図面 (/)

技術 液体安定ウイルスワクチン

出願人 インターベットインターナショナルベー.フェー.
発明者 オコンネル,ケビンチヤオ,ジーソーン
出願日 2013年8月16日 (7年4ヶ月経過) 出願番号 2015-527871
公開日 2015年9月10日 (5年3ヶ月経過) 公開番号 2015-526450
状態 特許登録済
技術分野 抗原、抗体含有医薬:生体内診断剤 医薬品製剤
主要キーワード 目標体積 固体添加物 加速温度 初期力 非一貫性 ハージョ 液体添加物 表面積対体積比
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2015年9月10日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (0)

図面はありません

課題・解決手段

本発明は、生弱毒化ウイルス、10〜30%糖添加物およびアミノ酸を含む液体安定ワクチンを開示する。本発明は、そのようなワクチンの製造、およびそのようなワクチンを投与することにより動物防御する方法も開示する。

概要

背景

イヌおよび/またはネコに感染しうる相当な数のウイルスが存在する。対応するウイルス感染症による症状は、例えば、軽度な風邪のような症状を含みうるが、イヌジステンパーウイルス(CDV)感染症の場合のように、急速に致死的となりうるものもある[例えば、US2010/0196420を参照されたい]。実際、CDVは、眼、呼吸器胃腸外皮および神経系を冒しうる多重全身性感染を誘発する。イヌパルボウイルス(CPV)による死亡率も、比較的高い[例えば、US2009/0010955を参照されたい]。CPVは、主として、イヌ、特に若いイヌに感染する腸内病原体であり、4〜5週齢を超える子イヌおよびイヌにおける急性下痢発熱および白血球減少症により特徴づけられる。より若い子イヌでさえも心筋疾患罹患しうる。イヌジステンパーウイルスおよびイヌパルボウイルスは、子イヌ/イヌが防御されるべき2つの最も重要なイヌウイルスである。

追加的なイヌウイルスには、上部呼吸器疾患および感染性気管気管支炎の罹患に関与する、呼吸器疾患を引き起こす非常に伝染性のウイルスであるイヌパラインフルエンザ(CPI)ウイルス;感染性肝炎を引き起こすイヌアデノウイルス1型(CAV1);ならびに重篤なタイプの呼吸器疾患を引き起こしうる非常に伝染性であるイヌインフルエンザウイルスCIV)が含まれる。CIVは、重篤な感染においては80%の罹患率および5〜8%までの致死率を伴う100%の感染を引き起こしうると報告されている[Crawfordら,Science 310(5747):482−485(2005);U.S.7,959,929 B2]。同様に、ネコカリシウイルス(FCV)、ネコ白血病ウイルス(FeLV)、ネコ汎白血球減少症ウイルスFPLV)、ネココロナウイルス(FCoV)およびネコ鼻気管炎(FVR)ウイルスを含む、ネコを冒す幾つかのネコウイルスが存在する。

イヌまたはネコウイルス感染による疾患を予防する最良の方法は、これらのウイルスに対してそれらにワクチン接種することである、と現在広く受け入れられている。実際、イヌジステンパーウイルスワクチンは、対応疾患の罹患率を有意に低減している。同様に、感染性イヌ肝炎は、イヌアデノウイルス2ワクチン(CAV2)により非常に抑制されている。ワクチンにおいて生弱毒化CAV2を密接に関連したCAV1の代わりに使用することは、生弱毒化CAV1が接種されたイヌにおいて観察される間質性腎炎および角膜混濁に関する懸念を排除する[Taguchiら,Can Vet J.52(9):983−986(2011)]。

更に、必要なワクチン注射回数を減らす多価生弱毒化ウイルスワクチンが、安全に投与されうる。したがって、イヌジステンパー、イヌ感染性肝炎、イヌパルボウイルスおよびイヌパラインフルエンザウイルスに対して防御する幾つかの商業的に入手可能な多価生弱毒化ウイルスワクチンが存在する。また、より新たな多価ワクチンは、更にイヌインフルエンザウイルスに対しても防御する。

これまでのところ、弱毒化イヌおよびネコウイルスは、液体溶液中で貯蔵された場合には不安定である。したがって、ほとんどの生弱毒化イヌまたはネコウイルスワクチンは、それらの長期貯蔵の前に凍結乾燥される。生弱毒化イヌまたはネコウイルスは一般には水中の懸濁液として保護剤と混合され、凍結され、ついで凍結乾燥プロセス中に昇華および二次乾燥により脱水される。凍結および昇華による乾燥の低温は、関与する低い表面積対体積比と組み合わされると、長い乾燥期間を要求することがあり、それにより製造時間およびコストを有意に増加させうる。

また、製品負荷の全体にわたって貯蔵温度を調節し得ないこと、乾燥機の全体において一様でない凍結速度エッジ効果および放射エネルギー効果により、大規模な商業的乾燥プロセスにおいては固有非一貫性が生じる。乾燥温度は保護タンパク質マトリックスガラス転移温度より有意に低く保たれる必要があるので、乾燥時間を減少させるために乾燥温度を増加させることは選択肢にならないことが多い。更に、長い一貫しない乾燥時間および/または高い乾燥温度は、しばしば、生弱毒化ウイルスに対する構造的損傷を、それらの生物活性の有意な喪失と共に招く。

したがって、効力における固有の低下を相殺するために、生弱毒化ウイルスを含む凍結乾燥されたイヌおよび/またはネコワクチンは、力価を増加させて貯蔵される。しかし、凍結乾燥プロセスが、予想されるものより低い活性喪失を実際に招くならば、そのような力価の増加は有意な有害事象を招きうる。したがって、有害事象を招く量を安全に下回るだけでなく、凍結乾燥および後続の貯蔵によるウイルス力価低下を考慮して十分な効力を維持もするウイルス力価を含有するワクチンを製剤化するためには、細心の注意が要求される。したがって、ウイルス力価を安全かつ有効なレベルで高い信頼性で保有しうる新規生弱毒化イヌおよび/またはネコウイルスワクチンが必要とされている。

本明細書におけるいずれの参考文献の引用も、そのような参考文献が本出願に対する「先行技術」として入手可能であることを自認するものとして解釈されるべきではない。

概要

本発明は、生弱毒化ウイルス、10〜30%糖添加物およびアミノ酸を含む液体安定ワクチンを開示する。本発明は、そのようなワクチンの製造、およびそのようなワクチンを投与することにより動物を防御する方法も開示する。

目的

イヌまたはネコウイルス感染による疾患を予防する最良の方法は、これらのウイルスに対してそれらにワクチン接種することである

効果

実績

技術文献被引用数
1件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

弱毒化イヌまたはネコウイルス、10〜30%(w/v)糖添加物およびアミノ酸を含む液体安定ワクチンであって、ここで、液体安定ワクチンは、6.0〜8.0のpHを有し、そしてここで、アミノ酸は、アルギニンおよびメチオニンからなる群から選択され、ここで、アミノ酸がアルギニンである場合には、液体安定ワクチンにおけるその最終濃度が0.15〜0.6Mであり、そして、アミノ酸がメチオニンである場合には、液体安定ワクチンにおけるその最終濃度が0.025〜0.3Mである、液体安定ワクチン。

請求項2

生弱毒化イヌウイルスが、イヌジステンパーウイルス、イヌアデノウイルス2型イヌパルボウイルスおよびイヌパラインフルエンザウイルスからなる群から選択される、請求項1記載の液体安定ワクチン。

請求項3

イヌパラインフルエンザウイルス(CPV)が、CPV−2、CPV−2a、CPV−2b、CPV−2c、および異種CPV−2c/CPV−2ゲノムを含む組換えCPVからなる群から選択される、請求項2記載の液体安定ワクチン。

請求項4

0.4〜1.6%(w/v)ゼラチンを更に含む、請求項1〜3のいずれか1項記載の液体安定ワクチン。

請求項5

0.5〜2.0%(w/v)の、全カゼインタンパク質分解物を更に含む、請求項1〜4のいずれか1項記載の液体安定ワクチン。

請求項6

0.25〜1.0%(v/v)エタノールを更に含む、請求項1〜5のいずれか1項記載の液体安定ワクチン。

請求項7

50〜200μMEDTAを更に含む、請求項1〜6のいずれか1項記載の液体安定ワクチン。

請求項8

バッファーを更に含む、請求項1〜7のいずれか1項記載の液体安定ワクチン。

請求項9

バッファーが2.5〜50mMTrisを含む、請求項8記載の液体安定ワクチン。

請求項10

バッファーが2.5〜50mMヒスチジンを更に含む、請求項9記載の液体安定ワクチン。

請求項11

糖添加物が、スクロースソルビトール、および、糖とソルビトールとの組み合わせからなる群から選択される、請求項1〜10のいずれか1項記載の液体安定ワクチン。

請求項12

弱毒化ウイルスがイヌジステンパーウイルスである、請求項2または4〜11のいずれか1項記載の液体安定ワクチン。

請求項13

生弱毒化イヌパルボウイルス(CPV)を含む、請求項2または4〜12のいずれか1項記載の液体安定ワクチン。

請求項14

CPVが、CPV−2、CPV−2a、CPV−2b、CPV−2c、および異種CPV−2c/CPV−2ゲノムを含む組換えCPVからなる群から選択される、請求項13記載の液体安定ワクチン。

請求項15

CPVがCPV−2bである、請求項14記載の液体安定ワクチン。

請求項16

CPVがCPV−2cである、請求項14記載の液体安定ワクチン。

請求項17

CPV−2cがATCCセッション番号PTA−13492を有する、請求項16記載の液体安定ワクチン。

請求項18

生弱毒化イヌアデノウイルス2型を含む、請求項2または4〜17のいずれか1項記載の液体安定ワクチン。

請求項19

生弱毒化イヌパラインフルエンザウイルスを含む、請求項2または4〜18のいずれか1項記載の液体安定ワクチン。

請求項20

イヌパラインフルエンザウイルスが、異種抗原をコードし発現する組換えベクターである、請求項19記載の液体安定ワクチン。

請求項21

異種抗原が家禽ウイルス抗原である、請求項20記載の液体安定ワクチン。

請求項22

キレート化剤を更に含む、請求項1〜6または8〜21のいずれか1項記載の液体安定ワクチン。

請求項23

キレート化剤が、エチレンジアミン四酢酸EDTA)、1,2−ビス(o−アミノフェノキシエタン−N,N,N’,N’−四酢酸(BAPTA)、エチレングリコール四酢酸(EGTA)、ジメルカプトコハク酸DMSA)、およびジエチレントリアミン五酢酸(DTPA)、2,3−ジメルカプト−1−プロパンスルホン酸(DMPS)からなる群から選択される、請求項22記載の液体安定ワクチン。

請求項24

キレート化剤が0.5〜5mMEDTAである、請求項23記載の液体安定ワクチン。

請求項25

アジュバントを更に含む、請求項1〜24のいずれか1項記載の液体

請求項26

アジュバントが、リン酸アルミニウム水酸化アルミニウム溶液中で架橋を形成して高分子量ゲルになりうる低分子量共重合体アジュバント、および水中でアクリル酸ナトリウムゲル粒子から構成されるアジュバントからなる群から選択される、請求項25記載の液体安定ワクチン。

請求項27

ワクチンが不活化ウイルスを更に含む、請求項1〜26のいずれか1項記載の液体安定ワクチン。

請求項28

不活化ウイルスが、イヌインフルエンザウイルス、イヌニューモウイルス、イヌコロナウイルスまたはそれらのいずれかの組み合せからなる群から選択される、請求項27記載の液体安定ワクチン。

請求項29

ワクチンが不活化細菌を更に含む、請求項1〜28のいずれか1項記載の液体安定ワクチン。

請求項30

不活化細菌が、ボルデテラブロンキセプチカ(Bordetellabronchiseptica)、マイコプラズマ(Mycoplasma)属種エールリキアカニス(Ehrlichiacanis)、アナプラズマ(Anaplasma)属種、レプトスピラ・カニコラ(Leptospiracanicola)、レプトスピラ・グリッポチホサ(Leptospiragrippotyphosa)、レプトスピラ・ハージョ(Leptospirahardjo)、レプトスピラ・イクテロヘモラジア(Leptospiraicterohaemorrhagiae)、レプトスピラ・ポモナ(LeptospiraPomona)、レプトスピラ・インテロガンス(Leptospirainterrogans)、レプトスピラ・アウトムナリス(Leptospiraautmnalis)、レプトスピラ・ブラスラバ(LeptospiraBratislava)またはそれらのいずれかの組み合せからなる群から選択される、請求項29記載の液体安定ワクチン。

請求項31

不活化細菌が、レプトスピラ・カニコラ(Leptospiracanicola)、レプトスピラ・グリッポチホサ(Leptospiragrippotyphosa)、レプトスピラ・ポモナ(LeptospiraPomona)およびレプトスピラ・イクテロヘモラジア(Leptospiraicterohaemorrhagiae)の組み合せを含む、請求項30記載の液体安定ワクチン。

請求項32

ワクチンが抗生物質を更に含む、請求項1〜31のいずれか1項記載の液体安定ワクチン。

請求項33

請求項1〜32のいずれか1項記載の液体安定ワクチンをイヌに投与することを含む、イヌジステンパーウイルス、イヌアデノウイルス2型、イヌパルボウイルスおよびイヌパラインフルエンザウイルスの少なくとも1つに対してイヌにワクチン接種する方法。

請求項34

投与を皮下注射により行う、請求項33記載の方法。

請求項35

生弱毒化イヌまたはネコウイルスの治療的有効量を、10〜30%(w/v)糖添加物、アミノ酸およびpH6.0〜pH8.0のバッファー溶液と組み合わせて液体安定ワクチンを得ることを含む、請求項1〜32のいずれか1項記載の液体安定ワクチンの製造方法であって、ここで、アミノ酸は、アルギニンおよびメチオニンからなる群から選択され、ここで、アミノ酸がアルギニンである場合には、液体安定ワクチンにおけるその最終濃度が0.15〜0.6Mであり、そして、アミノ酸がメチオニンである場合には、液体安定ワクチンにおけるその最終濃度が0.025〜0.3Mである、製造方法。

技術分野

0001

関連出願に対する相互参照
本出願は、2012年8月21日付け出願の仮特許出願U.S.Serial No.61/691,507および2013年3月12日付け出願の61/777,164(それらの内容の全体を参照により本明細書に組み入れることとする)の、35 U.S.C.§119(e)に基づく優先権を主張するものである。

0002

発明の分野
本発明は、生弱毒化ウイルスを含む液体安定ワクチンに関する。本発明はまた、そのようなワクチンの製造および動物対象にワクチン接種する方法に関する。

背景技術

0003

イヌおよび/またはネコに感染しうる相当な数のウイルスが存在する。対応するウイルス感染症による症状は、例えば、軽度な風邪のような症状を含みうるが、イヌジステンパーウイルス(CDV)感染症の場合のように、急速に致死的となりうるものもある[例えば、US2010/0196420を参照されたい]。実際、CDVは、眼、呼吸器胃腸外皮および神経系を冒しうる多重全身性感染を誘発する。イヌパルボウイルス(CPV)による死亡率も、比較的高い[例えば、US2009/0010955を参照されたい]。CPVは、主として、イヌ、特に若いイヌに感染する腸内病原体であり、4〜5週齢を超える子イヌおよびイヌにおける急性下痢発熱および白血球減少症により特徴づけられる。より若い子イヌでさえも心筋疾患罹患しうる。イヌジステンパーウイルスおよびイヌパルボウイルスは、子イヌ/イヌが防御されるべき2つの最も重要なイヌウイルスである。

0004

追加的なイヌウイルスには、上部呼吸器疾患および感染性気管気管支炎の罹患に関与する、呼吸器疾患を引き起こす非常に伝染性のウイルスであるイヌパラインフルエンザ(CPI)ウイルス;感染性肝炎を引き起こすイヌアデノウイルス1型(CAV1);ならびに重篤なタイプの呼吸器疾患を引き起こしうる非常に伝染性であるイヌインフルエンザウイルスCIV)が含まれる。CIVは、重篤な感染においては80%の罹患率および5〜8%までの致死率を伴う100%の感染を引き起こしうると報告されている[Crawfordら,Science 310(5747):482−485(2005);U.S.7,959,929 B2]。同様に、ネコカリシウイルス(FCV)、ネコ白血病ウイルス(FeLV)、ネコ汎白血球減少症ウイルスFPLV)、ネココロナウイルス(FCoV)およびネコ鼻気管炎(FVR)ウイルスを含む、ネコを冒す幾つかのネコウイルスが存在する。

0005

イヌまたはネコウイルス感染による疾患を予防する最良の方法は、これらのウイルスに対してそれらにワクチン接種することである、と現在広く受け入れられている。実際、イヌジステンパーウイルスワクチンは、対応疾患の罹患率を有意に低減している。同様に、感染性イヌ肝炎は、イヌアデノウイルス2ワクチン(CAV2)により非常に抑制されている。ワクチンにおいて生弱毒化CAV2を密接に関連したCAV1の代わりに使用することは、生弱毒化CAV1が接種されたイヌにおいて観察される間質性腎炎および角膜混濁に関する懸念を排除する[Taguchiら,Can Vet J.52(9):983−986(2011)]。

0006

更に、必要なワクチン注射回数を減らす多価生弱毒化ウイルスワクチンが、安全に投与されうる。したがって、イヌジステンパー、イヌ感染性肝炎、イヌパルボウイルスおよびイヌパラインフルエンザウイルスに対して防御する幾つかの商業的に入手可能な多価生弱毒化ウイルスワクチンが存在する。また、より新たな多価ワクチンは、更にイヌインフルエンザウイルスに対しても防御する。

0007

これまでのところ、弱毒化イヌおよびネコウイルスは、液体溶液中で貯蔵された場合には不安定である。したがって、ほとんどの生弱毒化イヌまたはネコウイルスワクチンは、それらの長期貯蔵の前に凍結乾燥される。生弱毒化イヌまたはネコウイルスは一般には水中の懸濁液として保護剤と混合され、凍結され、ついで凍結乾燥プロセス中に昇華および二次乾燥により脱水される。凍結および昇華による乾燥の低温は、関与する低い表面積対体積比と組み合わされると、長い乾燥期間を要求することがあり、それにより製造時間およびコストを有意に増加させうる。

0008

また、製品負荷の全体にわたって貯蔵温度を調節し得ないこと、乾燥機の全体において一様でない凍結速度エッジ効果および放射エネルギー効果により、大規模な商業的乾燥プロセスにおいては固有非一貫性が生じる。乾燥温度は保護タンパク質マトリックスガラス転移温度より有意に低く保たれる必要があるので、乾燥時間を減少させるために乾燥温度を増加させることは選択肢にならないことが多い。更に、長い一貫しない乾燥時間および/または高い乾燥温度は、しばしば、生弱毒化ウイルスに対する構造的損傷を、それらの生物活性の有意な喪失と共に招く。

0009

したがって、効力における固有の低下を相殺するために、生弱毒化ウイルスを含む凍結乾燥されたイヌおよび/またはネコワクチンは、力価を増加させて貯蔵される。しかし、凍結乾燥プロセスが、予想されるものより低い活性喪失を実際に招くならば、そのような力価の増加は有意な有害事象を招きうる。したがって、有害事象を招く量を安全に下回るだけでなく、凍結乾燥および後続の貯蔵によるウイルス力価低下を考慮して十分な効力を維持もするウイルス力価を含有するワクチンを製剤化するためには、細心の注意が要求される。したがって、ウイルス力価を安全かつ有効なレベルで高い信頼性で保有しうる新規生弱毒化イヌおよび/またはネコウイルスワクチンが必要とされている。

0010

本明細書におけるいずれの参考文献の引用も、そのような参考文献が本出願に対する「先行技術」として入手可能であることを自認するものとして解釈されるべきではない。

0011

発明の概括
現在のワクチンの欠点を克服するために、本発明は、新規液体安定生弱毒化ウイルスワクチン、およびそれらの対応免疫原性組成物を提供する。ある実施形態において、生弱毒化ウイルスは、生弱毒化イヌウイルスである。他の実施形態において、生弱毒化ウイルスは、生弱毒化ネコウイルスである。本発明はまた、そのようなワクチンを動物に投与する方法を提供する。本発明は更に、本発明のワクチンを投与することにより動物における疾患を予防する方法を提供する。特定の実施形態において、動物はイヌである。他の実施形態においては、動物はネコである。

0012

したがって、本発明は、生弱毒化ウイルスを含む液体安定ワクチンを提供する。ある実施形態において、生弱毒化ウイルスは組換えウイルスである。このタイプの特定の実施形態において、組換えウイルスは、異種タンパク質をコードする組換えベクターとして使用される。このタイプのより詳細な実施形態においては、異種タンパク質はウイルスまたは細菌抗原である。

0013

特定の実施形態において、ワクチンは糖添加物およびアミノ酸を含む。このタイプの或る実施形態において、ワクチンは10〜30%の糖添加物を含む。特定の実施形態において、ワクチンは12〜27%の糖添加物を含む。ある実施形態において、ワクチンは15〜25%の糖添加物を含む。関連実施形態において、ワクチンは15〜20%の糖添加物を含む。他の実施形態において、ワクチンは20〜25%の糖添加物を含む。より詳細な実施形態においては、ワクチンは16〜18%の糖添加物を含む。より一層詳細な実施形態においては、ワクチンは17%の糖添加物を含む。

0014

本発明の液体安定ウイルスワクチンの特定の実施形態において、糖添加物はスクロースである。他の実施形態において、糖添加物はソルビトールである。更に他の実施形態においては、糖添加物はマンニトールである。更に他の実施形態においては、糖添加物はトレハロースである。更に他の実施形態においては、糖添加物はデキストロースである。特定の実施形態において、糖添加物は、実際には2以上の糖付加剤の組み合せである。このタイプの特定の実施形態においては、糖添加物は、スクロースとソルビトールとの組み合せである。このタイプのより詳細な実施形態においては、糖添加物は、15%スクロースと10%ソルビトールとの組み合せである。

0015

本発明の液体安定ワクチンは、pH6.0〜8.0のpH範囲でありうる。ある実施形態において、pH範囲はpH6.5〜pH7.8である。特定の実施形態において、pH範囲はpH6.8〜pH7.5である。より詳細な実施形態においては、pH範囲はpH7.0〜pH7.4である。より一層詳細な実施形態においては、pHは7.2である。

0016

本発明の液体安定ワクチンは、バッファーを含みうる。このタイプの特定の実施形態において、バッファーは2.5〜50mM Tris(トリス)を含む。関連実施形態において、バッファーは5〜25mM Trisを含む。特定の実施形態において、バッファーは10〜20mMのTirsを含む。更に他の実施形態においては、バッファーは2.5〜50mMヒスチジンを含みうる。特定の実施形態において、バッファーは2.5〜50mM Trisおよび2.5〜50mM ヒスチジンを含む。更に詳細な実施形態においては、バッファーは5〜25mM Trisおよび5〜25mM ヒスチジンを含む。更により詳細な実施形態においては、バッファーは10〜20mM Trisおよび10〜20mM ヒスチジンを含む。他の実施形態において、バッファーは2.5〜50mMホスファートを含む。関連実施形態において、バッファーは5〜25mM ホスファートを含む。特定の実施形態においては、バッファーは10〜20mM ホスファートを含む。

0017

本発明の液体安定ワクチンはアミノ酸を含む。ある実施形態において、アミノ酸はアルギニンである。他の実施形態において、アミノ酸はメチオニンである。更に他の実施形態においては、アミノ酸はグリシンである。更に他の実施形態においては、アミノ酸はグルタミン酸である。関連実施形態においては、液体安定ワクチンはアルギニンとメチオニンとの両方を含む。他の実施形態においては、液体安定ワクチンはアルギニンとグリシンとの両方を含む。更に他の実施形態においては、液体安定ワクチンはグリシンとメチオニンとの両方を含む。関連実施形態においては、液体安定ワクチンはグルタミン酸とメチオニンとの両方を含む。他の実施形態においては、液体安定ワクチンはグルタミン酸とグリシンとの両方を含む。更に他の実施形態においては、液体安定ワクチンはグルタミン酸とアルギニンとの両方を含む。関連実施形態では、液体安定ワクチンはアルギニン、グルタミン酸およびメチオニンを含む。他の実施形態においては、液体安定ワクチンはアルギニン、グルタミン酸およびグリシンを含む。更に他の実施形態においては、液体安定ワクチンはアルギニン、グルタミン酸およびメチオニンを含む。更に他の実施形態においては、液体安定ワクチンはアルギニン、グリシンおよびメチオニンを含む。更に他の実施形態においては、液体安定ワクチンはアルギニン、グリシンおよびメチオニンを含む。特定の実施形態においては、液体安定ワクチンはアルギニン、グリシン、メチオニンおよびグルタミン酸を含む。

0018

特定の実施形態において、液体安定ワクチンにおけるアルギニンまたはグルタミン酸またはグリシンの最終濃度は、0.15〜0.6Mである。関連実施形態において、液体安定ワクチンにおけるアルギニンまたはグルタミン酸またはグリシンの最終濃度は、0.2〜0.5Mである。より詳細な実施形態においては、液体安定ワクチンにおけるアルギニンまたはグルタミン酸またはグリシンの最終濃度は、0.25〜0.35Mである。より一層詳細な実施形態においては、液体安定ワクチンにおけるアルギニンまたはグルタミン酸またはグリシンの最終濃度は、0.3Mである。

0019

特定の実施形態において、液体安定ワクチンにおけるアルギニンおよび/またはグルタミン酸および/またはグリシンの最終組み合せ濃度は、0.15〜0.6Mである。関連実施形態において、液体安定ワクチンにおけるアルギニンおよび/またはグルタミン酸および/またはグリシンの最終組み合せ濃度は、0.2〜0.5Mである。より詳細な実施形態においては、液体安定ワクチンにおけるアルギニンおよび/またはグルタミン酸および/またはグリシンの最終組み合せ濃度は、0.25〜0.35Mである。より一層詳細な実施形態においては、液体安定ワクチンにおけるアルギニンおよび/またはグルタミン酸および/またはグリシンの最終組み合せ濃度は、0.3Mである。

0020

特定の実施形態において、液体安定ワクチンにおけるメチオニンの最終濃度は、0.025〜0.3Mである。関連実施形態において、液体安定ワクチンにおけるメチオニンの最終濃度は、0.04〜0.15Mである。より詳細な実施形態においては、液体安定ワクチンにおけるメチオニンの最終濃度は、0.06〜0.09Mである。より一層詳細な実施形態においては、液体安定ワクチンにおけるメチオニンの最終濃度は、0.07Mである。

0021

本発明の液体安定ワクチンは安定化タンパク質をも含みうる。安定化タンパク質は、無傷タンパク質および/またはタンパク質加水分解物でありうる。特定の実施形態において、安定化タンパク質はゼラチンである。より詳細な実施形態においては、本発明の液体安定ワクチンに含有される安定化タンパク質は、0.4〜1.6%ゼラチンである。代替的実施形態においては、安定化タンパク質は全カゼイン加水分解物である。このタイプの特定の実施形態においては、本発明の液体安定ワクチンに含有される安定化タンパク質は、全カゼインの加水分解物0.5〜2.0%である。ある実施形態においては、全カゼインの加水分解物は、全カゼインのタンパク質加水分解物である。

0022

また、本発明の液体安定ワクチンは、アルコールをも更に含みうる。このタイプの特定の実施形態においては、アルコールはエタノールである。より詳細な実施形態においては、液体安定ワクチンは、0.25〜1.0%エタノールを含む。関連実施形態においては、本発明の液体安定ワクチンは、デキストラン硫酸をも含みうる。特定の実施形態において、液体安定ワクチンは、1〜20mM デキストラン硫酸を含む。より詳細な実施形態においては、液体安定ワクチンは、2.5〜10mM デキストラン硫酸を含む。より一層詳細な実施形態においては、液体安定ワクチンは、5mM デキストラン硫酸を含む。

0023

また、本発明の液体安定ワクチンは、キレート化剤をも更に含みうる。そのようなキレート化剤には、エチレンジアミン四酢酸EDTA)、1,2−ビス(o−アミノフェノキシエタン−N,N,N’,N’−四酢酸(BAPTA)、エチレングリコール四酢酸(EGTA)、ジメルカプトコハク酸DMSA)、ジエチレントリアミン五酢酸(DTPA)および2,3−ジメルカプト−1−プロパンスルホン酸(DMPS)が含まれうるが、これらに限定されるものではない。本発明の液体ワクチンにおけるそのようなキレート剤の濃度は、約50μM〜10mMの様々な値となりうる。

0024

ある実施形態において、キレート剤はEDTAである。特定の実施形態においては、液体安定ワクチンは、50μM〜10mM EDTAを含む。このタイプの或る実施形態においては、液体安定ワクチンは、50〜200μ EDTAを含む。他の実施形態において、液体安定ワクチンは、250μM〜7.5mM EDTAを含む。更に他の実施形態においては、液体安定ワクチンは、0.5mM〜5.0mM EDTAを含む。更に他の実施形態においては、液体安定ワクチンは、1.0mM〜3.0mM EDTAを含む。
より詳細な実施形態においては、液体安定ワクチンは、約2mM EDTAを含む。

0025

本発明の液体安定ワクチンは、アジュバントを更に含みうる。このタイプの特定の実施形態においては、アジュバントはリン酸アルミニウムである。他のそのような実施形態においては、アジュバントは水酸化アルミニウムである。更に他の実施形態においては、アジュバントは、溶液中で架橋を形成して高分子量ゲルになりうる低分子量共重合体アジュバントである。更に他の実施形態においては、アジュバントは、水中においてアクリル酸ナトリウムゲル粒子から構成される。更に他の実施形態においては、アジュバントは2以上のそのようなアジュバントの組み合せである。

0026

ある実施形態においては、本発明の液体安定ワクチンは、フリーラジカルスカベンジャーおよび/または抗酸化剤を更に含みうる。関連実施形態においては、本発明の液体安定ワクチンは、液体上に、例えばアルゴン窒素またはヘリウムのような不活性ガスを含有する密閉容器内に維持されている(例えば、不活性ガスで逆充填されている)。

0027

本発明の液体安定ワクチンは、生弱毒化イヌウイルスを含みうる。特定の実施形態において、生弱毒化イヌウイルスは、イヌジステンパーウイルスである。他の実施形態においては、生弱毒化イヌウイルスは、イヌアデノウイルス2型である。更に他の実施形態においては、生弱毒化イヌウイルスは、イヌパルボウイルス(CPV)である。このタイプの1つの特定の実施形態においては、イヌパルボウイルスは、イヌパルボウイルス2(CPV−2)である。このタイプの更にもう1つの特定の実施形態においては、イヌパルボウイルスは、イヌパルボウイルス2a(CPV−2a)である。このタイプの更にもう1つの特定の実施形態においては、イヌパルボウイルスは、イヌパルボウイルス2b(CPV−2b)である。このタイプの更にもう1つの特定の実施形態においては、イヌパルボウイルスは、イヌパルボウイルス2c(CPV−2c)である。このタイプの特定の実施形態においては、CPV−2cは、ATCCセッション番号PTA−13492である
。更にもう1つの実施形態においては、イヌパルボウイルスは、異種CPV−2c/CPV−2ゲノムを含むように構築された組換えイヌパルボウイルスであり、すなわち、カプシドタンパク質をコードする領域は、CPV−2c分離体からのものであり、非構造タンパク質をコードする領域は、CPV−2分離体からのものである。

0028

更に他の実施形態においては、生弱毒化イヌウイルスは、イヌパラインフルエンザウイルスである。特定の実施形態においては、イヌパラインフルエンザウイルスは、組換えベクターである。より詳細な実施形態においては、組換えイヌパラインフルエンザウイルスは、異種タンパク質をコードし、発現する。このタイプの或る実施形態においては、異種タンパク質は、非イヌ抗原である。より詳細な実施形態においては、抗原は、家禽ウイルスまたは細菌抗原である。ある実施形態においては、組換えイヌパラインフルエンザウイルスは、組換えパラインフルエンザウイルス5である。

0029

更に他の実施形態においては、生弱毒化イヌウイルスは、イヌコロナウイルスである。
更に他の実施形態においては、生弱毒化イヌウイルスは、イヌニューモウイルスである。
更に他の実施形態においては、生弱毒化イヌウイルスは、イヌ伝染性肝炎ウイルスである。更に他の実施形態においては、生弱毒化イヌウイルスは、イヌヘルペスウイルスである。更に他の実施形態においては、生弱毒化イヌウイルスは、狂犬病ウイルスである。更に他の実施形態においては、生弱毒化イヌウイルスは、イヌ微小ウイルスである。更に他の実施形態においては、生弱毒化イヌウイルスは、イヌインフルエンザウイルスである。代替的実施形態においては、生弱毒化ウイルスは、仮性狂犬病ウイルスである。

0030

本発明の液体安定ワクチンは、生弱毒化ネコウイルスを含みうる。ある実施形態においては、生弱毒化ネコウイルスは、ネコヘルペスウイルス(FHV)である。他の実施形態においては、生弱毒化ネコウイルスは、ネコカリシウイルス(FCV)である。更に他の実施形態においては、生弱毒化ネコウイルスは、ネコニューモウイルス(FPN)である。更に他の実施形態においては、生弱毒化ネコウイルスは、ネコパルボウイルス(FPV)である。更に他の実施形態においては、生弱毒化ネコウイルスは、ネコ白血病ウイルス(FeLV)である。更に他の実施形態においては、生弱毒化ネコウイルスは、ネコ伝染性腹膜炎ウイルス(FIPV)である。更に他の実施形態においては、生弱毒化ネコウイルスは、ネコ免疫不全ウイルス(FIV)である。更に他の実施形態においては、生弱毒化ウイルスは、ネコボルナ病ウイルス(BDV)である。更に他の実施形態においては、生弱毒化ネコウイルスは、ネコインフルエンザウイルスである。更に他の実施形態においては、生弱毒化ネコウイルスは、ネコ汎白血球減少症ウイルス(FPLV)である。更に他の実施形態においては、生弱毒化ネコウイルスは、ネココロナウイルス(FCoV)である。更に他の実施形態においては、生弱毒化ネコウイルスは、ネコ鼻気管炎ウイルス(FVR)である。

0031

また、本発明は、多価ワクチンである液体安定ワクチンを提供する。特定の実施形態においては、本発明の多価ワクチンは、生弱毒化ウイルスワクチンのみを含む。そのような多価ワクチンは、生弱毒化ウイルスの、任意の組み合せを含有しうる。このタイプの特定の実施形態においては、多価ワクチンは、生弱毒化イヌジステンパーウイルスおよび生弱毒化イヌパルボウイルスを含む。関連実施形態においては、多価ワクチンは、生弱毒化イヌジステンパーウイルスおよび生弱毒化イヌアデノウイルス2型を含む。他の実施形態においては、多価ワクチンは、生弱毒化イヌジステンパーウイルスおよび生弱毒化イヌパラインフルエンザウイルスを含む。更に他の実施形態においては、多価ワクチンは、生弱毒化イヌジステンパーウイルス、生弱毒化イヌパルボウイルスおよび生弱毒化イヌパラインフルエンザウイルスを含む。更に他の実施形態においては、多価ワクチンは、生弱毒化イヌジステンパーウイルス、生弱毒化イヌパルボウイルスおよび生弱毒化イヌアデノウイルス2型を含む。

0032

更に他の実施形態においては、多価ワクチンは、生弱毒化イヌジステンパーウイルス、生弱毒化イヌパラインフルエンザウイルスおよび生弱毒化イヌアデノウイルス2型を含む。更に他の実施形態においては、多価ワクチンは、生弱毒化イヌジステンパーウイルス、生弱毒化イヌパルボウイルス、生弱毒化イヌパラインフルエンザウイルスおよび生弱毒化イヌアデノウイルス2型を含む。特定の実施形態においては、多価ワクチンは、生弱毒化イヌジステンパーウイルス、生弱毒化イヌパルボウイルス、生弱毒化イヌパラインフルエンザウイルス、生弱毒化イヌアデノウイルス2型および生弱毒化イヌコロナウイルスを含む。関連実施形態においては、多価ワクチンは、生弱毒化イヌジステンパーウイルス、生弱毒化イヌパルボウイルス、生弱毒化イヌパラインフルエンザウイルス、生弱毒化イヌアデノウイルス2型および生弱毒化ネココロナウイルスを含む。このタイプの特定の実施形態においては、多価ワクチンは、生弱毒化イヌジステンパーウイルス、生弱毒化イヌアデノウイルス2型、生弱毒化イヌパルボウイルス、生弱毒化イヌパラインフルエンザウイルスおよび生弱毒化イヌインフルエンザウイルスを含む。

0033

他の実施形態においては、本発明は、生弱毒化イヌアデノウイルス2型および生弱毒化イヌパラインフルエンザウイルスを含む多価ワクチンである液体安定ワクチンを提供する。更に他の実施形態においては、多価ワクチンは、生弱毒化イヌアデノウイルス2型および生弱毒化イヌパルボウイルスを含む。更に他の実施形態においては、多価ワクチンは、生弱毒化イヌパルボウイルスおよび生弱毒化イヌパラインフルエンザウイルスを含む。更に他の実施形態においては、多価ワクチンは、生弱毒化イヌアデノウイルス2型、生弱毒化イヌパルボウイルスおよび生弱毒化イヌパラインフルエンザウイルスを含む。このタイプの特定の実施形態では、多価ワクチンは、生弱毒化イヌアデノウイルス2型、生弱毒化イヌパルボウイルス、生弱毒化イヌパラインフルエンザウイルスおよび生弱毒化イヌインフルエンザウイルスを含む。

0034

あるいは、本発明の液体安定ワクチンは、不活化死滅)ウイルスおよび/または不活化細菌(例えば、バクテリン)および/またはバクテリンの亜画分を更に含みうる。したがって、1以上の生弱毒化ウイルスワクチンを含む本発明の液体安定ワクチンのいずれかは、不活化ウイルスおよび/または不活化細菌および/またはバクテリンの亜画分を更に含みうる。特定の実施形態においては、不活化ウイルスは、イヌインフルエンザウイルスである。他の実施形態においては、不活化ウイルスは、イヌニューモウイルスである。更に他の実施形態においては、不活化ウイルスは、イヌコロナウイルスである。更に他の実施形態においては、本発明の液体安定ワクチンは、これらの不活化イヌウイルスの2以上を含みうる。

0035

ある実施形態においては、不活化細菌は、ボルデテラブロンキセプチカ(Bordetella bronchiseptica)である。更に他の実施形態においては、不活化細菌は、マイコプラズマ(Mycoplasma)属種である。更に他の実施形態においては、不活化細菌は、エールリキアカニス(Ehrlichia canis)である。更に他の実施形態においては、不活化細菌は、アナプラズマ(Anaplasma)属種である。更に他の実施形態においては、不活化細菌は、レプトスピラ(Leptospira)である。1つのそのような実施形態においては、レプトスピラは、レプトスピラ・カニコラ(Leptospira canicola)である。もう1つの実施形態においては、レプトスピラは、レプトスピラ・グリッポチホサ(Leptospira grippotyphosa)である。更にもう1つの実施形態においては、レプトスピラは、レプトスピラ・ハージョ(Leptospira hardjo)である。更にもう1つの実施形態においては、レプトスピラは、レプトスピラ・イクテロヘモラジア(Leptospira icterohaemorrhagiae)である。更にもう1つの実施形態においては、レプトスピラは、レプトスピラ・ポモナ(Leptospira Pomona)である。更にもう1つの実施形態においては、レプトスピラは、レプトスピラ・インテロガンス(Leptospira interrogans)である。
更にもう1つの実施形態においては、レプトスピラは、レプトスピラ・アウトムナリス(Leptospira autmnalis)である。更にもう1つの実施形態においては、レプトスピラは、レプトスピラ・ブラスラバ(Leptospira Bratislava)である。更に他の実施形態においては、本発明の液体安定ワクチンは、これらの不活化細菌の2以上を含みうる。特定の実施形態においては、液体安定ワクチンは、レプトスピラ・カニコラ(Leptospira canicola)、レプトスピラはレプトスピラ・グリッポチホサ(Leptospira grippotyphosa)、レプトスピラ・ポモナ(Leptospira Pomona)およびレプトスピラ・イクテロヘモラジア(Leptospira icterohaemorrhagiae)を含む。

0036

本発明は更に、本発明のワクチンを動物に投与することを含む、イヌまたはネコウイルス感染から生じる臨床疾患に対するネコまたはイヌの防御を補助する方法を提供する。ある実施形態においては、投与を経粘膜的に行う。他の実施形態においては、投与を非経口的に行う。更に他の実施形態においては、投与を皮内に行う。更に他の実施形態においては、投与を経皮的に行う。より詳細な実施形態においては、本発明のワクチンを動物の皮下に投与する。他の特定の実施形態においては、本発明のワクチンを動物に筋肉内に投与する。本発明は、初回(一次)および/または追加ワクチンの使用をも含む。

0037

特定の実施形態においては、動物対象はイヌであり、該方法は、生弱毒化ウイルスを含む本発明の液体安定ワクチンをイヌに投与することを含む。特定の実施形態においては、液体安定ワクチンは、生弱毒化イヌジステンパーウイルス、生弱毒化イヌアデノウイルス2型、生弱毒化イヌパルボウイルスおよび生弱毒化イヌパラインフルエンザウイルスを含む。このタイプの或る実施形態においては、液体安定ワクチンは、生弱毒化イヌジステンパーウイルス、生弱毒化イヌアデノウイルス2型、生弱毒化イヌパルボウイルス、生弱毒化イヌパラインフルエンザウイルスおよび生弱毒化イヌインフルエンザウイルスを含む。
このタイプの他の実施形態においては、液体安定ワクチンは、生弱毒化イヌジステンパーウイルス、生弱毒化イヌアデノウイルス2型、生弱毒化イヌパルボウイルス、生弱毒化イヌパラインフルエンザウイルスおよび不活化弱毒化イヌインフルエンザウイルスを含む。

0038

本発明の液体安定ワクチンの任意の及びあらゆる製造方法も提供する。ある実施形態においては、該方法は、生弱毒化ウイルスの治療的有効量を、10〜30%糖添加物、アミノ酸およびpH6.0〜pH8.0の緩衝液(バッファー)と組み合わせて液体安定ワクチンを得ることを含む。アミノ酸は、アルギニン、グリシン、グルタミン酸、メチオニン、或いは、アルギニン、グリシン、グルタミン酸および/またはメチオニンの組み合せでありうる。特定の実施形態においては、アルギニンおよび/またはグリシンおよび/またはグルタミン酸は、液体安定ワクチンにおいて0.15〜0.6Mの最終濃度を有する。
ある実施形態において、メチオニンは、液体安定ワクチンにおいて0.025〜0.3Mの最終濃度を有する。特定の実施形態においては、生弱毒化ウイルスの治療的有効量は、生弱毒化イヌウイルスの治療的有効量である。このタイプの特定の実施形態においては、生弱毒化イヌウイルスの治療的有効量は、生弱毒化イヌジステンパーウイルス、生弱毒化イヌアデノウイルス2型、生弱毒化イヌパルボウイルスおよび生弱毒化イヌパラインフルエンザウイルスの治療的有効量を含む。

0039

本発明のこれらの及び他の態様は、以下の詳細な説明を参照することにより、より良く理解されるであろう。

0040

発明の詳細な説明
不活化(死滅)ウイルスワクチンとは対照的に、本発明の液体安定生ウイルスワクチンは、弱毒化されている。従来であれば、そのような弱毒化生ウイルスワクチンを製剤化する場合、有意な有害事象を招きうるレベルを安全に下回るレベルに弱毒化ウイルスの力価を維持するために、格別の注意が必要であろう。実際、ほとんどの生弱毒化イヌまたはネコウイルスワクチンは凍結乾燥され、凍結乾燥プロセス自体と長期貯蔵中の経時的影響との両方により、凍結乾燥は弱毒化生ウイルスワクチンの効力における相当な低下を招きうる。

0041

本発明は、信頼可能に安全なレベルより高いレベルに生弱毒化ウイルス抗原の初期力価を増加させる必要性を伴うことなく、貯蔵中でさえも依然として有効である液体安定ワクチンを提供することにより、この問題を克服した。追加的な利点として、本発明は、そのような安全かつ有効なワクチンを製造するのに必要な生弱毒化ウイルスの量を有意に減少させることによりもたらされる、ワクチンの製造のコストを低下させるための手段を提供する。また、本発明の生弱毒化ウイルスワクチンは、それらの凍結乾燥対応物よりより簡便に使用される。したがって、本発明は、冷凍温度で液体として貯蔵され、12〜18カ月間または更にはそれより長期にわたって尚も安定なままでありうる安全かつ有効な生弱毒化ウイルスワクチンを提供する。

0042

更に、驚くべきことに、本発明の液体安定生ウイルスワクチンは、任意のタイプのイヌおよび/またはネコウイルスを含みうる。したがって、本発明の液体安定生ウイルスワクチンは、エンベロープウイルスおよび非エンベロープウイルスの両方を含みうる。また、本発明の液体安定生ウイルスワクチンは、一本鎖RNAゲノム、一本鎖DNAゲノムまたは二本鎖DNAゲノムを有する生弱毒化ウイルスを含みうる。

0043

また、本発明の液体安定生ウイルスワクチンは、他の組換えイヌまたはネコベクターをも含むことが可能であり、ベクターは、単独で、および/または他のそのような組換えベクターと共に、および/または生弱毒化イヌもしくはネコウイルスと共に、および/または不活化細菌および/または不活化イヌもしくはネコウイルスと組み合わされて存在す
る。そのような組換えイヌまたはネコベクターは更に、1以上の異種ウイルスまたは細菌抗原をコードしうる。そのような組換えベクターの特定の一例として、組換えイヌパラインフルエンザウイルス5が挙げられ、これは、最近、Liら[J.of Virology 87(10)5985−5993(2013);その全体を参照により本明細書に組み入れることとする]により記載された。

0044

本発明の液体安定生ウイルスワクチンの組換えベクター、例えば組換えパラインフルエンザウイルス5は、イヌウイルスおよび/またはネコウイルスおよび/またはヒトウイルスおよび/またはシミアンウイルスおよび/またはウシウイルスおよび/またはヒツジウイルスおよび/またはブタウイルスおよび/または家禽ウイルス(例えば、ニワトリウイルス)からの異種抗原をコードしうる。特定の実施形態においては、本発明の液体安定生ウイルスワクチンは、1以上のニワトリウイルスからの1以上の抗原をコードする組換えパラインフルエンザウイルス5を含む。

0045

驚くべきことに、キレート化剤(例えば、2mMEDTA)および/またはアジュバント(例えば、リン酸アルミニウム)の存在下では、本発明の液体安定生ウイルスワクチンは、製剤中に不活化細菌が含まれている場合でさえも、それらの安定性を保有する(後記実施例2を参照されたい)。したがって、本発明の液体安定生ウイルスワクチンは、1以上の不活化イヌもしくはネコウイルスおよび/または細菌(例えば、バクテリン)および/またはバクテリンの亜画分を更に含みうる。

0046

本明細書においては簡便のために単数形の用語が用いられているが、これは何らそのように限定的であるとは意図されない。したがって、例えば、「糖添加物」に対する言及は、特に示されていない限りそのような糖添加物の1以上に対する言及を含む。複数形の用語の使用も、特に示されていない限り、限定的であるとは意図されない。同様に、酸またはその対応塩基と称されうる化合物は、特に示されていない限り、本明細書においてそのいずれかとして示されている場合、化合物のいずれもの形態を意味することが意図される。したがって、グルタミン酸なる語の使用はグルタメートを含むことが意図され、その逆も言える。

0047

明細書中で用いる「ワクチン」は、動物(ある実施形態においては、ヒトを含む)への適用に適した組成物であり、動物への投与により、野生型微生物による感染から生じる臨床疾患からの防御を少なくとも補助するのに十分な程度に強力な、すなわち、臨床疾患の防御および/または臨床疾患の予防、改善もしくは治癒を補助するのに十分な程度に強力な免疫応答誘導する。特に明示されていない限り、ワクチンなる語の使用は多価ワクチンを含む。

0048

本明細書中で用いる「多価ワクチン」は、2以上の異なる抗原を含むワクチンである。
このタイプの特定の実施形態においては、多価ワクチンは、2以上の異なる病原体に対して被投与者の免疫系を刺激する。

0049

本明細書中で用いる「液体安定」ワクチンは、7℃以下で(例えば、標準的な冷凍庫において、および/または0℃〜7℃で)貯蔵された場合に少なくとも1年間にわたって有効なままの、液体として維持されるワクチン(液体多価ワクチンを含む)である。特
定の実施形態においては、液体安定ワクチンは、7℃以下で貯蔵された場合に少なくとも1.5年間にわたって有効なままである。より詳細な実施形態においては、液体安定ワクチンは、7℃以下で貯蔵された場合に少なくとも2年間にわたって有効なままである。更により詳細な実施形態においては、液体安定ワクチンは、7℃以下で貯蔵された場合に少なくとも2.5〜3年間にわたって有効なままである。

0050

本明細書中で用いる「防御する」、「防御」、「防御をもたらす」、「防御をもたらし」および「防御を補助する」なる語は、感染の任意の徴候からの完全な防御を要しない。
例えば、「防御を補助する」は、チャレンジ後、根本的な感染の症状が少なくとも低減するように、ならびに/または症状を引き起こす細胞的、生理的もしくは生化学的な根本原因もしくはメカニズムの1以上が低減および/もしくは排除されるように、防御が十分であることを意味しうる。この文脈で用いられる「低減」は、感染の生理的状態だけではなく、感染の分子状態を含む、感染の状態に関連したもの意味すると理解される。

0051

本明細書中で用いる「治療的有効量」なる語は、与えられた抗原、例えば、生弱毒化ウイルスの量であって、単一投与で与えられた場合、および/または所望により、初回投与およびそれに伴う1以上の後続の追加投与ブースター)として与えられた場合、抗原を投与して防御する病原体に対する防御をもたらすのにおよび/または病原体からの防御を補助するのに十分な量である。

0052

本明細書中で用いる「有効」なワクチンは、与えられた抗原の治療的有効量を含む。

0053

本明細書中で用いる「医薬上許容される」なる語は、修飾される名詞医薬品における使用に適していることを意味するものとして形容詞的に用いられる。それが、例えば医薬ワクチンにおける賦形剤を示すために用いられる場合、それは、組成物のその他の成分に適合しており、意図される被投与者に有害でないものとして賦形剤を特徴づける

0054

担体」なる語は、化合物と共に投与される希釈剤、アジュバント、賦形剤またはビヒクルを意味する。医薬上許容される担体は、無菌液、例えば、水、および/または油、例えば石油、動物、植物または合成由来の油、例えば、ラッカセイ油ダイズ油鉱油ゴマ油などでありうる。水または水溶液塩類溶液および水性デキストロースおよびグリセロール溶液は、担体として、特に注射用溶液のために使用されうる。

0055

本明細書中で用いる「アジュバント」は、免疫学的事象カスケードを促進または増幅して、最終的により良好な免疫応答、すなわち、抗原に対する統合された身体応答を招きうる物質である。アジュバントは、一般に、免疫応答の発生に要求されないが、この応答を促進または増幅する。

0056

本明細書中で用いる「全身投与」は、胃腸管(例えば、経口または直腸投与によるもの)および呼吸系(例えば、鼻腔内投与によるもの)のような特定の部位ではなく、身体全体に影響を及ぼす(心血管およびリンパ系を含む)身体の循環系内への投与である。全身投与は、例えば、筋肉組織内(筋肉内)、皮膚内(皮内、経皮または皮膚上)、皮膚の下(皮下)、粘膜の下(粘膜下)、静脈(静脈内)などに投与することにより行われうる。

0057

非経口投与」には、皮下注射、粘膜下注射、静脈内注射筋肉内注射皮内注射および注入を含む。

0058

本明細書中で用いる「イヌ」なる語は、特に示されていない限り、全ての飼育イヌ、カニス・ルプス・ファミリアリス(Canis lupus familiaris)またはカニス・ファミリアリス(Canis familiaris)を含む。

0059

イヌパルボウイルス「CPV」は1978年に最初に分離され、それをイヌパルボウイルス微小ウイルス(CMVまたはCPV−1)から区別するためにCPV−2と命名された。CPV−2の最初の分離の約1年後、遺伝的変異体CPV−2aが特定された。1980年代半ばに、第2の遺伝的変異体であるCPV−2bが特定された。まもなく、CPV−2aおよびCPV−2bがCPV−2に取って代わった。現在、CPV−2aは、米国ではもはや検出されない[ParrishおよびKawaoka,Annu Rev.Microbiol.,59:553−586(2005)]。この科における第4のCPV変異体であるCPV−2cが、2000年に最初に記載された[U.S.8,227,593;U.S.8,258,274;Hongら,J.Vet.Diagn.Invest.(5):535−9(2007)を参照されたい]。2013年12月19日付け出願の米国仮特許出願61/739,067(その全内容を参照により本明細書に組み入れることとする)は、特定の弱毒化CPV−2c分離体(ATCCアセッション番号
PTA13492)を記載しており、これは後に、特許手続上の微生物の寄託国際承認に関するブダペスト条約の要件を満たす条件下、American Type Culture Collection(ATCC)(10801 University Boulevard,Manassas,Va.20110−2209,U.S.A.)に2013年1月24日付けで寄託された。また、異種CPV−2c/CPV−2ゲノム(すなわち、カプシドタンパク質をコードする領域はCPV−2c分離体に由来し、非構造タンパク質をコードする領域はCPV−2分離体に由来する)を含む組換えイヌパルボウイルスが構築されている[WO2011107534(A1);US 20120328652;WO2012007589(A1)(その全内容を参照により本明細書に組み入れることとする)]。本明細書中で用いる、「イヌパルボウイルス」を含む本発明のワクチンは、異種CPV−2c/CPV−2ゲノムを含む最近構築された組換えイヌパルボウイルスを包含する、これらのCPV型/変異体/分離体の1以上を含みうる。

0060

本明細書中で用いる「ネコ」なる語は、ネコ科の任意のメンバーを意味する。この科のメンバーには、野生動物園および飼育ネコ科動物、例えば、ネコ亜科の任意のメンバー、例えば、ネコ、ライオントラピューマジャガーヒョウ、ユキヒョウ、パンサー、北米山岳ライオン、チーターオオヤマネコボブキャットカラカルまたはそれらの任意の交雑種を含む。ネコはまた、飼育ネコ、純粋繁殖および/または雑種伴侶ネコ、見世物用のネコ、実験室用のネコ、クローン化ネコおよび野生または野良ネコを含む。

0061

本明細書中で用いる「糖添加物」は、5−12炭素の糖(例えば、スクロース、マルトース、トレハロース、デキストロース、ラクトースグルコースフルクトースガラクトース)または糖アルコールポリオール(例えば、ソルビトール、マンニトール、アラビトールイノシトールマルチトール)である。特に示されていない限り、糖添加物の比率(%)は、ワクチンの体積(v)に対する糖添加物の重量(w)、すなわち、ワクチンにおける(w/v)として示される。

0062

特に示されていない限り、本明細書中で用いるワクチンにおける固体添加物、例えば糖添加物またはゼラチンの比率(%)は、100mlのワクチン体積当たりの1gの固体である1%(w/v)溶液に基づく。

0063

特に示されていない限り、本明細書中で用いるワクチンにおける液体添加物、例えばエタノールの比率(%)は、100mlのワクチン体積当たりの1mlの液体添加物である1%(v/v)溶液に基づく。

0064

特に示されていない限り、本明細書中で用いる、示されているpH値は、25℃で決定/測定されたpH値である。

0065

本明細書中で用いる「およそ」なる語は、「約」なる語と互換的に用いられ、値が、示されている値の25%以内であることを示す。すなわち、「約」2mMEDTAの濃度は1.5mM〜2.5mM EDTAでありうる。

0066

本発明の液体安定ワクチンにおいて使用されうる全カゼインの加水分解物は、幾つかの方法により得られうる(例えば、酸加水分解物または酵素加水分解物を含む)。そのような加水分解物は、元々はカゼインに存在する全てのアミノ酸を、混合アミノ酸およびペプチドの形態で含有する。本発明の液体安定ワクチンにおいて使用されうる全カゼインの1つの加水分解物は、MP BiomedicalsによりCASEIN HYDROLYSATE ENZYMATIC(登録商標)として販売されている。比較されうる製品は、NZ−AMINE(登録商標)、NZ AMINE(登録商標)A、NZ−AMINE(登録商標)ASおよびNZ−AMINE(登録商標)BおよびTryptoneの名称でSigma−Aldrichにより販売されている。

0067

本発明の液体安定ワクチンは理想的にはpH6.0〜pH8.0のpH範囲であるため、本発明の液体安定ワクチンは、バッファーを含みうる。本発明の液体安定ワクチンにおいて使用されるバッファーには、Tris(トリス)、Tris−ヒスチジン、BIS−Tris、BIS−Tris−プロパンリン酸カリウムおよび/またはナトリウムピロリン酸ナトリウムまたはカリウムイミダゾールPIPES、ACES、MOPS、MOPSO、BES、TES、トリシングリシルグリシンおよびHEPESが含まれるが、これらに限定されるものではない。バッファーは、いずれかの適当な対イオンの使用により、所望のpHに調整されうる。

0068

本発明のワクチンはアジュバントを含有することが可能であり、またはアジュバントを含有しないことが可能であり、これは、しばしば、ワクチンが含有する抗原に左右される。本発明のワクチンにおいて使用されるアジュバントの例には、リン酸アルミニウム、例えばREHYDROPHOS(登録商標)(General Chemical,Parsippany,New Jersey)および/または水酸化アルミニウム、例えばREHYDROGEL(登録商標)、REHYDROGEL(登録商標)HPAまたはREHYDROGEL(登録商標)LV(General Chemical,Parsippany,New Jersey)、および/または溶液中で架橋を形成して高分子量ゲルになりうる低分子量共重合体アジュバント、例えばPOLYGEN(商標)(MVP Laboratories,Omaha)、および/または水中でアクリル酸ナトリウムのゲル粒子から構成されるアジュバント、例えばMONTANIDE(商標)PET GEL A(商標)(Seppic,Paris France)が含まれる。添加される場合、アジュバントの量は、通常、ワクチンにおいて約1%〜20%(v/v)である。
特定の実施形態においては、アジュバントの量は約2%〜10%(v/v)である。後記実施例2においては、アジュバントは約5%(v/v)である。

0069

本発明のワクチンは、キレート化剤をも含有しうる。適当なキレート化剤の例には、エチレンジアミン四酢酸(EDTA)、1,2−ビス(o−アミノフェノキシ)エタン−Ν,Ν,Ν’,Ν’−四酢酸(BAPTA)、エチレングリコール四酢酸(EGTA)、ジメルカプトコハク酸(DMSA)およびジエチレントリアミン五酢酸(DTPA)、2,3−ジメルカプト−1−プロパンスルホン酸(DMPS)が含まれる。

0070

多価ワクチン:本発明は液体安定多価ワクチンを提供する。例えば、本発明の液体安定多価イヌワクチンは、以下のものの2以上を含みうる:イヌジステンパーウイルス、イヌアデノウイルス2型、イヌパルボウイルス、イヌパラインフルエンザウイルス、イヌインフルエンザウイルス、イヌニューモウイルス、イヌコロナウイルス、イヌヘルペスウイルス、伝染性イヌ肝炎ウイルス、イヌ微小ウイルス、狂犬病ウイルスおよび仮性狂犬病ウイルス。そのような液体安定ワクチンはまた、例えばイヌインフルエンザウイルス、イヌコロナウイルス、ボルデテラ・ブロンキセプチカ(Bordetella bronchiseptica)、マイコプラズマ(Mycoplasma)属種、エールリキア・カニス(Ehrlichia canis)、アナプラズマ(Anaplasma)属種、レプトスピラ・カニコラ(Leptospira canicola)、レプトスピラ・グリッポチホサ(Leptospira grippotyphosa)、レプトスピラ・ハージョ(Leptospira hardjo)、レプトスピラ・イクテロヘモラジア(Leptospira icterohaemorrhagiae)、レプトスピラ・ポモナ(Leptospira Pomona)、レプトスピラ・インテロガンス(Leptospira interrogans)、レプトスピラ・アウトムナリス(Leptospira autmnalis)およびレプトスピラ・ブラチスラバ(Leptospira Bratislava)のような1以上の弱毒化または不活化抗原と組み合わされることが可能であり、(あるいは投与前)貯蔵されうる。

0071

また、本発明の液体安定多価ネコワクチンは、以下のネコ病原体の2以上を含みうる:ネコヘルペスウイルス、ネコカリシウイルス、ネコニューモウイルス、ネコパルボウイルス、ネコ白血病ウイルス、ネコ伝染性腹膜炎ウイルス、ネコ免疫不全ウイルス、ボルナ病ウイルス、ネコインフルエンザウイルスおよびトリインフルエンザ。ついで、そのような液体安定ワクチンは、弱毒化または不活化クラミドフィラ・フェリス(Chlamydophila felis)および/またはバルトネラ属種(Bartonella spp.)(例えば、バルトネラ・ヘンゼレ(B.henselae))と組み合わされ、そして(あるいは投与前に)貯蔵されることが可能である。

0072

本発明のワクチンは、抗細菌物質、例えば抗生物質をも含有しうる。そのような抗生物質の例には、10−100μg/mlゲンタマイシン、0.5−5.0μg/mlアムホテリシンB、10−100μg/mlテトラサイクリン、10−100単位/mLナイスタチン(ミコスタチン)、10−100単位/mLペニシリン、10−100μgストレプトマイシン、10−100μポリミキシンBおよび10−100μgネオマイシンが含まれうる。

0073

ワクチン投与:本発明の液体安定ウイルスワクチンは、任意の通常の手段により、例えば非経口投与、例えば皮下または筋肉内投与(これらに限定されるものではない)を含む全身投与により投与されうる。本発明の液体安定ウイルスワクチンは、粘膜投与により、例えば鼻腔内、経口、気管内、直腸内および/または眼投与により投与されうる。あるいは、ワクチンは、皮膚パッチ乱切または局所投与により投与されうる。本発明の液体安定ウイルスワクチンは、被投与動物対象の飲料水および/または食事によっても投与されうると想定される。更に、そのようなワクチンは、馳走または玩具の形態で投与されうると想定される。

0074

本発明のワクチン(多価ワクチンを含む)は、組み合せ療法、すなわち、ワクチン自体に加えて1以上の追加的な活性な物質、療法などを投与することを含む療法の一部として投与されうる。その場合、「治療的有効」量を構成するワクチンの量は、ワクチンを単独で投与しようとする場合の「治療的有効」量を構成するワクチンの量より多い又は少ないことが可能であると認識されるべきである。他の療法には、当技術分野で公知のもの、例えば、鎮痛剤解熱薬去痰剤抗炎症薬抗ヒスタミン薬および/または流体の投与が含まれうる。

0075

免疫原性レベルは、当技術分野で一般に公知のチャレンジ用量力価測定研究技術により実験的に決定されうる。そのような技術は、典型的には、種々の投与量のワクチンを幾つかの動物対象にワクチン接種し、ついで動物対象をビルレントウイルスでチャレンジして最小防御用量を決定することを含む。

0076

好ましい投与レジメに影響を及ぼす要因には、例えば、対象の種または雑種(例えば、イヌまたはネコのもの)、年齢、体重、性別、食事、活動性サイズおよび状態;投与経路;使用される個々のワクチンの効力、安全性および免疫持続プロファイル運搬系が用いられるかどうか;ならびにワクチンが薬物および/またはワクチンの組み合せの一部として投与されるかどうか、が含まれうる。したがって、実際に使用される投与量は具体的な動物に関して変動することがあり、したがって、前記の典型的な投与量から逸脱しうる。そのような投与量調節の決定は、一般に、通常の手段を用いるワクチン開発の分野の当業者の技量の範囲内である。

0077

同様に、そのような用量が投与されうる体積は、典型的には、0.1mL(皮内または経皮適用で典型的である)および5.0mLである。投与体積に関する典型的な範囲は、0.2〜2.0mL、および約1.0〜2.0mL(筋肉内または皮下投与の場合)である。

0078

ワクチンは、単一時点で、あるいは数日間、数週間、数か月間または数年間にわたる2以上の時点で、ワクチンの被投与者に投与されうることが意図される。幾つかの実施形態においては、ワクチンは少なくとも2回投与される。そのようなある実施形態においては、例えば、ワクチンは2回投与され、第1用量の投与の少なくとも2週間後に第2用量(例えば、ブースター)が投与される。特定の実施形態においては、ワクチンは2回投与され、第1用量の投与の8週間以内に第2用量(例えば、ブースター)が投与される。他の実施形態においては、第2用量は第1用量の投与の1週間後〜2年後、第1用量の投与の1.5週間後〜8週間後、または第1用量の投与の2〜4週間後に投与される。他の実施形態においては、第2用量は第1用量の投与の約3週間後に投与される。

0079

前記実施形態においては、第1および後続投与は、例えば量および/または形態において様々でありうる。しかし、しばしば、それらの投与は量および形態において同一である。単一用量のみが投与される場合、その用量のみにおけるワクチンの量は、一般に、ワクチンの治療的有効量を含む。しかし、2以上の用量が投与される場合、それらの用量におけるワクチンの総量が治療的有効量を構成しうる。また、ワクチンは初回投与され、ついで2〜12週間後にブースター投与されうる。しかし、ワクチンの後続投与は、ブースターが投与されるか否かに無関係に、毎年(1年)または隔年(2年)で行われうる。

0080

本発明は、以下の非限定的な実施例を参照することにより、より良く理解され、それらの実施例は本発明の典型例として記載されている。以下の実施例は、本発明の実施形態をより完全に例示するために記載されている。しかし、それらは、いかなる点においても、本発明の広範な範囲を限定するものと解釈されるべきではない。

0081

実施例
実施例1
液体イヌウイルスワクチンの安定性
材料および方法
材料:細胞培養等級のスクロースおよびソルビトールを、Fisher Scientificから購入する。分子等級のL−アルギニン塩酸塩、L−メチオニン、L−ヒスチジン、および98%を超える純度を有する塩化ナトリウムを、Sigmaから購入する。95%を超える純度で平均分子量10,000を有する硫酸デキストランをSigmaから購入する。分子生物学等級のエタノール(>99%)、TWEEN 80、TWEEN 20、1.0M Tris(pH8.0)およびEDTA(pH8.0)溶液をSigmaから購入する。20%ゼラチンブルーム250溶液および7.61% NZ Amine溶液を、最も良く入手可能な市販試薬から調製した。

0082

バルク抗原の製造:以下の溶液は、調製され、0.2μm濾過により滅菌されている:80%スクロース、70%ソルビトール、1.0M L−アルギニン(pH7.2)、5%L−メチオニン、5mM硫酸デキストラン。6.5〜9.5の力価を有するバルク抗原CDV、CAV2、CPVおよびCPIを−80℃で凍結し、混合の直前解凍した。

0083

液体ワクチン混合および充填:液体ワクチンCDV、CAV2、CPVおよびCPI混合物(1.0mL/用量)の製造方法は以下のとおりである。1用量の抗原を、ウイルス抗原に関する5.0〜7.5(Log10 TCID50)の目標力価で、以下の表1に示されている種々の製剤中に混合する。200mLの滅菌容器を調製し、標識し、ついで各安定剤および賦形剤成分を、以下の表1に示されている各成分の最終濃度に基づく計算用量に従い容器に加える。安定剤および賦形剤について二重蒸留水(ddH2O)で目標体積に調節する。全ての成分が完全に溶解するまで、撹拌プレート上で少なくとも10分間混合する。安定剤溶液を冷却し、抗原の準備が整うまで4℃に維持する。

0084

凍結抗原を、ほぼ全ての融解するまで、時々振とうしながら37℃の水浴中で解凍する。抗原の幾つかは溶液中に視認可能な細胞残渣を有し、したがって、ピペッティング前に抗原を十分に混合する。解凍抗原は、使用前に8時間以下の時間にわたって2〜8℃で維持すべきである。適当な量のCDV、CAV2、CPVおよびCPIを、安定剤溶液と共に標識容器に加える。抗原および安定剤が均一に混合されるまで、撹拌プレート上で混合する。この混合工程中、気泡および泡の発生を避けることを試みる。pHを25℃で測定し、pHが7.2±0.1以内でなければ、pHを1M HCLまたは1M NaOHで目標pHに調節する。同じ日に分注するまでワクチン混合物を2〜8℃に維持し、または小さな体積中にアリコート化し、更なる使用まで−70℃未満で凍結する。ワクチン混合物を、2mLガラスアンプルバイアル中に1mL/バイアルで分注する。充填後、貯蔵中の酸化の防止を助けるために、アルゴンガスアンプルバイアルに加え、ついでアンプルを加熱密封する。アンプルにサンプル名、ロット番号、貯蔵温度、日付の標識を付け、ついで箱内に移し、示されている種々の温度で貯蔵する。

0085

加速温度およびリアルタイムにおける安定性試験液体サンプルをそれぞれ25±1℃および4℃±1℃で対応インキュベーター内に貯蔵した。スクリーニング目的の加速安定性試験には25℃を用い、一方、4℃で貯蔵されたサンプルはリアルタイム安定性サンプルであった。示されている時点で、各製剤からの3個のバイアルを回収し、各抗原の力価を細胞培養に基づく力価測定アッセイにより測定し、平均組織培養感染用量(TCID50)として、および/または50%蛍光抗体感染用量(FAID50)として表した。

0086

分析方法
CPI効力:ウイルスサンプルの希釈物を、イヌ腎臓(DK)細胞上に接種する。4〜6日後、単層を固定し、フルオレセイン共役CPI抗血清で染色し、スピアマンカーバー(Spearman−Karber)法[Cunningham,C.H.A Laboratory Guide in Virology,7th edition,Burgess Publishing Co.,Minneapolis,MN.(1973);Kaplan,M.M.およびKoprowski,H.,Laboratory Techniques in Rabies,World Health Organization,Switzerland,(1973)]によりウイルス力価を計算する。

0087

CDV効力:ウイルスサンプルの希釈物を、ベロ(Vero)細胞上に接種した。5〜7日後、細胞変性効果に関して単層を観察し、前記のスピアマン−カーバー法によりウイルス力価を計算する。

0088

CAV2効力:ウイルスサンプルの希釈物を、DK細胞上に接種した。7日後、細胞変性効果に関して単層を観察し、前記のスピアマン−カーバー法によりウイルス力価を計算する。

0089

CPV効力:ウイルスサンプルの希釈物を、DK細胞上に接種した。3日後、フルオレセイン共役CPV抗血清で単層を染色し、前記のスピアマン−カーバー法によりウイルス力価を計算する。

0090

結果
25℃での加速安定性試験:液体製剤スクリーニングのために2つの研究を行った。第1の研究は製剤L−001〜L−008を含み、第2の研究は製剤L−009〜L−026を含む(製剤の詳細は、表1を参照されたい)。密封ガラスアンプル内で1mL/バイアル/用量で貯蔵された液体サンプルを、25℃または4℃での貯蔵の後の種々の時点で試験する。25℃の貯蔵サンプルに関して、CDV、CAV2およびCPIの安定性データを表2に示す。液体CPVはそれらの4つのウイルスのなかで最も安定な画分とみなされるので、CPVは、25℃の貯蔵に関しては試験しなかった。25℃でインキュベートされた研究1のサンプル(L−001〜L−008)に関しては、第0日、第6週および第8週のデータを、種々の製剤を比較するために使用する。25℃でインキュベートされた研究2のサンプル(L−009〜L−026)に関しては、第0日、第6週および第12週のサンプルを製剤スクリーニングのために使用する。それらの間の追加的な時点が試験されており、傾向は類似している。

0091

その分解傾向に基づいて、各製剤の相対安定性を、表2に示されているとおり手動ランク付けし、この場合、5つの「+」が最も安定であり、1つの「+」が最も不安定である。各ウイルス画分を個々にランク付けし、全体的なランキングは全3個のウイルスを含む。ランキングおよび比較に基づいて、幾つかの傾向が観察された。したがって、試験された3つの糖類(スクロース、ソルビトールおよびグリセロール)のうち、スクロースおよびソルビトールの安定性寄与はグリセロールより有意に良好であった。また、より高い糖濃度が非常に好ましく、17%〜25%の合計糖濃度は、10%未満の製剤より良好に機能する。タンパク質またはアミノ酸由来の安定剤のうち、0.3M L−アルギニンが最高の安定性寄与を示し、1%メチオニン、0.8%ゼラチンおよび1%NZアミンがそれに続いた。その他の安定剤のうち、硫酸デキストランおよびフリーラジカルスカベンジャー(FRS)は、液体CPV、CDV、CAVおよびCPI製剤の安定性に寄与するようであり、それらの存在は安定性プロファイルを有意に変化させないが、それらは安定性に対して負の影響を及ぼすこともなかった。したがって、ある場合には、25℃における液体生ネコまたはイヌウイルスワクチンの長期貯蔵安定性のために、硫酸デキストランおよび/またはFRSを最終製剤中に含有させることが好ましいであろう。一方、TWEEN80およびTWEEN20は、ウイルス製剤の安定性に有害であることが判明した。

0092

4℃でのリアルタイム安定性試験:4℃における液体生CPV、CDV、CAV2およびCPIワクチンの長期貯蔵安定性もモニターし、そのデータを表3に示す。4℃での24カ月の時点の推定ウイルス力価を、L−001〜L−008の12カ月および18カ月、ならびにL−009〜L−026の6カ月および12カ月のデータ点から外挿する(以下の表3を参照されたい)。終結時の各ウイルスに関する最小用量力価要件が以下の表3の下に一覧されており、どの製剤が4℃で安定な製品を与えうるかを決定するために用いられる。安定な製品を与える可能性が高かった10個の製剤(L−009,L−011,L−012,L−014,L−15,L−016,L−018,L−019,L−025およびL−026)が存在し、一方、製剤L−003およびL−007は、4℃で2年間の貯蔵寿命を有する安定な製品を与える大きな可能性を有する。検査された4個のウイルスのうち、CDVが最も不安定のようである。全10個の製剤が、CAV2、CPVおよびCPIに関しては0〜8℃で3年間を超える安定性、およびCDVに関しては0〜8℃で少なくとも2年間の安定性をもたらしうるようである。

0093

実施例2
不活化細菌を含有する生イヌウイルスの液体ワクチンの安定性
材料および方法
材料:
細胞培養等級のスクロースおよびソルビトールをFisherから購入する。分子等級のL−アルギニン塩酸塩、L−メチオニン、L−ヒスチジン、および98%を超える純度を有する塩化ナトリウムを、Sigmaから購入する。95%を超える純度で平均分子量10,000を有する硫酸デキストランをSigmaから購入する。分子生物学等級のエタノール(>99%)、TWEEN 80、TWEEN 20、1.0M Tris(pH8.0)およびEDTA(pH8.0)溶液、ゲンタマイシン(50mg/mL)、アンホテリシンB(25mg/mL)をSigmaから購入する。20%ゼラチンブルーム250溶液および7.61% NZ Amine溶液を、内部で調製した。

0094

バルク抗原の製造:
以下の溶液が調製され、0.2μm濾過により滅菌されている:80%スクロース、70%ソルビトール、1.0M L−アルギニン(pH7.2)、5% L−メチオニン、5mM硫酸デキストラン。

0095

バルクDA2PPv抗原CDV、CAV2、CPVおよびCPIを、それぞれ6.7、7.8、8.0および9.2の力価で得る。バルク抗原を−80℃で凍結し、混合の直前に解凍する。

0096

バルクレプトスピラ抗原を、約2×1010細菌/ミリリットルの濃度で得る。バルク レプトスピラ抗原を、4℃で貯蔵する。

0097

液体ワクチン混合および充填:
液体DA2PPvワクチン混合物(1.0mL/用量)の製造方法は以下のとおりである。多価CDV、CAV2、CPIおよびCPV(DA2PPv)製品の標準的な方法に従い、1用量の抗原を、ウイルスCDV、CAV2、CPVおよびCPIに関するそれぞれ5.5、6.1、6.0および7.0の目標力価で、表4に示されている種々の製剤中に混合する。4つのレプトスピラ抗原を含有する製剤に関しては、各レプトスピラ画分の目標濃度は、約1×109細胞/ミリリットルである。200mLの滅菌容器を調製し、標識し、ついで各安定剤および賦形剤成分を、以下の表4に示されている各成分の最終濃度に基づく計算用量に従い、容器に加える。

0098

安定剤および賦形剤について二重蒸留水(dd)H2Oで目標体積に調節する。全ての成分が完全に溶解するまで、撹拌プレート上で少なくとも10分間混合する。安定剤溶液を冷却し、抗原の準備が整うまで4℃に維持する。凍結DA2PPv抗原を、ほぼ全ての氷が融解するまで、時々振とうしながら37℃の水浴中で解凍する。抗原の幾つかは溶液中に視認可能な細胞残渣を有し、したがって、ピペッティング前に抗原を十分に混合する。解凍抗原は、使用前に8時間以下の時間にわたって2〜8℃で維持すべきである。適当な量のCDV、CAV2、CPVおよびCPIを、安定剤溶液と共に標識容器に加える。
バルク4レプトスピラ(Lepto)抗原の適当な量を、ワクチン混合物にアリコート化する。抗原および安定剤が均一に混合されるまで、撹拌プレート上で混合する。この混合工程中、気泡および泡の発生を避けることを試みる。pHを25℃で測定し、pHが7.2±0.1以内でなければ、pHを1M HCLまたは1M NaOHで目標pHに調節する。同じ日に分注するまでワクチン混合物を2〜8℃に維持し、または小さな体積中にアリコート化し、更なる使用まで−70℃未満で凍結する。ワクチン混合物を、2mLガラスアンプルバイアル中に1mL/バイアルで分注する。充填後、貯蔵中の酸化を防止するために、アルゴンガスをアンプルバイアルに充填し、ついでアンプルを加熱密封する。
アンプルに、サンプル名、ロット番号、貯蔵温度、日付の標識を付け、ついで箱内に移し、示されている種々の温度で貯蔵する。

0099

加速温度およびリアルタイムにおける安定性試験:
液体DA2PPvまたはDA2PPv−Lepto4サンプルを、25±1℃のインキュベーター内に貯蔵する。スクリーニング目的の加速安定性試験としては25℃を用いる。示されている時点で、各製剤からの3個のバイアルを回収し、各抗原の力価を、細胞培養に基づくTCID50またはFAID50により測定する。

0100

分析方法
CPI効力:
DA2PPvワクチンにおけるCPIウイルス力価を決定する。簡潔に説明すると、ウイルスの希釈物をイヌ腎臓(DK)細胞上に接種する。4〜6日後、単層を固定し、フルオレセイン共役CPI抗血清で染色し、スピアマン−カーバー法(前記実施例1を参照されたい)によりウイルス力価を計算する。

0101

CDV効力:
DA2PPvワクチンにおけるCDVウイルス力価を決定する。簡潔に説明すると、ウイルスの希釈物を、ベロ(Vero)細胞上に接種した。5〜7日後、細胞変性効果に関して単層を観察し、スピアマン−カーバー法によりウイルス力価を計算する。

0102

CAV−2効力:
DA2PPvワクチンにおけるCAV−2ウイルス力価を決定する。簡潔に説明すると、ウイルスの希釈物を、DK細胞上に接種した。7日後、細胞変性効果に関して単層を観察し、スピアマン−カーバー法によりウイルス力価を計算する。

0103

CPV効力:
DA2PPvワクチンにおけるCPVウイルス力価を決定する。簡潔に説明すると、ウイルスの希釈物を、DK細胞上に接種した。3日後、フルオレセイン共役CPV抗血清で単層を染色し、スピアマン−カーバー法によりウイルス力価を計算する。

0104

結果および結論
25℃での加速安定性試験:
製剤の表4に挙げられているワクチンを、前記方法に記載されているとおりに混合した。製剤L−037は、それがゲンタマイシンおよびアンホテリシンBを含有すること以外は、既に特定されている前記L−015製剤と同じである(表1を参照されたい)。製剤L−040、L−043およびL−045は、4つの生イヌウイルス画分、すなわち、DA2PPvおよび4つの不活化レプトスピラ抗原(カニコラ(Canicola)、グリッポ(Grippo)、ポモナ(Pomona)およびイクテロ(Ictero))の両方を含有する。液体ワクチンサンプルを、1mL/バイアル/用量で密封ガラスアンプル内で貯蔵した。それらを25℃での貯蔵の後の種々の時点で試験した。CDV、CAV2およびCPIの安定性データを表5に示す。液体CPVはそれらの4つの生ウイルスのなかで最も安定な画分とみなされるので、CPVは25℃の貯蔵に関しては試験しなかった。表5に示されている安定性データに基づいて、以下のことが観察されている。

0105

1)保存剤としての抗生物質は、製剤L−015におけるDA2PPvのウイルス安定性に負の影響を及ぼさない。

0106

2)前記の4つの不活化レプトスピラ抗原の存在は、液体製剤における生弱毒化CDVおよびCPIの安定性を低減する。

0107

3)L−046製剤への2mMEDTAの補足は、前記の4つの不活化レプトスピラ抗原の存在下であっても安定なDA2PPv製剤を与える。

0108

4)この液体安定製剤は、REHYDROPHOSアジュバントの存在下、前記の4つの不活化レプトスピラ抗原とのDA2PPv組み合せ体にも使用されうる。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ