、別々のあるいは同じプロモーター領域の下流に挿入することができ、別々のあるいは、同じベクターに導入することができる。

0186

抗Siglec−15抗体、あるいはそのフラグメントに対し骨疾患治療剤を結合させることにより、M.C.Garnet「Targeted drug conjugates: principles and progress」,Advanced Drug Delivery Reviews,(2001)53,171−216記載の標的型薬物複合体を製造することができる。この目的には、抗体分子のほか、破骨細胞の認識性を完全消失していない限り、いずれの抗体フラグメントも適用可能であるが、例えば、Fab、F(ab’)2、Fv等のフラグメントを例として挙げることができ、本発明においても同様に、抗体及び該フラグメントを使用することができる。抗Siglec−15抗体又は該抗体のフラグメントと骨疾患治療剤との結合様式は、M.C.Garnet「Targeted drug conjugates:principles and progress」,Advanced Drug Delivery Reviews, (2001)53,171−216、G.T.Hermanson「Bioconjugate Techniques」Academic Press, California (1996)、Putnam and J.Kopecek「Polymer Conjugates with Anticancer Activity」Advances in Polymer Science(1995)122,55−123等に記載される種々の形態があり得る。すなわち、抗Siglec−15抗体と骨疾患
治療剤が化学的に直接あるいはオリゴペプチド等のスペーサーが介在して結合される様式や、適当な薬物担体を介在して結合される様式を挙げることができる。薬物担体の例としては、リポソーム水溶性高分子を挙げることができる。これら薬物担体が介在される様式としては、より具体的には、抗体と骨疾患治療剤とがリポソームに包含され、該リポソームと抗体とが結合した様式、及び、骨疾患治療剤が水溶性高分子(分子量1000乃至10万程度の化合物)に化学的に直接あるいはオリゴペプチド等のスペーサーを介在させて結合され、該水溶性高分子に抗体が結合した様式、を例として挙げることができる。抗体(又は該フラグメント)と骨疾患治療剤、リポソーム及び水溶性高分子等の薬物担体との結合は、G.T.Hermanson「Bioconjugate Techniques」Academic Press, California(1996)、Putnam and J. Kopecek「Polymer Conjugates with Anticancer Activity」Advances in Polymer Science (1995)122, 55−123に記載の方法等の当業者周知の方法により実施することができる。骨疾患治療剤のリポソームへの包含は、D.D.Lasic「Liposomes:From Physics to Applications」,Elsevier Science Publishers B.V., Amsterdam(1993)等に記載の方法等の当業者周知の方法により実施することができる。骨疾患治療剤の水溶性高分子への結合は、D.Putnam and J Kopecek「Polymer Conjugates with Anticancer Activity」Advances in Polymer Science(1995)122,55−123記載の方法等の当業者周知の方法により、実施することができる。抗体(又は該フラグメント)と蛋白質性の骨疾患治療剤(又は該フラグメント)との複合体は、上記の方法のほか、遺伝子工学的に、当業者周知の方法により作製することができる。

0187

本発明は、治療及び/又は予防に有効な量の抗Siglec−15抗体と薬学上許容される希釈剤、担体、可溶化剤乳化剤保存剤及び/又は補助剤を含む医薬組成物も提供する。

0188

本発明は、治療及び/又は予防に有効な量の抗Siglec−15抗体と治療及び/又は予防に有効な量の少なくとも一つの骨疾患治療剤と薬学上許容される希釈剤、担体、可溶化剤、乳化剤、保存剤及び/又は補助剤を含む医薬組成物も提供する。骨疾患治療剤としては、ビスホスホネート、活性型ビタミンD3、カルシトニン及びその誘導体、エストラジオール等のホルモン製剤、SERMs(selective estrogen receptor modulators)、イプリフラボン、ビタミンK2(メナテトレノン)、カルシウム製剤、PTH(parathyroid hormone)製剤、非ステロイド性抗炎症剤、可溶性TNFレセプター製剤、抗TNFα抗体又は該抗体の機能性断片、抗PTHrP(parathyroid hormone−related protein)抗体又は該抗体の機能性断片、IL−1レセプターアンタゴニスト、抗IL−6レセプター抗体又は該抗体の機能性断片、抗RANKL抗体又は該抗体の機能性断片、及びOCIF(osteoclastogenesis inhibitory factor)等を挙げることができるがこれらに限定されない。

0189

本発明の医薬組成物において許容される製剤に用いる物質としては好ましくは投与量や投与濃度において、医薬組成物を投与される者に対して非毒性のものが好ましい。

0190

本発明の医薬組成物は、pH、浸透圧、粘度、透明度、色、等張性、色、無菌性、安定性溶解率徐放率、吸収率浸透率を変えたり、保持したりするための製剤用の物質を含むことができる。製剤用の物質として以下のものを挙げることができるが、これらに制限されない:グリシンアラニン、グルタミン、アスパラギンアルギニン又はリジン
アミノ酸類抗菌剤アスコルビン酸硫酸ナトリウム又は亜硫酸水素ナトリウム等の抗酸化剤リン酸、、クエン酸ホウ酸バッファー、炭酸水素トリス−塩酸(Tris−Hcl)溶液等の緩衝剤マンニトールやグリシン等の充填剤エチレンジアミン四酢酸EDTA)等のキレート剤カフェインポリビニルピロリジン、β−シクロデキストリンヒドロキシプロピル−β−シクロデキストリン等の錯化剤グルコースマンノース又はデキストリン等の増量剤単糖類二糖類等の他の炭水化物着色剤香味剤、希釈剤、乳化剤やポリビニルピロリジン等の親水ポリマー低分子量ポリペプチド塩形成対イオン塩化ベンズアルコニウム安息香酸サリチル酸チメロサールフェネチルアルコールメチルパラベンプロピルパラベンクロレキジンソルビン酸又は過酸化水素等の防腐剤グリセリンプロピレングリコール又はポリエチレングリコール等の溶媒、マンニトール又はソルビトール等の当アルコール懸濁剤ソルビタンエステルポリソルビテート20やポリソルビテート80等ポリソルビテート、トリトン(triton)、トロメタミン(tromethamine)、レシチン又はコレステロール等の界面活性剤スクロースやソルビトール等の安定化増強剤塩化ナトリウム塩化カリウムやマンニトール・ソルビトール等の弾性増強剤、輸送剤、希釈剤、賦形剤、及び/又は薬学上の補助剤。これらの製剤用の物質の添加量は、抗Siglec−15抗体の重量に対して0.01〜100倍、特に0.1〜10倍添加するのが好ましい。製剤中の好適な医薬組成物の組成は当業者によって、適用疾患、適用投与経路などに応じて適宜決定することができる。

0191

医薬組成物中の賦形剤や担体は液体でも固体でもよい。適当な賦形剤や担体は注射用の水や生理食塩水人工脳脊髄液非経口投与通常用いられている他の物質でもよい。中性の生理食塩水や血清アルブミンを含む生理食塩水を担体に用いることもできる。医薬組成物にはpH7.0−8.5のTrisバッファーやpH4.0−5.5の酢酸バッファーやそれらにソルビトールや他の化合物を含むこともできる。本発明の医薬組成物には抗Siglec−15抗体を含む医薬組成物並びに、抗Siglec−15抗体及び少なくとも一つの骨疾患治療剤を含む医薬組成物を挙げることができ、本発明の医薬組成物は選択された組成と必要な純度を持つ薬剤として、凍結乾燥品あるいは液体として準備される。抗Siglec−15抗体を含む医薬組成物並びに、抗Siglec−15抗体及び少なくとも一つの骨代謝異常治療薬剤を含む医薬組成物はスクロースのような適当な賦形剤を用いた凍結乾燥品として成型されることもできる。

0192

本発明の医薬組成物は非経口投与用に調製することもできるし、経口による消化管吸収用に調製することもできる。製剤の組成及び濃度は投与方法によって決定することができるし、本発明の医薬組成物に含まれる、抗Siglec−15抗体のSiglec−15に対する親和性、即ち、Siglec−15に対する解離定数(Kd値)に対し、親和性が高い(Kd値が低い)ほど、ヒトへの投与量を少なく薬効を発揮することができるので、この結果に基づいて本発明の医薬組成物の人に対する投与量を決定することもできる。投与量は、ヒト型抗Siglec−15抗体をヒトに対して投与する際には、約0.1〜100mg/kgを1〜180日間に1回投与すればよい。

0193

本発明の医薬組成物の形態としては、点滴を含む注射剤坐剤経鼻剤、舌下剤経皮吸収剤などを挙げることができる。

0194

6.直接相互作用する物質の探索
本発明の他の一つの態様としては、Siglec−15の活動を抑制するような物質を得ることを目的とした、該蛋白質の立体構造ベースとしたドラッグデザインの手法を含む。このような手法は、ラショナルドラッグデザイン法として知られており、酵素活性などや、リガンド、コファクター、又はDNAへの結合などを効率よく阻害もしくは活性化させるような化合物の探索に利用されている。この例として、すでに上市されている抗H
IV剤であるプロテアーゼ阻害剤がよく知られている。本発明のSiglec−15の三次元構造解析においても、X線結晶解析核磁気共鳴法といった一般的によく知られている手法が利用できる。さらに、Siglec−15の機能を抑制する物質の探索には、コンピュータードラッグデザイン(CADD)を活用した設計も可能である。この例としては、関節リウマチ治療の新たなゲノム新薬として期待されている、AP−1の働きを阻害する低分子化合物国際特許出願公開WO99/58515号)などが知られている。このような方法により、Siglec−15に直接結合するか、あるいはSiglec−15と他の因子との相互作用を阻害することにより、Siglec−15の機能を抑制するような物質を得ることができる。

0195

さらに、他の一つの態様は、本発明のSiglec−15が会合するポリペプチド、すなわちSiglec−15のパートナー蛋白質に関する。すなわち、本発明は、Siglec−15の活性を調節するパートナー蛋白質のスクリーニング方法に関する。

0196

このスクリーニング方法の一つの態様は、Siglec−15に被験蛋白質試料を接触させ、Siglec−15に結合する蛋白質を選択する工程を含む。このような方法としては、例えば、精製したSiglec−15を用いて、これに結合する蛋白質のアフィニティー精製を行う方法を挙げることができる。具体的な方法の一例を示せば、Siglec−15にヒスチジン6個よりなる配列をアフィニティータグとして融合したものを作製して、これを細胞の抽出液(予めニッケル−アガロースカラムにチャージして、このカラムを素通りした画分)と4℃で12時間インキュベートし、次いで、この混合物に別途ニッケル−アガロース担体を加えて4℃で1時間インキュベートする。ニッケル−アガロース担体を洗浄バッファーで十分洗浄した後、100mMイミダゾールを加えることにより、Siglec−15と特異的に結合する細胞抽出液中の蛋白質を溶出させて精製し、この構造を決定する。このようにして、Siglec−15と直接結合する蛋白質、及びSiglec−15との結合活性は持たないが、サブユニットとしてSiglec−15に直接結合する蛋白質と複合体を形成することにより間接的にSiglec−15に結合する蛋白質が精製できる。別の方法としては、ファーウエスタンブロット法や、酵母や哺乳類動物細胞を用いたツーハイブリッドシステム法によるクローニングも可能であるが、これらの方法に限定されない。

0197

このようにして、Siglec−15と直接もしくは間接的に相互作用するパートナー蛋白質のcDNAが得られれば、Siglec−15と該パートナー蛋白質との相互作用を阻害する物質の機能的スクリーニングに利用することができる。具体的には、例えば、Siglec−15とグルタチオンS−トランスフェラーゼとの融合蛋白質を調製して、抗グルタチオンS−トランスフェラーゼ抗体で覆ったマイクロプレートに結合させた後、ビオチン化した該パートナー蛋白質をこの融合蛋白質と接触させ、該融合蛋白質との結合をストレプトアビジンアルカリホスファターゼで検出する。ビオチン化した該パートナー蛋白質添加の際、被験物質も添加し、融合蛋白質と該パートナー蛋白質との結合を促進あるいは阻害する物質を選択する。この方法では、融合蛋白質に直接作用する物質又は該パートナー蛋白質に直接作用する物質が得られる。

0198

融合蛋白質と該パートナー蛋白質との結合が間接的であり、何らかの別の因子を介しているような場合には、例えば該因子を含むような細胞抽出液存在下で、同様に上記アッセイを行う。この場合には、該因子に対して作用するような物質も選択される可能性がある。

0199

また、得られたパートナー蛋白質が、Siglec−15の機能を促進する活性を有している場合には、既に記載したSiglec−15遺伝子の発現ベクターを応用した試験方法に従って、骨代謝異常治療及び/又は予防剤、例えば、骨粗鬆症の治療及び/又は予
防剤として有用な候補物質のスクリーニングを行うことができる。また、得られたパートナー蛋白質が、Siglec−15の機能を抑制する活性を有している場合には、このような抑制因子をコードするポリヌクレオチドは、骨代謝異常の遺伝子治療に用いることができる。

0200

そのようなポリヌクレオチドは、例えば同定された阻害因子のアミノ酸配列を解析し、該アミノ酸配列をコードするオリゴヌクレオチドプローブを合成してcDNAライブラリーやゲノムライブラリーのスクリーニングを行うことにより取得できる。また、Siglec−15の機能の阻害活性を有するポリペプチドが、ランダムに合成された人工ペプチドライブラリー由来である場合は、該ペプチドのアミノ酸配列をコードするヌクレオチド配列からなるDNAを化学合成する。

0201

遺伝子治療においては、そのようにして得られた阻害因子をコードする遺伝子を、例えばウイルスベクターに組み込んで、該組換えウイルスベクターを有するウイルス無毒化されたもの)を患者に感染させる。患者体内では抗骨破壊因子が産生され、破骨細胞の分化抑制機能を有するので、骨代謝異常の治療及び/又は予防が可能となる。

0202

遺伝子治療剤を細胞内に導入する方法としては、ウイルスベクターを利用した遺伝子導入方法、あるいは非ウイルス性の遺伝子導入方法のいずれの方法も適用することができる。

0203

ウイルスベクターによる遺伝子導入方法としては、例えばレトロウイルスアデノウイルスアデノ関連ウイルス、ヘルペスウイルスワクシニアウイルスポックスウイルスポリオウイルスシンビスウイルス等のDNAウイルス又はRNAウイルスに、Siglec−15の阻害因子あるいはその変異体をコードするDNAを組み込んで導入する方法を挙げることができる。このうち、レトロウイルス、アデノウイルス、アデノ関連ウイルス、ワクシニアウイルスを用いた方法が、特に好ましい。非ウイルス性の遺伝子導入方法としては、発現プラスミドを直接筋肉内に投与する方法(DNAワクチン法)、リポソーム法、リポフェクチン法、マイクロインジェクション法、リン酸カルシウム法、エレクトロポレーション法等が挙げられ、特にDNAワクチン法、リポソーム法が好ましい。

0204

また遺伝子治療剤を実際に医薬として作用させるには、DNAを直接体内に導入するインビボ(in vivo)法及びヒトからある種の細胞を取り出し体外でDNAを該細胞に導入し、その細胞を体内に戻すエクスビボ(ex vivo)法がある。

0205

例えば、該遺伝子治療剤がインビボ法により投与される場合は、疾患、症状等に応じ、静脈、動脈、皮下、皮内、筋肉内等、適当な投与経路により投与される。またインビボ法により投与する場合は、該遺伝子治療剤は一般的には注射剤とされるが、必要に応じて慣用の担体を加えてもよい。また、リポソーム又は膜融合リポソーム(センダイウイルス−リポソーム等)の形態にした場合は、懸濁剤、凍結剤遠心分離濃縮凍結剤等のリポソーム製剤とすることができる。

0206

配列表の配列番号1又は3に示されるヌクレオチド配列の全長配列又は部分配列に相補的なヌクレオチド配列は、いわゆるアンチセンス治療に用いることができる。アンチセンス分子は、配列表の配列番号1又は3に示されるヌクレオチド配列から選択されるヌクレオチド配列の一部に相補的な、通常15乃至30merからなるDNA、もしくはそのホスホロチオエートメチルホスホネート又はモルフォリノ誘導体などの安定なDNA誘導体、2’−O−アルキルRNAなどの安定なRNA誘導体として用いられ得る。そのようなアンチセンス分子を、微量注入リポソームカプセル化により、あるいはアンチセンス配列を有するベクターを利用して発現させるなど、本発明の技術分野において周知の方法
で、細胞に導入することができる。このようなアンチセンス療法は、配列表の配列番号1又は3に示されるヌクレオチド配列がコードする蛋白質の活性が増加しすぎることによって引き起こされる病気の治療に有用である。

0207

また、二本鎖短鎖RNA(siRNA)を用いる方法を挙げることもできる(「ジーンズアンド・デヴェロップメンツ(Genes and Developments)」)、2001年1月15日、第15巻、第2号、p.188−200)。例えば、Siglec−15遺伝子に対するsiRNAを作製し、文献記載の方法に従って導入することによって、Siglec−15の過剰発現を伴う骨代謝性疾患の治療剤とすることができる。

0208

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。なお、下記実施例において遺伝子操作に関する各操作は特に明示がない限り、「モレキュラークローニング(Molecular Cloning)」(Sambrook,J.,Fritsch,E.F.及びManiatis,T.著,Cold Spring Harbor Laboratory Pressより1989年に発刊)に記載の方法により行うか、又は、市販の試薬やキットを用いる場合には市販品の指示書に従って使用した。

0209

実施例1.巨細胞腫組織におけるヒトSiglec−15遺伝子の発現
巨細胞腫(Giant cell tumor;GCT)は、組織学的に破骨細胞様の多核巨細胞が多数出現する骨腫瘍であり、臨床的所見として骨溶解性の骨破壊を特徴とする(Bullough et al.,Atlas of Orthopedic Pathology 2nd edition,17.6−17.8,Lippincott
Williams & Wilkins Publishers(1992))。ヒトSiglec−15遺伝子と部分的に重複するヌクレオチド配列を有するESTプローブ(Affymetrix Genechip HG−U133 probe 215856_at:アフィメトリクス社製)について、GeneLogic社製のデータベース(Genesis 2006 Release 3.0)を用いてGCT組織における発現プロファイル解析を行った。また、破骨細胞分化に重要な役割を果たしているRANK(Affymetrix Genechip HG−U133 probe 207037_at:アフィメトリクス社製)及びRANKL(Affymetrix Genechip HG−U133 probe 210643_at:アフィメトリクス社製)、さらに破骨細胞分化マーカーであるカテプシンK(Affymetrix Genechip HG−U133 probe 202450_s_at:アフィメトリクス社製)及びTRAP(Affymetrix Genechip HG−U133 probe 204638_at:アフィメトリクス社製)のESTプローブについても、同様にGCT組織における発現プロファイル解析を行った。

0210

正常骨組織13例、GCT組織12例、GCT以外の骨腫瘍組織16例において発現量を比較したところ、正常組織に比べGCT組織においてRANK及びRANKLの転写が特異的に亢進していることが明らかとなった(図1−A)。一方、骨吸収の亢進が必ずしも起こらないと考えられるGCT以外の骨腫瘍組織では、GCTに比べRANK及びRANKLの転写が低かったことから、GCTでは破骨細胞の形成及び活性化が促進される環境であることが示唆された。また、カテプシンK及びTRAPの遺伝子発現量を比較したところ、GCTにおいて高く転写されており(図1−B)、骨吸収活性を持つ破骨細胞が多数出現していることが示唆された。同様にSiglec−15遺伝子について転写量を比較したところ、RANK、RANKL、カテプシンK及びTRAPの各遺伝子と同じようにGCTで特異的に高く転写されていることが明らかとなった(図2)。このことから
、GCTのような骨吸収が亢進するヒトの病態において、Siglec−15が関与していることが示唆された。

0211

実施例2.マウス由来成熟破骨細胞からの全RNAの抽出
a)マウス単球由来細胞RAW264.7(ATCCCat.No.TIB−71)を10%ウシ胎児血清を含むα−MEM培地で4.5×104細胞/mlに調製したものを75 cm2フラスコ1枚あたりに10mlまき、ヒトRANKL(ぺプロテック社製)を終濃度40ng/mlとなるように加え、CO2インキュベーター中で3日間培養した。またヒトRANKL未添加の培養も同様に行った。

0212

培養終了後、全RNA抽出用試薬(ISOGEN:ニッポンジーン社製)を試薬に添付のプロトコールに従って用いることにより、それぞれの条件で培養したRAW264.7より全RNAを抽出した。回収した全RNAは−80℃に保存した。

0213

b)マウス骨髄由来初代培養細胞を、活性型ビタミンD3存在下で培養すると、TRAP陽性多核破骨細胞が多数出現する(Takahashi et al.,Endocrinology,(1988)122,1373−1382)。

0214

8週齢雄性DDYマウスをエーテル麻酔頚椎脱臼にて安楽死させ、大腿骨及び脛骨を摘出した。軟組織を除去した後、大腿骨あるいは脛骨の両端を切り落とし、25ゲージ注射針のついた注射筒を用いて10%ウシ胎児血清を含むα−MEM培地を骨髄中に注入し、骨髄細胞を採取した。細胞数を計測後、10%ウシ胎児血清を含むα−MEM培地で5 ×106細胞/mlに調製したものを96穴プレートに100μl/穴×60穴分まき、活性型ビタミンD3(シグマ社製)を終濃度2×10−8 Mとなるように加え、CO2インキュベーター中で8日間培養した。また活性型ビタミンD3未添加の培養も同様に行った。なお、培地交換及び活性型ビタミンD3の添加は3及び6日目に実施した。

0215

次いで、全RNA抽出用試薬(ISOGEN:ニッポンジーン社製)を試薬に添付のプロトコールに従って用いることにより、それぞれの条件で培養した細胞より全RNAを抽出した。回収した全RNAは使用時まで−80℃に保存した。

0216

実施例3.マウスSiglec−15オープンリーディングフレーム(ORF)配列の取得
a)ファーストストランドcDNA合成
実施例2、a)で作製した全RNA 1μgに、1μl 1U/μl DNAseI、1μl 10×DNAseI Buffer(インビトロジェン社製)を加えH2Oで10μlにし、室温で15分間反応させた後、1μl 25mMEDTAを添加し65℃で10分間加熱した。この溶液から8μlを分取し、1μl 50μM oligo(dT)20プライマー及び1μl 10mM dNTPsを添加し、65℃で5分間加熱した後、中で保温した。この溶液に2μl 10×RTBuffer(インビトロジェン社製)、4μl 25mM MgCl2、2μl 0.1M dithiothreitol、1μl RNAse inhibitor(RNAseOUT、40U/μl、インビトロジェン社製)、1μl SuperscriptIII逆転写酵素(200 U/μl、インビトロジェン社製)を加えて全量を20μlとし、50℃で50分間反応させた後、85℃で5分間加熱し、氷中で1分間保温した後、−20℃で保存した。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ