図面 (/)

技術 フエントキシンIV変異体及びその使用方法

出願人 ヤンセンバイオテツク,インコーポレーテツド
発明者 エッカート,ウィリアムフリンスパッハ,マックハンター,マイケルリウ,イネフ,ロバートウィッケンデン,アランギッブス,アラン
出願日 2013年5月17日 (8年7ヶ月経過) 出願番号 2015-512885
公開日 2015年7月6日 (6年5ヶ月経過) 公開番号 2015-518836
状態 特許登録済
技術分野 ペプチド又は蛋白質 微生物、その培養処理 化合物または医薬の治療活性 蛋白脂質酵素含有:その他の医薬 微生物による化合物の製造 突然変異または遺伝子工学
主要キーワード 開始強度 反応計算 反応モード 方向グラフ チャネル溝 化学改質剤 補償レベル フットコントロール
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2015年7月6日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題・解決手段

本発明は、フエントキシンIV変異体、フエントキシンIV変異体をコードするポリヌクレオチド、上記を生成及び使用する方法、並びにNav1.7のペプチド阻害剤により疼痛緩和する方法に関する。本発明の一実施形態は、本発明のフエントキシンIV変異体をコードした単離されたポリヌクレオチドを含むベクターを含む宿主細胞を含む。

概要

背景

電位依存性ナトリウムチャネル(Voltage-gated sodium channel)(VGSC)は、心筋及び骨格筋細胞、並びに中枢及び末梢ニューロンを含むあらゆる興奮性細胞に存在している。神経細胞では、ナトリウムチャネル閾値下脱分極増幅し、活動電位の急速な立ち上がりを引き起こす役割を担っている。このため、ナトリウムチャネルは、神経系における電気信号の開始及び伝播に不可欠である。異常なナトリウムチャネル機能は、てんかん(Yogeeswari et al.,Curr Drug Targets 5:589〜602,2004)、不整脈(Tfelt−Hansen et al.,J Cardiovasc Electrophysiol 21:107〜15,2010)、筋緊張(Cannon and Bean,J Clin Invest 120:80〜3,2010)、及び疼痛(Cregg et al.,J Physiol 588:1897〜904,2010)を含む様々な医療的疾患の基礎をなすものと考えられている(Hubner and Jentsch,Hum Mol Genet 11:2435〜45,2002)。ナトリウムチャネルは、一般的に各種サブユニット複合体であり、その主要なものは単独で機能するのに充分なポア形成αサブユニットである。
電位依存性ナトリウムチャネル(VGSC)αサブユニットのファミリーの9つの周知のメンバー、Nav1.1〜Nav1.9、がヒトに存在する。このNav1.xサブファミリーは、薬学的にテトロドトキシン(TTX)感受性又はTTX抵抗性細分化することができる。Nav1.7(PN1、SCN9A、又はhNEとも呼ばれる)はTTX感受性であり、主に末梢交感神経及び感覚ニューロン発現している。Nav1.7は、神経線維末端蓄積し、小さい閾値下脱分極を増幅し、興奮性を調節する閾値チャネルとして機能する。
Nav1.7の機能は、急性炎症性、及び/又は神経因性疼痛を含む、様々な疼痛状態に関係している。ヒトでは、Nav1.7の機能獲得型突然変異が、四肢灼熱痛及び炎症によって特徴付けられる疾患である、原発性先端紅痛症(PE)(Yang et al.,J Med Genet 41:171〜4,2004)、及び発作性激痛症(PEPD)(Fertleman et al.,Neuron 52:767〜74,2006)と関連付けられている。この知見と符合して、非選択的ナトリウムチャネル遮断薬であるリドカインメキシレチン、及びカルバマゼピンは、これらの疼痛性疾患症状緩和を与えることができる(Legroux−Crespelet al.,Ann Dermatol Venereol 130:429〜33,2003;Fertleman et al.,Neuron 52:767〜74,2006)。
ヒトにおけるSNC9Aの機能喪失型突然変異は、痛覚刺激に対する完全な無感受性又は不感受性により特徴付けられる希な常染色体劣性疾患である、先天性無痛症(CIP)を引き起こす(Cox et al.,Nature 444:894〜8,2006;Goldberg et al,Clin Genet 71:311〜9,2007;Ahmad et al.,Hum Mol Genet 16:2114〜21,2007)。
SCN9Aのコーディング領域内の一塩基多型が、侵害受容器の興奮性及び痛覚感受性の増大との関連が示されている。例えば、結果的にヒトNav1.7のR1150Wの置換を生じる多型性rs6746030は、変形性関節症の痛み、腰椎椎間板切除術の痛み、幻肢痛、及び膵炎の痛みとの関連が示されている(Reimann et al.,Proc Natl Acad Sci USA 107:5148〜53,2010)。R1150W Nav1.7を発現するDRGニューロンは、脱分極に反応して増大した発火頻度を示す(Estacion et al.,Ann Neurol 66:862〜6,2009)。線維筋痛症機能障害型の1つが、SCN9Aのナトリウムチャネルの多型性rs6754031との関連が示されており、重症の線維筋痛症を有する一部の患者では、後根神経節ナトリウムチャネロパチーを有しうることを示している(Vargas−Alarcon et al.,BMCMusculoskelet Disord 13:23,2012)。
マウスでは、侵害受容性ニューロンにおけるSCN9A遺伝子の欠失が、機械性及び熱性疼痛閾値の低下及び炎症性疼痛応答の低減及び消失につながる(Nassar et al.,Proc Natl Acad Sci USA 101:12706〜11,2004)。すべての感覚ニューロンでNav1.7遺伝子の発現を停止させることにより、機械性疼痛、炎症性疼痛、及び熱に対する逃避反射反応が消失した。感覚ニューロン及び交感神経ニューロンの両方でSCN9Aを欠失させることで、機械性、熱性及び神経因性疼痛が消失し、SCN9Aの機能喪失突然変異を有するヒトに見られる無痛の表現型再現された(Minett et al.,Nat Commun 3:791,2012)。したがって、Nav1.7阻害剤又は遮断薬は、様々な疾患に伴う広範な疼痛の治療に有用となりうる。
クモ毒には、フエントキシンIV(HwTx−IV)(Peng et al.,J Biol Chem 277:47564〜71,2002)、プロトキシンI、プロトキシンII(Middleton et al.,Biochemistry 41:14734〜47,2002)、及びフリクソトキシンIII(Bosmans et al.,Mol Pharmacol 69:419〜29,2006)を含む多くのナトリウムチャネル遮断ペプチドが含まれることが知られている。チャイニーズバードスパイダーオルニソクトヌス・フエナ(Ornithoctonus huwena))より得られるフエントキシンIV(HwTx−IV)は、Nav1.7及び他のTTX感受性電位依存性ナトリウムチャネルの強力な遮断薬であり、ドメインIIの電位センサー内向きの閉じたコンフォメーション内に閉じ込めることによって開口調節剤として機能すると考えられる(Xiao et al.,J Biol Chem 283:27300〜13,2008)。プロトキシンIIは、その好ましい有効性選択性プロファイルのため、痛覚消失作用を示すことを目的とした様々なin vivo実験の対象となっているが、これらの実験のいずれも神経周膜を損傷せずに成功したものは報告されていない。プロトキシンIIの作用は、皮膚神経の脱による血液神経関門破壊(Schmalhofer et al.,Mol Pharm 74:1476〜1484,2008)又はタイトジャンクションタンパク質であるクラウジンIの発現低下につながる高張生理食塩水の神経周膜注入(Hackel et.al.,PNAS 109:29 E2018−27,2012)によってのみ認められた。広範な疼痛適応症を治療するための更なるNav1.7遮断薬を特定することが求められている。詳細には、他のVGSCのアイソフォームよりもNav1.7に対して高い選択性を有する新規なNav1.7遮断薬が求められている。

概要

本発明は、フエントキシンIV変異体、フエントキシンIV変異体をコードするポリヌクレオチド、上記を生成及び使用する方法、並びにNav1.7のペプチド阻害剤により疼痛を緩和する方法に関する。本発明の一実施形態は、本発明のフエントキシンIV変異体をコードした単離されたポリヌクレオチドを含むベクターを含む宿主細胞を含む。

目的

プロトキシンIIは、その好ましい有効性と選択性プロファイルのため、痛覚消失作用を示すことを目的とした

効果

実績

技術文献被引用数
0件
牽制数
2件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

配列:X1CX2X3X4FX5X6CX7X8X9X10X11X12CCX13X14X15X16X17X18CX19X20X21X22X23X24CKX25X26IX27X28(配列番号265)を有する単離されたフエントキシンIV変異体であって、配列中、a)X1、X2、X3、X4、X5、X6、X7、X8、X9、X10、X11、X12、X13、X14、X15、X16、X17、X18、X19、X20、X21、X22、X23、X24、X25、及びX26は、任意のアミノ酸であり、b)X27及びX28は任意のアミノ酸であるか又は欠失しており、そして、c)前記フエントキシンIV変異体が、配列番号1に示される配列を有するポリペプチドではないという条件で、前記フエントキシンIV変異体のヒトNav1.7(配列番号263)に対するIC50値が約300×10-9M以下である、単離されたフエントキシンIV変異体。

請求項2

a)X4が、Y、V又はIであり、b)X8が、P又はVであり、c)X11が、D、P又はWであり、d)X19が、S又はIであり、e)X21が、Y、W、A、K又はHであり、f)X22が、T又はVであり、g)X24が、W又はKであり、そして、h)X25が、W、T、I又はYである、請求項1に記載の単離されたフエントキシンIV変異体。

請求項3

配列番号277、278、192、279、280、又は3の前記アミノ酸配列を有する、請求項2に記載の単離されたフエントキシンIV変異体。

請求項4

a)X1が、K、R、H、D、Y、F、N、Q、S、T、G、L、I、P又はEであり、b)X2が、R、F、W、N、S又はLであり、c)X3が、R、H、D、Y、N、Q、L、I、P又はEであり、d)X5が、R、W、Q、S又はKであり、e)X6が、R、E、Y、F、V又はAであり、f)X7が、K、R、E、Y、F、S、V又はNであり、g)X9が、R、F、Q、V又はSであり、h)X10が、H、D、Y、W、Q、S、T、G、A、V、L、I、P又はNであり、i)X12が、K、R、D、E、Y、W、N、T、A、L又はQであり、j)X13が、R、Y、Q、S、T、G、L、I、P又はKであり、k)X14が、K、R、Y、F、N、Q、G、A、V、L、I、P又はSであり、l)X15が、R、H、D、Y、W、N、Q、T、V、I、P又はSであり、m)X16が、R、H、D、F、W、N、Q、S、T、G、A、L又はKであり、n)X17が、K、R、Y、F、W、P又はLであり、o)X18が、K、R、T、A、L又はVであり、p)X20が、K、W、G、A、I、R又はDであり、q)X23が、K、H、W、N、G、A、L又はRであり、r)X26が、K、R、Y、F、S、T、G、A、V、L、I又はQであり、s)X27が、K、R、H、F、W、V、L、I、Gであるか又は欠失しており、そして、t)X28が、R、H、Y、F、W、N、G、V、P、Kであるか又は欠失している、請求項2に記載の単離されたフエントキシンIV変異体。

請求項5

前記フエントキシンIV変異体のヒトNav1.7に対するIC50が約160×10-9M未満である、請求項4に記載の単離されたフエントキシンIV変異体。

請求項6

前記フエントキシンIV変異体が配列番号3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99、100、101、102、103、104、105、106、107、108、109、110、111、112、113、114、115、116、117、118、119、120、121、122、123、124、125、126、127、128、129、130、131、132、133、134、135、136、137、138、139、140、141、142、143、144、145、146、147、148、149、150、151、152、153、154、155、156、157、158、159、160、161、162、163、164、165、166、167、168、169、170、171、172、173、174、175、176、177、178、179、180、181、182、183、184、185、186、187、188、189、190、191、192、193、194、195、196、197、198、199、200、201、202、203、204、205、206、207、208、209、210、211、212、213、214、215、216、217、218、219、220、221、222、241、242、243、244、245、246、247、248、249、250、251、252、253、277、278、279又は280の前記ポリペプチド配列を有する、請求項5に記載の単離されたフエントキシンIV変異体。

請求項7

配列:X1CX2X3X4FX5X6CX7X8X9X10X11X12CCX13X14X15X16X17X18CX19X20X21X22X23X24CKX25X26IX27X28(配列番号265)を有する単離されたフエントキシンIV変異体であって、配列中、a)X1、X2、X3、X4、X5、X6、X7、X8、X9、X10、X11、X12、X13、X14、X15、X16、X17、X18、X19、X20、X21、X22、X23、X24、X25、及びX26は、任意のアミノ酸であり、b)X27及びX28は任意のアミノ酸であるか又は欠失しており、そしてc)前記フエントキシンIV変異体が、配列番号1に示される配列を有するポリペプチドではないという条件で、前記フエントキシンIV変異体がNav1.7を選択的に阻害する、単離されたフエントキシンIV変異体。

請求項8

前記フエントキシンIV変異体が、配列番号5、7、12、13、16、21、25、45、46、48、55、57、58、60、61、72、74,76、78、82、83、96、109、111、113、122、127、131、134、137、141、142、149、164、165、172、175、177、178、180、182、188、189、192、198、202、204、213、215、219、223、224、225、226、227、228、229、230、231、232、233、234、235、236、237、238、239又は240の前記ポリペプチド配列を有する、請求項7に記載の単離されたフエントキシンIV変異体。

請求項9

配列番号3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99、100、101、102、103、104、105、106、107、108、109、110、111、112、113、114、115、116、117、118、119、120、121、122、123、124、125、126、127、128、129、130、131、132、133、134、135、136、137、138、139、140、141、142、143、144、145、146、147、148、149、150、151、152、153、154、155、156、157、158、159、160、161、162、163、164、165、166、167、168、169、170、171、172、173、174、175、176、177、178、179、180、181、182、183、184、185、186、187、188、189、190、191、192、193、194、195、196、197、198、199、200、201、202、203、204、205、206、207、208、209、210、211、212、213、214、215、216、217、218、219、220、221、222、223、224、225、226、227、228、229、230、231、232、233、234、235、236、237、238、239、240、241、242、243、244、245、246、247、248、249、250、251、252、253、277、278、279、280、281、282、283、284、285、286、287、288、289、290、291、292、293、294、295、296、297、298、299、300、301、302、303、304、305、306、307、308、309、310、311、312、313、314、315、316、317、318、319、320、321、322、323、324、325、326、327、328、329、330、331、332、333、334、335、336、337、338、339、340、341、342、343、344、345、346、347、348、349、350、351、352、353、354又は355に示される前記ポリペプチド配列を有する、単離されたフエントキシンIV変異体。

請求項10

配列番号3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99、100、101、102、103、104、105、106、107、108、109、110、111、112、113、114、115、116、117、118、119、120、121、122、123、124、125、126、127、128、129、130、131、132、133、134、135、136、137、138、139、140、141、142、143、144、145、146、147、148、149、150、151、152、153、154、155、156、157、158、159、160、161、162、163、164、165、166、167、168、169、170、171、172、173、174、175、176、177、178、179、180、181、182、183、184、185、186、187、188、189、190、191、192、193、194、195、196、197、198、199、200、201、202、203、204、205、206、207、208、209、210、211、212、213、214、215、216、217、218、219、220、221、222、223、224、225、226、227、228、229、230、231、232、233、234、235、236、237、238、239、240、241、242、243、244、245、246、247、248、249、250、251、252、253、277、278、279、280、281、282、283、284、285、286、287、288、289、290、291、292、293、294、295、296、297、298、299、300、301、302、303、304、305、306、307、308、309、310、311、312、313、314、315、316、317、318、319、320、321、322、323、324、325、326、327、328、329、330、331、332、333、334、335、336、337、338、339、340、341、342、343、344、345、346、347、348、349、350、351、352、353、354又は355の前記フエントキシンIV変異体をコードした単離されたポリヌクレオチド

請求項11

請求項10に記載の前記単離されたポリヌクレオチドを含むベクター

請求項12

請求項11に記載のベクターを含む宿主細胞

請求項13

請求項12に記載の前記宿主細胞を培養することと、前記宿主細胞による前記フエントキシンIV変異体を回収することと、を含む、単離されたフエントキシンIV変異体を生成する方法。

請求項14

請求項9に記載の前記単離されたフエントキシンIV変異体及び薬学的に許容される賦形剤を含む、医薬組成物

請求項15

被験対象疼痛治療する方法であって、疼痛を治療するために請求項9に記載の前記フエントキシンIV変異体の有効量を前記被験対象に末梢投与することを含む、方法。

請求項16

治療法に使用するための、請求項9に記載のフエントキシンIV変異体。

請求項17

Nav1.7介在性疼痛を緩和する方法であって、治療を要する被験対象に、前記Nav1.7介在性疼痛を緩和するのに充分な時間にわたって、Nav1.7のペプチド阻害剤の治療上の有効量を末梢投与することによる、方法。

請求項18

前記Nav1.7介在性疼痛が、慢性痛急性痛神経因性疼痛侵害受容性疼痛内臓痛背部痛術後痛熱性疼痛、幻肢痛、又は、炎症状態原発性皮膚紅痛症(PE)、発作性激痛症(PEPD)、変形性関節症関節リウマチ腰椎椎間板切除膵炎線維筋痛症有痛性糖尿病性ニューロパチー(PDN)、帯状疱疹後ニューロパチー(PHN)、三叉神経痛(TN)、脊髄損傷、若しくは多発性硬化症に伴う疼痛を含む、請求項17に記載の方法。

請求項19

前記被験対象がヒトである、請求項18に記載の方法。

請求項20

前記Nav1.7のペプチド阻害剤が、関節、脊髄手術創傷害又は外傷の部位、末梢神経線維泌尿生殖器、又は炎症組織局所投与される、請求項19に記載の方法。

請求項21

前記Nav1.7のペプチド阻害剤が、ミニポンプを使用して投与される、請求項19に記載の方法。

請求項22

前記Nav1.7のペプチド阻害剤が、プロトキシンII(配列番号356)、フエントキシンIV(配列番号1)、プロトキシンII変異体、又はフエントキシンIV変異体である、請求項19に記載の方法。

請求項23

前記フエントキシンIV変異体が、配列番号3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99、100、101、102、103、104、105、106、107、108、109、110、111、112、113、114、115、116、117、118、119、120、121、122、123、124、125、126、127、128、129、130、131、132、133、134、135、136、137、138、139、140、141、142、143、144、145、146、147、148、149、150、151、152、153、154、155、156、157、158、159、160、161、162、163、164、165、166、167、168、169、170、171、172、173、174、175、176、177、178、179、180、181、182、183、184、185、186、187、188、189、190、191、192、193、194、195、196、197、198、199、200、201、202、203、204、205、206、207、208、209、210、211、212、213、214、215、216、217、218、219、220、221、222、223、224、225、226、227、228、229、230、231、232、233、234、235、236、237、238、239、240、241、242、243、244、245、246、247、248、249、250、251、252、253、277、278、279、280、281、282、283、284、285、286、287、288、289、290、291、292、293、294、295、296、297、298、299、300、301、302、303、304、305、306、307、308、309、310、311、312、313、314、315、316、317、318、319、320、321、322、323、324、325、326、327、328、329、330、331、332、333、334、335、336、337、338、339、340、341、342、343、344、345、346、347、348、349、350、351、352、353、354又は355に示される前記ポリペプチド配列を有する、請求項22に記載の方法。

技術分野

0001

(先の出願との相互参照
本出願は、2013年3月14日出願の米国特許仮出願第61/781,276号、及び2012年9月18日出願の米国特許仮出願第61/702,538号に基づく利益を主張する2013年3月15日出願の米国特許出願第13/833,555号、及び2012年5月18日出願の米国特許仮出願第61/648,871号に基づく利益を主張するものであり、これらの出願の全容を本出願に参照によって援用するものである。
(発明の分野)
本発明は、フエントキシンIV変異体、フエントキシンIV変異体をコードするポリヌクレオチド、上記を生成及び使用する方法、並びにNav1.7のペプチド阻害剤により疼痛緩和する方法に関する。

背景技術

0002

電位依存性ナトリウムチャネル(Voltage-gated sodium channel)(VGSC)は、心筋及び骨格筋細胞、並びに中枢及び末梢ニューロンを含むあらゆる興奮性細胞に存在している。神経細胞では、ナトリウムチャネル閾値下脱分極増幅し、活動電位の急速な立ち上がりを引き起こす役割を担っている。このため、ナトリウムチャネルは、神経系における電気信号の開始及び伝播に不可欠である。異常なナトリウムチャネル機能は、てんかん(Yogeeswari et al.,Curr Drug Targets 5:589〜602,2004)、不整脈(Tfelt−Hansen et al.,J Cardiovasc Electrophysiol 21:107〜15,2010)、筋緊張(Cannon and Bean,J Clin Invest 120:80〜3,2010)、及び疼痛(Cregg et al.,J Physiol 588:1897〜904,2010)を含む様々な医療的疾患の基礎をなすものと考えられている(Hubner and Jentsch,Hum Mol Genet 11:2435〜45,2002)。ナトリウムチャネルは、一般的に各種サブユニット複合体であり、その主要なものは単独で機能するのに充分なポア形成αサブユニットである。
電位依存性ナトリウムチャネル(VGSC)αサブユニットのファミリーの9つの周知のメンバー、Nav1.1〜Nav1.9、がヒトに存在する。このNav1.xサブファミリーは、薬学的にテトロドトキシン(TTX)感受性又はTTX抵抗性細分化することができる。Nav1.7(PN1、SCN9A、又はhNEとも呼ばれる)はTTX感受性であり、主に末梢交感神経及び感覚ニューロン発現している。Nav1.7は、神経線維末端蓄積し、小さい閾値下脱分極を増幅し、興奮性を調節する閾値チャネルとして機能する。
Nav1.7の機能は、急性炎症性、及び/又は神経因性疼痛を含む、様々な疼痛状態に関係している。ヒトでは、Nav1.7の機能獲得型突然変異が、四肢灼熱痛及び炎症によって特徴付けられる疾患である、原発性先端紅痛症(PE)(Yang et al.,J Med Genet 41:171〜4,2004)、及び発作性激痛症(PEPD)(Fertleman et al.,Neuron 52:767〜74,2006)と関連付けられている。この知見と符合して、非選択的ナトリウムチャネル遮断薬であるリドカインメキシレチン、及びカルバマゼピンは、これらの疼痛性疾患症状緩和を与えることができる(Legroux−Crespelet al.,Ann Dermatol Venereol 130:429〜33,2003;Fertleman et al.,Neuron 52:767〜74,2006)。
ヒトにおけるSNC9Aの機能喪失型突然変異は、痛覚刺激に対する完全な無感受性又は不感受性により特徴付けられる希な常染色体劣性疾患である、先天性無痛症(CIP)を引き起こす(Cox et al.,Nature 444:894〜8,2006;Goldberg et al,Clin Genet 71:311〜9,2007;Ahmad et al.,Hum Mol Genet 16:2114〜21,2007)。
SCN9Aのコーディング領域内の一塩基多型が、侵害受容器の興奮性及び痛覚感受性の増大との関連が示されている。例えば、結果的にヒトNav1.7のR1150Wの置換を生じる多型性rs6746030は、変形性関節症の痛み、腰椎椎間板切除術の痛み、幻肢痛、及び膵炎の痛みとの関連が示されている(Reimann et al.,Proc Natl Acad Sci USA 107:5148〜53,2010)。R1150W Nav1.7を発現するDRGニューロンは、脱分極に反応して増大した発火頻度を示す(Estacion et al.,Ann Neurol 66:862〜6,2009)。線維筋痛症機能障害型の1つが、SCN9Aのナトリウムチャネルの多型性rs6754031との関連が示されており、重症の線維筋痛症を有する一部の患者では、後根神経節ナトリウムチャネロパチーを有しうることを示している(Vargas−Alarcon et al.,BMCMusculoskelet Disord 13:23,2012)。
マウスでは、侵害受容性ニューロンにおけるSCN9A遺伝子の欠失が、機械性及び熱性疼痛閾値の低下及び炎症性疼痛応答の低減及び消失につながる(Nassar et al.,Proc Natl Acad Sci USA 101:12706〜11,2004)。すべての感覚ニューロンでNav1.7遺伝子の発現を停止させることにより、機械性疼痛、炎症性疼痛、及び熱に対する逃避反射反応が消失した。感覚ニューロン及び交感神経ニューロンの両方でSCN9Aを欠失させることで、機械性、熱性及び神経因性疼痛が消失し、SCN9Aの機能喪失突然変異を有するヒトに見られる無痛の表現型再現された(Minett et al.,Nat Commun 3:791,2012)。したがって、Nav1.7阻害剤又は遮断薬は、様々な疾患に伴う広範な疼痛の治療に有用となりうる。
クモ毒には、フエントキシンIV(HwTx−IV)(Peng et al.,J Biol Chem 277:47564〜71,2002)、プロトキシンI、プロトキシンII(Middleton et al.,Biochemistry 41:14734〜47,2002)、及びフリクソトキシンIII(Bosmans et al.,Mol Pharmacol 69:419〜29,2006)を含む多くのナトリウムチャネル遮断ペプチドが含まれることが知られている。チャイニーズバードスパイダーオルニソクトヌス・フエナ(Ornithoctonus huwena))より得られるフエントキシンIV(HwTx−IV)は、Nav1.7及び他のTTX感受性電位依存性ナトリウムチャネルの強力な遮断薬であり、ドメインIIの電位センサー内向きの閉じたコンフォメーション内に閉じ込めることによって開口調節剤として機能すると考えられる(Xiao et al.,J Biol Chem 283:27300〜13,2008)。プロトキシンIIは、その好ましい有効性選択性プロファイルのため、痛覚消失作用を示すことを目的とした様々なin vivo実験の対象となっているが、これらの実験のいずれも神経周膜を損傷せずに成功したものは報告されていない。プロトキシンIIの作用は、皮膚神経の脱による血液神経関門破壊(Schmalhofer et al.,Mol Pharm 74:1476〜1484,2008)又はタイトジャンクションタンパク質であるクラウジンIの発現低下につながる高張生理食塩水の神経周膜注入(Hackel et.al.,PNAS 109:29 E2018−27,2012)によってのみ認められた。広範な疼痛適応症を治療するための更なるNav1.7遮断薬を特定することが求められている。詳細には、他のVGSCのアイソフォームよりもNav1.7に対して高い選択性を有する新規なNav1.7遮断薬が求められている。

課題を解決するための手段

0003

本発明の一実施形態は、配列:
X1CX2X3X4FX5X6CX7X8X9X10X11X12CCX13X14X15X16X17X18CX19X20X21X22X23X24CKX25X26IX27X28(配列番号265)を有する単離されたフエントキシンIV変異体であって、配列中、X1、X2、X3、X4、X5、X6、X7、X8、X9、X10、X11、X12、X13、X14、X15、X16、X17、X18、X19、X20、X21、X22、X23、X24、X25、及びX26は任意のアミノ酸であり、X27及びX28は任意のアミノ酸であるか又は欠失しており、そして前記フエントキシンIV変異体が、配列番号1に示される配列を有するポリペプチドではないという条件で、前記フエントキシンIV変異体のヒトNav1.7(配列番号263)に対するIC50値が約300×10-9M以下である、単離されたフエントキシンIV変異体である。
本発明の別の実施形態は、配列:
X1CX2X3X4FX5X6CX7X8X9X10X11X12CCX13X14X15X16X17X18CX19X20X21X22X23X24CKX25X26IX27X28(配列番号265)を有する単離されたフエントキシンIV変異体であって、配列中、X1、X2、X3、X4、X5、X6、X7、X8、X9、X10、X11、X12、X13、X14、X15、X16、X17、X18、X19、X20、X21、X22、X23、X24、X25、及びX26は、任意のアミノ酸であり、X27及びX28は任意のアミノ酸であるか又は欠失しており、そして前記フエントキシンIV変異体が、配列番号1に示される配列を有するポリペプチドではないという条件で、前記フエントキシンIV変異体がNav1.7を選択的に阻害する、単離されたフエントキシンIV変異体である。
本発明の別の実施形態は、配列:
X1CX2X3X4FX5X6CX7X8X9X10X11X12CCX13X14X15X16X17X18CX19X20X21TX22WCKYX23X24X25X26(配列番号276)を有する単離されたフエントキシンIV変異体であって、配列中、X1、X2、X3、X4、X5、X6、X7、X8、X9、X10、X11、X12、X13、X14、X15、X16、X17、X18、X19、X20、X21、X22、X23及びX24は任意のアミノ酸であり、X25及びX26は任意のアミノ酸であるか又は欠失しており、そして前記フエントキシンIV変異体が、配列番号1に示される配列を有するポリペプチドではないという条件で、前記フエントキシンIV変異体のヒトNav1.7(配列番号263)に対するIC50値が約300×10-9M以下である、フエントキシンIV変異体である。
本発明の別の実施形態は、本発明の前記フエントキシンIV変異体をコードした単離されたポリヌクレオチドである。
本発明の別の実施形態は、本発明の前記単離されたポリヌクレオチドを含むベクターである。
本発明の別の実施形態は、本発明のベクターを含む宿主細胞である。
本発明の別の実施形態は、本発明の前記宿主細胞を培養することと、前記宿主細胞による前記フエントキシンIV変異体ポリヌクレオチド回収することと、を含む、本発明の単離されたフエントキシンIV変異体ポリヌクレオチドを作成する方法である。
本発明の別の実施形態は、本発明の前記単離されたフエントキシンIV変異体及び薬学的に許容される賦形剤を含む、医薬組成物である。
本発明の別の実施形態は、被験対象の疼痛を治療する方法であって、疼痛、感覚ニューロン又は交感神経ニューロン機能不全の他の疾患を治療するために本発明のフエントキシンIV変異体の有効量を前記被験対象に投与すること、を含む、方法である。
本発明の別の実施形態は、Nav1.7介在性疼痛を緩和する方法であって、治療を要する被験対象に、前記Nav1.7介在性疼痛を治療又は緩和するのに充分な時間にわたって、Nav1.7のペプチド阻害剤の治療上の有効量を投与することによる、方法である。
本発明の他の態様では、Nav1.7のペプチド阻害剤は末梢投与される。
本発明の他の態様では、Nav1.7のペプチド阻害剤はプロトキシンII又はフエントキシンIV又はそれらの変異体である。

図面の簡単な説明

0004

指定された残基位置において特定の置換を有する生成されたフエントキシンIV変異体について、Nav1.7に対するベラトリジン誘発膜脱分化の阻害のIC50値を示す。参照フエントキシンIV残基は、配列番号267のポリペプチドの残基に対応している。灰色で強調された置換は、IC50値が300×10-9M以下である変異体を生じる。>で始まる値は、その特定の変異体が指示濃度で不活性であったことを示す。
指定された残基位置において特定の置換を有する生成されたフエントキシンIV変異体について、Nav1.7に対するベラトリジン誘発膜脱分化の阻害のIC50値を示す。参照フエントキシンIV残基は、配列番号267のポリペプチドの残基に対応している。灰色で強調された置換は、IC50値が300×10-9M以下である変異体を生じる。>で始まる値は、その特定の変異体が指示濃度で不活性であったことを示す。
指定された残基位置において特定の置換を有する生成されたフエントキシンIV変異体について、Nav1.2に対するベラトリジン誘発膜脱分化の阻害のIC50値を示す。参照フエントキシンIV残基は、配列番号267のポリペプチドの残基に対応している。>で始まる値は、その特定の変異体が示された濃度で不活性であったことを示す。
指定された残基位置において特定の置換を有する生成されたフエントキシンIV変異体について、Nav1.2に対するベラトリジン誘発膜脱分化の阻害のIC50値を示す。参照フエントキシンIV残基は、配列番号267のポリペプチドの残基に対応している。>で始まる値は、その特定の変異体が示された濃度で不活性であったことを示す。
生成されたフエントキシンIV変異体の選択性を、指定された残基位置において特定の置換を有するそれぞれの変異体について、Nav1.7に対するIC50値に対するNav1.2に対するIC50値の比として示す(IC50値は、ベラトリジン誘発膜脱分化の阻害について計算した)。参照フエントキシンIV残基は、配列番号267のポリペプチドの残基に対応している。灰色で強調された置換は、IC50(Nav1.2)/IC50(Nav1.7)の比が5.0以上である変異体を生じる。>で始まる値は、その特定の変異体が示された濃度で不活性であったことを示す。「不活性」は、ペプチドがNav1.7に対して不活性であったことを示す。
生成されたフエントキシンIV変異体の選択性を、指定された残基位置において特定の置換を有するそれぞれの変異体について、Nav1.7に対するIC50値に対するNav1.2に対するIC50値の比として示す(IC50値は、ベラトリジン誘発膜脱分化の阻害について計算した)。参照フエントキシンIV残基は、配列番号267のポリペプチドの残基に対応している。灰色で強調された置換は、IC50(Nav1.2)/IC50(Nav1.7)の比が5.0以上である変異体を生じる。>で始まる値は、その特定の変異体が示された濃度で不活性であったことを示す。「不活性」は、ペプチドがNav1.7に対して不活性であったことを示す。
Nav1.7に対するEC50が300×10-9MであるフエントキシンIV変異体の配列を示す(IC50値はベラトリジン誘発膜脱分極の阻害について計算した)。
IC50(Nav1.2)/IC50(Nav1.7)の比を用いて評価した、Nav1.2よりもNav1.7に対して少なくとも5倍高い選択性を有する、(Nav1.2に不活性である)フエントキシンIV変異体の配列を示す(IC50値はベラトリジン誘発膜脱分極の阻害について計算した)。
ホールセル(全細胞パッチクランプアッセイ(QPatch)において選択したフエントキシンIV変異体のIC50値及び選択性を示す。
ラットにおいて、溶媒(n=9)、又はa)0.3nmol、b)3nmol若しくはc)30nmolのフエントキシンIV(n=9)の後足背面への注射の前(Pre)並びに5、10、20、30、45及び60分後の、ランダールセリット(Randall-Selitto)足圧閾値グラム(g)で表したものの線グラフを示す。データは、2元配置分散分析ANOVA)をボンフェローニポストホック(Bonferroni post hoc)検定とともに使用し、平均±標準誤差として表した。NS=有意でない。**=p<0.01、***=p<0.001。
ラットにおいて、溶媒(n=9)、又はa)0.3nmol、b)3nmol若しくはc)30nmolのフエントキシンIV(n=9)の後足背面への注射の前(Pre)並びに5、10、20、30、45及び60分後の、ランダール・セリット(Randall-Selitto)足圧閾値をグラム(g)で表したものの線グラフを示す。データは、2元配置分散分析(ANOVA)をボンフェローニポストホック(Bonferroni post hoc)検定とともに使用し、平均±標準誤差として表した。NS=有意でない。**=p<0.01、***=p<0.001。
ラットにおいて、溶媒(n=9)、又はa)0.3nmol、b)3nmol若しくはc)30nmolのフエントキシンIV(n=9)の後足背面への注射の前(Pre)並びに5、10、20、30、45及び60分後の、ランダール・セリット(Randall-Selitto)足圧閾値をグラム(g)で表したものの線グラフを示す。データは、2元配置分散分析(ANOVA)をボンフェローニポストホック(Bonferroni post hoc)検定とともに使用し、平均±標準誤差として表した。NS=有意でない。**=p<0.01、***=p<0.001。
溶媒処理動物の平均AUCを減じた(個々のフエントキシンIV処理ラットのそれぞれについて)、フエントキシンIV処理ラットの閾値(g)の平均曲線面積(AUC)を示す。1元配置分散分析(ANOVA)を用いたところ、用量の有意な影響が認められ(p<0.001)、用量依存的反応が示された。ボンフェローニポスト検定によれば、各用量群間で有意差が示された(**=p<0.01、***=p<0.001)。
それぞれの分子動力学シミュレーション(各50ns)から計算された残基当たりの平均α炭素原子(CA)の2乗平均偏差(RMSD)により色付けされた関数(QPatch)の有意な(>10倍)低下を生じた、異なるフエントキシンIVアラニン突然変異体を示す。CA RMSDは、0.5オングストローム(赤)〜2.2オングストローム(青)の勾配で色付けしている。(a)WT(b)F6A、(c)P11A、(d)D14A、(e)L22A、(f)S25A、(g)W30A、(h)K32A及び(i)Y33AのフエントキシンIV突然変異体。
それぞれの分子動力学シミュレーション(各50ns)から計算された残基当たりの平均のCA RMSDにより色付けされた関数(QPatch)においてアイソフォームに固有の変化を生じたと考えられる異なるアラニン突然変異体を示す。CA RMSDは、0.5オングストローム(赤)〜2.2オングストローム(青)の勾配で色付けしている。(a)K18A、(b)R26A、(c)K27A。
組み換えフエントキシンIV(配列番号1)のNMR溶液構造を示す。NMR構造より、フエントキシンIVとNav1.7との間の相互作用表面と考えられる極性アリール面を形成するねじれβシート(濃紺)を形成しているHwTx−IVの5つの残基(F6、T28、W30、K32及びY33)が明らかである。
フエントキシンIVがドッキングしたhNav1.7のドメイン2(DII)電圧感知ドメイン(VSD)の相同性モデルを示す。このモデルに基づけば、フエントキシンIVは、セグメントS1−S2及びS3−S4により形成される溝内にドッキングする。フエントキシンIV(配列番号1)の残基K32及びW30は、Nav1.7(配列番号263)の残基E811及びM750とそれぞれ相互作用するものと予測される。
NV1D2168(配列番号102)変異体について、配列を示す。TETRA:FLIPR(登録商標)Tetra、QP:QPatch。
NV1D2168(配列番号102)変異体について、IC50値を示す。TETRA:FLIPR(登録商標)Tetra、QP:QPatch。
NV1D2163(配列番号3)変異体について、配列を示す。TETRA:FLIPR(登録商標)Tetra、QP:QPatch。
NV1D2163(配列番号3)変異体について、IC50値を示す。TETRA:FLIPR(登録商標)Tetra、QP:QPatch。
HwTx−IV投与後の足圧閾値の増大によって測定される、侵害受容性疼痛のラットモデルにおいて、3nmolのフエントキシンIV(HwTx−IV)の局所投与鎮痛作用を与えることを示す。
HwTx−IV投与後の足圧閾値の増大によって測定される、侵害受容性疼痛のラットモデルにおいて、30nmolのフエントキシンIV(HwTx−IV)の局所投与が鎮痛作用を与えることを示す。
示された濃度におけるHwTx−IVに対する足圧力反応の平均曲線下面積(AUC)。**p<0.01、***p<0.001である。
ProTx−II投与後の足圧閾値の増大によって測定される、侵害受容性疼痛のラットモデルにおいて、0.3nmolのプロトキシンII(ProTx−II)の局所投与が鎮痛作用を与えることを示す。
ProTx−II投与後の足圧閾値の増大によって測定される、侵害受容性疼痛のラットモデルにおいて、3nmolのプロトキシンII(ProTx−II)の局所投与が鎮痛作用を与えることを示す。
ProTx−II投与後の足圧閾値の増大によって測定される、侵害受容性疼痛のラットモデルにおいて、30nmolのプロトキシンII(ProTx−II)の局所投与が鎮痛作用を与えることを示す。*p<0.05、**p<0.01である。
示された濃度におけるHwTx−IVに対する足圧力反応の平均曲線下面積(AUC)。
50%足底内CFAによりラットに誘発させた単関節炎のラットモデルにおける接触性アロディニアの軽減を示す。
50%足底内CFAによりラットに誘発させた単関節炎のラットモデルにおける熱性アロディニアの軽減を示す。
足底内ProTx−II投与は、完全フロイントアジュバント(CFA)誘発接触性アロディニアを有意に軽減した。
接触性アロディニアは、マウスにおいて100%足底内CFAにより誘発されるが、50%CFAでは誘発されない。
足底内ProTx−II投与は、100% CFA処理動物において接触性アロディニアを有意に軽減した。
ガバペンチンもProTx−IIほどではないものの接触性アロディニアを軽減した。
ミニポンプにより228μg/マウス/日を3日間にわたって投与したProTx−IIで処理した動物におけるCFA誘発炎症性疼痛のマウスモデルにおける接触性アロディニアの軽減を示す。
ミニポンプにより228μg/マウス/日を3日間にわたって投与したProTx−IIで処理した動物におけるCFA誘発炎症性疼痛のマウスモデルにおける熱性アロディニアの軽減を示す。

0005

本明細書に引用される特許及び特許出願を含む(ただしそれらに限定されない)すべての刊行物は、参照により恰もそれらの全体が記載されているものと同様にして、本明細書に援用するものである。
本明細書及び特許請求の範囲において使用するところの単数形「a」、「and」、及び「the」は、文脈よりそうでない旨が明確に示されない限り、複数の対象物を含む。
特に断らない限り、本明細書で使用される技術用語及び科学用語は、本発明が属する技術分野における当業者によって一般的に理解されているものと同じ意味を有する。本明細書に記載されているものと同様又は同等のあらゆる組成及び方法を本発明を実施又は試験するために使用することが可能であるが、代表的な組成物及び方法を本明細書に記載するものである。
「ポリペプチド」なる用語は、ペプチド結合によって結合されてポリペプチドを形成する少なくとも2個のアミノ酸残基を含む分子を意味する。50個未満のアミノ酸からなる小さいポリペプチドは「ペプチド」と呼ばれる場合もある。ポリペプチドは、「タンパク質」と呼ばれる場合もある。
「ポリヌクレオチド」なる用語は、糖−リン酸骨格又は他の同等の共有結合化学により共有結合を介して連結されたヌクレオチド鎖からなる分子を意味する。二本鎖及び一本鎖のDNA及びRNAが、ポリヌクレオチドの典型例である。
相補配列」なる用語は、第1の単離ポリヌクレオチド配列逆平行であり、第1のポリヌクレオチド配列ヌクレオチドに対して相補的なヌクレオチドからなる第2の単離ポリヌクレオチド配列を意味する。
「ベクター」なる用語は、生物系内で複製されうる、又はこうした系間を移動しうるポリヌクレオチドを意味する。ベクターポリヌクレオチドは一般的に、生物系内でこれらのポリヌクレオチドの複製又は維持を促進するように機能する複製起点ポリアデニル化シグナル又は選択マーカーなどの要素を含んでいる。このような生物系の例としては、細胞、ウイルス、動物、植物、及びベクターを複製することができる生物学的成分を利用して再構成された生物系を挙げることができる。ベクターを構成するポリヌクレオチドは、DNA若しくはRNA分子又はこれらのハイブリッドであってよい。
発現ベクター」なる用語は、生物系又は再構成された生物系内で、その発現ベクター中に存在するポリヌクレオチド配列によってコードされたポリペプチドの転換誘導するために使用することができるベクターを意味する。
本明細書で使用するところの「野生型フエントキシンIV」又は「野生型HwTx−IV」なる用語は、配列番号1(ECLEIFKACNPSNDQCCKSSKLVCSRKTRWCKYQI)に示される配列を有する、チャイニーズバードスパイダー(オルニソクトヌス・フエナ)(Ornithoctonus huwena)のフエントキシンIVポリペプチドのことを指す。本明細書で使用するところの「組み換えフエントキシンIV」又は「組み換えHwTx−IV」なる用語は、配列番号2(GPECLEIFKACNPSNDQCCKSSKLVCSRKTRWCKYQIGK)に示される配列を有する、組み換えにより発現されたフエントキシンIVのことを指す。組み換えフエントキシンIVは、野生型フエントキシンIVと比較して、2個のアミノ酸からなるN末端尾部及びC末端尾部を有している。「参照フエントキシンIV」なる用語は、配列番号267(ECLEIFKACNPSNDQCCKSSKLVCSRKTRWCKYQIGK)のポリペプチド配列のことを指す。本明細書の全体を通じて、残基の番号付けは、配列番号267に基づいている。例えば、明細書において「F6」とは、配列番号267の6番目フェニルアラニン残基を指す。
本明細書で使用するところの「変異体」なる用語は、配列1の野生型フエントキシンIVポリペプチド又は配列番号268の野生型フエントキシンIVポリヌクレオチド配列から、例えばヌクレオチド又はアミノ酸の置換、挿入、又は欠失などの1以上の改変において異なるポリペプチド又はポリヌクレオチドのことを指す。
本明細書で使用するところの「Nav1.7」(SCN9A、hNE、PN1とも呼ばれる)は、GenBankアクセッション番号NP_002968.1及び配列番号263に示される配列を有する周知のナトリウムチャネルタンパク質タイプ9αサブユニットのことを指す。
本明細書で使用するところの「Nav1.2」は、GenBankアクセッション番号NP_001035232.1及び配列番号264に示される配列を有する周知のナトリウムチャネルタンパク質2型αサブユニット(SCN2A)のことを指す。
本明細書で使用するところの「活性を遮断する」又は「活性を阻害する」とは、FRET(蛍光共鳴エネルギー移動)を用いたインビトロ膜脱分極アッセイにおいてベラトリジン(3−ベラトロイルベラセビン)によって誘導される膜脱分極を少なくとも10%、20%、30%、40%、50%、60%、70%、75%、80%、85%、90%、95%、又は100%低減するフエントキシンIV変異体の能力のことを指す(ただし、ベラトリジン誘導脱分極とは、DISBAC2(3)([ビス−(1,3−ジエチルチオバルビツール酸トリメチンオキソノール])を受容体として、PTS18(三ナトリウム8−オクタデシルオキシピレン−1,3,6−トリスルホネート)を供与体として使用し、供与体を390〜420nmで励起し、Nav1.7を安定的に発現する細胞株を使用して515〜575nmでFRETを測定することによりFRETシグナルの低下として測定される)。
本明細書で使用するところの「プロトキシンII」又は「ProTx−II」なる用語は、タランチュラ一種であるトリコペルマ・プルリエンス(Thrixopelma pruriens)(ペルビアグリーンベルベットタランチュラ)の毒素ペプチドであり、Middleton et al.,Biochemistry 41(50):14734〜47,2002に述べられるアミノ酸配列YCQKWMWTCDSERKCCEGMVCRLWCKKKLW−COOH(配列番号356)を有するもののことを指す。ProTx−IIは、インビトロで報告されているIC50値が0.3nMであり、他のNav1.xサブタイプと比較した場合に100倍以上の選択性を有する強力かつ選択的なNav1.7阻害剤である(Schmalhofer et al.,Mol Pharmacol 74:1476〜1484,2008)。
本明細書で使用するところの「μコノトキシンKIIIA」又は「コノトキシンKIIIA」なる用語は、Zhang et al.,J Biol Chem 282(42):30699〜706,2007に述べられる配列CCNCSSKWCRDHSRCC−NH2(配列番号357)を有する、キノシタイモ(コナス・キノシタイ)(Conus kinoshitai)毒素を指す。
本明細書で使用するところの「Nav1.7阻害剤」又は「Nav1.7のペプチド阻害剤」又は「Nav1.7の遮断薬」とは、Nav1.7チャネル活性を阻害、低減、又は遮断するペプチドのことを指す。Nav1.7のペプチド阻害剤は、当該技術分野では周知の電気生理学的アッセイ及び本明細書に開示されるアッセイを使用してNav1.7遮断活性について試験することができる。例えば、Clare et al.,drug Discovery Today 5:506〜520,2000を参照されたい。
本発明は、Nav1.7を阻害する単離されたフエントキシンIV(HwTx−IV)変異体ポリペプチド、該ポリペプチドをコードするポリヌクレオチド、ベクター、ホスト細胞、並びに本発明のポリヌクレオチド及びポリペプチドを使用する方法を提供する。本発明の変異体は、組み換えフエントキシンIVポリペプチドと比較した場合にNav1.7に対してより強力又はより選択的でありうる。本発明のポリペプチドは、Nav1.7活性化による脱分極を阻害するため、疼痛を伴う様々な状態及び感覚ニューロン又は交感神経ニューロンの機能不全に伴う状態の治療に有用でありうる。本発明は、フエントキシンIVの特定の残基、詳細にはF6、K32及びI35は、置換に対して不耐性であり、更に残基I5、P11、D14、S25、K27、T28、W30及びY33(残基の番号付けは配列番号267に基づく)が置換に対して実質上不耐性であるのに対して、他の残基の置換は、位置C2、C9、C16、C17、C24及びC31のシステイン残基に変化がない限り、Nav1.7に対するフエントキシンIV変異体の作用及び/又は選択性を高めうるという知見に少なくとも一部基づくものである。
本発明の一実施形態は、配列:
X1CX2X3X4FX5X6CX7X8X9X10X11X12CCX13X14X15X16X17X18CX19X20X21X22X23X24CKX25X26IX27X28(配列番号265)を有する単離されたフエントキシンIV変異体であって、配列中、
a)X1、X2、X3、X4、X5、X6、X7、X8、X9、X10、X11、X12、X13、X14、X15、X16、X17、X18、X19、X20、X21、X22、X23、X24、X25、及びX26は、任意のアミノ酸であり、
b)X27及びX28は任意のアミノ酸であるか又は欠失しており、そして
c)前記フエントキシンIV変異体が、配列番号1に示される配列を有するポリペプチドではないという条件で、前記フエントキシンIV変異体のヒトNav1.7(配列番号263)に対するIC50値が約300×10-9M以下である、単離されたフエントキシンIV変異体である。
本発明の前記フエントキシンIV変異体は、組み換えフエントキシンIV(配列番号2)と比較した場合に同等に有効又はより有効なNav1.7阻害剤である。組み換えフエントキシンIVは、FLIPR(登録商標)Tetra装置(モレキュラーデバイシーズ社(Molecular Devices))を使用した、Nav1.7を安定的に発現する細胞におけるFRET(蛍光共鳴エネルギー移動)の低下を測定するベラトリジン誘導脱分極阻害アッセイにおいて、ヒトNav1.7に対するIC50値が約160×10-9Mである。フエントキシンIV変異体は、上記のアッセイにおけるIC50値が約300×10-9M以下である場合に「同等に有効又はより有効」なNav1.7阻害剤である。このIC50値は、アッセイ自体の内在的変動性(1/2log)のため、組み換えにより発現されるフエントキシンIVでは、測定されるIC50よりも高く設定される。分かりやすさのため、300×10-9MのIC50は、3.0×10-7MのIC50に等しい。
本発明のフエントキシンIV変異体では、不変残基F6、K32及びI35(残基の番号付けは配列番号267に基づく)以外に、C2〜C17、C9〜C24、及びC16〜C31間の天然ジスルフィド架橋が維持される一方で、得られる変異体の上記のNav1.7阻害アッセイにおけるIC50が約300×10-9M以下であれば、残りの残基は任意のアミノ酸で置換されてよい。
本発明のフエントキシンIV変異体ポリペプチドは、自動ペプチド合成装置により、固相ペプチド合成法などの化学合成法により作製することができる。また、本発明のポリペプチドは、これらのペプチド鎖をコードするポリヌクレオチドから、網状赤血球溶血液に基づく発現系などの無細胞発現系の使用により、又は標準的な組み換え発現系により得ることもできる。当業者であれば、本発明のポリペプチドを得るための他の技術も認識されるであろう。例示の一方法では、本発明のフエントキシンIV変異体は、HRV3Cプロテアーゼヒトライノウイルス4型由来の組み換え3Cプロテアーゼ)の認識配列LEVLFQGP(HRV3Cリンカー)(配列番号270))などのプロテアーゼ切断性リンカーと連結された(GGGGS)4(配列番号269)又は(GGGGS)6(配列番号266)のような高グリシンリンカーを用いて、ヒト血清アルブミンHSA融合タンパク質として発現させることによって生成される。ヘキサヒスチジン又は他のタグを用いて周知の方法により精製を促進することができる。
フエントキシンIV変異体の生成は、一般的に核酸レベルで行われる。これらのポリヌクレオチドは、縮重オリゴヌクレオチドを使用して所望の変異体を生成する米国特許第6521427号及び米国特許第第6670127号に述べられる方法に基づいた化学的遺伝子合成法を用いるか、又は標準的なPCRクローニング及び突然変異誘発法により合成することができる。フエントキシンIV変異体をコードしたポリヌクレオチドを発現用ベクターにクローニングするための標準的なクローニング技術によって変異体のライブラリーを生成することができる。
フエントキシンIV変異体は、配列番号1の野生型HwTx−IVと比較した場合に、例えばクローニング及び/又は発現スキームから生じる、更なるN末端及び/又はC末端アミノ酸を有しうる。例えば、変異体をHSA−(GGGGS)4−HRV3Cリンカー−HwTx−IV変異体融合タンパク質として発現させた後、HSAから切断することにより、それぞれのHwTx−IV変異体のN末端にG及びPなどの更に2つの残基を導入することができる。内因性アミド化認識配列を生成するためにG及びKなどの更なる残基をHwTx−IVのC末端に導入することができる。
本発明のHwTx−IV変異体は、本明細書に述べられる方法を用いてそれらがNav1.7を阻害する能力について試験される。例示のアッセイの1つに、Nav1.7を安定的に発現する細胞においてFRET(蛍光共鳴エネルギー移動)の低下を測定するベラトリジン誘導脱分極阻害アッセイがある。別の例示のアッセイは、本明細書に述べられる周知のパッチクランプ法を用い、電位差により細胞膜を通過するナトリウムイオン(Na+)の全流入量を測定するために電気生理学的記録を用いるものである。
別の実施形態では、単離されたHwTx−IVは、配列:
X1CX2X3X4FX5X6CX7X8X9X10X11X12CCX13X14X15X16X17X18CX19X20X21X22X23X24CKX25X26IX27X28(配列番号265)を有し、配列中、
a)X4が、Y、V又はIであり、
b)X8が、P又はVであり、
c)X11が、D、P又はWであり、
d)X19が、S又はIであり、
e)X21が、Y、W、A、H又はKであり、
f)X22が、T又はVであり、
g)X24が、W又はKであり、
h)X25が、W、T、I又はYであり、
i)X1、X2、X3、X5、X6、X7、X9、X10、X12、X13、X14、X15、X16、X17、X18、X20、X23及びX26が任意のアミノ酸であり、
j)X27及びX28が任意のアミノ酸であるか、又は欠失しており、そして
k)前記フエントキシンIV変異体が、配列番号1に示される配列を有するポリペプチドではないという条件で、前記フエントキシンIV変異体のヒトNav1.7(配列番号263)に対するIC50値は約300×10-9M以下である。
別の実施形態では、前記単離されたHwTx−IVは、配列:
X1CX2X3X4FX5X6CX7X8X9X10X11X12CCX13X14X15X16X17X18CX19X20X21X22X23X24CKX25X26IX27X28(配列番号265)を有し、配列中、
a)X1が、K、R、H、D、Y、F、N、Q、S、T、G、L、I、P又はEであり、
b)X2が、R、F、W、N、S又はLであり、
c)X3が、R、H、D、Y、N、Q、L、I、P又はEであり、
d)X4が、Y、V又はIであり、
e)X5が、R、W、Q、S又はKであり、
f)X6が、R、E、Y、F、V又はAであり、
g)X7が、K、R、E、Y、F、S、V又はNであり、
h)X8が、P又はVであり、
i)X9が、F、Q、V又はSであり、
j)X10が、H、D、Y、W、Q、S、T、G、A、V、L、I、P又はNであり、
k)X11が、D、P又はWであり、
l)X12が、K、R、D、E、Y、W、N、T、A、L又はQであり、
m)X13が、R、Y、Q、S、T、G、L、I、P又はKであり、
n)X14が、K、R、Y、F、N、Q、G、A、V、L、I、P又はSであり、
o)X15が、R、H、D、Y、W、N、Q、T、V、I、P又はSであり、
p)X16が、R、H、D、F、W、N、Q、S、T、G、A、L又はKであり、
q)X17が、K、R、Y、F、W、P又はLであり、
r)X18が、K、R、T、A、L又はVであり、
s)X19が、S又はIであり、
t)X20が、K、W、G、A、I、D又はRであり、
u)X21が、Y、W、A又はKであり、
v)X22が、T又はVであり、
w)X23が、K、H、W、N、G、A、L又はRであり、
x)X24が、W又はKであり、
y)X25が、W、T、I又はYであり、
z)X26が、K、R、Y、F、S、T、G、A、V、L、I又はQであり、
aa)X27が、K、R、H、F、W、V、L、I、Gであるか又は欠失しており、
bb)X28が、R、H、Y、F、W、N、G、V、P、Kであるか又は欠失しており、そして、
前記フエントキシンIV変異体が、配列番号1に示される配列を有するポリペプチドではないという条件で、前記フエントキシンIV変異体のヒトNav1.7(配列番号263)に対するIC50値が約300×10-9M以下である。
本発明のフエントキシンIV変異体は、約12×10-9M〜約300×10-9MのIC50値でNav1.7を阻害することができる。この範囲のIC50値を示す例示の変異体は、図4に示される配列番号3〜322のポリペプチドである。
本発明の別の実施形態は、配列:
X1CX2X3X4FX5X6CX7X8X9X10X11X12CCX13X14X15X16X17X18CX19X20X21X22X23X24CKX25X26IX27X28(配列番号265)を有する単離されたフエントキシンIV変異体であって、配列中、
a)X1、X2、X3、X4、X5、X6、X7、X8、X9、X10、X11、X12、X13、X14、X15、X16、X17、X18、X19、X20、X21、X22、X23、X24、X25、及びX26は、任意のアミノ酸であり、
b)X27及びX28は任意のアミノ酸であるか又は欠失しており、そして、
c)前記フエントキシンIV変異体が、配列番号1に示される配列を有するポリペプチドではないという条件で、前記フエントキシンIV変異体はNav1.7を選択的に阻害する。
本発明のフエントキシンIV変異体は、組み換えフエントキシンIV(配列番号2)と比較してNav1.7に対してより高い選択性を有しうる。組み換えフエントキシンIVは、Nav1.7に対して約159×10M-9のIC50を、Nav1.2に対して約342×10M-9のIC50を有することから、Nav1.7に対するIC50に対するNav1.2に対するIC50の比は、約2.143である。本明細書で使用する場合、「選択性」又は「選択的」又は「より選択的」又は「選択的に遮断する」又は「選択的に阻害する」とは、HwTx−IV変異体のNav1.7に対するIC50に対するNav1.2に対するIC50の比(IC50(Nav1.2)/IC50(Nav1.7))が約5.0に等しいか又はそれよりも大きいことを指す。更に、フエントキシンIV変異体は、IC50の比が5未満であっても、変異体が少なくとも0.8×10-6Mのペプチド濃度でNav1.2を阻害しない場合にNav1.7を「選択に阻害する」ものとする。Nav1.2に対するIC50は、Nav1.7について述べた方法にしたがって、Nav1.2を安定的に発現する細胞株を使用したベラトリジン誘導脱分極阻害アッセイにおいてアッセイすることができる。
選択性を高めるために突然変異導入することが可能なフエントキシンIVの残基の位置としては、N13、D14、Q15、K18、S19、S20、K21、L22、R26、K27、R29、W30、Y33及びQ34が挙げられる(残基の番号付けは配列番号267に基づく)。選択性を高めるための例示の置換は、N13G、N13I、Q15E、Q15W、Q15P、K18F、K18P、S19Q、R26K及びR26Iである。向上した選択性を有する例示のフエントキシンIV変異体は、配列番号5、7、12、13、16、21、25、45、46、48、55、57、58、60、61、72、74,76、78、82、83、96、109、111、113、122、127、131、134、137、141、142、149、164、165、172、175、177、178、180、182、188、189、192、198、202、204、213、215、219、223、224、225、226、227、228、229、230、231、232、233、234、235、236、237、238、239及び240の変異体である。
残基K7、N13、D14、Q15、K18、S19、S20、K21、L22、V23、R26、K27、R29、W30、Y33、及びQ34、G36及びK37(残基の番号付けは配列番号267に基づく)を置換することにより、得られるフエントキシンIV変異体の有効性及び選択性を両方とも高めることができる(図1及び図3)有効性及び選択性の両方を高める例示の置換は、R26K、Y33W、G36I、N13Q、S19Q、及びK37Rである(残基の番号付けは配列番号267に基づく)。向上した有効性及び選択性を有する例示の変異体は、配列番号5、6、7、12、13、16、21、25、45、46、48、55、57、58、60、61、72、74、76、78、82、83、96、109、111、113、122、127、131、134、137、141、142、149、164、165、169、172、175、177、178、180、181、182、187、188、189、192、198、202、203、204、207、213、215、216、219及び221の変異体である。
本発明の別の実施形態は、配列番号277、278、279、280、281、282、283、284、285、286、287、288、289、290、291、292、293、294、295、296、297、298、299、300、301、302、303、304、305、306、307、308、309、310、311、312、313、314、315、316、317、318、319、320、321、322、323、324、325、326、327、328、329、330、331、332、333、334、335、336、337、338、339、340、341、342、343、344、345、346、347、348、349、350、351、352、353、354及び355に示されるアミノ酸配列を有するフエントキシンIV変異体である。
本発明のフエントキシンIV変異体の選択性及び/又は有効性は、既存の変異体に、選択性及び/又は有効性を調節するために特定された位置において選択的置換(グラフティング)を行うことによって更に高めることができる。更に改変及び/又は改良することが可能な例示の変異体は、変異体NV1G387(E1N、R26K、Q34S、G36I;NV1D2168、配列番号192)及びNV1G327(E1N、E4R、Y33W、Q34S;NV1D2163、配列番号3)である。NV1G387は、Nav1.7に対して高い選択性を示した。NV1G387の有効性は、位置E4、A8、N13、Q15、K18、S19、S20、K21、L22、S25、K37及びG36を多様化することによって潜在的に高めることができる。例示の置換を図13A及び図14Aに示す。NV1G327は、Nav1.7に対して高い有効性を示した。NG1G327の選択性は、位置F6、P11、D14、Q15、K18、S19、R26、K27、R29、K32及びY33を多様化することによって潜在的に高めることができる。例示の置換を図13A及び図14Aに示す。当業者であれば、本明細書に述べられるいずれのフエントキシンIV変異体における置換も組み合わせることが可能であり、有効性、選択性又は他の特性に対するこうした組み合わせの効果は、本明細書に述べられる方法を用いて評価することができる点は認識されるであろう。
本発明の別の実施形態は、配列:
X1CX2X3X4FX5X6CX7X8X9X10X11X12CCX13X14X15X16X17X18CX19X20X21TX22WCKYX23X24X25X26(配列番号276)を有する単離されたフエントキシンIV変異体であって、配列中、
X1、X2、X3、X4、X5、X6、X7、X8、X9、X10、X11、X12、X13、X14、X15、X16、X17、X18、X19、X20、X21、X22、X23及びX24は任意のアミノ酸であり、
X25及びX26は任意のアミノ酸であるか又は欠失しており、そして
前記フエントキシンIV変異体が、配列番号1に示される配列を有するポリペプチドではないという条件で、前記フエントキシンIV変異体のヒトNav1.7(配列番号263)に対するIC50値が約300×10-9M以下である。
配列番号276のフエントキシンIV変異体は、以下の置換を有しうる。すなわち:
配列番号276において、
X4が、Y、V又はIであり、
X8が、P又はVであり、
X11が、D、P又はWであり、
X19が、S又はIであり、
X21が、Y、W、A、H又はKであり、
X24が、Iである。
配列番号276のフエントキシンIV変異体は、以下の置換を更に有しうる。すなわち:
X1が、K、R、H、D、Y、F、N、Q、S、T、G、L、I、P又はEであり、
X2が、R、F、W、N、S又はLであり、
X3が、R、H、D、Y、N、Q、L、I、P又はEであり、
X5が、R、W、Q、S又はKであり、
X6が、R、E、Y、F、V又はAであり、
X7が、K、R、E、Y、F、S、V又はNであり、
X9が、R、F、Q、V又はSであり、
X10が、H、D、Y、W、Q、S、T、G、A、V、L、I、P又はNであり、
X12が、K、R、D、E、Y、W、N、T、A、L又はQであり、
X13が、R、Y、Q、S、T、G、L、I、P又はKであり、
X14が、K、R、Y、F、N、Q、G、A、V、L、I、P又はSであり、
X15が、R、H、D、Y、W、N、Q、T、V、I、P又はSであり、
X16が、R、H、D、F、W、N、Q、S、T、G、A、L又はKであり、
X17が、K、R、Y、F、W、P又はLであり、
X18が、K、R、T、A、L又はVであり、
X20が、K、W、G、A、I、D又はRであり、
X22が、K、H、W、N、G、A、L又はRであり、
X23が、K、R、Y、F、S、T、G、A、V、L、I又はQであり、
X25が、K、R、H、F、W、V、L、I、Gであるか又は欠失しており、そして、
X26が、R、H、Y、F、W、N、G、V、P、Kであるか又は欠失している。
配列番号276の単離されたフエントキシンIV変異体のヒトNav1.7に対するIC50は、約160×10-9M未満でありうる。
配列番号276のフエントキシンIV変異体は、残基F6、T28、W30、K32及びY33においてヒトNav1.7と結合する。これらの残基が不変に維持されていれば、フエントキシンIVの他の残基は、本明細書に述べられる方法を用いて変えることによって親和性及び/又は選択性などの性質を向上させることができる。
本発明の別の実施形態は、第2のポリペプチドと融合された配列番号3〜253又は277〜355のフエントキシンIV変異体を含む単離された融合タンパク質である。このような第2のポリペプチドは、リーダー又は分泌シグナル配列、例えばクローニング工程から得られる部分的若しくは完全な合成配列、又はヘキサヒスチジンタグなどのタグでありうる。
本発明のフエントキシンIV変異体には、PEG5000又はPEG20000などのポリエチレングリコール(PEG)分子、例えばラウリン酸エステルミリスチン酸エステルステアリン酸エステルアラキジン酸エステルベヘン酸エステル、オレイン酸エステルアラキドン酸エステルオクタン二酸テトラデカン二酸オクタデカン二酸、ドコサン二酸などの異なる鎖長脂肪酸及び脂肪酸エステルポリリシンオクタン炭水化物デキストランセルロースオリゴ糖類又は多糖類)などの更なる部分を、所望の特性を得るためにNav1.7のペプチドに組み込むことができる。これらの部分はフエントキシンIV変異体ポリペプチドとの直接的な融合体とすることができ、標準的なクローニング及び発現技術によって生成することができる。あるいは、周知の化学的結合方法を使用することによって、組み換えにより生成された本発明のフエントキシンIV変異体とこうした部分とを結合することもできる。
更なる部分を組み込んだフエントキシンIV変異体は、複数の周知のアッセイによって官能基について比較することができる。例えば、PEGと結合されたフエントキシンIV変異体の薬物動態学的特性は、周知のインビボモデルによって評価することができる。
本発明の別の実施形態は、配列番号:3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99、100、101、102、103、104、105、106、107、108、109、110、111、112、113、114、115、116、117、118、119、120、121、122、123、124、125、126、127、128、129、130、131、132、133、134、135、136、137、138、139、140、141、142、143、144、145、146、147、148、149、150、151、152、153、154、155、156、157、158、159、160、161、162、163、164、165、166、167、168、169、170、171、172、173、174、175、176、177、178、179、180、181、182、183、184、185、186、187、188、189、190、191、192、193、194、195、196、197、198、199、200、201、202、203、204、205、206、207、208、209、210、211、212、213、214、215、216、217、218、219、220、221、222、223、224、225、226、227、228、229、230、231、232、233、234、235、236、237、238、239、240、241、242、243、244、245、246、247、248、249、250、251、252、253、277、278、279、280、281、282、283、284、285、286、287、288、289、290、291、292、293、294、295、296、297、298、299、300、301、302、303、304、305、306、307、308、309、310、311、312、313、314、315、316、317、318、319、320、321、322、323、324、325、326、327、328、329、330、331、332、333、334、335、336、337、338、339、340、341、342、343、344、345、346、347、348、349、350、351、352、353、354又は355のポリペプチド配列を有する単離されたフエントキシンIV変異体である。
本発明の別の実施形態は、本発明のフエントキシンIV変異体ポリペプチドをコードしたポリヌクレオチドを含む単離されたポリヌクレオチドである。
本発明のポリヌクレオチドは、自動ポリヌクレオチド合成機での固相ポリヌクレオチド合成などの化学合成法により生成することができる。あるいは、本発明のポリヌクレオチドは、PCRに基づく複製、ベクターに基づく複製、又は制限酵素に基づくDNA操作技術などの他の技術によって生成することもできる。特定の既知の配列のポリヌクレオチドを生成又は得るための方法は当該技術分野では周知のものである。
本発明のポリヌクレオチドはまた、転写されているが変換されていない配列、終止シグナルリボソーム結合部位mRNA安定化配列、イントロン、及びポリアデニル化シグナルなどの少なくとも1つの非コーディング配列を含んでもよい。ポリヌクレオチド配列は、更なるアミノ酸をコードした更なる配列を含んでもよい。これらの更なるポリヌクレオチド配列は、例えば、融合ポリペプチドの精製を容易とするマーカー又はヘキサヒスチジン若しくはHAタグなどの周知のタグ配列をコードすることができる。特定のポリヌクレオチドの例が本明細書に開示されているが、遺伝コード縮重又は特定の発現系におけるコドンの選択性を考慮すると、本発明の抗体アンタゴニストをコードした他のポリヌクレオチドも本発明の範囲内に含まれる。代表的なポリヌクレオチドは、配列番号271、272、273、274及び275に示される配列を有するポリヌクレオチドである。
本発明の別の実施形態は、本発明のフエントキシンIV変異体をコードした単離されたポリヌクレオチドを含むベクターである。本発明のベクターは、ポリヌクレオチドを維持するか、ポリヌクレオチドを複製するか、又は再構成された生物系を含む生物系において本発明のベクターによりコードされたポリペプチドを発現させるうえで有用である。ベクターは、細菌プラスミドバクテリオファージトランスポゾン酵母エピソーム挿入因子酵母染色体因子バキュロウイルスSV40などのパポバウイルスワクシニアウイルスアデノウイルス家禽ジフテリアウイルス、仮性狂犬病ウイルスピコナウイルス及びレトロウイルスに由来するベクター、並びにコスミド及びファージミドなどのこれらの組み合わせに由来するベクターのような、染色体由来、エピソーム由来及びウイルス由来のものであってよい。
本発明の一実施形態では、ベクターは発現ベクターである。発現ベクターは、一般的に、こうしたベクターによってコードされたポリペプチドの発現を制御、調節、誘導又は可能とすることができる核酸配列因子を有する。このような因子は、転写エンハンサー結合部位RNAポリメラーゼ開始部位、リボソーム結合部位、及び特定の発現系においてコードされたポリペプチドの発現を促進する他の部位を含むことができる。このような発現系は、当該技術分野において周知の細胞に基づく系、又は無細胞系であってよい。コードされたポリペプチドの発現における使用に適した核酸配列因子及び親ベクター配列もやはり周知のものである。本発明のポリペプチドの発現に有用な代表的なプラスミド由来の発現ベクターには、大腸菌の複製起点、アンピシリン耐性(Amp)遺伝子、CMVプロモーターシグナル配列、及びSV40ポリアデニル化部位が含まれる。
本発明の別の実施形態は、本発明のベクターを含む単離宿主細胞である。代表的な宿主細胞の例としては、古細菌細胞、例えば連鎖球菌ブドウ球菌腸球菌、大腸菌、ストレプトミセスシアノバクテリア枯草菌、及び黄色ブドウ球菌などの細菌細胞、例えばクリベロマイセス(Kluveromyces)、サッカロミセス(Saccharomyces)、担子菌類カンジダアルビカンス(Candida albicans)、又はアスペルギルス(Aspergillus)などの真菌細胞、例えばドロソフィラ(Drosophila)S2及びスポドプテラ(Spodoptera)Sf9などの昆虫細胞、例えばCHO、COS、HeLa、C127、3T3、BHKHEK293、CV−1、ボーズ(Bowes)メラノーマ及び骨髄腫などの動物細胞、並びに、例えば裸子植物又は被子植物細胞などの植物細胞が挙げられる。本発明の方法における宿主細胞は、個別の細胞又は細胞集団として与えることができる。細胞集団は、単離又は培養された細胞集団、又は組織などのマトリックス中に存在する細胞を含みうる。
ベクターなどのポリヌクレオチドの宿主細胞への導入は、当業者には周知の方法によって行うことができる。これらの方法としては、リン酸カルシウムトランスフェクションDEAE−デキストラン媒介トランスフェクション、マイクロインジェクションカチオン性脂質媒介トランスフェクション、及びエレクトロポレーションが挙げられる。
本発明の別の実施形態は、本発明の宿主細胞を用意する工程と、少なくとも1つの本発明のフエントキシンIV変異体の発現にとって充分な条件下で前記宿主細胞を培養する工程と、を含む本発明のフエントキシンIV変異体を発現させるための方法である。
宿主細胞は、与えられた種類の宿主細胞を維持又は増殖させるのに適した、かつポリペプチドを発現させるうえで充分なあらゆる条件下で培養することができる。ポリペプチドの発現にとって充分な培養条件培地、及び関連する方法は、当該技術分野においては周知のものである。例えば、多くの哺乳動物細胞型を適当に緩衝したDMEM培地を使用して37℃で好気的に培養することができるのに対して、細菌、酵母及び他の細胞型は、LB培地中、適切な雰囲気下で37℃で培養することができる。
本発明の方法では、フエントキシンIV変異体の発現は様々な周知の方法を用いて確認することができる。例えば、ポリペプチドの発現は、例えばFACS若しくは免疫蛍光技術を使用して抗体などの検出試薬の使用により、又はSDS−PAGE若しくはHPLCの使用により確認することができる。
本発明の別の態様は、生物学的組織中のNav1.7の活性を調節する方法であって、Nav1.7を発現している生物学的組織を、本発明フエントキシンIV変異体又は薬学的に許容されるその塩のNav1.7調節量と接触させる工程を含む方法である。
治療方法
本発明のフエントキシンIV変異体は、疼痛又は感覚ニューロン若しくは交感神経ニューロン機能不全の他の疾患の症状を治療、軽減又は緩和することが望ましいあらゆる治療において使用することができる。
本発明のフエントキシンIV変異体によって治療される疼痛としては、慢性痛急性痛、神経因性疼痛、侵害受容性疼痛、内臓痛背部痛炎症状態に伴う疼痛、術後痛、熱性疼痛、並びに疾患及び変性に伴う疼痛などのあらゆる種類の疼痛でありうる。
本発明のフエントキシンIV変異体によって治療される疼痛は、Nav1.7介在性疼痛でありうる。
本明細書で使用するところのNav1.7介在性疼痛とは、増大したNav1.7チャネル活性に少なくとも一部起因する疼痛のことを指す。
本発明の方法を用いて任意の分類に属する動物患者を治療することができる。このような動物の例としては、ヒト、齧歯類イヌネコ、及び家畜などの哺乳動物が挙げられる。
疼痛及び/又はNav1.7介在性疼痛は、末梢性ニューロパチー中枢性ニューロパチー、手根管症候群足根管症候群尺骨神経絞扼症、圧迫性神経根障害腰部脊柱管狭窄症坐骨神経圧迫症脊髄根圧迫症、肋間神経痛、圧迫性神経根障害及び神経根腰痛などの神経圧迫症又は絞扼症候群、脊髄根障害神経炎自己免疫疾患一般的炎症慢性炎症状態関節炎リウマチ症、狼瘡骨関節炎、一般的消化器疾患大腸炎胃潰瘍形成、十二指腸潰瘍炎症性腸疾患過敏性腸症候群下痢に伴う痛み、炎症性眼疾患、炎症性又は不安定膀胱疾患乾癬炎症要素を伴う皮膚障害日光皮膚炎心炎皮膚炎筋炎、神経炎、膠原血管病、炎症性疼痛並びに併発する痛覚過敏症及び異痛症、神経因性疼痛及び併発する痛覚過敏症及び異痛症、多発性硬化症脱髄疾患糖尿病糖尿病性ニューロパチー疼痛、灼熱痛、四肢切断又は膿瘍による疼痛、幻肢痛、骨折痛、骨損傷、直接的外傷HIV感染後天性免疫不全症候群AIDS)、天然痘感染ヘルペス感染、毒素又は他の異物粒子若しくは分子への曝露浸潤がんがん化学療法放射線療法ホルモン療法火傷先天性欠損歯痛痛風痛、線維筋痛症、脳炎慢性アルコール依存症甲状腺機能低下症尿毒症及びビタミン欠乏症三叉神経痛、脳卒中、視床痛症候群、一般的な頭痛片頭痛群発頭痛、緊張性頭痛、混合血管性非血管性症候群(mixed-vascular and non vascular syndromes)、交感神経維持疼痛、交感神経依存性疼痛、求心路遮断疼痛症候群喘息上皮組織の損傷又は機能不全、呼吸器尿生殖器消化器、又は血管領域内臓運動障害創傷、火傷、アレルギー性皮膚反応掻痒血管運動性又はアレルギー性鼻炎、又は気管支疾患、月経困難症分娩時の痛み、消化不良胃食道逆流、膵炎、及び臓器痛などの1以上の原因により生じうる。
ペプチドNav1.7遮断薬により緩和することが可能な感覚ニューロン又は交感神経ニューロン機能不全の他の疾患としては、掻痒、咳嗽、及び喘息が挙げられる。マウスでは、SCN9A遺伝子の全体的な欠失により、ヒスタミン誘発性掻痒に対する完全な非感受性につながる(Gingras et al.,American Pain Society Meeting Abstract 2013及び米国特許出願公開第20120185956号)。この知見は、ペプチドNav1.7遮断薬は、皮膚科学的又は炎症性疾患、又は腎臓若しくは肝胆道疾患などの炎症性疾患、免疫性疾患薬物反応、及び、皮膚炎、乾癬、湿疹、又は昆虫刺咬症などの未知の/突発性の状態などの様々な原因によって生じうる掻痒の治療に有用でありうることを示唆するものである。Nav1.7は、気道を支配する感覚神経においても発現される(Muroi et al.,J Physiol.2011 Dec 1;589(Pt 23):5663〜76;Muroi et al.,Am J Physiol Regul Integr Comp Physiol.2013 Apr 10)が、このことは、ペプチドNav1.7遮断薬が、急性若しくは慢性咳嗽のような咳嗽、又は、胃食道逆流疾患並びに喘息及びアレルギー関連免疫反応などの気道の炎症性疾患、気管支痙攣慢性閉塞性肺疾患慢性気管支炎気腫、及び逆(しゃっくり)による刺激によって引き起こされる咳嗽の治療に有効でありうることを示唆している。shRNAを用いてモルモット節上神経節でNav1.7をインイボで発現停止させると、機械的なプロ−ビングにより誘発させる咳嗽反射はほとんど消失した(Muroi et al.,Am J Physiol Regul Integr Comp Physiol.2013 Apr 10)。
本発明の一態様は、被験対象の掻痒、咳嗽、又は喘息を緩和又は治療する方法であって、治療を要する被験対象に、掻痒、咳嗽又は喘息を緩和するのに充分な時間にわたって、本発明のフエントキシンIV変異体の治療上の有効量を投与することによる、方法である。
本発明のフエントキシンIV変異体は、疼痛を軽減又は緩和するその効果について、本明細書に述べられる動物モデル、及び神経因性疼痛のSNL脊髄神経結紮)ラットモデル、カラギーナン誘発アロディニアモデル、フロイント完全アジュバント(CFA)誘発アロディニアモデル、熱性障害モデルホルマリンモデル、及びベネット(Bennett)モデルなどのモデル、並びに米国特許出願第2011/0124711A1号及び米国特許第7,998,980号に述べられる他のモデルを用いて試験することができる。カラギーナン誘発アロディニア及び(CFA)−誘発アロディニアは、炎症性疼痛のモデルである。ベネット(Bennett)モデルは、術後痛、複合性局所疼痛症候群、及び反射性交感神経性ジストロフィーを含む慢性疼痛の動物モデルを提供する。
上記の動物モデルのいずれを使用しても、動物モデルに伴う疼痛の治療における本発明の阻害剤のフエントキシンIV変異体の有効性を評価することができる。この有効性を非処理又はプラセボコントロールと比較することができる。これに加えるか又はこれに代えて、有効性を1以上の既知の疼痛緩和薬剤と比較して評価することもできる。
本発明は、Nav1.7のペプチド阻害剤を使用してNav1.7介在性疼痛を治療する方法を提供する。本発明は、Nav1.7遮断性ペプチドの投与が、文献に開示及び示唆されている事実と異なり、様々な動物の疼痛モデルにおいて疼痛を治療及び/又は緩和するうえで有効であるという予期せざる発見に基づいたものである。Nav1.7のペプチド阻害剤は、過剰発現しているNav1.7を使用したインビトロ細胞培養モデルにおいて、あるいは血液神経関門を脱鞘又は低張生理食塩水の注射により破壊した単離ニューロンにおいてはNav1.7に対して有効かつ/又は選択的であるが、こうしたペプチド阻害剤は、疼痛のインビボ動物モデルでは有効ではないことが示されており、その有効性の欠如は、ペプチドが血液神経関門を通過することができないことによるものと報告されている。複数の文献に、疼痛の動物モデルにおける、又は単離神経におけるNav1.7遮断性ペプチドの有効性の欠如について記載されている。例えば、Hackel et al.,Proc Natl Acad Sci 109:E2018−27,2012には、ProTx−IIは、このモデルにおいて拡散障壁を与える神経周囲障壁が破壊されない限り、単離神経における活動電位の発火を阻害することができないとの記載がある。ProTx−IIは、急性及び炎症性疼痛の齧歯類モデルにおいて有効ではないことが示されており、考えられる説明として、ProTx−IIが血液神経関門を通過することができないことによるとされている(Schmalhofer et al.,Mol Pharmacol 74:1476〜1484,2008)。Nav1.7ペプチド毒素遮断剤口腔からのバイオアベイラビリティーが低く、神経末端送達されにくいことが報告されており、これらの治療薬としての使用は制限されていることを示唆している(Dib−Hajj et al.,Nature Rev Neuroscience 14,49〜62,2013)。
Nav1.7は、末梢神経系、すなわち侵害受容性後根神経節(DRG)において発現し、最も顕著には侵害受容性小径DRGニューロン、特に、皮膚の末梢神経末端において発現し、脳ではほとんど見られない。Nav1.7の分布(例えば感覚神経終末)及び生理機能は、Nav1.7が痛覚刺激の伝達に主要な役割を担う素因となっている。
本発明の一実施形態は、Nav1.7介在性疼痛を緩和する方法であって、治療を要する被験対象に、Nav1.7介在性疼痛を緩和するのに充分な時間にわたって、Nav1.7のペプチド阻害剤の治療上の有効量を投与することによる、方法である。
Nav1.7のペプチド阻害剤は、Nav1.7介在性疼痛又は感覚ニューロン若しくは交感神経ニューロン機能不全の他の疾患の症状を緩和することが望ましいあらゆる療法で使用することができる。疼痛の緩和の意味には、疼痛感覚の完全な軽減及び部分的軽減が含まれる。
一実施形態では、Nav1.7のペプチド阻害剤により緩和される疼痛は、慢性痛、急性痛、神経因性疼痛、侵害受容性疼痛、内臓痛、背部痛、炎症状態に伴う疼痛、術後痛、熱性疼痛、並びに疾患及び変性に伴う疼痛などのあらゆる種類の疼痛でありうる。
神経因性疼痛としては、例えば、有痛性糖尿病性ニューロパチー(PDN)、帯状疱疹後ニューロパチー(PHN)、又は三叉神経痛(TN)が挙げられる。神経因性疼痛の他の原因としては、脊髄損傷、多発性硬化症、幻肢痛、脳卒中後痛、及びHIV関連痛が挙げられる。慢性背部痛、変形性関節症、及び癌などの状態もまた、結果的に神経因性疼痛の発生につながる場合があり、したがってNav1.7のペプチド阻害剤による治療に適している可能性がある。
Nav1.7のペプチド阻害剤は、本明細書に述べるもののような動物モデルを用いて疼痛を軽減又は緩和する効果について試験することができる。
上記の動物モデルのいずれを使用しても、動物モデルに伴う疼痛の治療又は軽減におけるNav1.7のペプチド阻害剤の有効性を評価することができる。この有効性を非処理又はプラセボコントロールと比較することができる。これに加えるか又はこれに代えて、有効性を1以上の既知の疼痛緩和薬剤と比較して評価することもできる。
別の実施形態では、Nav1.7介在性疼痛は、原発性皮膚紅痛症(PE)、発作性激痛症(PEPD)、変形性関節症、関節リウマチ、腰椎椎間板切除、膵炎又は線維筋痛症に伴うものである。
Nav1.7のペプチド阻害剤には、プロトキシンII(ProTx−II)(配列番号356)及びフエントキシンIV(HwTx−IV)(配列番号1)が含まれる。プロトキシンII変異体(ProTx−II変異体)は、Nav1.7活性を遮断し、好ましくはProTx−IIと同等のNav1.7に対する選択性を有するものであれば本発明の方法で使用することができる。このような変異体については、例えば、米国特許公開第US2011/0065647号、国際公開第WO2008/088422号、及び国際公開第WO2012/004664号に述べられている。フエントキシンIV変異体(HwTx−IV変異体)は、Nav1.7活性を遮断し、好ましくはHwTx−IVと同等のNav1.7に対する選択性を有するものであれば本発明の方法で使用することができる。このような変異体については、例えば、米国特許仮出願番号第61/702,538号に述べられ、また本明細書に述べられている。
本発明の方法では、Nav1.7のペプチド阻害剤は第2のポリペプチドと接合することによって融合タンパク質を形成することができる。このような融合タンパク質は、例えば、ペプチド阻害剤の半減期延ばすためのよく知られたFc融合タンパク質、又はヒト血清アルブミンとの融合タンパク質である。接合は、高グリシンセリンリンカーのようなリンカーを介した直接的接合であってもよい。このようなリンカーは当該技術分野では周知のものである。
本発明の方法では、PEG5000又はPEG20000などのポリエチレングリコール(PEG)分子、例えばラウリン酸エステル、ミリスチン酸エステル、ステアリン酸エステル、アラキジン酸エステル、ベヘン酸エステル、オレイン酸エステル、アラキドン酸エステル、オクタン二酸、テトラデカン二酸、オクタデカン二酸、ドコサン二酸などの異なる鎖長の脂肪酸及び脂肪酸エステル、ポリリシン、オクタン、炭水化物(デキストラン、セルロース、オリゴ糖類又は多糖類)などの更なる部分を、所望の特性を得るためにNav1.7のペプチドに組み込むことができる。これらの部分は、市販されているNav1.7のペプチド阻害剤との直接的融合体であってもよく、又は既知の化学合成経路によって生成してもよく、既知の化学結合反応を使用してこれらの部分をNav1.7のペプチドと結合させることができる。
更なる部分を組み込んだNav1.7のペプチド阻害剤は、周知の方法及び本明細書に述べられる方法を用いてそれらのNav1.7遮断能力及び疼痛の治療又は緩和における有効性について比較することができる。
Nav1.7のペプチドによって治療することが可能な感覚ニューロン及び交感神経ニューロン機能不全の他の疾患としては、喘息、咳嗽、胸焼け、掻痒、皮膚炎、不安定膀胱、及びレイノー病が挙げられる。
医薬組成物
本明細書のフエントキシンIV変異体又はNav1.7の他のペプチド阻害剤は、薬学的に許容される溶媒又は担体中で製剤化することができる。適当な溶媒又は担体は、場合により、非経口投与用の組成物において一般的な他の物質を補った注射用蒸留水、生理食塩水又は人工脳脊髄液であってよい。中性緩衝生理食塩水、又は血清アルブミンと混合された生理食塩水は更なる代表的な溶媒である。これらの溶液無菌であり、粒子状物質を通常含まず、従来の周知の滅菌法(例えば濾過)によって滅菌することができる。組成物は、pH調整及び緩衝剤、安定剤、増粘剤潤滑剤、及び着色剤などの生理学的条件に近づけるために必要とされる薬学的に許容される添加剤を含有することができる。適当な溶媒及びそれらの配合及びパッケージングについては、例えば、Remington:The Science and Practice of Pharmacy(21st ed.,Troy,D.ed.,Lippincott Williams & Wilkins,Baltimore,MD(2005)Chapters 40 and 41)に述べられている。
本発明の方法では、本発明のフエントキシンIV変異体又はNav1.7の他のペプチド阻害剤は、末梢投与により投与することができる。「末梢投与」又は「末梢に投与される」とは、中枢神経の外側において被験対象に薬剤を導入することを意味する。末梢投与には、脊椎又は脳への直接投与以外のあらゆる投与経路が含まれる。
末梢投与は局所的又は全身的であってよい。Nav1.7のペプチド阻害剤の局所投与は、μ−コノトキシン、ファミリー1(HwTx様)及びファミリー3(ProTx−II様)などのより選択性の低いNav1.7阻害剤に適している場合がある。関節、脊髄手術創傷害外傷部位、末梢神経線維、各種臓器(消化器、泌尿生殖器)又は炎症組織への局所投与などの局所投与を用いることで治療薬を作用部位に集中させることができる。全身投与によれば、医薬組成物は対象の末梢神経系のほぼ全体に送達され、更に組成物の性質によっては中枢神経系にも送達されうる。
末梢投与経路には、これらに限定されるものではないが、局所投与、静脈内又は他の注射、及び埋め込み式ミニポンプ、又は他の持続放出装置又は製剤が含まれる。
本発明の医薬組成物には、フエントキシンIV変異体又はNav1.7の他のペプチド阻害剤を持続又は徐放送達製剤中に含む製剤が含まれる。これらの製剤は、当業者には周知のデポ注射によって投与することが可能な、フエントキシンIV変異体又はNav1.7の他のペプチド阻害剤の制御放出又は徐放を与えることができる、例えば注射可能なマイクロスフェア生体分解性粒子マイクロエマルションナノ粒子ナノカプセルマクロエマルションポリマー化合物ポリエステルポリアミノ酸ヒドロゲルポリ乳酸ポリグリコール酸エチレン酢酸ビニルコポリマーなど)、ビーズ又はリポソームの使用によって実現することができる。例えば、循環中の持続時間を促進する効果を有するヒアルロン酸又は埋め込み式薬剤送達装置を使用することができる。
本発明の医薬組成物は、乾燥した吸入可能な粉末として吸入用に製剤化することもできる。エアロゾル投与又はネブライザー用の推進剤とともに吸入溶液を製剤化することもできる。
本発明の医薬組成物は経口投与用に製剤化することもできる。この方法により投与されるフエントキシンIV変異体又はNav1.7の他のペプチド阻害剤は、錠剤及びカプセル剤などの固体剤形の配合において一般的に使用されている担体とともに、又はこうした担体を使用せずに製剤化することができる。カプセル剤は、バイオアベイラビリティーが最大となり、プレシステミック分解が最小となる消化管内の点において製剤の活性部分を放出するように設計することができる。フエントキシンIV変異体の吸収を促進するための更なる薬剤を含有させることができる。希釈剤香味料低融点ワックス植物油、潤滑剤、懸濁化剤、錠剤崩壊剤、及び結合剤を使用することもできる。本発明の医薬組成物は、好ましくは、1乃至複数のフエントキシンIV変異体の有効量を、錠剤の製造に適した無毒性の賦形剤との混合物中に含むように与えられる。こうした錠剤を滅菌水又は他の適当な溶媒に溶解することにより、単位用量の溶液を調製することができる。適当な賦形剤としては、これらに限定されるものではないが、炭酸カルシウム炭酸ナトリウム若しくは重炭酸ナトリウムラクトース、若しくはリン酸カルシウムなどの不活性希釈剤、又はデンプンゼラチン若しくはアカシアなどの結合剤、又はステアリン酸マグネシウムステアリン酸若しくはタルクなどの潤滑剤が挙げられる。
本発明のフエントキシンIV変異体又はNav1.7の他のペプチド阻害剤は、非経口(皮下、筋肉内又は静脈内)、脳内(脳実質内)、脳室内、筋肉内、眼内、動脈内、門脈内、又は病巣内経路;又は徐放システムによる、又は埋め込み装置による、又は他の任意の投与用(特に液体溶液若しくは懸濁液の形の)、錠剤又はカプセル剤の形などの頬側又は舌下投与用;又は粉剤経鼻ドロップ又はエアロゾル又は特定の薬剤の形などの経鼻投与用、ゲル軟膏ローションクリーム又はダスティングパウダー、懸濁液又はパッチ送達システム(皮膚構造を改変するか若しくは経皮パッチ内の薬物濃度を高めるための化学改質剤を含むか、又はタンパク質及びペプチドを含有する製剤の皮膚への塗布を可能とする薬剤を含む(国際公開第98/53847号))(又はエレクトロポレーションなどの一過性輸送経路を形成するため、又はイオントフォレシスなどの皮膚を通過する帯電した薬物の移動性を高めるための電場印加、又はソノフォレシスなどの超音波の印加(米国特許第4,309,989号及び同第4,767,402号))の形の経皮投与で使用するために調製することができる。組成物は、所望の分子が吸収又は封入された膜、スポンジ、又は別の適当な材料の埋め込みによって局所的に投与することもできる。
特定の実施形態では、埋め込み式装置が使用される場合には、該装置は任意の適当な組織又は臓器に埋め込むことができ、所望の分子の送達は、拡散時限放出ボーラス(timed-release bolus)、又は継続的投与を介してもよい。
こうした医薬製剤中の本発明のフエントキシンIV変異体又はNav1.7の他のペプチド阻害剤の濃度は大きく変化させるようにすることができ(すなわち重量にして約0.5%未満、通常、1%又は少なくとも1%〜15%、20%、30%、40%、50%、60%又は70%まで)、選択される特定の投与形態に応じて、主として液体体積粘性及び他の因子に基づいて選択される。本発明のフエントキシンIV変異体又はNav1.7の他のペプチド阻害剤は、保存用凍結乾燥し、使用に先立って適当な溶媒中で戻すことができる。この方法は、従来のタンパク質調製で有効であることが示されている。凍結乾燥技術及び溶媒で戻す技術は、当該技術分野において周知である。
本発明の例示の医薬組成物は、約pH 7.0〜8.5のTris緩衝液、又は約pH 4.0〜5.5の酢酸塩緩衝液を含んでよく、ソルビトールスクロース、Tween−20、及び/又はこれらの適当な代用物を更に含んでよい。
適切な治療上の有効量は、当業者には容易に決定することができる。有効量とは、所望の結果を得るうえで、すなわち、痛みを伴うあらゆる医学的条件に伴う疼痛の知覚を、部分的又は完全に防止、終息、阻害、軽減、又は遅延させるうえで充分な量又は投与量のことを指す。有効量は、選択される特定の溶媒及びフエントキシンIV変異体又はNav1.7の他のペプチド阻害剤に応じて異なりうるものであり、治療される被験対象に関する様々な要因及び条件、並びに疼痛の重症度によっても決まる。例えば、考慮される条件として、本発明の医薬組成物を投与する被験対象の年齢、体重及び健康状態などの因子、並びに前臨床動物実験において得られる用量反応曲線及び毒性データがある。決定された用量は、必要に応じて、治療期間中に医師又は他の当業者(例えば、看護師獣医、又は獣医学技術者)によって適当に選択された適当な時間間隔で繰り返すことができる。特定の薬剤の有効量又は治療上の有効量の決定は、当業者の能力の範囲内である。
したがって、筋肉内注射用の本発明の医薬組成物は、1mLの滅菌緩衝水と、約1ng〜約100mg、約50ng〜約30mg、又は約5mg〜約25mgの本発明のフエントキシンIV変異体とを含むように調製することができる。同様に、静脈内注射用の本発明の医薬組成物は、約250mlのリンゲル液と、約1mg〜約30mg、又は約5mg〜約25mgの本発明のフエントキシンIV変異体又はNav1.7の他のペプチド阻害剤とを含むように構成することができる。非経口投与可能な組成物を調製するための実際の方法は周知のものであり、例えば、「Remington’s Pharmaceutical Science」,15th ed.,Mack Publishing Company,Easton,PAにより詳細に述べられている。
次に本発明を以下の具体的かつ非限定的な実施例を参照して説明する。

実施例

0006

実施例1
フエントキシンIVの設計及び生成
チャイニーズバードスパイダー(オルニソクトヌス・フエナ)(Ornithoctonus huwena)の毒に由来する野生型フエントキシンIV(ECLEIFKACNPSNDQCCKSSKLVCSRKTRWCKYQI:配列番号1)内のすべての非システイン残基にAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Asn、Pro、Gln、Arg、Ser、Thr、Val、Trp、及びTyrを置換した一位置アミノ酸スキャニングライブラリーを生成した。フエントキシンIV変異体を、以下のN末端からC末端までのフォーマットで、HRV3Cプロテアーゼ切断性ヒト血清アルブミン(HSA)融合タンパク質としてコードした。すなわち、His6−HSA−(GGGGS)4−HRV3C切断部位−フエントキシンIV変異体。すべての変異体ペプチドは、HSAからの切断後、切断部位からの残りのN末端GP、及び内因性のアミド化認識配列であるC末端GKを有していた。一位置変異体を、ベラトリジン誘導膜電位を阻害する各変異体の能力を測定する蛍光スクリーニングアッセイで試験し、Qpatchによる電気生理学手法でヒット化合物を確認した。組み換えにより発現させたフエントキシンIV変異体のC末端GK残基も置換した。
天然ペプチドと比較して更に向上した有効性及び選択性プロファイルを有するNav1.7アンタゴニストを生成する目的で、選択された一位置ヒット化合物の相加的効果について試験するためのコンビナトリアルライブラリーを設計した。一方が、E1N、E4R、R26K、Y33W、Q34S、及びG36Iを組み合わせ(ライブラリーNV1D7L5)、他方がN13Q、S19Q、V23R、K27Y、R29K、及びK37Rを組み合わせた(ライブラリーNV1D7L6)ものである2つのコンビナトリアルライブラリーを生成した。
発現ベクターの構築
設計したフエントキシンIV変異体ポリペプチドをコードしたcDNAを、米国特許第6,521,427号に述べられる遺伝子アセンブリ技術を使用して生成した。簡単に述べると、設計したペプチド変異体を、ヒト高頻度コドンを用いてDNA配列に逆翻訳した。各変異体遺伝子のDNA配列を、DNAクローニング部位を含むベクターDNAと共に、一部が縮重コドンを含む複数のオリゴヌクレオチドとして合成し、これらを完全長DNAフラグメントに組み立てた。組み立てられたDNAフラグメントをPCRにより増幅した後、PCR産物プールとしてクローニングした。プールしたPCR産物を適当な制限酵素で消化し、それぞれの毒素変異体遺伝子がベクターに含まれるシグナルペプチド及び融合パートナーと融合するようにして、設計した発現ベクターにクローニングした。標準的な分子生物学の手法を用いて、それぞれの設計した変異体について陽性クローンを特定した。これらの陽性クローンからのプラスミドを精製し、それぞれのフエントキシンIV変異体を発現させる前に配列を確認した。
タンパク質の発現
293 Freestyle(商標)培地(インビトロジェン社(Invitrogen))中で維持したHEK293F細胞に、フエントキシンIV変異体をコードしたプラスミドを、標準的なプロトコールにしたがってFreestyle(商標)トランスフェクション試薬を使用して一過的にトランスフェクトした。トランスフェクトした細胞を、37℃及び8% CO2に設定した加湿したインキュベーター内に125RPMで振盪しながら4日間置いた5,000Gで10分間遠心することにより細胞から上清を分離し、0.2μmフィルターで濾過し、Amicon超遠心分離機10K(カタログ番号UFC901096)を使用して3,750Gで約10分遠心して10倍及び50倍に濃縮した。
タンパク質の精製
分泌されたフエントキシンIV変異体タンパク質を1mlのHisTrapHPカラム(ジー・イー・ヘルスケア社(GE Healthcare))を使用してIMACにより精製した。このクロマトグラフィー法は、AKTA Xpressを使用して行い、イミダゾールの段階的勾配を利用してタンパク質を溶出した。ピーク画分をプールし、HRV3Cプロテアーゼ(EMD社、カタログ番号71493、1単位/100μgタンパク質)により一晩消化した。切断されたペプチドを、C18(2)カラム(フェノメネクス社(Phenomenex)、カタログ番号00G−4252−N0)を使用してRP−HPLCにより精製した。このクロマトグラフィー法は、DionexHPLCシステムで行い、結合したペプチドをアセトニトリルの直線勾配を利用して溶出した。ピーク画分を回収し、プールして凍結乾燥した。
凍結乾燥したペプチドをHEPESで緩衝した生理食塩水(pH 7.4)(10mM HEPES、137mM NaCl、5.4mM KCl、5mMグルコース、2mM CaCl2、1mM MgCl2)に再懸濁した。(280nmで吸光度を測定し、各ペプチドの消光係数を用いて濃度を計算した。非還元SDS−PAGEによってペプチドを分析した。
スケールアップを行うため、タンパク質を5ml HisTrap HPカラム(ジー・イー・ヘルスケア社(GE Healthcare)、カタログ番号17−5248−02)を使用してIMACで精製した。このクロマトグラフィー法は、AKTA Explorer又はFPLCを使用して行い、イミダゾールの段階的勾配を利用してタンパク質を溶出した。ピーク画分をプールし、Amicon Ultra−15遠心濃縮装置ミリポア社(Millipore)、カタログ番号UFC901096)を使用して濃縮し、ダルベッコリン酸緩衝生理食塩水(pH7.2)(インビトロジェン社(Invitrogen)、カタログ番号14190)を2回交換して一晩透析した。次いで融合タンパク質を、HRV3C(EMD社、カタログ番号71493;1単位/100μgタンパク質)により一晩消化した。切断された融合タンパク質を、5ml HisTrap HPカラムを使用してIMCにより精製した。通過画分中にペプチドを回収した。プールしたペプチドを濃縮し、C18(2)カラム(フェノメネクス社(Phenomenex)、カタログ番号00G−4252−N0)を使用してRP−HPLCにより精製した。このクロマトグラフィー法は、Agilent 1100 HPLCシステムで行い、結合したペプチドをアセトニトリルの直線勾配を利用して溶出した。
各ピーク画分は、分析用C18(2)カラム(フェノメネクス社(Phenomenex)、カタログ番号00G−4252−E0)を使用し、アセトニトリルのの直線勾配を利用してRP−HPLCにより分析した。同じ保持時間の画分をプールして凍結乾燥した。凍結乾燥したペプチドをHEPESで緩衝した生理食塩水(pH7.4)(10mM HEPES、137mM NaCl、5.4mM KCl、5mMグルコース、2mM CaCl2、1mM MgCl2)に再懸濁した。280nmで吸光度を測定し、各ペプチドの消光係数を用いて濃度を計算した。最終的なペプチドは、Watersシステムにより電気スプレーイオン化質量分析によって分析した。
実施例2.フエントキシンIV変異体の特性評価
膜脱分極アッセイ
Nav1.7のアゴニストであるベラトリジン(3−ベラトイルベラセビン;バイオモル社(Biomol)、カタログ番号NA125)により誘導される膜脱分極を阻害する作製されたフエントキシンIV変異体の能力を、FLIPR(登録商標)Tetra上で、DISBAC2(3)(インビトロジェン社(Invitrogen)、K1018)を電子受容体として、PTS18(三ナトリウム8−オクタデシルオキシピレン−1,3,6−トリスルホネート)(シグマ社(Sigma))を供与体として使用し、供与体を390〜420nmで励起し、515〜575nmでFRETを測定することにより、FRETアッセイ(蛍光共鳴エネルギー移動)を用いて測定した。
G418(インビトロジェン社(Invitrogen)による選択下で、hNav1.7チャネルを安定的に発現するHEK293細胞を、グルタミン、10% FBS、1% NEAA、及び400μg/mlのG−418を補ったDMEM/F12中で培養した。50μlの収穫した細胞を、ポリリシジンコーティングした384ウェルの黒い透明底プレートに25,000細胞/ウェルとなるように播種した。プレートを室温(RT)で15分間インキュベートした後、37℃で一晩インキュベートした。インキュベーションはすべて、特に断らない限りは暗所で行った。翌日、各ウェルをアッセイ緩衝液で4回洗浄し、25μlのアッセイ緩衝液(137mM NaCl、4mM KCl、2mM MgCl2、2mM CaCl2、5mMグルコース、10mM HEPES)に再懸濁した。PTS色素の2倍ストック(6μM)を、DMSOに加えた10%プルロニックF127に色素を1:1の比(v/v比)で懸濁することによって調製した。25μlの2倍PTS18ストックをウェルに加えて細胞を30分間室温で染色した後、色素をアッセイ緩衝液で洗い流した。
フエントキシンIVペプチドを、バックグラウンドの蛍光を抑制するため、10μMのDISBAC2(3)及び400μMのVABSC−1を含むアッセイ緩衝液(シグマ社(Sigma)、カタログ番号201987)中に最終濃度の3倍の濃度で懸濁した。25μl/ウェルの懸濁したフエントキシンIVペプチドを、各ウェルに加え、室温で60分間インキュベートした。最終濃度25μMのベラトリジン(25μl/ウェルの75mM(3倍)ストック溶液を加えることによる)により脱分極を誘導し、FRET色素蛍光の平均強度の低下をアゴニストを添加した30秒後に測定した。慣例により、ベラトリジンを加えた後、それぞれの測定したフエントキシンIVペプチドを1.3倍に希釈し、FLIPR(登録商標)Tetraアッセイの開始時の濃度を報告した。テトラカイン、TTX、プロトキシンII、及びフエントキシンIVは、確立されたナトリウムチャネル遮断薬であり、各実験群においてコントロールとして使用した。
ネガティブコントロール(アゴニストであるベラトリジン単独に対する反応)及びポジティブコントロール(10μMのテトラカインの存在下でのベラトリジンに対する反応)にシグナルを標準化することにより、各ウェルの蛍光カウント阻害率(%)に変換した。
測定を行うため、FLIPR(登録商標)Tetraの「空間均一度補正(spatial uniformity correction)」(すべての蛍光トレースを平均の初期開始強度に標準化する)及び「バイアス値を減ずる(subtract bias value)」(初期開始強度を各トレースから減ずる)を、オンにした。
スクリーニングモードでは、平均化は行わず、それぞれの未アップロードデータポイントは個々のウェル内での反応を表している。
濃度反応モードでは、個々のデータポイントのすべてを非線形最小二乗法で用い、Originソフトウェアマイクロカル社(Microcal))を使用してヒル関数(Hill function)に最もよく当てはまる曲線を見つけた。得られた近似曲線からIC50値を外挿した。
ポジティブ(P±dP)及びネガティブ(N±dN)コントロールの平均及び標準偏差を用いて、反応(R)を有するウェル内の遮断(B)の量を以下のように計算した。



スクリーニング窓(データ品質尺度)は下記のように定義される。



アッセイプレートは、(1)コントロールに基づくスクリーニング窓がz’>0.5であり、かつ(2)その日のコントロールアンタゴニストの有効性がアンタゴニストの履歴の平均の±0.5log単位の範囲内にあれば、可とした。
フエントキシンIV変異体の選択性を、約8.35μMのベラトリジンの最終濃度(25μl/ウェルの25μM(3倍)ストック溶液を加えることによる)により脱分極を誘導した点以外は、Nav1.7について述べたようにG418(インビトロジェン社(Invitrogen))による選択下でhNav1.2チャネルを安定的に発現しているHEK293細胞を使用してNav1.2誘導膜脱分極を阻害する変異体の能力により評価した。選択性を、IC50(Nav1.2)/IC50(Nav1.7)の比として測定した。
QPatchアッセイ
ヒトNav1.7を安定的に発現しているHEK293細胞を、10%ウシ胎児血清、400μg/mLジェネティシン、及び100μMのNEAA(試薬はすべてインビトロジェン社(Invitrogen)より入手)を補ったDMEM/F−12培地(1:1)中で培養した。細胞は37℃で5% CO2内に維持し、約70〜90%コンフルエンスに達した時点でアッセイを行った。QPatch(ソフィオン社(Sophion))で試験するのに先立って、細胞を最初に0.05%トリプシン(37℃で5分間)を使用して解離させ、CHO−S−SFM培地(ライフテクノロジーズ社(Life Technologies))に再懸濁し、穏やかに粉砕して細胞塊バラバラにした。細胞密度を同じ培地により1〜2×106/mlに調整し、細胞をQPatchHTの細胞「ホテル」に移し、数時間にわたって実験に使用した。
ギガオームシール形成及びホールセル(全細胞)パッチクランプ記録用に、細胞外液は、137mM NaCl、5.4mM KCl、1mM MgCl2、2mM CaCl2、5mMグルコース、及び10mM HEPES(pH=7.4、浸透圧モル濃度=315mOsm)を含むものとした。細胞内液は、135mM CsF、10mM CsCl、5mM EGTA、5mM NaCl及び10mM HEPES(pH=7.3、浸透圧モル濃度=290mOsm)を含むものとした。
アッセイで用いた電圧プロトコールは以下のとおりである。−75mV保持電位から、細胞を最初に−120mVに2秒間過分極させてから、0mVに5ミリ秒間脱分極させた後、保持電位(−75mV)に戻した。このプロトコールを、液体供給時に60秒毎に1回繰り返した(下記参照)。それ以外は、上記の電圧プロトコールが実行されない場合、細胞を−75mVに保持した。
ホールセル記録用コンフィギュレーションが確立された時点で、全部で5つの細胞外液の供給(いずれも0.1%ウシ血清アルブミン(BSA)を含み、試験化合物を含むか又は含まないもの、1μMのTTXを含みBSAを含まない最後の供給を除く)を、記録される細胞に行った。最初の供給は、コントロール緩衝液のみを含むものとした(5μl)。供給の5秒後、電圧プロトコールを10回(全体で10分間の長さ)行った。次の3つの供給(各5μL)は、試験化合物を含むもの(3つの供給すべてについて同じ化合物を同じ濃度で)か又はコントロール緩衝液とした(コントロール細胞のみ)。これらの供給のそれぞれの5秒後、電圧プロトコールを再び10回行った(やはり毎分1回)。最後の供給は1μMのTTXを含むもの(それぞれ2秒間離れた、3つの10μlの小供給からなるもの)とし、その5秒後に同じ電圧プロトコールを2回行ってベースライン電流を得た。
電流を25kHzでサンプリングし、8極Bessleフィルターにより5kHzでフィルタリングした。直列抵抗補償レベルを80%に設定した。各細胞について最初に、最初の4つの供給の各電流トレースの0mVにおけるピーク電流振幅を、TTXの存在下の最後のトレースのピーク電流振幅から減じて、次いで最初の供給(コントロール緩衝液)の最後のトレースのピーク電流振幅に対して阻害率(%)として正規化した。電流のランダウン(rundown)について調整するため、試験化合物の存在下における各細胞のこの(阻害率(%)の)値を、同じ実験中のコントロール(通常5〜6個の)細胞の平均の阻害率(%)の値に対して更に正規化した。最後の化合物の供給の最後の2つのこうした値の平均の値(すなわち試験化合物の各濃度について補正された阻害率(%)の値)を、濃度反応計算に使用した。実験はすべて、室温(約22℃)で行った。データは平均±SEとして表した。
参照化合物では、このプロトコールを用いてQPatchから得られた結果(例えば有効性/動態)は、マニュアルのパッチクランプより得られる結果とよく一致していた。
結果
置換変異体及びFLIPR(登録商標)Tetraによる脱分極アッセイを用いて得られたNav1.7に対する各変異体のIC50値のライブラリーマトリックスを図1に示す。1置換変異体及びFLIPR(登録商標)Tetraによる脱分極アッセイを用いて得られたNav1.2に対する各変異体のIC50値のライブラリーマトリックスを図2に示す。一置換変異体のNav1.7について得られたIC50に対するNav1.2について得られたIC50の比として測定される選択性を、図3に示す。図4及び5は、Nav1.7(図4)又は選択性(図5)に対する有効性により評価した変異体の配列を示す。
選択した変異体についてホールセルパッチクランプ実験で試験した。組み換えフエントキシンIV及びフエントキシンIV変異体を、上記に述べたQPatchアッセイを用いてHEK293細胞で安定的に発現しているNav1.7及びNav1.2に対して試験した。ホールセルパッチクランプ法を用いて、Nav1.7及びNav1.2に対して各フエントキシンIV変異体について得られたIC50値を図6に示す。フエントキシンIVの選択性を、ホールセルパッチクランプ実験より得られたIC50値を用いて上記に述べたようにして計算した。
フエントキシンIVを開始点として使用し、向上した有効性又は選択性を有する変異体を特定するための一位置アミノ酸スキャニングライブラリーを設計した。興味深い性質を有する選択した一位置変異体をコンビナトリアルライブラリーに含めた。コンビナトリアルライブラリーの設計に使用した一位置変異体には、E1N、E4R、R26K、Y33W、Q34S、G36I、N13Q、S19Q、V23R、K27Y、R29K、及びK37R(残基の番号付けは配列番号267に基づく)が含まれ、これらはいずれも有効性、選択性、又はその両方が向上していた。向上した性質を示す更なる一位置変異体には、R26W(配列番号72)、K27W(配列番号57)、Q34F(配列番号6)、及びR29W(配列番号55)が含まれる。更に、コンビナトリアルライブラリーより特定された変異体(E1N,E4R,R26K,Q34S)(配列番号5)、(E1N,E4R,R26K,Q34S,G36I)(配列番号16)、(E4R,R26K,Y33W,G36I)(配列番号48)、(E1N,Y33W,Q34S,G36I)(配列番号83)、(N13Q,R29K,K37R)(配列番号137)、(E1N,R26K,Q34S,G36I)(配列番号192)及び(R26K,Y33W)(配列番号46)は向上した有効性及び/又は選択性を示した。
実施例3.ラットにおける足底投与後のフエントキシンIVの鎮痛活性
方法
この実験では、体重が300gよりも大きい雄性Sprague−Dawley(CD)系ラット(チャールズリバー社(Charles River)、サンディエゴ)を使用した。実験に使用されていない動物を、試験日に先立って2日間訓練した(反応のばらつきを小さくするため)。訓練は、各動物に対して実際の試験を、各ラットにつき約1時間の長さにわたって複数回行うことにより行った。最初に、常に足の同じ部位を試験することができるように、マジックペンで、動物の左足の背面の中心の爪先にすぐ隣接する位置にマークを付けた。次いでラットを後足が覆われないように緩くタオル包み、左後足を、最大閾値を500gに設定したランダール・セリット装置(Ugo−Basileランダール・セリット装置、無痛覚計)内に、マジックペンのマークが、足と接触する試験装置コーンの先端の真下となるようにして置き、動物が反応するまで、フットコントロールによる電子的傾斜によって一定速度で圧力を増大させた。訓練用の「反応」は、試験日と同じ基準にしたがい、以下の内のいずれか1つからなるものとした。すなわち、1)装置から後足を引き抜く、2)明らかに足を引き抜こうとする、又は3)鳴き声をあげる。ラットは、100g又はそれ以上の閾値に対して反応するまで連続して3回まで試験した。訓練の時間/日にわたり、各ラットについて、1〜3回の連続した試験を、5〜20分間隔で行った。
化合物試験では、訓練した、無傷のラットを、化合物投与前閾値について1回試験した。各動物を、ペプチド処理群又は溶媒処理群に、同等の投与前閾値平均を与えるように振り分けた。実験は可能な場合には処理群に対して盲検で行った。注射後の各時点(5、10、20、30、45、60分)で1回の試験を行い、記録した。
材料の調製及び後足への局所投与
アミド化フエントキシンIV(ペプタイズ・インターナシナル社(Peptides International)、ケンタッキー州ルイヴィル)を、凍結乾燥された形で入手し、HEPES緩衝生理食塩水で戻し、アリコートに等分してー20℃で凍結した。左後足背面に投与する直前にアリコートを解凍し、HEPES緩衝生理食塩水を希釈剤として使用して適当な濃度にまで希釈した。取り扱い及び足への注射に関連したストレス自体によって、足への圧力の閾値が高くなることから(ストレス誘発鎮痛作用)、ラットは注射を行うためにイソフランで軽く麻酔した(5%で誘導、2〜3%で維持)。動物の足の背面に、針の先端が足の背面中心の、爪先に隣接する位置でマジックペンのマークの真下となるように、中心線の左側にくるぶしに向かって針を挿入して、皮下注射を行った(100μLのペプチド溶液又は溶媒)。
データ分析
グラム(g)の閾値を記録し、Prism 5.01(グラフパッド・ソフトウェア社(Graphpad Software Inc.)、カリフォルニア州ラホーヤ)に入力してグラフ化し、曲線下面積(AUC)値及び統計分析を生成した。時間に対するグラム(g)値を比較するため、2元配置分散分析(ANOVA)をp<0.05の有意水準で用いた。平均のAUC値を生成するため、ペプチド群の各ラットのAUCを個々に得て、溶媒群の平均のAUCをそこから引いた。各ペプチド処理動物の、溶媒値を減じたAUCを平均化し、それぞれp<0.05の有意水準で行ったスチューデントT検定又は1元配置分散分析(ANOVA)のいずれかにより比較した。
結果
足の背面に局所投与したフエントキシンIVは、ランダール・セリット試験における足の圧力閾値を容量依存的に増大させた。3及び30nmolのフエントキシンIVは、溶媒処理群の動物で認められた閾値よりも有意に閾値を増大させたが、0.3nmolでは有意な増大は認められなかった(図7)。AUCは、3つのペプチド処理群すべての間で有意に異なった(各動物のAUCから平均の溶媒AUCを減じた)(図8)。フエントキシンIVの各用量の投与後に幾らかの局所的浮腫が更に認められた。溶媒を注射したラットでは同様の浮腫は認められなかった。
実施例4.フエントキシンIVのNav1.7との相互作用の分子モデリング
NMRによる構造決定
すべてのNMR実験は、Bruker Avance 600、700、又は950MH分光計を使用して行った。ペプチドを、10% D2Oを含む水性緩衝液に溶解した。緩衝液は、20mMリン酸塩、0.1mMのdEDTA、及び0.002% NaN3を用いてpHを6.7に維持した。特に断らない限り、スペクトルはすべて298Kで得た。個々の残基のスピン系は、TOCSY(Bax and Davis,Mag.Reson.1985,65,355〜360)を用い、スピンロック(MLEV)を混合時間75msで用いて割り当てた。混合時間150msで得られたNOESY(Jeener et al.,J.Chem.Phys.1979,71,4546〜4553;Kumar et al.,Biochem.Biophys.Res.Commun.1980,95,1〜6)実験より、連続的な残基の割り当てを行った。更に、15N−HSQC(Bodenhausen et al.,Chem.Phys.Lett.1980,69,185〜189)実験により割り当てを促し、システイン酸化状態を通常の方法(Cavanagh et al.,Protein NMR Spectroscopy:Principles and Practice 1995 Academic Press)を用いて13C−HSQCスペクトルにより調べた。シフトしたサインベル2乗重み付け及びゼロフィリングを適用した後、データ処理においてNMRPipe(Delaglio et al.,J.Biomol.NMR 6,277〜293,1995)を用いてフーリエ変換を行った。
NOESYスペクトルで認められたスルースペース相互作用より陽子間距離の拘束導出し、CYANA(Guntert et al.,J.Mol.Biol.273,283〜298,1997)により自動的に割り当てた。更に、隣接アミノ酸に対して有意な(>0.2ppm)環電流方性を示したW32を含むペプチドには、芳香族側鎖の拘束を適用した。アプリケーションとしてPREDITOR(Berjanskii et al.,Nuc.Acid.Res.2006,34,W63−W69)及びDANGLE(Cheung et al.,J.Mag.Reson.202,223〜233,2010)を使用して化学シフトのデータに基づいて角φ及びψの範囲を予測した。バックボーンの角ωの拘束を180°に設定した。NOESY及び13C−HSQC実験より導出されたデータに基づき、C9〜C24、C2〜C17、及びC16〜C31の間のジスルフィド結合を固定した。
ペプチドの相同性モデルをCYANAへの入力(サイクル1)として用いた後、6サイクルの複合自動NOESY割り当て及び構造計算を行った。各サイクルにおいて、コンフォーマー1つ当たり10000回のねじれ角ダイナミクステップの後、5000回のエネルギー最小化ステップを行い、標準的なシミュレテッドアニーリングスケジュールを用いて1000個のコンフォーマーを計算した。次いで最も低い標的関数値を有する20個のコンフォーマーのアンサンブルを、MOE(ケミカルグルーピングコンピューティング社(Chemical Computing Group Inc.)www://_chemcomp_com)を使用してエクスプリシット水で距離拘束された最小化リファインメントルーチンに入力した。
分子動力学
天然HwTx−IVのNMR構造(Protein Data Bank http://_www_rcsb_org/pdb/home/home_do;pdb 1MB6からの構造)を、分子動力学シミュレーションを使用してHwTxーIVの安定性の特性評価を行うための開始点として用いた。天然のHwTx−IVのシミュレーション以外に、3つのジスルフィド結合のそれぞれの重要度識別し、1個のアラニンの点突然変異によるペプチドの安定性の変化を測定するため、シミュレーションを行った。3つのジスルフィド結合の重要度を特性評価するため、C2〜C17、C9〜C24、C16〜C31、C2〜C17/C9〜C24、C2〜C17/C16〜C31、C9〜C24/C16〜C31及びC2〜C17/C9〜C24/C16〜C31のシステインを個々のシステイン残基に変換し、別々の分子動力学シミュレーション(全部で7つのシミュレーション)を行った。1個のアラニンの点突然変異の影響を調べるため、インシリコで分子動力学アラニンスキャン(すべての非システイン位置の)を行った(全部で28のシミュレーション)。
それぞれの分子ダイナミクスシミュレーションで、HwTxーIVをエクスプリシット水(最小で12オングストロームのパッディング)に溶媒和させ、0.1M NaClに中和した。NAMD 2.8(James et al.,Journal of Computational Chemistry,26:1781〜1802,2005)を使用してタンパク質を最小化し、50nsで平衡化した。CHARMM 22 CMAP(MacKerell,Jr.et al.,J Comput Chem 25:1400〜1415,2004)パラメータを、静電気を評価するための複数回ステッピングアルゴリズムによりシミュレーションに使用し、結合相互作用を1fs毎に計算し、短距離非結合相互作用を2fs毎に計算し、長距離の相互作用を4fs毎に計算した。長距離の静電気力は、格子間隔を1オングストローム未満とした粒子メッシュのEwald合計法を用いて評価した。温度は、Langevin動力学を用いて27℃(300K)に維持し、Nose−Hoover Langevinピストンを用いて0.1MPa(1atm)の一定圧力を維持した。周期的境界条件仮定し、非結合相互作用を、シフティングを8オングストロームで開始し、完全なカットオフを12オングストロームとして、スケーリングした1〜4排除演算を用いて計算した。シミュレーションの後、分子動力学軌道を、主鎖のα炭素原子(CA)に基づいて整列させ、残基当たりの2乗平均偏差(RMSD)を、Visual Molecular Dynamics(VMD)(Humphrey et al.,J.Molec.Graphics,1996,vol.14,pp.33〜38)を使用して初期NMR構造に対してシミュレーション全体にわたって計算した。
Nav1.7の相同性モデリング及びHwTx−IVのドッキング
Nav1.7のドメイン2(DII)のセグメントS1〜S4の相同性モデルを、Discovery Studio 3.1(アクセルリス社(Accelrys))のModellerコンポーネントを使用し、NavAb構造(アルコバクター・ブツレリ(Arcobacter butzleri)由来の電位依存性Na(+)チャネル;構造は、Protein Data Bank http://_www_rcsb_org/pdb/home/home_do;pdb 3RVYにある。)をテンプレートとして構築した。次いでこのモデルを、更にリファインして静止状態のNav1.7の構造を生成した。S4をマニュアルで静止状態のコンフィギュレーションに動かし、S1−S2及びS3−S4ループ再形成して、モデル全体のエネルギーを最小化した。天然のHwTx−IVを、Nav1.7に対するHwTx−IV阻害のアラニンスキャンの結果、及びHwTx−IVの結合を生じる、文献に開示されるNav1.7突然変異(Xiao et al.,J Biol Chem.286:27301〜10,2011.Epub 2011 Jun 9.)に基づき、マニュアルでNav1.7相同性モデルにドッキングさせた。
マニュアルでのドッキング後、HwTx−IVシステムがドッキングされたNav1.7 DII S1〜S4全体を最小化し、インプリシット膜分子動力学シミュレーションを、CHARMm力場を使用し、Generalized Born Implicit Membrane(Discovery Studio(Spassov et al.,J.Phys.Chem.B,106,8726〜8738,2002)により行って、ドッキングした構造を更にリファインした。
結果
分子動力学シミュレーション
毒素の構造的変化のみに基づく活性(F6A、P11A、D14A、L22A、S25A、W30A、K32A、Y33A)又はチャネル選択性(K18A、R26A及びK27A)の顕著な喪失につながるHwTx−IV突然変異の活性の変化の分子的機序の理解を助けるため、一連の分子動力学シミュレーションを行った。上記で生成したHwTx−IVのNMR構造(pdbコード1MB6)を、異なるアラニン突然変異ペプチドを構築するためのテンプレートとして用い、それぞれの毒素変異体に50nsの分子動力学シミュレーションを行った。
天然のHwTx−IVペプチドの平均のCA RMSDはわずかに1.007オングストロームであり、非常に安定したペプチドであることを示している。分子動力学シミュレーションは、W30A(図9g)、F6A(図9b)(通常、π−π相互作用を形成する)、及びL22A(図9e)のみが、HwTx−IVのコア安定性に影響することを示した。他のすべての機能喪失型突然変異は、コア安定性にほとんど又はまったく影響しなかった。これに対して、すべての機能喪失型突然変異、並びにNav1.7及びNav1.1に異なる程度で影響する突然変異は、ループ領域の柔軟性に影響を及ぼした。例えば、W30A(図9g)、F6A(図9b)及びL22A(図9e)は、ループ3及び4の柔軟性を増大させ、K32A(図9h)は、ループ3の柔軟性を増大させ、D14A(図9d)及びP11A(図9c)は、ループ2の柔軟性の顕著な増大を示した。K27A(図10c)及びR26A(図10b)は、ループ4の柔軟性を増大させることが判明した。K18A(図10a)及びS25A(図9f)突然変異は、いずれのループの柔軟性にも影響しなかった。
NMR
HwTx−IVの構造的特徴の更なる知見を得るため、また、分子動力学シミュレーションの主な予測の一部を直接テストするため、本発明者らは、組み換えWT(野生型)HwTx−IVのNMR構造を決定し、これをW30A及びK32Aの構造と比較した。
QPatch及び結合アッセイで測定された活性の完全な喪失にも関わらず(分子動力学シミュレーションとは概ね一致したが)、W30A及びK32Aは、WT組み換えフエントキシンIVと同様の全体的構造を示した。陽子間NOESY及び主鎖化学シフト値は、W30A、K32A、及び野生型ペプチドは、極めてよく似た折り畳み及び構造を有しているものの、ねじれたβシートの溶媒接触面の近くに局所的な差異が認められた。これらの差異には、K32A及び野生型ペプチドのW30の半径5オングストローム内に強い環電流異方性が認められることが含まれる。F6及びT28に最も大きく影響するこうした異方性は、βターンのコンフォメーション/動力学及び側鎖の向きに影響しうる近接した空間相互作用があることを示している。解構造は、側鎖のジオメトリーに基づく別の局所的な差異として、K32のプロトン化されたアミンと、W30A及び野生型ペプチドに利用可能なY33の電子との間の潜在的なカチオン−π相互作用を示唆している。これらの局所的な差異に関与する5つの残基F6、T28、W30、K32、Y33の側鎖は、すべて互いに近接して位置しており、上記の分子内相互作用につながると同時に、Nav1.7と分子間相互作用するための潜在的な「ファーマコフォア」を形成する。
相同性モデリング及びドッキング
HwTx−IVとNav1.7チャネルとの間で生じる特異的相互作用を調べるため、Nav1.7ドメインII(DII)の電圧センサードメイン(VSD;セグメントS1〜S4)の相同性モデルを、NavABをテンプレートとして構築した。取得可能なSARデータ及び文献に開示されるチャネル突然変異のデータ(Xiao et al.,Biol Chem.286:27301〜10,2011.Epub 2011 Jun 9.)を用いて、このモデルを更にリファインすることにより、HwTx−IVペプチドをマニュアルでドッキングさせるための静止状態の構造を生成した。
文献に開示されるチャネル突然変異のデータは、HwTx−IVが、S1−S2及びS3−S4ループと(詳細には残基E753、E811、D816及びE818と)の相互作用によってDII電圧センサードメイン内に結合することを示唆している。得られたドッキングした構造を図12に示すものであり、疎水性パッチが、W30及びF6と、Nav1.7のS1−S2ループ及びS3−S4ループによって形成される溝の内部を向いた塩基性のK32残基とから構成されている。ドッキングしたモデルでは、W30及びF6の疎水性パッチが、対応する疎水性残基M750を有するチャネル溝と相互作用することになる。S1−S2ループ及びS3−S4ループの端に沿った荷電相互作用により、HwTx−IVは結合部位内でそれ自体で配向することができる。詳細には、S1−S2ループ上で、HwTx−IV及びNav1.7チャネルのK7−E753及びE4−K762間でそれぞれ電荷−電荷相互作用が生じる。同様に、HwTx−IVとS3−S4 Nav1.7ループとの間で一連の電荷−電荷相互作用、すなわち、R26−D816、K27−818、及びK32−E811も生じる。
実施例5
更なるフエントキシンIV変異体の設計及び生成
得られたフエントキシンIV変異体NV1G387(E1N、R26K、Q34S、G36I;NV1D2168、配列番号92)及びNV1G327(E1N、E4R、Y33W、Q34S;NV1D2163、配列番号3)に基づいて2つのグラフティングライブラリーを生成した。
実施例2に述べたようにしてペプチドを組み換えにより発現させ、実施例2に述べたようにしてFLIPR(登録商標)Tetra及びQPatchを使用してIC50値を測定した。両方の方法を用いて電圧依存性ナトリウムチャネルNav1.1、Nav1.2、Nav1.3、Nav1.4、Nav1.5、及びNav1.7に対する選択性を評価した。
変異体NV1G387(NV1D2168)が、Nav1.7に対して高い選択性を示し(図5)、元のフエントキシンIVにおいて高い有効性についてスキャンする置換でグラフトした(Nav1.7 IC50>0.05μM)。NV1G387のライブラリー設計を表1に示す。



変異体NV1G327(NV1D2163)は、高い有効性を示し(図4)、元のフエントキシンIVにおいて高い選択性についてスキャンする置換でグラフトした(この実験ではNav1.2と比較して5倍よりも高い選択性として定義されるか又は定義されない)。NV1G327のライブラリー設計を表2に示す。



図13Aは各配列を示し、図13Bは、NV1G387(NV1D2168)スカフォールドに基づいた突然変異体の特性を示す。値はすべて、単一点アッセイのみを行った場合を除き、nMで表したIC50である。単一点アッセイのみの場合、与えられたペプチド濃度で得られた阻害率(%)を示した。
図14Aは各配列を示し、図14Bは、NV1G327(NV1D2163)スカフォールドに基づいた突然変異体の特性を示す図14Bの値は、図13Bと同様である。
方向グラフティングライブラリーからのフエントキシンIV変異体は、向上した選択性を示し、かつ/又は以下の変異体を含む。
>NV1G559
GPNCLEIFKACNPSNDQCCKSSFLVCSKKTRWCKYSIIK(配列番号277)
(E1N,R26K,Q34S,G36IをK21Fでグラフトした)
>NV1G566
GPNCLEIFKACNPSNDQCCKSNKLVCSKKTRWCKYSIIK(配列番号278)
(E1N,R26K,Q34S,G36IをS20Nでグラフトした)
>NV1G611
GPNCLRIFKACNPSNDQCCKSSKLVCSDKTRWCKWSIGK(配列番号279)
(E1N,E4R,Y33W,Q34SをR26Dでグラフトした)
>NV1G612
GPNCLRIFKACNPSNDQCCKSSKLVCSRHTRWCKWSIGK(配列番号280)
(E1N,E4R,Y33W,Q34SをK27Hでグラフトした)
実施例6.Nav1.7阻害剤の局所投与は、ラット侵害受容性疼痛モデルにおいて鎮痛作用を与える
3種類のNav1.7遮断ペプチドの鎮痛作用を急性侵害受容性疼痛のラット及びマウスモデルで評価した。評価したペプチドは、フエントキシンIV(HwTx−IV)(Peng et al.,J Biol Chem 277:47564〜71,2002)、プロトキシンII(Middleton et al.,Biochemistry 41:14734〜47,2002)及びコノトキシンKIIIA(Zhang et al.,J Biol Chem.2007 282(42):30699〜706)である。HwTx−IV及びKIIIAは複数の電位依存性ナトリウムチャネルのアイソフォームを遮断し、全身投与した場合に重い副作用を誘発することが予想されることからこれらのペプチドは局所投与した。これら3種類のペプチドのNav1.7遮断の強さの順序は、ProTX−II>HwTX−IV>KIIIAである。
動物.雄性Sprague−Dawley(CD)系ラット(チャールズ・リバー社(Charles River)、サンディエゴ)を、約190〜200gで注文し、300gよりも大きくなった時点で使用した。
材料の調製及び後足への局所投与.アミド化したフエントキシンIV(ペプチド・インターナショナル社(Peptides International)、ケンタッキー州ルイビル)、プロトキシンII(株式会社ペプチド研究所、日本)又はKIIIAを凍結乾燥された形で入手し、HEPES緩衝生理食塩水で戻し、アリコートに等分して−20℃で凍結した。左後足背面に投与する直前にアリコートを解凍し、HEPES緩衝生理食塩水を希釈剤として使用して適当な濃度にまで希釈した。取り扱い及び足への注射に関連したストレス自体によって、足への圧力の閾値が高くなることから(ストレス誘発鎮痛作用)、ラットは注射を行うためにイソフランで軽く麻酔した(5%で誘導、2〜3%で維持)。動物の足の背面に、針の先端が足の背面の中心の、爪先に隣接する位置に消えないマジックペンでつけたマークの真下となるように、中心線の左側にくるぶしに向かって針を挿入して、皮下注射を行った(100μLのペプチド溶液又は溶媒)。
ランダール・セリット試験
Ugo−Basileランダール・セリット装置(無痛覚計)を、最大閾値を500gに設定して使用した。
訓練.文献に広く報告されているように、天然の動物を試験日に先立って2日間訓練した(反応のばらつきを小さくするため)。訓練は、各動物に対して実際の試験を、各ラットにつき約1時間の長さにわたって複数回行うことにより行った。最初に、常に足の同じ部位を試験することができるように、消えないマジックペンで、動物の左足の背面の中心の爪先にすぐ隣接する位置にマークを付けた。次いでラットを後足が覆われないように緩くタオルで包み、左後足を、ランダール・セリット装置内に、消えないマークが、足と接触する試験装置のコーンの先端の真下となるようにして置き、動物が反応するまで、フットコントロールによる電子的傾斜によって一定速度で圧力を増大させた。訓練用の「反応」は、試験日と同じ基準にしたがい、以下の内のいずれか1つからなるものとした。すなわち、1)装置から後足を引き抜く、2)明らかに足を引き抜こうとする、又は3)鳴き声をあげる。ラットは、100g又はそれ以上の閾値に対して反応するまで連続して3回まで試験した。訓練の時間/日にわたり、各ラットについて、1〜3回の連続した試験を、5〜20分間隔で行った。
試験.ペプチド又は溶媒の投与に先立って、訓練した、無傷のラットを、化合物投与前閾値について1回試験した。各動物を、ペプチド処理群又は溶媒処理群に、同等の投与前閾値平均を与えるように振り分けた。実験は可能な場合には、処理群に対して盲検で行った(すなわち、新たなペプチド又は新たな用量で試験を開始する際)。注射後の各時点(5、10、20、30、45、60、及び120分)で1回の試験を行い、記録した。反応は、訓練の際の反応と同様に定義した(上記の訓練の項を参照)。
データ分析.グラム(g)の閾値を紙に記録し、Prism 5.01(グラフパッド・ソフトウェア社(Graphpad Software Inc.)、カリフォルニア州ラホーヤ)に入力してグラフ化し、曲線下面積(AUC)値及び統計分析を生成した。時間に対するグラム(g)値を比較するため、2元配置分散分析(ANOVA)をp<0.05の有意水準で用いた。平均のAUC値を生成するため、ペプチド群の各ラットのAUCを個々に得て、溶媒群の平均のAUCをそこから減じた。次に、各ペプチド処理動物の、溶媒値を減じたAUCを互いに平均化し、それぞれp<0.05の有意水準で行ったスチューデントt検定又は1元配置分散分析(ANOVA)のいずれかにより比較した。120分における反応は示しておらず、AUCの計算には含めなかった。代わりに投与前、及び5〜60分の値(Pre)を用いた。
結果.足の背面に局所投与したフエントキシンIVは、ランダール・セリット試験における足の圧力閾値を容量依存的に増大させた。3nmol(図15A)及び30nmol(図15B)のフエントキシンIVは、溶媒処理群の動物で認められた閾値よりも有意に閾値を増大させたが、0.3nmolでは有意な増大は認められなかった(図示せず)。曲線下面積(AUC)(図15C)は、3つのペプチド処理群すべての間で有意に異なった(各動物のAUCから平均の溶媒AUCを減じた)。
足の背面に局所投与したプロトキシンIIは、ランダール・セリット試験における足の圧力閾値を容量依存的に増大させた。0.3nmol(図16A)、3nmol(図16B)、及び30nmol(図16C)のペプチドのそれぞれの用量は、溶媒処理群の動物で認められた閾値よりも有意に閾値を増大させた。AUCは0.3nmolと3nmol用量との間を除いて有意に異なった(各動物のAUCから平均の溶媒AUCを減じた)(図2D)。
両方の用量(3及び30nmol)で足の背面に局所投与されたKIIIAでは、ランダール・セリット試験において、足の圧力閾値が増大する傾向が認められたが、統計的に有意ではなかった。2つの用量から得られたAUCの間に有意差は認められなかった(図示せず)。
この実験の結果は、ProTx−II及びHwTx−IVが急性侵害受容性疼痛のラットモデルにおいて局所投与後に有意な鎮痛作用を示したことを示すものである。KIIIAは鎮痛活性に向かう傾向を示したが、統計的に有意な水準には達しなかった。疼痛アッセイにおける活性の順序(ProTX−II>HwTX−IV>KIIIA)は、インビトロでのNav1.7遮断の順序と一致し、このことは、Nav1.7遮断が鎮痛活性に寄与した可能性を示唆するものである。
実施例7.ProTx−IIの局所投与は、ラット炎症性疼痛モデルにおいて鎮痛作用を与える
動物試験開始時点において体重240〜295g(平均/標準誤差:280.2±3.3)の雄性Sprague−Dawley(CD)系ラット。
行動試験
接触性アロディニア試験
特別に作製した金網の観察ケージを通して、後足の足底に対してフィラメントがわずかに曲がるだけの充分な力で垂直に加えて5〜7秒間保持した8段階の刺激(フォンフライ(von Frey)式フィラメント:0.4、0.6、1.0、2.0、4.0、6.0、8.0、及び15.0g;ストールティング社(Stoelting)、イリノイウッドデール)から罹患した肢を引っ込めた閾値の中央値を測定することによって機械的(接触性)アロペディアを評価した。刺激の間又は刺激の除去の直後に足が引っ込められた場合を陽性反応とした。50%足引っ込め閾値(PWT)を、刺激強度を連続的に増大及び減少させ、(Chaplan et al.,1994)に述べられるディクソンアップダウン法(Dixon,1980)を適合した方法を用いて引っ込め値のデータを分析することによって求めた。ラットは、試験に先立って10分間、金網に慣らした。完全フロイントアジュバント(CFA)の注射の前及び注射後の異なる数日に触覚閾値を評価した。
熱性アロディニア試験
CFA投与の前後に熱足刺激装置(Hargreave装置、カリフォルニア州立大学サンディエゴ校麻酔科、カリフォルニア州サンディエゴ)を使用して放射熱に対する足閾値反応を評価した。ナイーブなラットを使用し、足を引っ込めるまでのラットの反応が約8〜12秒の潜時の範囲(平均約10秒)となるように放射熱の利得及び強度を設定した。カットオフ値は、装置により20秒に設定した。各時点で、同じ足について3つの別々の測定値を、各動物で約5分間隔で得て、互いに平均化した。
単関節炎モデル誘発
完全フロイントアジュバント(CFA;シグマ・アルドリッチ社(Sigma-Aldrich)、ミズーリ州セントルイス)のエマルションを、CFAと0.9%生理食塩水が1:1の比となるように調製した。動物をイソフルランで麻酔し(導入5%、維持2〜5%)、100μLのエマルションを左後足に皮下注射した。CFA注射後12日目に、同側の足に、100μLのHEPES緩衝生理食塩水に加えた30nmolプロトキシンII(ペプタイズ・インターナショナル社(Peptides International)、ケンタッキー州ルイヴィル)又は溶媒(100μLのHEPES緩衝生理食塩水)のいずれかを注射した。
データ分析.データは、平均±標準誤差として表した。グラム(g)閾値(触覚)及び熱による足引っ込めまでの潜時を紙に記録し、Prism 5.01(グラフパッド・ソフトウェア社(Graphpad Software Inc.)、カリフォルニア州ラホーヤ)に入力してグラフ化し、統計分析を行った。時間に対する閾値を比較するため、2元配置分散分析(ANOVA)及びボンフェローニポストホック(Bonferroni post hoc)検定をp<0.05の有意水準で用いた。
結果
接触性アロディニアの閾値(図17A)及び熱性アロディニアの潜時(図17B)は、50%足底内CFAによりラットに誘発させた単関節炎の動物モデルでは有意に低下した。足底内投与したプロトキシンIIでは、注射後30及び60分後に、溶媒注射動物と比較して触覚閾値が有意に増加した。
実施例8.ProTx−IIの局所投与は、マウス炎症性疼痛モデルにおいて鎮痛作用を与える
動物.試験開始時点において体重24〜31g(平均/標準誤差:27.5±0.3)の雄性C57/bl6マウスを使用した。
行動試験
接触性アロディニア試験
特別に作製した金網の観察ケージを通して、後足の足底中心に対してフィラメントがわずかに曲がるだけの充分な力で垂直に加えて約3秒間保持した7段階の刺激(フォンフライ(von Frey)式フィラメント:0.07、0.16、0.4、0.6、1.0、2.0及び4.0g;ストールティング社(Stoelting)、イリノイ州ウッドデール)から、罹患した足を引っ込めた閾値の中央値を測定することによって機械的(接触性)アロペディアを評価した。刺激の間又は刺激の除去の直後に足が引っ込められた場合を陽性反応とした。50%足引っ込め閾値(PWT)を、刺激強度を連続的に増大及び減少させ、(Chaplan et al.,1994)に述べられるディクソンアップダウン法(Dixon,1980)を適合した方法を用いて引っ込め値のデータを分析することによって求めた。マウスは、試験に先立って1日につき約1時間、2日間にわたり、更に、各試験日には試験に先立って30分間、金網の試験条件に慣らした。完全フロイントアジュバント(CFA)の注射の前及び注射後の異なる数日に触覚閾値を評価した。
単関節炎モデル誘発
50%完全フロイントアジュバント(CFA;シグマ・アルドリッチ社(Sigma-Aldrich)、ミズーリ州セントルイス)に対して、CFAと0.9%生理食塩水が1:1の比となるようにエマルションを調製した(溶媒処理群には0.9%生理食塩水のみを投与した)。100% CFAについては動物が販売業者から届いた時点で希釈しないCFAを注射し、コントロール動物には0.9%生理食塩水を注射した。動物をイソフルランで麻酔し(導入5%、維持2〜5%)、50μLハミルトン注射器及び25ゲージの針を使用して20μLを左後足に皮下注射した。
処理
実験はすべて、処理に対して盲検で行った。CFA注射後3日目に、ガバペンチン(150mg/kg,n=6)又は溶媒(滅菌水;n=6)のいずれかを、このモデルにおいて周知の抗アロディニア作用を有するポジティブコントロールとして経口投与(4mL/kg)し、触覚閾値の変化について評価した。6日間のウォッシュアウト期間の後(CFA後9日目)、同じ動物を、3nmolプロトキシンII(ペプタイズ・インターナショナル社(Peptides International)、ケンタッキー州ルイヴィル)又は溶媒(HEPES緩衝生理食塩水)を左のCFA処理した足の足底内に投与して試験した。
データ分析
データは、平均±標準誤差として表した。グラム(g)閾値(触覚)及び熱による足引っ込めまでの潜時を紙に記録し、Prism 5.01(グラフパッド・ソフトウェア社(Graphpad Software Inc.)、カリフォルニア州ラホーヤ)に入力してグラフ化し、統計分析を行った。時間に対する閾値を比較するため、2元配置分散分析(ANOVA)及びボンフェローニポストホック(Bonferroni post hoc)検定をp<0.05の有意水準で用いた。100% CFAは、CFA投与1〜8日後に、長期持続する著明な接触性アロディニアを局所的な足の浮腫とともに引き起こした(図18A)。50% CFAは、CFA投与の2〜4日後にピークとなった一過性のアロディニアを引き起こした。
結果
ProTx−IIは、炎症を起こしたマウスの足に局所投与した後、著明な抗アロディニア作用を示した。触覚閾値はベースラインを超えて増大し、ProTx−IIが投与した用量で更なる鎮痛作用を有することを示した。ProTx−IIの作用は、CFA誘発接触性アロディニアを増大させた場合に、ポジティブコントロール薬剤であるガバペンチンによって得られた作用よりもより顕著であった(図18B及び18C)。
以上まとめると、これらの結果は、ProTx−IIの局所投与はラット及びマウスの急性及び炎症性の疼痛モデルにおいて鎮痛及び抗アロディニア作用をもたらしたことを示すものである。これらの結果は、Nav1.7遮断ペプチドの局所投与が、Nav1.7依存性である様々なヒトの疼痛状態において有効となりうることを示唆するものである。これらの結果はまた、適当な選択性を有するペプチドは、全身投与後に効果を示すことを示唆している。
実施例9.ProTx−IIの持続的な全身投与の忍容
後で行う疼痛評価動物モデルにおける用量を選択するため、マウスにおける最大7日間の浸透圧ミニポンプによる投与後のProTx−IIの曝露性及び忍容性を評価した。
試験化合物
ProTx−II(ペプタイズ・インターナショナル社(Peptides International)、ケンタッキー州ルイヴィル)を、0.05、0.5及び3.8mg/mLのストック濃度でDPBS(カルシウム及びマグネシウムを含まない)中で配合した。
ミニポンプ
ProTx−II又は溶媒を、アルゼット(Alzet)マイクロ浸透圧ミニポンプにより、マウス体内への埋め込み後、7日間にわたって0.5μl/時で投与した。ポンプ及びその流量調節要素(フローモデレーター)を最初に量し、次いで27ゲージの先の丸い針が取り付けられた1mLのシリンジによって充填した。ポンプが直立した状態で、ポンプを充填し、調節要素を挿入して再び秤量した。重量(空の重さ及び充填時の重さ)を記録して、アルゼットポンプ使用説明書で指定されている平均充填体積の90%を充填体積が超えるようにした。次いでポンプを、0.9%生理食塩水で充填した15mL円錐チューブに入れ、埋め込みに先立って37℃に5〜6時間置いた。
ミニポンプの埋め込み
マウスに20μlの0.3mg/mlブプレネックスを投与した後、イソフルランにより麻酔(誘導5%、維持2%)を施した。マウスの背中を剃毛し、イソプロピルアルコール及びポビドンヨードで拭き、肩甲骨の間に小さい切開を行った。ヘモスタットを使用し、皮下結合組織を広げて剥離することによって小さなポケットを形成した。流量調節要素が切開から離れる方向を向くようにしてポンプをポケットに挿入した。この後、7mmのステープルを使用して皮膚の切開を閉じ、動物を飼育ケージ内で回復させた。
QPatchを使用した血漿ProTx−II濃度の測定
ヒトNav1.7を安定的に発現しているHEK293細胞を、10%ウシ胎児血清、400μg/mLジェネティシン、及び100μMのNEAA(試薬はすべてライフ・テクノロジーズ社(Life Technologies)より入手)を補ったDMEM/F−12μM培地(1:1)中で培養した。細胞は37℃で5% CO2内に維持し、約70〜90%コンフルエンスに達した時点でアッセイを行った。QPatch(ソフィオン社(Sophion))で試験するのに先立って、細胞を最初に0.05%トリプシン(37℃で5分間)を使用して解離させ、CHO−S−SFM培地(ライフ・テクノロジーズ社(Life Technologies))に再懸濁し、穏やかに粉砕して細胞塊をバラバラにした。細胞密度を同じ培地により1〜2×106/mlに調整し、細胞をQPatchHTの細胞「ホテル」に移し、数時間にわたって実験に使用した。
アッセイで用いた電圧プロトコールは以下のとおりである。−75mVの保持電位から、細胞を最初に−120mVに2秒間過分極させてから、0mVに5ミリ秒間脱分極させた後、保持電位(−75mV)に戻した。このプロトコールを、液体供給時に60秒毎に1回繰り返した(下記参照)。それ以外は、上記の電圧プロトコールが実行されない場合、細胞を−75mVに保持した。
ギガオーム(GΩ)シール形成用に、細胞外液は、137mM NaCl、5.4mM KCl、1mM MgCl2、2mM CaCl2、5mMグルコース、及び10mM HEPES(pH=7.4、浸透圧モル濃度=315mOsm)を含むものとした。細胞内液は、135mM CsF、10mM CsCl、5mM EGTA、5mM NaCl及び10mM HEPES(pH=7.3、浸透圧モル濃度=290mOsm)を含むものとした。
ホールセルパッチクランプの記録用には、コントロールマウス又は試験マウス(溶媒又はペプチド投与したもの)から得た血漿を最初に上記の細胞外液で希釈し(10〜1000倍)、これらの血漿含有緩衝液をこの後、細胞外液として使用した。細胞内液は上記と同じものとした。
ホールセル記録用コンフィギュレーションが確立された時点で、全部で5つの血漿含有細胞外液の供給(血漿を含まない細胞外液に1μMのTTXを含む最後の供給を除く)を、記録されるそれぞれの細胞に行った。最初の供給(5μl)は、コントロール血漿のみを含むものとした(血漿含有緩衝液)。供給の5秒後、電圧プロトコールを10回(全体で10分間の長さ)行った。次の3つの供給(各5μL)は、溶媒又はペプチド投与したマウスから得た血漿(コントロール血漿の最初の供給と同じ倍率で希釈した)か、又はコントロール細胞では、最初の供給と同じコントロール緩衝液とした。ポジティブコントロールとして、既知濃度(300μM)の合成プロトキシンIIを10倍に希釈したコントロール血漿含有緩衝液に加え(スパイク)、これを更に連続希釈して他の血漿含有緩衝液(すなわち30、100、300及び1000倍に希釈した血漿含有緩衝液)中でコントロールペプチドのより低い濃度(すわち3、10、30、及び100倍希釈濃度)を得た。これら3つの供給のそれぞれの5秒後、電圧プロトコールを再び10回行った(やはり毎分1回)。最後の供給は1μMのTTXを含むもの(それぞれ2秒間離れた3つの10μlの小適用からなるもの)とし、その5秒後に同じ電圧プロトコールを2回行ってベースライン電流を得た。
電流を25kHzでサンプリングし、8極Bessleフィルターにより5kHzでフィルタリングした。直列抵抗の補償レベルを80%に設定した。各細胞について最初に、最初の4つの供給の各電流トレースの0mVにおけるピーク電流振幅を、TTXの存在下の最後のトレースのピーク電流振幅から引き、次いで最初の供給(コントロール緩衝液)の最後のトレースのピーク電流振幅に対して阻害率(%)として標準化した。電流のランダウン(rundown)について調整するため、試験血漿含有緩衝液の存在下における各細胞のこの(阻害率(%)の)値を、同じ実験中のコントロール(通常5〜6個の)細胞(試験血漿と同じ倍率で希釈したコントロール血漿のみを含む緩衝液で試験したもの)の平均の阻害率(%)の値に対して更に正規化した。最後(すなわち全体の4番目)の血漿の供給の最後の2つのこうした値の平均の値を、濃度反応計算に使用した。連続希釈した血漿(ProTx−II投与マウスから得たもの)緩衝液の存在下でのチャネル阻害のレベルを、ProTx−IIのスパイクした(既知の)濃度の存在下での(希釈した)コントロール血漿から得られたチャンネル阻害のレベルと比較することによって、希釈していない血漿中のProTx−II濃度を計算した。実験はすべて、室温(約22℃)で行った。データは平均±標準誤差として表した。
結果のまとめ
ポンプ埋め込み後の異なる時点における各用量群の血漿濃度を表3に示す。血漿濃度は、2つのより低い用量ではすべての時点で検出限界(約5nM)を下回った。血漿濃度は、より高い用量では50〜83nMであり、これらの用量群内ではすべての時点で同様であった(2日間以内に安定状態に達したことを示唆する)。すべての用量はよく忍容され、すべの用量又は時点で異常な挙動は認められなかった。



ProTx−IIは、マウスにおいて最大で45.6ug/日まで、7日間にわたってよく耐容された。この実験では最大耐容用量は特定されなかったことから、本発明者らは、疼痛実験において5倍高い用量(228μg/日)を評価することとした。
実施例10.ミニポンプを使用したProTx−IIの投与は、マウス炎症性疼痛モデルにおいて抗アロディニア作用を与える
動物.この実験では、チャールズ・リバー社(Charles River)より注文した雄性C57Bl/6系マウスを使用した。
行動試験
接触性アロディニア試験
特別に作製した金網の観察ケージを通して、後足の足底に対してフィラメントがわずかに曲がるだけの充分な力で垂直に加えて約3秒間保持した7段階の刺激(フォンフライ(von Frey)式フィラメント:0.07、0.16、0.4、0.6、1、2及び4g;ストールティング社(Stoelting)、イリノイ州ウッドデール)から、罹患した足を引っ込めた閾値の中央値を測定することによって機械的(接触性)アロペディアを評価した。刺激の間又は刺激の除去の直後に足が引っ込められた場合を陽性反応とした。足引っ込め閾値(PWT)を、刺激強度を連続的に増大及び減少させ、(Chaplan et al.,1994)に述べられるディクソンアップダウン法(Dixon,1980)を適合した方法を用いて引っ込め値のデータを分析することによって求め、グラム(g)で記録した。マウスは、試験に先立って30分間、金網に慣らした。100%完全フロイントアジュバント(CFA)の注射の前及び注射後の異なる数日に触覚閾値を評価した。行動試験を完全に盲検で行った。試験を行う者とは別の研究者によって、予備閾値統合してベースライン試験に先立って閾値を均一化した。
熱性(ハーグリーブズ(Hargreaves))アロディニア試験
改変したハーグリーブズボックスを使用して熱性アロディニアを測定した(Hargreaves et al.,1988,Pain,32:77〜88;Dirig et al.,1997,J Neurosci.Methods,76:183〜191)。この箱は、一定温度(28℃)に維持されたせり上がったガラス底を有するプレキシグラスチャンバーからなるものである。熱侵害受容性刺激は、ガラス表面の下の映写用電球から与えられ、刺激は、カットオフ時間20秒で後足の片方ずつに別々に与えた。実験全体を通して一定のアンペア数を使用することで、5分間隔で計測した3つの計測値について平均した場合に約8〜12秒の試験前足引っ込め潜時が得られた。動物を10分間、硝子表面上で慣らしてから足引っ込めまでの潜時(PWL)を秒単位で記録した。
CFA
動物をイソフルランで麻酔し(導入5%、維持2〜5%)、20μLの100%完全フロイントアジュバント(CFA;シグマ・アルドリッチ社(Sigma-Aldrich)、ミズーリ州セントルイス)を、1mL注射器に取り付けた25ゲージの針を使用して左後足に皮下注射した。
試験化合物
プロトキシンII(ペプタイズ・インターナショナル社(Peptides International))をDPBS中(カルシウム及びマグネシウムを含まないもの)で9.5mg/mLのストック濃度で配合した。
ミニポンプ
アルゼット(Alzet)マイクロ浸透圧ミニポンプ(デュレクト社(Durect Corporation)モデル1003D)を使用した。これらのポンプにより、試験化合物及び溶媒を、マウス体内への移植後、3日間にわたって1.0μl/時で投与した。ポンプ及びその流量調節要素(フローモデレーター)を最初に秤量し、次いで27ゲージの先の丸い針が取り付けられた1mLのシリンジによって充填した。ポンプが直立した状態で、ポンプを充填し、流量調節要素を挿入して再び秤量した。重量(空の重さ及び充填時の重さ)を記録して、アルゼットポンプの使用説明書で指定されている平均充填体積の90%を充填体積が超えるようにした(使用説明書によれば92μL)。次いでポンプを、0.9%生理食塩水で充填した15mL円錐チューブに入れ、埋め込みに先立って37℃に5〜6時間置いた。
ミニポンプの埋め込み
マウスに20μlの0.3mg/mlブプレネックスを投与した後、イソフルランにより麻酔(誘導5%、維持2%)を施した。マウスの背中を剃毛し、イソプロピルアルコール及びポビドンヨードで拭き、肩甲骨の間に小さい切開を行った。ヘモスタットを使用し、皮下結合組織を広げて剥離することによって小さなポケットを形成した。各ポンプの内容物は医師にも実験操作者にも分からないようにした。この後、7mmのステープルを使用して皮膚の切開を閉じ、動物を飼育ケージ内で回復させた。
データ分析
データは、平均±標準誤差として表した。グラム(g)閾値(接触性)及び平均の潜時(熱的)を紙に記録し、Prism 5.01(グラフパッド・ソフトウェア社(Graphpad Software Inc.)、カリフォルニア州ラホーヤ)に入力してグラフ化し、統計分析を行った。時間に対する閾値を比較するため、2元配置分散分析(ANOVA)及びボンフェローニポストホック(Bonferroni post hoc)検定をp<0.05の有意水準で用いた。
手順
動物を、フォンフライ(Von Frey)スタンド及びハーグレーブズ(Hargreaves)ボックスで、試験の前の週の火曜日、水曜日、及び木曜日に訓練した。動物をスタンド/ボックス上にをつけさせて装置の上に居ることに慣れさせた。金曜日に動物の試験前閾値を接触性(フォンフライスタンド)及び熱性(ハーグレーブズ)の両方で試験した。試験前閾値を試験した時点で動物を軽く麻酔し、20μLの100%CFAを左後足に注射した。動物を回復させ、飼育ケージに戻した。翌週の月曜日にマウスを接触性及び熱性の両方でベースライン測定値について試験して、CFAが動物の閾値を低下させるだけの充分な炎症を引き起こしたことを確認した。この後、マウスを麻酔し、ミニポンプを埋め込んで動物を回復させた。火曜日、水曜日、及び木曜日に「1日目」、「2日目」、及び「3日目」の接触性及び熱性閾値を測定した。3日目の終わりに動物を屠殺し、最終的な血液試料を得た。
血漿ProTx−IIを実施例9で述べたようにして決定した。ProTx−IIの平均濃度は224μMであった。
結果
ProTx−IIは、浸透圧ミニポンプによる228μg/日の持続的投与後、炎症性疼痛のマウスモデルにおいて統計的に有意な有効性を示した。接触性閾値(図19A)及び熱閾値(図19B)は、ProTx−II処理動物において有意に増加した。これらの観察結果は、2つの独立した完全な盲検試験において再現可能であった。ProTx−IIは、この有効な用量で明らかな運動障害は生じなかった。文献に開示されている報告(Schmalhofer et al.,Mol Pharm 74:1476〜1484,2008;Hacker et al.,Proc Natl Acad Sci USA 109:E2018−27)と対照的に、これらのデータは、Nav1.7選択的ペプチドに対する持続的な曝露による全身投与は、炎症性疼痛において明らかな効果を与えることを示すものである。
ミニポンプにより投与したProTx−IIの効果を、神経因性疼痛のモデルである神経部分損傷を有するマウスにおいて接触性(フォンフライ)疼痛アッセイで評価した。ProTx−IIは、浸透圧ミニポンプによるProTx−IIの228μg/日の持続的投与後、この神経因性疼痛のマウス神経部分損傷モデルでは有効性を示さなかった。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ