図面 (/)

技術 蓄電デバイス用Si系合金負極材料およびそれを用いた電極

出願人 山陽特殊製鋼株式会社
発明者 廣野友紀久世哲嗣仮屋哲朗澤田俊之
出願日 2014年9月16日 (6年2ヶ月経過) 出願番号 2014-187238
公開日 2016年4月25日 (4年7ヶ月経過) 公開番号 2016-062660
状態 特許登録済
技術分野 電池の電極及び活物質 電気二重層コンデンサ等
主要キーワード ポリイミドバインダー 共晶系合金 Cr相 急冷効果 二極式 添加元素量 回折ピーク位置 脱合金化
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2016年4月25日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (3)

課題

本発明は、組織微細化、優れたイオン伝導性電子伝導性応力緩和効果を高める成分系の制御とSi相金属間化合物相結晶子サイズを制御することで、優れた電池特性を得られるSi系合金負極材料および電極を提供する。

解決手段

充放電時にリチウムイオンの移動が伴う蓄電デバイス用Si系合金からなる負極材料であって、前記Si系合金からなる負極材料が、SiからなるSi主要相とSiとSi以外の一種以上の元素からなる化合物相を有し、前記Si主要相のSi結晶子サイズが30nm以下であり、かつ、SiとCr、あるいはSiとCrとTiからなる化合物相の結晶子サイズが40nm以下であるこ、CrとTiの合計含有量が21.1〜40at.%含み、CrとTiの比率であるCr%/(Cr%+Ti%)が0.15〜1.00の範囲であることを特徴とする蓄電デバイス用Si系合金からなる負極材料。

概要

背景

近年、携帯機器の普及に伴い、リチウムイオン電池を中心とした高性能二次電池の開発が盛んに行われている。さらに、自動車用家庭用定置蓄電デバイスとしてリチウムイオン二次電池やその反応機構を負極に適用したハイブリットキャパシタの開発も盛んになっている。それらの蓄電デバイスの負極材料としては、リチウムイオン吸蔵及び放出することができる、天然黒鉛人造黒鉛コークスなどの炭素質材料が用いられている。しかし、これらの炭素質材料はリチウムイオンを炭素面間に挿入するため、負極に用いた際の理論容量は372mAh/gが限界であり、高容量化を目的とした炭素質材料に代わる新規材料の探索が盛んに行われている。

一方、炭素質材料に代わる材料として、Siが注目されている。その理由は、SiはLi22Si5で表される化合物を形成して、大量のリチウムを吸蔵することができるため、炭素質材料を使用した場合に比較して負極の容量を大幅に増大でき、結果としてリチウムイオン二次電池やハイブリットキャパシタ、全固体電池蓄電容量を増大することができる可能性を持っているためである。

しかし、Siを単独で負極材として使用した場合には、充電時にリチウムと合金化する際の膨張と、放電時にリチウムと脱合金化する際の収縮との繰返しによって、Si相微粉化されて、使用中に電極基板からSi相が脱落したり、Si相間の電気伝導性が取れなくなるなどの不具合が生じるために、蓄電デバイスとしての寿命が極めて短いといった課題があった。

また、Siは炭素質材料や金属系材料に比べて電気伝導性が悪く、充放電に伴う電子の効率的な移動が制限されているため、負極材としては炭素質材料など導電性を補う材料と組合せて使用されるが、その場合でも特に初期の充放電や高効率での充放電特性も課題となっている。

このようなSi相を負極として利用する際の欠点を解決する方法として、Siなどの親リチウム相の少なくとも一部を、Siと遷移金属に代表される金属との金属間化合物で包囲した材料やその製造方法が、例えば、特開2001−297757号公報(特許文献1)や特開平10−312804号公報(特許文献2)に提案されている。

また、別の解決方法として、Si相を含む活物質の相をリチウムと合金化しないCuなどの導電性材料被覆した電極やその製造方法が、例えば、特開2004−228059号公報(特許文献3)や特開2005−44672号公報(特許文献4)に提案されている。

概要

本発明は、組織微細化、優れたイオン伝導性電子伝導性応力緩和効果を高める成分系の制御とSi相や金属間化合物相結晶子サイズを制御することで、優れた電池特性を得られるSi系合金負極材料および電極を提供する。充放電時にリチウムイオンの移動が伴う蓄電デバイス用Si系合金からなる負極材料であって、前記Si系合金からなる負極材料が、SiからなるSi主要相とSiとSi以外の一種以上の元素からなる化合物相を有し、前記Si主要相のSi結晶子サイズが30nm以下であり、かつ、SiとCr、あるいはSiとCrとTiからなる化合物相の結晶子サイズが40nm以下であるこ、CrとTiの合計含有量が21.1〜40at.%含み、CrとTiの比率であるCr%/(Cr%+Ti%)が0.15〜1.00の範囲であることを特徴とする蓄電デバイス用Si系合金からなる負極材料。

目的

そこで、本発明が解決しようとする課題は、Si系合金中のSi相や金属間化合物相の化学組成、構造、組織の大きさ等を高位に制御することで、リチウムイオン二次電池やハイブリットキャパシタ、全固体電池など、充放電時にリチウムイオンの移動を伴う蓄電デバイスに関し、充放電特性に優れるSi系合金負極材料を提案することである。

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

充放電時にリチウムイオンの移動が伴う蓄電デバイスSi系合金からなる負極材料であって、前記Si系合金からなる負極材料が、SiからなるSi主要相とSiとSi以外の一種以上の元素からなる化合物相を有し、前記化合物相が、SiとCr、あるいはSiとCrとTiからなる相を含んでなる相を有し、前記Si主要相のSi結晶子サイズが30nm以下であり、かつ、SiとCr、あるいはSiとCrとTiからなる化合物相の結晶子サイズが40nm以下であること、CrとTiの合計含有量が21.1〜40at.%含み、CrとTiの比率であるCr%/(Cr%+Ti%)が0.15〜1.00の範囲であることを特徴とする蓄電デバイス用Si系合金からなる負極材料。

請求項2

請求項1に記載した蓄電デバイス用Si系合金からなる負極材料の前記化合物相に、Cu、V、Mn、Fe、Ni、Nb、Zn、Alからなる群から選択される少なくとも一種以上の元素を含み、合計含有量が0.05at.%〜5at.%であることを特徴とする蓄電デバイス用Si系合金からなる負極材料。

請求項3

請求項1〜2のいずれか1項に記載した蓄電デバイス用Si系合金からなる負極材料の前記化合物相に、Mg、B、P、Gaからなる群から選択される少なくとも一種以上の元素を含み、合計含有量が0.05at.%〜5at.%であることを特徴とする蓄電デバイス用Si系合金からなる負極材料。

請求項4

請求項1〜3のいずれか1項に記載した蓄電デバイス用Si系合金からなる負極材料を用いた電極において、特にポリイミドバインダーを含むことを特徴とする蓄電デバイス用Si系合金からなる負極。

技術分野

0001

本発明は、リチウムイオン二次電池ハイブリットキャパシタ全固体リチウムイオン二次電池など、充放電時にリチウムイオンの移動を伴う蓄電デバイス導電性に優れるSi系合金負極材料およびそれを用いた電極に関するものである。

背景技術

0002

近年、携帯機器の普及に伴い、リチウムイオン電池を中心とした高性能二次電池の開発が盛んに行われている。さらに、自動車用家庭用定置用蓄電デバイスとしてリチウムイオン二次電池やその反応機構を負極に適用したハイブリットキャパシタの開発も盛んになっている。それらの蓄電デバイスの負極材料としては、リチウムイオンを吸蔵及び放出することができる、天然黒鉛人造黒鉛コークスなどの炭素質材料が用いられている。しかし、これらの炭素質材料はリチウムイオンを炭素面間に挿入するため、負極に用いた際の理論容量は372mAh/gが限界であり、高容量化を目的とした炭素質材料に代わる新規材料の探索が盛んに行われている。

0003

一方、炭素質材料に代わる材料として、Siが注目されている。その理由は、SiはLi22Si5で表される化合物を形成して、大量のリチウムを吸蔵することができるため、炭素質材料を使用した場合に比較して負極の容量を大幅に増大でき、結果としてリチウムイオン二次電池やハイブリットキャパシタ、全固体電池蓄電容量を増大することができる可能性を持っているためである。

0004

しかし、Siを単独で負極材として使用した場合には、充電時にリチウムと合金化する際の膨張と、放電時にリチウムと脱合金化する際の収縮との繰返しによって、Si相微粉化されて、使用中に電極基板からSi相が脱落したり、Si相間の電気伝導性が取れなくなるなどの不具合が生じるために、蓄電デバイスとしての寿命が極めて短いといった課題があった。

0005

また、Siは炭素質材料や金属系材料に比べて電気伝導性が悪く、充放電に伴う電子の効率的な移動が制限されているため、負極材としては炭素質材料など導電性を補う材料と組合せて使用されるが、その場合でも特に初期の充放電や高効率での充放電特性も課題となっている。

0006

このようなSi相を負極として利用する際の欠点を解決する方法として、Siなどの親リチウム相の少なくとも一部を、Siと遷移金属に代表される金属との金属間化合物で包囲した材料やその製造方法が、例えば、特開2001−297757号公報(特許文献1)や特開平10−312804号公報(特許文献2)に提案されている。

0007

また、別の解決方法として、Si相を含む活物質の相をリチウムと合金化しないCuなどの導電性材料被覆した電極やその製造方法が、例えば、特開2004−228059号公報(特許文献3)や特開2005−44672号公報(特許文献4)に提案されている。

先行技術

0008

特開2001−297757号公報
特開平10−312804号公報
特開2004−228059号公報
特開2005−44672号公報

発明が解決しようとする課題

0009

しかしながら、上述した活物質の相をCuなどの導電性材料で被覆する方法では、Si相を含む活物質を電極に形成する工程の前または後に、Cuめっきなどの方法で被覆する必要があり、また、被覆膜厚の制御など工業的に手間がかかるという問題がある。
また、Siなどの親リチウム相の少なくとも一部を金属間化合物で包囲した材料は、溶融後の凝固プロセス中に親リチウム相と金属間化合物が形成されるため、工業的に好ましいプロセスといえるが、それだけでは十分な充放電サイクル特性が得られないといった問題がある。

0010

そこで、本発明が解決しようとする課題は、Si系合金中のSi相や金属間化合物相化学組成、構造、組織の大きさ等を高位に制御することで、リチウムイオン二次電池やハイブリットキャパシタ、全固体電池など、充放電時にリチウムイオンの移動を伴う蓄電デバイスに関し、充放電特性に優れるSi系合金負極材料を提案することである。

課題を解決するための手段

0011

上述のような問題を解消するために、発明者らは鋭意開発を進めた結果、組織の微細化、優れたイオン伝導性電子伝導性応力緩和効果を高める成分系の制御とSi相や金属間化合物相の結晶子サイズを制御することで、優れた電池特性が得られるSi系合金負極材料を見出した。

0012

そこで、本発明の課題を解決するための手段として、
請求項1の手段では、充放電時にリチウムイオンの移動が伴う蓄電デバイス用Si系合金からなる負極材料であって、前記Si系合金からなる負極材料が、SiからなるSi主要相とSiとSi以外の一種以上の元素からなる化合物相を有し、前記化合物相が、SiとCr、あるいはSiとCrとTiからなる相を含んでなる相を有し、前記Si主要相のSi結晶子サイズが30nm以下であり、かつ、SiとCr、あるいはSiとCrとTiからなる化合物相の結晶子サイズが40nm以下であること、CrとTiの合計含有量が21.1〜40at.%含み、CrとTiの比率であるCr%/(Cr%+Ti%)が0.15〜1.00の範囲であることを特徴とする蓄電デバイス用Si系合金からなる負極材料である。

0013

請求項2の手段では、請求項1に記載した蓄電デバイス用Si系合金からなる負極材料
の前記化合物相に、Cu、V、Mn、Fe、Ni、Nb、Zn、Alからなる群から選択される少なくとも一種以上の元素を含み、合計含有量が0.05at.%〜5at.%であることを特徴とする蓄電デバイス用Si系合金からなる負極材料である。

0014

請求項3の手段では、請求項1〜2のいずれか1項に記載した蓄電デバイス用Si系合
金からなる負極材料の前記化合物相に、Mg、B、P、Gaからなる群から選択される少なくとも一種以上の元素を含み、合計含有量が0.05at.%〜5at.%であることを特徴とする蓄電デバイス用Si系合金からなる負極材料。

0015

請求項4の手段では、請求項1〜3のいずれか1項に記載した蓄電デバイス用Si系合
金からなる負極材料を用いた電極において、特にポリイミドバインダーを含むことを特徴とする蓄電デバイス用Si系合金からなる負極である。

発明の効果

0016

本発明合金においてCrはSi相と微細共晶組織の形成に有効なSi2 Crを生成する
必須元素であり、TiはCrに置換しSi2 Crの格子定数を増加させ、リチウムイオン伝導性を高めると推測される。さらに、Si相が結晶子サイズ30nm以下に、またSiとCrの化合物相、SiとCrとTiの化合物相の結晶子サイズが、40nm以下とすることで、Siへのリチウムの吸蔵・放出時の体積膨張により生じる応力緩和、Siの微粉化による電気孤立を防ぐ役割を果たし、優れた充放電サイクル特性が得られる。

0017

また、前記蓄電デバイス用Si系合金負極材料の化学成分の制御することで、優れた充放電サイクル特性が得られる。SiとCr、あるいはSiとCrとTiからなる相のCrとTiの合計含有量が21.1〜40at.%含み、Cr%/(Cr%+Ti%)が0.15〜1.00の範囲に制御した場合に、その効果が大きい。

0018

また、蓄電デバイス用Si系合金負極材料のSiとCr、SiとCrとTi試料にCu
、V、Mn、Fe、Ni、Nb、Pd、Zn、Alといった添加元素を一種以上、合計量が0.05at.%〜5at.%含有し、結晶子サイズを制御することで、化合物相が微細Si相の周囲を取り囲み、Siの微粉化、Siへのリチウムの吸蔵・放出時の体積膨張により生じる応力を緩和し、電極の崩壊、Siの電気的孤立を防ぐ役割を果たす。これらの蓄電デバイス用Si系合金負極材料を用いた電極において、特に結合力の高いポリイミドバインダーを含んだ場合、優れた電池特性が提供される。

0019

また、蓄電デバイス用Si系合金負極材料のSiとCr、SiとCrとTi試料に、M
g、B、P、Gaといった添加元素を一種以上、合計量が0.05at.%〜5at.%含有し、結晶子サイズを制御することで、化合物相が微細Si相の周囲を取り囲み、Siの微粉化、Siへのリチウムの吸蔵・放出時の体積膨張により生じる応力を緩和し、電極の崩壊、Siの電気的孤立を防ぐ役割を果たす。また、B添加によるP型半導体構造をとることで、Siの電気伝導性の向上の役割を果たす。P添加によるN型半導体構造をとることで、Siの電気伝導性の向上の役割を果たす。これらの蓄電デバイス用Si系合金負極材料を用いた電極において、特に結合力の高いポリイミドバインダーを含んだ場合、優れた電池特性が提供される。

0020

以上述べたように、本発明は高容量かつ繰り返し充放電時のサイクル特性に優れた蓄電
デバイス用Si系合金負極材料を提供できる極めて優れた効果を奏するものである。

図面の簡単な説明

0021

Si−Si2 Cr共晶合金の断面のSEM画像を示す図である。
Cr/Ti比を変化させたSi−Si2 Cr共晶合金のXRDである。

発明を実施するための最良の形態

0022

以下に、本発明について詳細に説明する。
リチウムイオン二次電池の充放電容量はリチウムの移動量で決まってくる。リチウムを多量に吸蔵・放出できる物質が求められている。そこで、負極材料にはリチウム金属を使用すれば一番効率が良いのだが、充放電に伴うデンドライドの形成により引き起こされる電池発火など安全性に問題がある。そこで、現在はリチウムをより多く吸蔵・放出できる合金の研究が進んでおり、それら合金の中でもSiは多量にリチウムを吸蔵・放出できる物質として有望視されている。そのため、合金相の主要相としてSiを採用する。

0023

しかし、Siはリチウムの吸蔵・放出時に約400%もの体積膨張を引き起こすため、電極からSiが剥離・脱落したり、Siが集電体との接触を保てなくなることで、サイクルに伴う充放電容量の急激な低下が起こる。また、SiはSi相サイズが大きすぎると、内部のSi相までリチウムと反応せずに、Siのリチウムと反応しやすい表層から膨張し、亀裂が生じ、次に内部の未反応Si相が膨張し、また亀裂が生じるといったことを繰り返すSiの微粉化が引き起こされる。これにより、電極からSiが剥離・脱落したり、Siが集電体との接触を保てなくなることで、サイクルに伴う充放電容量の急激な低下が起こる。

0024

本発明における特徴は、共晶合金を得るための添加元素としてCrを用いたことである。図1は、本発明に係るSi−Si2 Crの共晶合金の走査型電子顕微鏡写真による断面組織図で、黒い相がSi相、白い相がSi2Cr相である。この図1に示す通り、Si相およびCrSi2 相ともに極めて微細である。なお、FeやVなど他の元素と比較し、Cr添加が極端に微細な共晶組織となり、充放電特性にも優れる原因については、以下のことが推測される。

0025

Si相と珪化物共晶を得るために必要な添加元素量は元素の種類により決まっており、例えばFeの場合は26.5%、Vの場合は3%の添加が必要である。なお、これらはいずれもSiと添加元素の状態図から読み取ることができる。ここで、共晶を得るためにFeのように比較的多くの添加量が必要な場合は必然的に珪化物の量が多くなり粗大化しやすく、Liを吸蔵・放出するSi相の割合が低下し、高い放電容量が得られない。

0026

一方、Vのように極端に少ない添加量で共晶となる場合、共晶組織中の珪化物の割合が少なく、必然的にSi相が粗大化しやすくなり、充放電時のSi相の体積変化を制御する珪化物の効果が得られない。一方、Crは共晶となる添加量がこれらの中間であり、Si相および珪化物の両者が微細になると考えられる。したがって、Si−Si2 Cr共晶合金は高い放電容量と優れたサイクル寿命兼備することができる。

0027

また、Crの一部をTiで置換することにより、さらに、充放電特性を改善できる。発明者は、Si−Si2 Cr共晶合金において、CrをTiに置換する検討を詳細に行った結果、TiはSi2 CrのCrに置換され、その結晶構造を変化させることなく格子定数を増加させると考えられた。

0028

図2は、Cr/Ti比を変化させたSi−Si2 Cr共晶合金のX線回折を示す図である。この図に示すように、Crの一部をTiに置換することにより、Si2 Crは結晶構造を変化させることなく回折ピーク位置が低角度側シフトしており、格子定数が増加しているものと考えられる。

0029

本発明におけるCrへのTi置換によるSi2 Crの格子定数増加は、珪化物中のLiの通過をスムーズにし、これに伴う体積変化を軽減する役割を果たしている可能性が推測される。このように、Siと珪化物の共晶系合金リチウムイオン電池負極活物質に利用する検討で、珪化物の構造にまで踏み込んだ研究はこれまでにほとんど見られない。

0030

上記SiとCr、SiとCrとTiの共晶組織に加えて、結晶子サイズを制御すること
で、さらにリチウムイオン二次電池特性の改善が見込まれる。SiはSi相サイズが大きすぎると、内部のSi相までリチウムと反応せずに、Siのリチウムと反応しやすい表層から膨張し、亀裂が生じ、次に内部の未反応Si相が膨張し、また亀裂が生じるといったことを繰り返すSiの微粉化が引き起こされる。これにより、電極からSiが剥離・脱落したり、Siが集電体との接触を保てなくなることで、サイクルに伴う充放電容量の急激な低下が起こる。このことから、微分化が起こらないサイズまで微細組織にする必要があり、前記リチウムイオン二次電池用負極材料のSi相の結晶子サイズを30nm以下に制御するのが好ましい。より好ましくは、25nm以下であることが望ましい。特に、好ましくは10nm以下であることが望ましい。

0031

Si相の結晶子サイズの制御については、上記に定めた成分の制御に加えて、原料粉末を溶解した後の凝固時の冷却速度の制御によって可能である。製造方法としては、水アトマイズ単ロール急冷法、双ロール急冷法、ガスアトマイズ法ディスクアトマイズ法遠心アトマイズ等があるが、この限りではない。また、上記プロセスで冷却効果が不十分な場合、メカニカルミリング等を行うことも可能である。ミリング方法としては、ボールミルビーズミル遊星ボールミルアトライタ振動ボールミル等があるが、この限りではない。

0032

また、Si主要相のSi結晶子サイズは、透過型電子顕微鏡TEM)により直接観察
できる。または、粉末X線回折を用いることによって確認することができる。X線源として波長1.54059ÅのCuKα線を用い、2θ=20度〜80度の範囲で測定を行う。得られる回折スペクトルにおいては、結晶子サイズが小さくなるにつれて、比較的ブロード回折ピーク観測される。粉末X線回折分析で得られるピーク半値幅から、Scherrerの式を用いて求めることができる(D(Å)=(K×λ)/(β×cosθ)D:結晶子の大きさ、K:Scherrerの定数、λ:使用X線管球の波長、β:結晶子の大きさによる回折線拡がり、θ:回折角)。

0033

結晶子サイズにおいて、Si主要相のみならず、金属間化合物相の結晶子サイズも重要
になる。SiとCr、SiとCrとTi等の金属間化合物の結晶子サイズを小さくすることで、金属間化合物の降伏応力を高めることや延性靭性の向上が期待ができるため、膨張等の影響を受けた際に、亀裂の発生等を抑制し、良好なイオン伝導性、電子伝導性を確保できる。また、金属間化合物の結晶子サイズが小さくなることで大きな粒子よりもSi相とより大きな比表面積で接触し、Si相の体積膨張収縮による応力を効率良く吸収・緩和することが可能になる。さらに、Si相とより大きな比表面積で接触することで、リチウムイオン伝導性や電子伝導性パスが増え、よりスムーズな充放電反応を行うことが期待される。そのため、結晶子サイズを40nm以下に制御するのが好ましい。より好ましくは、20nm以下であることが望ましい。特に、好ましくは10nm以下であることが望ましい。

0034

金属間化合物の結晶子サイズにおいても、透過型電子顕微鏡(TEM)により直接観察
できる。または、粉末X線回折を用いることによって確認することができる。X線源として波長1.54059ÅのCuKα線を用い、2θ=20度〜80度の範囲で測定を行う。得られる回折スペクトルにおいては、結晶子サイズが小さくなるにつれて、比較的ブロードな回折ピークが観測される。粉末X線回折分析で得られるピークの半値幅から、Scherrerの式を用いて求めることができる(D(Å)=(K×λ)/(β×cosθ)D:結晶子の大きさ、K:Scherrerの定数、λ:使用X線管球の波長、β:結晶子の大きさによる回折線の拡がり、θ:回折角)。金属間化合物の結晶子サイズの制御については、原料粉末を溶解した後の凝固時の冷却速度の制御によって可能である。製造方法としては、水アトマイズ、単ロール急冷法、双ロール急冷法、ガスアトマイズ法、ディスクアトマイズ法、遠心アトマイズ等があるが、この限りではない。また、上記プロセスで冷却効果が不十分な場合、メカニカルミリング等を行うことも可能である。ミリング方法としては、ボールミル、ビーズミル、遊星ボールミル、アトライタ、振動ボールミル等があるが、この限りではない。

0035

CrとTiを合計21.1〜40%含み(ただしTiが0at.%の場合を含む)、Cr%/(Cr%+Ti%)が0.15〜1.00の範囲とした理由は、本発明合金においてCrはSi相と共晶組織を形成するSi2 Crを生成する必須元素であり、TiはCrに置換しSi2 Crの格子定数を増加させる有効な元素である。また、Siの乏しい電気電子導電性Si化合物相が補い、かつCrやTiによる初期容量可逆率の向上が認められる。21.1%未満では、充放電時のSiの体積膨張収縮をSi化合物相が緩和することが不可能であり、電極内での活物質の電気電子的孤立化が生じ、サイクル特性が顕著に劣化する。一方、40%以上では、Liを吸蔵・放出するSi相の割合が低下し、高い放電容量が得られない。したがって、CrとTiを合計21.1〜40%とすることで、電極の電気電子伝導性を高め、充放電時のSi相の体積膨張収縮による応力を抑制可能な量のSi化合物相を確保することが可能となる。CrとTiの合計において、好ましい範囲は22〜35、より好ましくは23〜30とした。また、Cr%/(Cr%+Ti%)の好ましい範囲は、0.15〜0.90、より好ましくは0.20〜0.80とした。

0036

さらに、Siと金属間化合物を形成するCrとの合金であるSixCry合金、Cr、Tiとの合金であるSix(Cr、Ti)y合金において、Six(Cr、Ti)y相の組成がx>yであることが必要である。高容量に欠かせないSi主要相が晶出するのがx>yの時であり、好ましくはx=2、y=1とする。

0037

また、請求項1に記載したリチウムイオン二次電池用負極材料に関して、Cr、Ti以
外にもSiと共晶合金を形成し微細Si相が得られること、Siよりも導電性がよく柔軟な金属間化合物を形成するCu、V、Mn、Fe、Ni、Nb、Zn、Alといった添加元素を一種以上を更に含有させることができる。これらの添加により金属間化合物の結晶子サイズを制御することで、化合物相が微細Si相の周囲を取り囲み、Siの微粉化、Siへのリチウムの吸蔵・放出時の体積膨張により生じる応力を緩和し、電極の崩壊、Siの電気的孤立を防ぐ役割を果たす。

0038

また、請求項1に記載したリチウムイオン二次電池用負極材料に関して、Cr、Ti以外にもSiと共晶合金を形成し微細Si相が得られること、Siよりも導電性がよく柔軟な金属間化合物を形成するMg、B、P、Gaといった添加元素を一種以上、合計量が0.05at.%〜5at.%含有し、結晶子サイズを制御することで、化合物相が微細Si相の周囲を取り囲み、Siの微粉化、Siへのリチウムの吸蔵・放出時の体積膨張により生じる応力を緩和し、電極の崩壊、Siの電気的孤立を防ぐ役割を果たす。また、B添加によるP型半導体構造をとることで、Siの電気伝導性の向上の役割を果たす。P添加によるN型半導体構造をとることで、Siの電気伝導性の向上の役割を果たす。

0039

Siの体積膨張収縮により生じる応力緩和等の効果が小さくする効果を付与するには、Cu、V、Mn、Fe、Ni、Nb、Pd、Zn、Alの合計含有量が0.05at.%以上必要であるが、一方、5at.%超えであるとリチウム不活性元素量が増えるため、充放電容量の低下を引き起こす。このため、Cu、V、Mn、Fe、Ni、Nb、Pd、Zn、Alから少なくとも一種以上含まれる添加元素の合計含有量が0.05at.%〜5at.%が望ましい。より好ましくは0.1at.%〜3at.%である。他にも同様の効果を狙った、Co、Zr、Pd、Bi、In、Sb、Sn、Moについても、少なくとも一種以上含まれる添加元素の合計含有量を0.05at.%〜5at.%とすることが望ましい。

0040

Siの体積膨張収縮により生じる応力緩和等の効果が小さくする効果を付与するには、Mg、B、P、Gaの合計含有量が0.05at.%以上必要であるが、一方、5at.%超えであるとリチウム不活性元素量が増えるため、充放電容量の低下を引き起こす。このため、Mg、B、P、Gaから少なくとも一種以上含まれる添加元素の合計含有量が0.05at.%〜5at.%が望ましい。より好ましくは0.1at.%〜3at.%である。他にも同様の効果を狙ったCo、Zr、Pd、Bi、In、Sb、Sn、Moについても、少なくとも一種以上含まれる添加元素の合計含有量を0.05at.%〜5at.%とすることが望ましい。

0041

上記リチウムイオン二次電池負極材料を用いることにより、高容量かつ繰り返し充放電時のサイクル特性に優れ、またサイクル初期充放電効率に優れた電池特性を示す。
また、上記リチウムイオン二次電池負極材料を用いた電極において、結合性に優れるポリイミド系バインダーを含むことで、Cu等の集電体との密着性を高め、高容量を保持したまま、充放電サイクル特性を改善する効果が期待される。

0042

以下、本発明について、実施例により具体的に説明する。
表1〜2に示す組成のリチウムイオン二次電池用負極材料粉末を、以下に述べる単ロール急冷法、ガスアトマイズ法等により作製した。単ロール急冷法である液体急冷法については、所定組成原料を底部に細孔を設けた石英管内に入れ、Ar雰囲気中で高周波溶解して溶湯を形成し、この溶湯を回転する銅ロールの表面に出湯した後、銅ロールによる急冷効果によりSi相の結晶子サイズの微細化を図った急冷リボンを作製した。その後、作製した急冷リボンをジルコニア製あるいはSUS304製、SUJ2製のポット容器内ジルコニアボールあるいはSUS304ボール、SUJ2ボールとともにAr雰囲気中にて密閉し、粒子状に加工することを目的としたミリングを行った。ミリングに関しては、ボールミル、ビーズミル、遊星ボールミル、アトライタ、振動ボールミル等が挙げられる。

0043

ガスアトマイズ法については、所定組成の原料を、底部に細孔を設けた石英坩堝内に入れ、Arガス雰囲気中で高周波誘導溶解炉により加熱溶融した後、Arガス雰囲気中で、ガス噴射させるとともに出湯させて、急冷凝固することでガスアトマイズ微粉末を得た。ディスクアトマイズ法については、所定組成の原料を、底部に細孔を設けた石英坩堝内に入れ、Arガス雰囲気中で高周波誘導溶解炉により加熱溶融した後、Arガス雰囲気中で、40000〜60000r.p.m.の回転ディスク上に出湯させて、急冷凝固することでディスクアトマイズ微粉末を得た。その後、作製したアトマイズ微粉末をジルコニア製あるいはSUS304製、SUJ2製のポット容器内にジルコニアボールあるいはSUS304ボール、SUJ2ボールとともにAr雰囲気中にて密閉し、メカニカルミリングにより粉末化し、結晶子サイズの制御を行った。メカニカルミリングに関しては、ボールミル、ビーズミル、遊星ボールミル、アトライタ、振動ボールミル等が挙げられる。メカニカルミリングによる処理では、ミリング時間や回転数等を設定することで、急冷凝固を利用したアトマイズ粉末のSi結晶子サイズや金属間化合物の結晶子サイズを制御することができる。

0044

以下、具体的な負極作製方法について述べる。
上記負極の単極での電極性能を評価するために、対極にリチウム金属を用いた、いわゆる二極式コイン型セルを用いた。まず、負極活物質(Si−Cr−Tiなど)、導電材料アセチレンブラック)、結着材料(ポリイミド、ポリフッ化ビニリデン等)を電子天秤量し、分散液(N−メチルピロリドン)と共に混合スラリー状態とした後、集電体(Cu等)上に均一に塗布した。塗布後、真空乾燥機減圧乾燥溶媒蒸発させた後、必要に応じてロールプレスした後、コインセルにあった形状に打ち抜いた。対極のリチウムも同様に金属リチウム箔をコインセルにあった形状に打ち抜いた。前記スラリー塗布電極真空乾燥において、ポリイミド結着材料使用時は性能を十分に発揮するため200℃以上の温度で乾燥した。ポリフッ化ビニリデン等使用時は約160℃の温度で乾燥した。

0045

リチウムイオン電池に使用する電解液エチレンカーボネートジメチルカーボネートの3:7混合溶媒を用い、支持電解質にはLiPF6(六フッ化リン酸リチウム)を用い、電解液に対して1モル溶解した。その電解液は露点管理された不活性雰囲気中で取り扱う必要があるため、セル組立ては、全て不活性雰囲気のグローブボックス内で行った。セパレータはコインセルにあった形状に切り抜いた後セパレータ内に電解液を十分浸透させるために、減圧下で数時間電解液中に保持した。その後、前工程で打ち抜いた負極、セパレータ、対極リチウムの順に組合せ、電池内部を電解液で十分満たした形で構築した。

0046

充電容量、放電容量の測定として、上記二極式セルを用い、温度25℃、充電は0.50mA/cm2 の電流密度で、金属リチウム極と同等の電位(0V)になるまで行い、同じ電流値(0.50mA/cm2 )で、放電を1.5Vまで行い、この充電−放電を1サイクルとした。また、サイクル寿命としては、上記測定を繰返し行うことを実施した。

0047

0048

0049

0050

0051

表1、表2に示すように、No.1〜48は本発明例であり、表3〜表5に示すようにNo.49〜119は比較例を示す。

0052

本発明例のNo.1〜12はSi主要相とSiとCrとTiからなる相を含み、Siの結晶子サイズが30nm以下であり、SiとCrとTiからなる化合物相の結晶子サイズが40nm以下の条件を満足している。

0053

本発明例No.4では、Si主要相とSiとCrとTiを含み、Siの結晶子サイズは
3nmであり、Siの結晶子サイズ30nm以下の条件を満たしている。かつ、SiとCrとTiからなる化合物相の結晶子サイズが31nmであり、SiとCrとTiからなる化合物相の結晶子サイズ40nm以下の条件を満足している。また、上記のように本発明条件を満たし、初期放電容量が789mAh/g、50サイクル後の放電容量維持率が92%と充放電容量とサイクル寿命のいずれも良好な特性を示した。

0054

本発明例のNo.13〜18はSi主要相とSiとCrからなる相を含み、Siの結晶子サイズが30nm以下であり、SiとCrからなる化合物相の結晶子サイズが40nm以下の条件を満足している。

0055

本発明例No.14では、Si主要相とSiとCrを含み、Siの結晶子サイズは5n
mであり、Siの結晶子サイズ30nm以下の条件を満たしている。かつ、SiとCrからなる化合物相の結晶子サイズが14nmであり、SiとCrからなる化合物相の結晶子サイズ40nm以下の条件を満足している。また、上記のように本発明条件を満たし、放電容量が989mAh/g、50サイクル後の放電容量維持率が83%と充放電容量とサイクル寿命のいずれも良好な特性を示した。

0056

本発明例のNo.19〜24はSi主要相とSiとCrとTiからなる相を含み、Siの結晶子サイズが30nm以下であり、SiとCrとTiからなる化合物相の結晶子サイズが40nm以下の条件を満足している。

0057

本発明例No.23では、Si主要相とSiとCrとTiを含み、Siの結晶子サイズ
は9nmであり、Siの結晶子サイズ30nm以下の条件を満たしている。かつ、SiとCrとTiからなる化合物相の結晶子サイズが15nmであり、SiとCrとTiからなる化合物相の結晶子サイズ40nm以下の条件を満足している。また、上記のように本発明条件を満たし、放電容量が674mAh/g、50サイクル後の放電容量維持率が84%と充放電容量とサイクル寿命のいずれも良好な特性を示した。

0058

本発明例のNo.25〜55はSi主要相とSiとCr、あるいはSiとCrとTiからなる相を含み、Si主要相のSi結晶子サイズが30nm以下であり、SiとCr、あるいはSiとCrとTiからなる化合物相の結晶子サイズが40nm以下の条件を満足している。また、Cu、V、Mn、Fe、Ni、Nb、Zn、Alから少なくとも一種以上含まれる添加元素の合計含有量は、0.05at.%〜5at.%である。また、Mg、B、P、Gaから少なくとも一種類以上含まれる添加元素の合計含有量は0.05at.%〜5at.%である。同様の効果を狙った、Co、Zr、Pd、Bi、In、Sb、Sn等の微量添加も含む。

0059

例えば、No.39では、Si主要相とSiとCrとTiを含み、Siの結晶子サイズは15nmであり、Siの結晶子サイズ30nm以下の条件を満たしている。かつ、SiとCrとTiからなる化合物相の結晶子サイズが32nmであり、SiとCrとTiからなる化合物相の結晶子サイズ40nm以下の条件を満足している。加えて、0.01at.%Cu、0.03at.%V、0.01at.%Mn、0.01at.%Fe、0.01at.%Ni、0.02at.%Zn、0.02at.%Alを含んでいる。また、0.01at.%Co、0.14at.%Bi、0.15at.%In、0.15at.%Sb、0.15at.%Snを含んでいる。上記のように本発明条件を満たし、放電容量が1079mAh/g、50サイクル後の放電容量維持率が85%と充放電容量とサイクル寿命のいずれも良好な特性を示した。

0060

例えば、比較例No.49はCrを含まないため、また、CrとTiの合計含有量が21.1〜40at.%の範囲を含まず、CrとTiの比率であるCr%/(Cr%+Ti%)が0.15〜1.00の範囲でないため、本発明条件を満たさない。また、比較例No.81では、CrとTiの合計含有量が21.1〜40at.%の範囲を含まず、CrとTiの比率であるCr%/(Cr%+Ti%)が0.15〜1.00の範囲でないため、かつ、Siの結晶子サイズ30nm以下の条件を満たさないため、本発明条件を満たさない。比較例No.106では、CrとTiの合計含有量が21.1〜40at.%の範囲を含まず、CrとTiの比率であるCr%/(Cr%+Ti%)が0.15〜1.00の範囲でないため、かつ、Siの結晶子サイズ30nm以下の条件を満たさず、化合物相の結晶子サイズが40nm以下の条件も満たさないため、本発明条件を満たさない。

0061

以上のように、組織の微細化、優れたイオン伝導性と電子伝導性、応力緩和効果を高める成分の制御と、Si相結晶子サイズの制御、あるいはさらに金属間化合物相の結晶子サイズも制御することによって、よりスムーズな充放電反応を行うことができ、充放電サイクル特性の向上を可能とする。さらに、ポリイミド系バインダーを含むことで、Cu等の集電体との密着性を高め、かつSiの体積膨張収縮による応力にも耐えうる強度を有するため、高い充放電容量と優れたサイクル寿命を兼備する極めて優れた効果を有する。


特許出願人 山陽特殊製鋼株式会社
代理人弁理士名 彊

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ