図面 (/)

技術 組換えペプチドを生産するための方法および得られるペプチド

出願人 アイビックス・リミテッド
発明者 ミャソエドフ,ニコライ・フェドロビチアンドリーバ,リュドミラ・アレクサンドロブナゴリコフ,ドミトリー・ビクトロビチ
出願日 2013年5月28日 (6年8ヶ月経過) 出願番号 2015-503152
公開日 2015年6月4日 (4年8ヶ月経過) 公開番号 2015-515855
状態 不明
技術分野
  • -
主要キーワード 技術的成果 勾配形状 逐次延長 キエフ ロシア連邦 真空蒸発器 シーディング剤 TBA塩
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2015年6月4日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (8)

課題・解決手段

発明は、生化学およびバイオテクノロジーの分野に関し、次の一般式: A-Thr-Lys-Pro-B-C-D-X (式中、 Aは、0, Met, Met (O), Thr, Ala, His, Phe, Lys, Gly Bは、0, Gly, Asp, Trp, Gln, Asn, Tyr, Pro, Arg Cは、0, Arg, Phe, Tyr, Gly, His, Pro, Lys Dは、0, Val, Gly, Tyr, Trp, Phe, His Xは、OH, OCH3,NH2 であり、式中、0はアミノ酸残基が存在しない。但し、A≠0の場合、Bおよび/またはCおよび/またはD≠0であり、B≠0の場合、Cおよび/またはD≠0であり、Phe-Thr-Lys-Pro-Gly、Thr-Lys-Pro-Pro-Arg、Thr-Lys-Pro-Arg-Glyのペプチドを除く。) の、生殖および性的機能刺激活性を有するペプチドを生産することに関連する。 さらに、発明は、遺伝子工学法により上記のペプチドを生産するための方法に関連する。

概要

背景

発明の背景
低分子ペプチドは、非常に高い活性を示し、障害が生じた器官において自然治癒を促すことが知られている。一般に知られるように、より低分子ペプチドは、初めは動物組織由来し、後に実験室条件下で生産されるようになる。ペプチドを含有する医薬品は、損傷した体細胞修復し、影響を受けた器官に失われた機能を戻し、若返らせることが可能である。ペプチドを含有する医薬品は30年以上前に開発されており、その時から、何百もの実験が行われ、さまざまな全身の疾患の処置および予防、ならびに個々の器官および体全体の若返りにおけるペプチドの有効性が証明されてきた。

体内では、ペプチドは情報メッセンジャー務めている。ペプチドは、すべてがうまく時間通りに行われ得るように、ある細胞から別の細胞へ情報を伝達する。1つの細胞が適切に機能すれば、対応する器官はうまく働く。機能不全が生じると、それは器官全体に影響を及ぼし、疾患を引起す。体内に欠損している物質を導入することにより、疾患を処置することが可能であるのは明らかであるが、このアプローチは、細胞を完全に「損なって」しまい、適切な機能の働きを止めてしまうおそれがある。したがって、体が自然治癒するように細胞を機能させるペプチドメッセンジャーを細胞に送達する必要がある。各器官は、貯蔵幹細胞の供給を有する。この供給が均等に消費されれば、人は100〜110まで生きる。ペプチドは、すべての哺乳類について同じである。したがって、仔ウシペプチドがヒトに導入されれば、ヒトの体は生来の分子としてそれを取入れる。主な課題は、動物器官からペプチドを単離する方法を見つけることであった。この技術は、早くも1971年に、病院のVladimir Morozov教授およびVyacheslav Havinson教授によって発明された。医薬品が開発され、その後これらに基づいて、栄養補助食品が使用し易いため作られた。老化過程および老化に影響を及ぼす方法の研究において、サンクトテルブルク老年医学研究所の研究員らは、ペプチドをマウス実験群飼料に導入すると、平均寿命が30〜38%延びたことを結論づけた。その後、キエフ老年医学研究所およびサンクトペテルブルクにおいて、高齢者に対してペプチドの研究が行われた。これは、死亡率のほぼ2倍の低下を示し、ペプチドの高い老化保護的活性が示唆された。ペプチド医薬品の長期的な研究および使用は、異なる年齢群患者においてこれらの高い有効性を示したものの、高齢者(50歳以上)において特別な有効性が観察された。ペプチド生体調節剤の絶対的利点は、副作用が一切無いことである。26年以内に、さまざまな病状をかかえる1500万人を超える人々が、このような製品受け入れた。これらの有効性は、平均75〜95%にまでなった。年齢および病状変化とともに発生するペプチド不足は、組織消耗および体老化を顕著に加速させる。実際、細胞および組織が適当に機能するには適量のペプチドが必要であり、適量のペプチドはまた、最適な遺伝子の働きをサポートする。ペプチドに特異的な細胞において機能するペプチドは、その細胞において合成される。したがって、病状変化において、さらに年齢とともに、細胞機能破壊されるため、ペプチド複製も影響を受ける。その結果、細胞機能は二次的に影響を受ける。したがって、組織の退化が進行し、結局は臨床的に表れる。そのため、低分子ペプチドの適用は、医学における主要な革新のひとつであり、細胞増殖および組織再生刺激するとともに、細胞寿命を向上させることにより、老化の速度を顕著に遅めることができる。ペプチドの別の重要な利点は、抗腫瘍作用である。現在、ペプチドの使用は、活性化 (体の若返り)および癌予防において最善な妥協のない解決策である。なぜなら、それは、すべての循環過程の調節および同期によってのみでなく、非定型性(非定型性は、誤った細胞構造、または異常である)なしに細胞分裂能を増大させることにより、細胞および組織を若返らせることができるためである。

当然のことながら、技術の現段階では、動物組織からの低分子ペプチドの生産は非実用的である。なぜなら、この方法は、生産プロセス人道性は言うまでもないが、非常に高額なためである。

現代的で高度な生産方法は、組換え微生物の使用を含む。最も便利な微生物大腸菌である。大腸菌K12、大腸菌O104など、実験室条件下での使用に好適な大腸菌の商用菌株先行技術において知られている。これらおよび同様の既知の大腸菌を使用して、請求の範囲の低分子ペプチドを産生する菌株を得ることができる。対応する標的低分子ペプチドをエンコードする核酸は、実験室条件下での使用に好適な任意の既知の菌株に組込まれることができる。細菌性プラスミドウィルスビリオンファージDNAを含有するハイブリッドベクター、およびプラスミドなどのベクターは、宿主細胞にDNAを挿入するために使用される。これらのベクターとしては、たとえば、コスミドおよびファスミドが含まれる。

さらに、従来の化学合成によりペプチドを生産することが可能である。
提案されるペプチドは、生殖および性的機能の刺激ならびに生殖および性的機能障害の処置のための手法の範囲を拡大するという、現在も未だ重要な課題を解決する。現在、このような病状の病原的処置は、精神療法抗うつ剤抗不安剤アダプトゲン、ならびにビタミン剤、一般の工場刺激剤、およびダイエット栄養補助食品を用いて行われている。このような処置は長く、非能率的で、多くの副作用を伴う。

生殖および性的機能の刺激剤の生産に好適な、最も有効的なクラスの生理活性物質のひとつはペプチドであり、ペプチドは内在性物質として、マイナスの副作用を事実上有さない。

我々自身の調査は、内在的に産生されるペプチドであるタフトシン合成類似体である、一般式Thr-Lys-Pro-Arg-Pro-Gly-ProのヘプタペプチドであるSelankが、生殖および性的機能障害の処置および予防のための手法として使用可能であることを示した(ロシア連邦特許第2404793号)。しかしながら、ヘプタペプチドであるSelankの合成は多段であり、これに基づく医薬品のコストは大幅に増加してしまう。さらに、体内で強い蛋白質分解に晒されるため、生殖および性的機能障害の予防および処置に対するその刺激効果が低減する。

概要

発明は、生化学およびバイオテクノロジーの分野に関し、次の一般式: A-Thr-Lys-Pro-B-C-D-X (式中、 Aは、0, Met, Met (O), Thr, Ala, His, Phe, Lys, Gly Bは、0, Gly, Asp, Trp, Gln, Asn, Tyr, Pro, Arg Cは、0, Arg, Phe, Tyr, Gly, His, Pro, Lys Dは、0, Val, Gly, Tyr, Trp, Phe, His Xは、OH, OCH3,NH2 であり、式中、0はアミノ酸残基が存在しない。但し、A≠0の場合、Bおよび/またはCおよび/またはD≠0であり、B≠0の場合、Cおよび/またはD≠0であり、Phe-Thr-Lys-Pro-Gly、Thr-Lys-Pro-Pro-Arg、Thr-Lys-Pro-Arg-Glyのペプチドを除く。) の、生殖および性的機能刺激活性を有するペプチドを生産することに関連する。 さらに、発明は、遺伝子工学法により上記のペプチドを生産するための方法に関連する。

目的

発明の開示
発明の目的は、生殖および性的機能刺激活性を有する手法の範囲を拡大することである

効果

実績

技術文献被引用数
- 件
牽制数
- 件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

該当するデータがありません

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

次の一般式:A-Thr-Lys-Pro-B-C-D-X(式中、A - 0, Met, Met (O), Thr, Ala, His, Phe, Lys, GlyB - 0, Gly, Asp, Trp, Gln, Asn, Tyr, Pro, ArgC - 0, Arg, Phe, Tyr, Gly, His, Pro, LysD - 0, Val, Gly, Tyr, Trp, Phe, HisX - OH, OCH3, NH2であり、式中、0はアミノ酸残基が存在しない。但し、A≠0の場合、Bおよび/またはCおよび/またはD≠0であり、B≠0の場合、Cおよび/またはD≠0である。)を有する組換えペプチド生産するための方法であって、前記組換えペプチドは、大腸菌株を用いて生産され、前記組換えペプチドは、この種の細菌細胞における使用に好適な商用ベクターを挿入し、得られた菌株を培養し、前記ペプチドを単離することにより、商用親株に基づいて得られ、前記ベクターは、特定された前記ペプチドのいずれかをエンコードする核酸を含有する、方法。

請求項2

次の一般式:A-Thr-Lys-Pro-B-C-D-X(式中、A - 0, Met, Met (O), Thr, Ala, His, Phe, Lys, Gly B - 0, Gly, Asp, Trp, Gln, Asn, Tyr, Pro, Arg C - 0, Arg, Phe, Tyr, Gly, His, Pro, LysD - 0, Val, Gly, Tyr, Trp, Phe, HisX - OH, OCH3,NH2であり、式中、0はアミノ酸残基が存在しない。但し、A≠0の場合、Bおよび/またはCおよび/またはD≠0であり、B≠0の場合、Cおよび/またはD≠0であり、Phe-Thr-Lys-Pro-Gly、Thr-Lys-Pro-Pro-Arg、Thr-Lys-Pro-Arg-Glyのペプチドを除く。) を有するペプチドであって、前記ペプチドは、生殖および性的機能刺激活性を有する、ペプチド。

技術分野

0001

発明の分野
本発明は生化学の分野に関し、ペプチド生産のための組換え方法および得られるペプチドに関する。特に、本発明は、次の一般式
A-Thr-Lys-Pro-B-C-D-X
(式中、
A - 0, Met, Met (O), Thr, Ala, His, Phe, Lys, Gly
B - 0, Gly, Asp, Trp, Gln, Asn, Tyr, Pro, Arg
C - 0, Arg, Phe, Tyr, Gly, His, Pro, Lys
D - 0, Val, Gly, Tyr, Trp, Phe, His
X - OH, OCH3, NH2
であり、式中、0はアミノ酸残基が存在しない。但し、A≠0の場合、Bおよび/またはCおよび/またはD≠0であり、B≠0の場合、Cおよび/またはD≠0であり、Phe-Thr-Lys-Pro-Gly、Thr-Lys-Pro-Pro-Arg、Thr-Lys-Pro-Arg-Glyのペプチドを除く。)
を有するペプチドに関する。

背景技術

0002

発明の背景
低分子ペプチドは、非常に高い活性を示し、障害が生じた器官において自然治癒を促すことが知られている。一般に知られるように、より低分子のペプチドは、初めは動物組織由来し、後に実験室条件下で生産されるようになる。ペプチドを含有する医薬品は、損傷した体細胞修復し、影響を受けた器官に失われた機能を戻し、若返らせることが可能である。ペプチドを含有する医薬品は30年以上前に開発されており、その時から、何百もの実験が行われ、さまざまな全身の疾患の処置および予防、ならびに個々の器官および体全体の若返りにおけるペプチドの有効性が証明されてきた。

0003

体内では、ペプチドは情報メッセンジャー務めている。ペプチドは、すべてがうまく時間通りに行われ得るように、ある細胞から別の細胞へ情報を伝達する。1つの細胞が適切に機能すれば、対応する器官はうまく働く。機能不全が生じると、それは器官全体に影響を及ぼし、疾患を引起す。体内に欠損している物質を導入することにより、疾患を処置することが可能であるのは明らかであるが、このアプローチは、細胞を完全に「損なって」しまい、適切な機能の働きを止めてしまうおそれがある。したがって、体が自然治癒するように細胞を機能させるペプチドメッセンジャーを細胞に送達する必要がある。各器官は、貯蔵幹細胞の供給を有する。この供給が均等に消費されれば、人は100〜110まで生きる。ペプチドは、すべての哺乳類について同じである。したがって、仔ウシペプチドがヒトに導入されれば、ヒトの体は生来の分子としてそれを取入れる。主な課題は、動物器官からペプチドを単離する方法を見つけることであった。この技術は、早くも1971年に、病院のVladimir Morozov教授およびVyacheslav Havinson教授によって発明された。医薬品が開発され、その後これらに基づいて、栄養補助食品が使用し易いため作られた。老化過程および老化に影響を及ぼす方法の研究において、サンクトテルブルク老年医学研究所の研究員らは、ペプチドをマウス実験群飼料に導入すると、平均寿命が30〜38%延びたことを結論づけた。その後、キエフ老年医学研究所およびサンクトペテルブルクにおいて、高齢者に対してペプチドの研究が行われた。これは、死亡率のほぼ2倍の低下を示し、ペプチドの高い老化保護的活性が示唆された。ペプチド医薬品の長期的な研究および使用は、異なる年齢群患者においてこれらの高い有効性を示したものの、高齢者(50歳以上)において特別な有効性が観察された。ペプチド生体調節剤の絶対的利点は、副作用が一切無いことである。26年以内に、さまざまな病状をかかえる1500万人を超える人々が、このような製品受け入れた。これらの有効性は、平均75〜95%にまでなった。年齢および病状変化とともに発生するペプチド不足は、組織消耗および体老化を顕著に加速させる。実際、細胞および組織が適当に機能するには適量のペプチドが必要であり、適量のペプチドはまた、最適な遺伝子の働きをサポートする。ペプチドに特異的な細胞において機能するペプチドは、その細胞において合成される。したがって、病状変化において、さらに年齢とともに、細胞機能破壊されるため、ペプチド複製も影響を受ける。その結果、細胞機能は二次的に影響を受ける。したがって、組織の退化が進行し、結局は臨床的に表れる。そのため、低分子ペプチドの適用は、医学における主要な革新のひとつであり、細胞増殖および組織再生刺激するとともに、細胞寿命を向上させることにより、老化の速度を顕著に遅めることができる。ペプチドの別の重要な利点は、抗腫瘍作用である。現在、ペプチドの使用は、活性化 (体の若返り)および癌予防において最善な妥協のない解決策である。なぜなら、それは、すべての循環過程の調節および同期によってのみでなく、非定型性(非定型性は、誤った細胞構造、または異常である)なしに細胞分裂能を増大させることにより、細胞および組織を若返らせることができるためである。

0004

当然のことながら、技術の現段階では、動物組織からの低分子ペプチドの生産は非実用的である。なぜなら、この方法は、生産プロセス人道性は言うまでもないが、非常に高額なためである。

0005

現代的で高度な生産方法は、組換え微生物の使用を含む。最も便利な微生物大腸菌である。大腸菌K12、大腸菌O104など、実験室条件下での使用に好適な大腸菌の商用菌株先行技術において知られている。これらおよび同様の既知の大腸菌を使用して、請求の範囲の低分子ペプチドを産生する菌株を得ることができる。対応する標的低分子ペプチドをエンコードする核酸は、実験室条件下での使用に好適な任意の既知の菌株に組込まれることができる。細菌性プラスミドウィルスビリオンファージDNAを含有するハイブリッドベクター、およびプラスミドなどのベクターは、宿主細胞にDNAを挿入するために使用される。これらのベクターとしては、たとえば、コスミドおよびファスミドが含まれる。

0006

さらに、従来の化学合成によりペプチドを生産することが可能である。
提案されるペプチドは、生殖および性的機能の刺激ならびに生殖および性的機能障害の処置のための手法の範囲を拡大するという、現在も未だ重要な課題を解決する。現在、このような病状の病原的処置は、精神療法抗うつ剤抗不安剤アダプトゲン、ならびにビタミン剤、一般の工場刺激剤、およびダイエット栄養補助食品を用いて行われている。このような処置は長く、非能率的で、多くの副作用を伴う。

0007

生殖および性的機能の刺激剤の生産に好適な、最も有効的なクラスの生理活性物質のひとつはペプチドであり、ペプチドは内在性物質として、マイナスの副作用を事実上有さない。

0008

我々自身の調査は、内在的に産生されるペプチドであるタフトシン合成類似体である、一般式Thr-Lys-Pro-Arg-Pro-Gly-ProのヘプタペプチドであるSelankが、生殖および性的機能障害の処置および予防のための手法として使用可能であることを示した(ロシア連邦特許第2404793号)。しかしながら、ヘプタペプチドであるSelankの合成は多段であり、これに基づく医薬品のコストは大幅に増加してしまう。さらに、体内で強い蛋白質分解に晒されるため、生殖および性的機能障害の予防および処置に対するその刺激効果が低減する。

発明が解決しようとする課題

0009

発明の開示
発明の目的は、生殖および性的機能刺激活性を有する手法の範囲を拡大することである。

課題を解決するための手段

0010

本発明を実施すると達成される技術的成果は、生殖および性的機能障害の予防および処置の有効性の増大、治療の経過の期間の短縮、ならびに薬剤コスト低下である。ここで、次の一般式を有するペプチドが医薬品として提案される。

0011

A-Thr-Lys-Pro-B-C-D-X
(式中、
A - 0, Met, Met (O), Thr, Ala, His, Phe, Lys, Gly
B - 0, Gly, Asp, Trp, Gln, Asn, Tyr, Pro, Arg
C - 0, Arg, Phe, Tyr, Gly, His, Pro, Lys
D - 0, Val, Gly, Tyr, Trp, Phe, His
X - OH, OCH3, NH2
であり、式中、0はアミノ酸残基が存在しない。
但し、A≠0の場合、Bおよび/またはCおよび/またはD≠0であり、B≠0の場合、Cおよび/またはD≠0であり、Phe-Thr-Lys-Pro-Gly、Thr-Lys-Pro-Pro-Arg、Thr-Lys-Pro-Arg-Glyのペプチドを除く。)

0012

A、B、C、D、およびX位のアミノ酸残基の選択は、データベース[EROP-Moscow (http://erop.inbi.ras.ru/) Zamyatin A.A.]中のN末端およびC末端アミノ酸残基の対応する位置でのアミノ酸残基頻度生物情報学分析に基づく。これらのアミノ酸残基の選択は、その位置のアミノ酸残基の50%を超える出現率の基準に基づいて行われた。このアミノ酸残基のサンプルは、個々のペプチドを合成し、生体内モデルにおける生殖および性的機能活性の刺激についてこれらを試験することにより、実験により確認された。ペプチド中のファルマコフォア位置は、実験により決定される。すべてのペプチドは、ペプチダーゼに晒され、特定のフラグメントに分解することが知られている。この目的のために、Thr-Lys, Thr-Lys-Pro, Pro-Gly-Pro, Arg-Pro-Gly-Pro, Pro-Arg-Pro-Gly-ProのSelankヘプタペプチドフラグメントを合成し、これらの活性を研究した。結果を表4に示す。この分析では、ファルマコフォアがThr-Lys-Proであると決定された。実験により特定された個々のアミノ酸残基のC末端への結合は、(生殖および性的機能を刺激して)ペプチドの活性を維持することが示された。但し、研究により示されるように(表5、実施例10)、ペプチド中のアミノ酸残基の数は、3であるまたは4を超える。テトラペプチドは、生殖および性的機能刺激活性を有さない。

0013

上述の技術的成果は、一般式A-Thr-Lys-Pro-B-C-D-X(テトラペプチドを除く)を有するさまざまなペプチドを直接的に合成し、これらのペプチドを生殖および性的機能障害の予防および処置のための生殖および性的機能の刺激剤として用いることにより達成される。我々自身の調査は、生殖および性的機能の刺激剤として、一般式A-Thr-Lys-Pro-B-C-D-Xに対応する、合成されたペプチド、すなわち、Thr-Lys-Proトリペプチド、Thr-Lys-Pro-Arg-Proペンタペプチド、およびThr-Lys-Pro-Arg-Pro-Pheヘキサペプチド推奨され得ることを示した。

0014

生殖および性的機能の刺激剤として推奨されるA-Thr-Lys-Pro-B-C-D-X(テトラペプチドを除く)を有するすべてのペプチドは、共通のパターンを有する。すなわち、それらの分子構造中にThr-Lys-Proトリペプチド分子が存在する。

0015

Thr-Lys-Pro-Arg-Pro-Gly-Proヘプタペプチド(Selank)がコントロールとして用いられた。

0016

行われた研究の成果は、一般式A-Thr-Lys-Pro-B-C-D-X(テトラペプチドを除く)を有するペプチドが生殖および性的機能刺激活性を有し、生殖および性的機能障害の予防および処置のための医薬品として使用され得ることを示した。一般式A-Thr-Lys-Pro-B-C-D-Xのペプチドの一部を表1に示す。

0017

図面の簡単な説明

0018

Arg-Pro-Gly-Proテトラペプチド合成の図である。
Pro-Arg-Pro-Gly-Proペンタペプチド合成の図である。
Pro-Gly-Proトリペプチド合成の図である。
Thr-Lys-Pro-Arg-Pro-Pheヘキサペプチド合成の図である。
Thr-Lys-Pro-Arg-Proペンタペプチド合成の図である。
Thr-Lysジペプチド合成の図である。
Thr-Lys-Pro-Pheテトラペプチド合成の図である。

0019

発明の最良の形態
以下は、発明を例示する実施例である。

0020

アミノ酸を用いた溶液中ペプチド化学法により、一般式A-Thr-Lys-Pro-B-C-D-Xを有するペプチドの合成が行われた。ペプチド鎖逐次延長、ならびに、混合無水物法、補助求核分子として1−ヒドロキシベンゾトリアゾールを添加するカルボジイミド法、活性化エステル法、および混合無水物法を用いたフラグメント縮合により、ペプチド合成を実施した。中間生成物および最終生成物は、すべて単離され、特徴化された。溶液の蒸発は、40℃で真空蒸発器を用いて行われた。Boethius装置で求められた融点は、較正なしで示される。得られた化合物同一性を、Silufolシリカゲル被覆プレート(チェコ共和国)上でTLCにより試験した。塩素環境下、ニンヒドリンバートン試薬、Pauly試薬、Reindel-Hoppe試薬、およびo−トリジンを用いてUV光により物質を検出した。比旋光度は、AI−EPO旋光計により求めた。ペプチド均質性は、高性能液体クロマトグラフィー(HPLC)により試験し、ペプチド構造は、質量分析法により確認した。溶媒はすべて対応して無水化された。融点は較正されていない。

0021

さらに、大腸菌の既知の実験室菌株により設計された宿主細胞を用いた遺伝子工学手法により、ペプチドを得た。これらの大腸菌株は、標的ペプチドをエンコードする核酸を含有する既知の市販のプラスミドで形質転換された。

0022

実施例においてペプチド合成を説明する。

0023

Arg-Pro-Gly-Proテトラペプチドの合成
図1に示す図に従ってテトラペプチドの合成を行った。

0024

合成には、混合無水物法、アジド法、およびカルボジイミド法が用いられた。Lアミノ酸の誘導体が合成のために用いられた。溶液の蒸発は、40℃で回転式蒸発器を用いて行われた。Boethius装置で求められた融点は、較正なしで示される。得られた化合物の同一性を、Silufolシリカゲル被覆プレート(チェコ共和国)上でTLCにより試験した。物質は、ニンヒドリンおよび(または)o−トリジンの溶液をプレート噴霧することにより検出された。次の溶媒系中でのクロマトグラフィー移動率(Rf)値が示される。アセトンベンゼン酢酸(50:100:1)−(1);クロロホルムメタノール(9:1)−(2);ヘキサン:アセトン(3:2)−(3);ブタノール:酢酸:水(4:1:1)−(4);ブタノール:酢酸:ピリジン:水(30:6:20:24)−(5);クロロホルム:メタノール:アンモニア(6:4:1)−(6);ベンゼン:エタノール(8:2)−(7);酢酸エチル:アセトン:50%酢酸:水(2:1:1)−(8);クロロホルム:メタノール(14:1)−(9);クロロホルム:メタノール:アンモニア(8:1.75:0.25)−(10);クロロホルム:メタノール:アンモニア(6.5:3.0:0.5)−(11)。

0025

比旋光度は、AI−EPO旋光計により求めた。
元素分析は、Carlo−Erbaモデル1106分析器を用いて行った。

0026

I.Boc-Pro-Gly-OEt. 8.3g(3.45mmol)のBoc−Pro−OHを50mlのCH2Cl2に溶解し、5℃に冷却した。その後、38.45mmol(5.38ml)のTEAを添加した。反応混合物を−25〜−30℃に冷却した。この温度で、38.45mmol(4.84ml)のクロロぎ酸イソブチルピペットを用いて添加した。反応混合物温度を−18〜−20℃の範囲内に20分間維持した。同時に、5.92mlのTEAを含有する、75mlのクロロホルム中の5.9g(42.3mmol)の1.1倍過剰のHCl・H-Gly-OEtの溶液。この溶液を−25℃に冷却し、第1のフラスコにおける混合無水物の形成後、内容物を即座にエーテル溶液に注いだ。反応混合物を−10℃で1時間インキュベートし、その後、マグネチックスターラーで4℃で12時間撹拌した。反応混合物を蒸発させ、その後250mlの酢酸エチルを添加した。その後、酢酸エチル溶液を25mlの0.1N HClで3回、25mlのH2Oで3回、NaClの飽和溶液で1回洗浄した。有機層をMgSO4で乾燥させ、ろ過して蒸発させた。残渣をP2O5/KOHおよびパラフィンにより真空下乾燥させた。
収率:10.2g(30.3mmol) 78.83%
Rf 0.5(7);0.862(8)
融点68〜70℃

0027

II. Boc-Pro-Gly-N2H3. 10.2gのBoc-Pro-Gly-OEt(30.3mmol)を80mlの無水メタノールに溶解し、4倍過剰、すなわち、5.88ml(121.2mmol)のヒドラジン水化物を添加した。この溶液を室温でマグネチックスターラーで12時間撹拌した。反応混合物を蒸発させ、その後エーテルで2回蒸発させた。その後、残渣にエーテル(〜5ml)を注ぎ、冷蔵庫に一晩放置した(より良い結晶化のために、シーディング剤を添加した)。析出した結晶をろ過し、フィルタを用いてエーテルで洗浄し、デシケーターで乾燥させた。
収率:6.9g(20.79mmol) 68.62%
Rf 0.284(7);0.474(8);0.189(9)
融点98〜100℃

0028

III. Boc-Pro-Gly-Pro-OBzl. 40mlのDMF中に4.7g(14.6mmol)を含有するBoc-Pro-Gly-N2H3の溶液に、酢酸エチル中の58.4mmol(4倍過剰)の塩化水素を添加し、−20℃に冷却し、1.73mL(14.6mmol)の新しく蒸留した亜硝酸tert−ブチルを即座に添加した。その後、反応混合物を−5℃で30分間撹拌した。反応混合物を−40℃に冷却し、−10℃に冷却した4mLのDMF中の8.2mL(58.4mmol)のTEAの溶液を添加した。反応混合物の温度が−20℃に上昇したとき、20mlのDMFおよび2.14mlのTEAに、3.7g(15.3mmol)の1.05倍過剰のHCl・H-Pro-OBzlを添加した。その後、マグネチックスターラーで24時間4℃で撹拌した。反応混合物を蒸発させ、残渣を200mLの酢酸エチルに溶解し、20mlのH2Oで2回、20mlの10%ナトリウムKHSO4で3回、20mlのH2Oで3回、20mlの5%NaHCO3で3回、20mlのH2Oで3回洗浄した。酢酸エチル溶液をMgSO4により乾燥させた。その後、蒸発させて、少量のエーテル(〜10mL)を残渣に添加した。その後、冷蔵庫に放置して結晶化させた。より良い生成物結晶化のために、シーディング剤を添加した。析出した結晶をろ過し、フィルタを用いて少量のエーテルで洗浄した。その後、デシケーターで乾燥させた。
収率:5.358g(11.65mmol) 79.92%
Rf 0.326(7);0.947(8);0.390(9)
融点125〜126℃
[α]D22=−101.18°(c=0.85;CH3OH)
元素分析:С62.89(62.73);N9.21(9.14);H7.52(7.24)

0029

IV. TFA・H-Pro-Gly-Pro-OBzl. 5.358g(11.65mmol)のBoc-Pro-Gly-Pro-OBzlを29.13mlの塩化メチレンに溶解した。その後、29.13mLのTFAを添加し、室温で45分間インキュベートし、無水エタノールで2回、ベンゼンで2回、エーテルで2回蒸発させ、ベンゼンに溶解した。その後、ヘキサンを上に注いだ。ヘキサンを傾瀉し、得られた物質をKOH、P2O5およびパラフィンによりデシケーターで真空下乾燥させ、その間、乾燥剤を数回交換した。
収率:4.63g(9.7mmol) 98%
Rf 0.043(7);0.247(8);0.018(9)

0030

V. Boc-Arg(NO2)-Pro-Gly-Pro-OBzl.
3.09gのBoc-Arg (NO2)-OH(9.7mmol)を50mLのTHFおよび10mlDMFに溶解し、2.07g(10.67mmol)のDCCを添加し、0℃に冷却し、40分間攪拌した。その後、TFA・H-Pro-Gly-Pro-OBzlの溶液を50mlのTHFおよび4.46ml(9.7mmol)のTEAに添加した。反応混合物を3日間攪拌した。DCM析出物をろ去し、溶液を真空下蒸発させ、その後、200mlのヘキサンを残渣に添加した。これを用いて、所望の生成物を油として分離し、油を500mLの酢酸エチルに溶解し、25mlの0.1N HClで3回、25mlのH2Oで3回、NaClの飽和溶液で1回洗浄した。有機層をMgSO4で乾燥させ、ろ過して蒸発させた。残渣を酢酸エチルに溶解し、乾燥エーテルで析出させた。析出物をろ過し、P2O5/KOHおよびパラフィンにより真空下乾燥させ、その間、乾燥剤を数回交換した。
収率:4.76g(7.9mmol) 85%
Rf 0.44(1);0.8(11)
融点108〜110℃
[α]D22=−77.8°(c=0.5;CH3COOH)

0031

VI. Boc-Arg-Pro-Gly-Pro. 4.76g(6.5mmol)のBoc-Arg(NO2)-Pro-Gly-Pro-OBzlを100mlのメタノールに溶解し、その後、1ml 1N塩酸および4.67gの触媒、すなわち、中性酸化アルミニウム上の10%酸化パラジウムを添加し、1atm下室温で乾燥水素を流しつつ、水素付加を6時間行った。その後、触媒をろ去し、メタノールによりフィルタ上で洗浄した。プールされたろ液蒸発乾固した。残渣を無水メタノールからエーテルにより析出した。その後、真空下乾燥させ、その間、乾燥剤を数回交換した。
収率:4.23g(5.8mmol) 89%
Rf 0.125(4);0.57(6);0.37(5)
融点123〜125℃

0032

VII. Arg-Pro-Gly-Pro. 4.23g(5.8mmol)のBoc-Arg-Pro-Gly-Pro-OHをジオキサン中の10mlの2N塩酸に懸濁し、45分間室温でインキュベートした。その後、乾燥エーテルを添加し、析出物を乾燥エーテルによる傾により洗浄した。無水メタノールからエーテルにより再析出した。得られた析出物を7.5mlの30%エタノールに溶解し、酢酸/塩酸塩塩交換のためにAmberlyst A-21 (AcO-形態)カラムに適用した。ペプチドを200mlの30%エタノールで溶出させ、真空下蒸発乾固させ、メタノールから無水エーテルにより析出した。
収率:3.69g(4.93mmol) 85%
Rf 0.287(4);0.145(5);0.338(14)
融点120〜122℃
HPLC結果:カラム:Supercosil ABZ Plus、サイズ 4.6x250mm、流速1mL/分、溶剤A:NH4H2PO4+H3PO4(50mM,pH2.8)、溶剤B:MeOH
勾配:0〜20分(0〜40%B)、保持時間 21.21分
Rf 0.24(6)
融点 151℃
[α]D22=−65.0°(c=0.5 CH3COOH)
HPLC結果:カラム:ZorbaxODS d=4.6mm;t=35℃
流速 1mL/分;A=50mM NH4H2PO4(pH 2.5);B=A+MeOH(1:1);10〜60%B(25分以内)
保持時間 16.5分

0033

Pro-Arg-Pro-Gly-Proペンタペプチドの合成
図2に示す図に従った天然Lアミノ酸を用いたペプチド化学の古典的方法によりペプチド合成を行った。

0034

初めに、Pro-Gly-Proトリペプチドを生産し、その後、N末端からのペプチド鎖の段階的堆積によりペンタペプチドが得られた。合成では、混合無水物法、アジド法およびカルボジイミド法が用いられた。

0035

次の溶媒系中でのクロマトグラフィーの移動率(Rl)値が示される。ブタノール:酢酸:水(4:1:1)−(1);クロロホルム:メタノール:アンモニア(6:4:1)−(2);アセトン:ベンゼン:酢酸(50:100:1)−(3);クロロホルム:メタノール(9:1)−(4);ヘキサン:アセトン(3:2)−(5);ブタノール:酢酸:ピリジン:水(30:6:20:24)−(6);クロロホルム:メタノール(14:1)−(7)。

0036

I. Boc-Pro-Gly-OEt. 8.3gのBoc-Pro(38.45mmol)を50mlのCH2Cl2に溶解し、+5℃に冷却し、38.45mmol(5.38ml)のTEAを添加した。反応混合物を−25〜−30℃に冷却した。この温度で、38.45mmol(4.84ml)のクロロぎ酸イソブチルをピペットを用いて添加した。反応混合物温度を−18〜−20℃の範囲内に20分間維持した。同時に、5.92mlのTEAを含有する、75mlのクロロホルム中の5.9g(42.3mmol)の1.1倍過剰のHCl・H-Gly-OEtの溶液。溶液を−25℃に冷却し、第1のフラスコ中での混合無水物の形成後、内容物を直ちにエーテル溶液に注いだ。反応混合物を−10℃で1時間インキュベートし、その後、マグネチックスターラーで4℃で12時間攪拌した。反応混合物を蒸発させ、250mlの酢酸エチルを添加した。酢酸エチル溶液を25mlの0.1N HClで3回、25ml H2Oで3回、NaClの飽和溶液で1回洗浄した。有機層をMgSO4で乾燥させ、ろ過して蒸発させた。残渣をP2O5/KOHおよびパラフィンにより真空下乾燥させた。
収率:10.2g(30.3mmol) 78.83%
Rf 0.5(3);0.862(4)

0037

II. Boc-Pro-Gly-N2H3. 10.2gのBoc-Pro-Gly-OEt(30.3mmol)を80mlの無水メタノールに溶解し、4倍過剰のヒドラジン水化物、すなわち、5.88ml(121.2mmol)を添加した。溶液を室温でマグネチックスターラーで12時間攪拌した。反応混合物を蒸発させ、その後、エーテルで2回蒸発させ、その後、エーテル(〜5ml)を残渣に注ぎ、冷蔵庫に一晩放置した(より良い結晶化のために、シーディング剤を添加した)。析出した結晶をろ過し、フィルタを用いてエーテルで洗浄し、デシケーターで乾燥させた。
収率:6.9g(20.79mmol) 68.62%
融点98〜100℃
Rf 0.284(3);0.474(4);0.189(5)

0038

III. Boc-Pro-Gly-Pro-OBzl.
酢酸エチル中の58.4mmol(4倍過剰)の塩化水素を、−20℃に冷却させた、40mlのDMF中に4.7g(14.6mmol)を含有するBoc-Pro-Gly-N2H3の溶液に添加し、1.73mL(14.6mmol)の新しく蒸留した亜硝酸tert−ブチルを即座に添加した。その後、反応混合物を−5℃で30分間攪拌した。反応混合物を−40℃に冷却し、−10℃に冷却した4mLのDMF中の8.2mL(58.4mmol)のTEAの溶液を添加した。反応混合物の温度が−20℃に上昇したとき、20mlのDMFおよび2.14mlのTEAに、3.7g(15.3mmol)の1.05倍過剰のHCl・H-Pro-OBzlを添加した。その後、マグネチックスターラーで4℃で24時間攪拌した。反応混合物を蒸発させ、残渣を200mLの酢酸エチルに溶解し、20mlのH2Oで2回、20mlの10%ナトリウムKHSO4で3回、20mlのH2Oで3回、20mlの5%NAHCO3で3回、3mlのH2Oで3回洗浄した。酢酸エチル溶液をMgSO4により乾燥させた。その後、蒸発させ、少量のエーテル(〜10mL)を残渣に添加した。その後、冷蔵庫に放置した。より良い生成物結晶化のために、シーディング剤を添加した。析出した結晶をろ過し、フィルタを用いて少量のエーテルで洗浄した。その後、デシケーターで乾燥させた。
収率:5.358g(11.65mmol) 79.92%
Rf 0.326(3);0.947(4);0.390(5)
融点125〜126℃
[α]D22=−101.2°(c=0.85;CH3OH)
元素分析:C62.89(62.73);N9.21(9.14);H7.52 (7.24)

0039

IV. TFA・H-Pro-Gly-Pro-OBzl. 5.358g(11.65mmol)のBoc-Pro-Gly-Pro-OBzlを29.13mlの塩化メチレンに溶解し、29.13mLのTFAを添加し、室温で45分間インキュベートし、無水エタノールで2回、ベンゼンで2回、エーテルで2回蒸発させ、ベンゼンに溶解した。その後、ヘキサンを上に注いだ。ヘキサンを傾潟させ、得られた物質をP2O5/KOHおよびパラフィンによりデシケーターで真空下乾燥させた。
収率:4.63g(9.7mmol) 98%
Rf 0.043(3);0.247(4);0.018(5)

0040

V. Boc-Arg(NO2)-Pro-Gly-Pro-OBzl. 3.09g(9.7mmol)のBoc-Arg (NO2)を50mlのTHFおよび10mlDMFに溶解し、その後、2.07g(10.67mmol)のDCCを添加し、0℃に冷却し、40分間攪拌した。TFA・H-Pro-Gly-Pro-OBzlの溶液を50mlのTHFおよび4.46ml(9.7mmol)のTEAに添加した。反応混合物を3日間攪拌した。DCM析出物をろ去し、溶液を真空下で蒸発させ、その後、200mlのヘキサンを残渣に添加した。これを用いて、所望の生成物を油として分離し、油を500mLの酢酸エチルに溶解し、25mlの0.1N HClで3回、mlのH2Oで3回、NaClの飽和溶液で1回洗浄した。有機層をMgSO4で乾燥させ、ろ過して蒸発させた。残渣をP2O5/KOHおよびパラフィンにより真空下乾燥させた。
収率:4.76g(7.9mmol) 85%
Rf 0.44(1);0.8(6)
融点108〜110℃

0041

VI. TFA-Arg(NO2)-Pro-Gly-Pro-OBzl. 4.76g(7.9mmol)のBoc-Arg (NO2)-Pro-Gly-Pro-OBzlを20mlの塩化メチレンに溶解し、20mLのTFAを添加し、室温で45分間インキュベートし、無水エタノールで2回、ベンゼンで2回、エーテルで2回蒸発させ、その後ベンゼンに溶解した。その後、ヘキサンを上に注いだ。ヘキサンを傾潟させ、得られた物質をP2O5/KOHおよびパラフィンによりデシケーターで真空下乾燥させた。
収率は定量的である。
Rf 0.16(1);0.27(6)

0042

VII. Boc-Pro-Arg(NO2)-Pro-Gly-Pro-OBzl. 1.7g(7.9mmol)のBoc-Proを20mLのTHFに溶解し、1.07g(7.9mmol)のBTを添加し、0℃に冷却し、50mlのTHF中の1.8gのDCCを添加した。40分以内に、50mLのTHF中のTFA-Arg(NO2)-Pro-Gly-Pro-OBzl(7.9mmol)の溶液および1.1mL(7.9mmol)のTEAを反応混合物に添加した。0℃で2時間攪拌し、さらに室温で2日間攪拌した。その後、DCMをろ去し、真空下で蒸発させて、500mLの酢酸エチルに溶解し、Boc-Pro-Arg(NO2)-Pro-Gly-Pro-OBzlと同様に処理した。
収率:4.07g(67.8%)
Rf 0.42(1);0.72(6);0.31(7)
融点147〜148℃

0043

VIII. Boc-Pro-Arg-Pro-Gly-Pro. 4.07g(6.5mmol)を100mlのメタノールに溶解し、1mlの1N塩酸および0.85gの触媒、すなわち、中性酸化アルミニウム上の10%酸化パラジウムを添加し、1atm下室温で乾燥水素を流しつつ、水素付加を6時間行った。その後、触媒をろ去し、メタノールによりフィルタ上で洗浄した。プールされたろ液を蒸発乾固させた。残渣を無水メタノールからエーテルにより析出した。
収率:3.02g(5.8mmol) 89%
Rf 0.125(1),0.57(2),0.37(6)

0044

IX. Pro-Arg-Pro-Gly-Pro. 3.02g(5.8mmol)のBoc-Pro-Arg-Pro-Gly-Proをジオキサン中の10mlの2N塩酸に懸濁し、45分間室温でインキュベートした。その後、乾燥エーテルを添加し、析出物を乾燥エーテルによる傾潟により洗浄した。無水メタノールからエーテルにより再析出した。得られた析出物を7.5mlの30%エタノールに溶解し、酢酸/塩酸塩塩交換のためにAmberlyst A-21 (AcO-形態)に適用した。ペプチドを200mlの30%エタノールで溶出させ、真空下蒸発乾固させ、メタノールから無水エーテルにより析出した。
収率:2.27g(75%)
Rf 0.2(2);0.1(6)
融点180〜185℃
[α]D20=−105°(c=0.4;CH3COOH)
アミノ酸組成アルギニン:Pro 2.78(3);Gly 1.1(1)
HPLC結果:カラム:Supercosil ABZ Plus、サイズ 4.6x250mm、流速1mL/分、溶離剤A:NH4H2PO4+H3PO4(50mM,pH2.8)、溶離剤B:MeOH
勾配:0〜20分(0〜40%B)、保持時間 10.13分

0045

Pro-Gly-Proトリペプチドの合成
Pro-Gly-Proトリペプチドの合成を、図3に示す図に従って実施した。Pro-Gly-Proトリペプチドの合成は、現代の保護基および溶液中ペプチド結合形成の方法を用いて実施した。ペプチド結合形成のために、PivClを用いた混合無水物法を使用した。tert−ブチルオキシカルボニル保護(Boc)をアミノ基の保護のために用い、ベンジルエステル(OBzl)をカルボキシル基の保護のために補充した。ペプチド鎖伸長に対しては段階的なアプローチが用いられた。

0046

Lアミノ酸の誘導体を合成に用いた。溶液の蒸発は、40℃で真空蒸発器を用いて行った。Boethius装置で求められた融点は、較正なしで示される。

0047

得られた化合物の同一性を、Silufolシリカゲル被覆プレート(チェコ共和国)上でTLCにより試験した。物質は、ニンヒドリンおよび(または)o−トリジンの溶液をプレートに噴霧することにより検出された。次の溶媒系中でのクロマトグラフィーの移動率(Rf)値が示される。(酢酸エチル:アセトン:50%酢酸:水(2:1:1);ベンゼン:エタノール(8:2);クロロホルム:メタノール:アンモニア(6:4:1);クロロホルム:メタノール:酢酸(42:7:1);アセトン:ベンゼン:酢酸(50:100:1);クロロホルム:メタノール(9:1);ヘキサン:アセトン(3:2);ブタノール:酢酸:水(4:1:1);ブタノール:酢酸:ピリジン:水(30:6:20:24);ヘキサン:酢酸エチル(4:1);クロロホルム:メタノール:アンモニア(8:1.75:0.25);(イソプロパノール:ぎ酸:水)(20:5:1);(クロロホルム:メタノール:アンモニア)(7:2.5:0.5);メタノール。比旋光度は、AI−EPO旋光計により求めた。)元素分析は、Carlo−Erbaモデル1106分析器を用いて行った。

0048

I. Boc-Pro-Gly-OHの生産
1. 10.75g(50mmol)のBoc-Proを150mlのアセトニトリルに溶解し、−5℃に冷却し、その後、7.7ml(50mmol)のトリエチルアミン(TEA)を溶液に添加した。マグネチックスターラーで攪拌しつつ、−20℃に冷却した。6.8ml(55mmol)の塩化ピバロイル(PivCl)を冷却された溶液に添加し、−10℃で20分間マグネチックスターラーで攪拌し、その後、−30℃に冷却し、その後、予め冷却されたGlyの溶液を添加した。同時に、Gly溶液を調製した。

0049

2. 4.5gのGly(60mmol、1.2倍過剰)を35mlの水および60mlのアセトニトリルに溶解し、8.4ml(60mmol)のトリエチルアミンを添加した。混合物を−10℃に冷却し、20分後に第1のフラスコ中の溶液に添加した。反応混合物を−10℃で1時間インキュベートし、マグネチックスターラーで18〜20℃で2時間攪拌した。反応混合物を回転式蒸発器で蒸発させた。約50mLの水を残渣に添加した。水溶液を3倍過剰のNaHSO4(24.84g)でpH=3に酸性化し、100mlの酢酸エチルで5倍に抽出した。プールされた酢酸エチル溶液をH2O(50mL)、KHSO4(50mL)の10%溶液、H2O(50mL)、および飽和NaCl(50mL)で洗浄した。酢酸エチル溶液をMgSO4により乾燥させた。乾燥させた酢酸エチルをろ過し、蒸発させた。乾燥エーテルを残渣に添加した。エーテルをフラスコに添加すると、生成物が析出され、これをろ過し、フィルタを用いて乾燥エーテルで洗浄した。得られた物質をKOH、P2O5およびパラフィンによりデシケーターで真空下乾燥させ、その間、デシケーターを数回交換した。
生成物 M.W.272.3
収率:5.97g(21.74mmol);(43.5%)
融点70℃
Rf 0.863(アセトン−ベンゼン−酢酸)(50:100:1);
0.746(ベンゼン−エタノール)(8:2);0.903(クロロホルム:メタノール)(9:1);
0.847(酢酸エチル:アセトン:50%酢酸:水)(2:1:1)

0050

II. Boc-Pro-Gly-Pro-OBzlの生産
1. 5.97g(21.74mmol)のBoc-Pro-Gly-OHを100mlのアセトニトリルに溶解し、−5℃に冷却した。その後、1.1倍過剰(3.35ml、23.9mmol)のトリエチルアミン(TEA)を溶液に添加し、マグネチックスターラーで攪拌しつつ−20℃に冷却した。1.1倍過剰(2.34ml、23.9mmol)の塩化ピバロイル(PivCl)を冷却させた溶液に添加し、−10℃で20分間マグネチックスターラーで攪拌し、その後、−30℃に冷却し、その後、予め冷却されたHCl・Pro-OBzlの溶液を添加した。同時に、HCl・Pro-OBzlを調製した。

0051

2. 6.3gのHCl・Pro-OBzl(26.1mmol、1.2倍過剰)を50mlのアセトニトリルに溶解し、4.0ml(28.71mmol、1.1倍過剰)のトリエチルアミンを添加した。混合物を−10℃に冷却し、20分後第1のフラスコ中の溶液に添加した。反応混合物を−10℃で1時間インキュベートし、マグネチックスターラーで18〜20℃で2時間攪拌した。反応混合物を蒸発させた。蒸発させた残渣に300mlの酢酸エチルを添加した。酢酸エチル溶液をH2O(25mLで3回)、10%溶液KHSO4(25mlで3回)、H2O(25mlで3回)、5%NaHCO3(25mlで3回)、H2O(25mLで3回)、およびNaClの飽和溶液(25mLで1回)で洗浄した。酢酸エチル溶液をMgSO4により乾燥させた。乾燥させた酢酸エチルをろ過し、蒸発させた。約100μmの乾燥エーテルを残渣に添加した。フラスコにエーテルを添加すると、生成物が析出され、これをろ過し、フィルタを用いて乾燥エーテルで洗浄した。得られた物質をKOH、P2O5およびパラフィンによりデシケーターで真空下乾燥させ、その間、乾燥剤を数回交換した。
生成物 M.W.459.82
収率:8.12g(17.66mmol);(81.23%)
融点125〜126℃
Rf 0.326(アセトン:ベンゼン:酢酸)(50:100:1)
0.390(ヘキサン:アセトン)(3:2)
0.947(クロロホルム:メタノール)(9:1)
0.716(メタノール)
0.620(ベンゼン:エタノール)(8:2)

0052

III. Boc-Pro-Gly-Pro-OHの生産
8g(17.4mmol)のBoc-Pro-Gly-Pro-OBzlを100mlのメタノールに溶解し、マグネチックスターラーで攪拌しつつ、0.5mlのCH3COOHおよびパラジウムブラックを添加し、水素を2時間流した。溶液をろ過し、蒸発させ、ベンゼンで3回、酢酸エチルで2回蒸発させた。その後、アセトンからエーテルヘキサンにより析出し、フラスコに形成された析出物をP2O5/KOHおよびパラフィンによりデシケーターで乾燥させた。
生成物M.W.369.39
収率:6.3g(17.05mmol) 98%
融点99〜100℃
Rf 0.560(クロロホルム−メタノール)(9:1)
0.812(クロロホルム−メタノール−酢酸)(42:7:1)
0.187(アセトン:ベンゼン:酢酸)(50:100:1)
0.164(ヘキサン:アセトン)(3:2)

0053

IV. Pro-Gly-Proの生産
40.6mlの塩化メチレンおよび40.6mlのTFAを6.0g(16.24mmol)のBoc-Pro-Gly-Pro-OHに添加し、室温で45分間インキュベートした。保護基の除去後、溶液を無水メタノールで2回、ベンゼンで2回、エーテルで2回蒸発させた。アセトンからエーテルにより析出した。残渣をP2O5、KOHおよびパラフィンにより真空下乾燥させた。乾燥させた生成物を無水MeOHから乾燥ジエチルエーテルにより再析出した。
生成物 M.W.381.39
収率:5.6g(14.72mmol)(90.62%)

0054

TFA・Pro-Gly-Pro-OHの得られた析出物を10mlの30%エタノールに溶解し、その後、トリフルオロアセテート酢酸塩への交換のために、25mLのAmberlyst A-21 (CH3COO-)イオン交換樹脂を添加し、マグネチックスターラーで45分間攪拌した。その後、150mlの30%エタノールで洗浄し、真空下蒸発乾固させ、無水メタノールから乾燥ジエチルエーテルにより析出した。得られた析出物をろ去し、P2O5、KOHおよびパラフィンにより真空下デシケーターで乾燥させ、その間、乾燥材を数回交換した。
生成物M.W.328.34
収率:4.54g(13.84mmol)(94%)
融点143〜145℃
[α]D22 −31.5°(cl,MeOH)
Rf 0.59(クロロホルム:メタノール:アンモニア)(6:4:1)
0.52(クロロホルム:メタノール:アンモニア)(4:4.5:1.5)
0.524(エタノール:アンモニア)(7:3)

0055

Thr-Lys-Pro-Arg-Pro-Pheヘキサペプチドの合成
Thr-Lys-Pro-Arg-Pro-Pheヘキサペプチドの合成を図4に示す図に従って行った。

0056

Thr-Lys-Pro-Arg-Pro-Pheヘキサペプチドの合成は、現代の保護基および溶液中ペプチド結合形成の方法を用いて実施した。ペプチド結合形成のために、TBA塩法、活性化エステル法、カルボジイミド法および混合無水物法を用いた。段階的およびブロック的アプローチの両方が用いられた。

0057

Thr-Lys-Pro-Arg-Proペンタペプチドの合成
Thr-Lys-Pro-Arg-Proペンタペプチドの合成を図5に示す図に従って行った。

0058

Thr-Lys-Pro-Arg-Proペンタペプチドの合成は、現代の保護基および溶液中ペプチド結合形成の方法を用いて実施した。ペプチド結合形成のために、TBA塩法、活性化エステル法およびカルボジイミド法を用いた。段階的およびブロック的アプローチの両方が用いられた。

0059

Thr-Lysジペプチドの合成
Thr-Lysジペプチドの合成は、図6に示す図に従って行われた。

0060

Thr-Lysジペプチドの合成は、現代の保護基および溶液中ペプチド結合形成の方法を用いて実施した。ペプチド結合形成のために、TBA塩法が用いられた。

0061

実施例7〜9に記載されるペプチドの合成のために、保護および遊離のLアミノ酸の両方の誘導体が用いられた。ペプチド合成に用いられた溶媒は、対応して無水化された。Milichrome-A02マイクロカラム液体クロマトグラフィーシステムを用いた高性能液体クロマトグラフィー(HPLC)によりペプチド均質性を試験した。合成されたペプチドは、ブルカー質量分光計((登録商標)ブルカー・ダルトニクス社)を用いた質量分析法により特徴化された。

0062

Thr-Lys-Pro-Pheテトラペプチドの合成
Thr-Lys-Pro-Pheテトラペプチドの合成を図7に示す図に従って実施した。

0063

Thr-Lys-Pro-Pheテトラペプチドの合成は、現代の保護基および溶液中ペプチド結合形成の方法を用いて実施した。ペプチド結合形成のために、TBA塩法および活性化エステル法を用いた。ペプチド鎖伸長に対する段階的アプローチが用いられた。

0064

保護および遊離の両方のLアミノ酸の誘導体が合成のために用いられた。40℃で真空蒸発器を用いて、溶液の蒸発を行った。Boethius装置で求められた融点は、較正なしで示される。得られた化合物の同一性を、Silufolシリカゲル被覆プレート(チェコ共和国)上でTLCにより試験した。物質は、ニンヒドリンおよび(または)o−トリジンの溶液をプレートに噴霧することにより検出された。次の溶媒系中でのクロマトグラフィーの移動率(Rf)値が示される。(ブタノール:酢酸:水)(4:1:1);(ベンゼン−エタノール)(8:2);(クロロホルム:メタノール)(9:1);(イソプロパノール:ぎ酸:水)(20:5:1);(クロロホルム−メタノール−酢酸)(42:7:1);(クロロホルム:メタノール:アンモニア)(8:1.75:0.25);(アセトン−ベンゼン−酢酸)(50:100:1);(クロロホルム:メタノール:アンモニア)(6:4:1);(クロロホルム:メタノール:アンモニア)(44.5:1.5);(ブタノール: 酢酸:ピリジン:水)(30:6:20:24)。

0065

I. Z-Lys(Boc)-Pro-OHの生産
TBA(98ml)の13%溶液を46.32mmol(5.34g)のProに添加し、エタノールで2回、エタノール/ベンゼン混合物で2回、ベンゼンで2回蒸発させた。300mlの無水酢酸エチルを添加した。反応混合物を0℃に冷却し、23.16mmol(12.66g)の先に合成したZ-Lys (Boc)-OPfpを添加し、1時間マグネチックスターラーで攪拌した。反応物質を蒸発させ、40mlの水を蒸発残渣に添加した。水溶液を80mlのエーテルで3回洗浄した。エーテルで洗浄後、水溶液をクエン酸でpH3に酸性化した。酸性化後、水溶液を40mlアリコートの酢酸エチルで3回抽出した。抽出後のプールされた酢酸エチルを20mlの水で3回、20mlのKHSO4の10%溶液で3回、20mlの水で3回洗浄した。酢酸エチル溶液をMgSO4により乾燥させた。その後、ろ過し、回転式蒸発器で蒸発させた。得られた物質を酢酸エチルからヘキサンにより析出した。ヘキサンを傾潟させ、得られた物質をKOH、P2O5およびパラフィンによりデシケーターで真空下乾燥させ、その間、乾燥剤を繰返し交換した。
収率:9.68g(20.26mmol);(87.51%)
融点76〜77℃
Rf 0.705(ブタノール:酢酸:水)(4:1:1);
0.560(ベンゼン−エタノール)(8:2);
0.476(クロロホルム:メタノール)(9:1);
0.813(イソプロパノール:ぎ酸:水)(20:5:1);
0.297(アセトン−ベンゼン−酢酸)(50:100:1)

0066

I. H-Lys(Boc)-Pro-OHの製造
9.68g(20.26mmol)のZ-Lys(Boc)-Pro-OHに300mlの無水メタノール、2mlの酢酸、およびパラジウムブラックを添加し、1atm下室温で乾燥水素を流しつつ、水素付加を8時間行った。その後、触媒をろ去し、メタノールによりフィルタ上で洗浄した。プールされたろ液を蒸発乾固した。残渣を無水メタノールからエーテルにより析出した。その後、真空下乾燥させ、その間、乾燥剤を数回交換した。
収率:6.38g(18.58mmol);(91.87%)
融点98〜99℃
Rf 0.110(クロロホルム−メタノール−酢酸)(42:7:1);
0.166(ブタノール:酢酸:水)(4:1:1);
0.235(クロロホルム:メタノール:アンモニア)(8:1.75:0.25); 0.494(イソプロパノール:ぎ酸:水)(20:5:1)(2:1:1)

0067

III. Boc-Thr-Lys-(Boc)-Pro-OHの製造
TBA(39.4ml)の13%溶液を18.58mmol(6.38g)のLys (Boc)-Pro-OHに添加し、エタノールで2回、エタノール/ベンゼン混合物で2回、ベンゼンで2回蒸発させた。250mlの無水酢酸エチルを添加し、反応混合物を0℃に冷却し、9.2mmol(3.74g)の先に合成したBoc-Thr-OPfpを添加し、1時間マグネチックスターラーで攪拌した。反応物質を蒸発させ、蒸発残渣に40mlの水を添加した。水溶液を80mlのエーテルで3回洗浄した。エーテルで洗浄後、水溶液を18.58mmol(3.95g)のクエン酸でpH3に酸性化した。酸性化後、水溶液を40mlアリコートの酢酸エチルで3回抽出した。抽出後のプールされた酢酸エチルを20mlの水で3回、20mlのKHSO4の10%溶液で3回、20mlの水で3回洗浄した。酢酸エチル溶液をMgSO4により乾燥させた。

0068

その後、ろ過し、回転式蒸発器で蒸発させた。得られた物質を酢酸エチルからヘキサンにより析出した。ヘキサンを傾潟させ、得られた物質をKOH、P2O5およびパラフィンによりデシケーターで真空下乾燥させ、その間、乾燥剤を数回交換した。
収率:3.32g(6.1mmol);(66.26%)
融点105〜107℃
Rf 0.297(アセトン−ベンゼン−酢酸)(50:100:1);
0.234(クロロホルム:メタノール)(9:1);
0.560(ベンゼン−エタノール)(8:2)

0069

IV. Boc-Thr-Lys(Boc)-Pro-Phe-OHの生産
1. Boc-Thr-Lys(Boc)-Pro-OSuの生産
3.53mmol(0.38g)のヒドロキシスクシンイミドを50mlの無水酢酸エチル中の1.66g(3.05mmol)のBoc-Thr-Lys(Boc)-Proに添加し、マグネチックスターラーで攪拌しつつ、得られた溶液を0℃に冷却した。その後、0.76g(3.53mmol)DCC(ジシクロヘキシルカルボジイミド)を添加し、室温でマグネチックスターラーで2時間攪拌した。反応の停止後、得られた反応混合物をろ去し、析出物を廃棄した。得られた溶液に200mlの無水酢酸エチルを添加した。プールされた酢酸エチルを20mlのNaClの飽和溶液で2回、20mlの10%ナトリウムKHSO4で2回、20mlのNaClの飽和溶液で2回、20mlの5%MaHCO3で2回、20mlのNaClの飽和溶液で2回洗浄した。酢酸エチル溶液をMgSO4により乾燥させた。その後、ろ過し、回転式蒸発器で蒸発させた。得られた物質を酢酸エチルからエーテルおよびヘキサンで析出した。析出物をろ過し、KOH、P2O5およびパラフィンにより真空下乾燥させ、その間、乾燥剤を数回交換した。
収率:1.52g(2.37mmol) 77.74%
Rf 0.560(ベンゼン−エタノール)(8:2);0.457(クロロホルム:メタノール)(9:1)

0070

2. 調製後、1.52g(2.37mmol)のBoc-Thr-Lys (Boc)-Pro-OSuを25mlのジメチルホルムアミドに溶解し、25mlのジメチルホルムアミド中に0.392g(2.37mmol)のL−Pheを含有する、調製された溶液に添加した。溶液を室温でマグネチックスターラーで攪拌した。反応混合物を回転式蒸発器で蒸発させ、ベンゼンからエーテルにより析出した。析出物をろ過し、P2O5/KOHおよびパラフィンにより真空下乾燥させ、その間、乾燥剤を数回交換した。
収率:1.03g(1.64mmol) 69.0%
Rf 0.063(イソプロパノール:ぎ酸:水)(20:5:1)(2:1:1)
0.745(クロロホルム:メタノール:アンモニア)(8:1.75:0.25)

0071

V. H-Thr-Lys-Pro-Phe-OHの生産
1.03g(1.64mmol)のBoc-Thr-Lys (Boc)-Pro-Phe-OHを8.2mLの塩化メチレンおよび8.2mlのTFAに添加し、その後、混合物を室温で45分間インキュベートし、保護基の除去後、溶液を無水メタノールで2回、ベンゼンで2回、エーテルで2回蒸発させた。メタノールからエーテルにより析出した。残渣をP2O5 KOHおよびパラフィンにより真空下乾燥させた。得られた析出物を5mlの30%エタノールに溶解し、酢酸/塩酸塩塩交換のためにAmberlyst A-21 (AcO-形態)カラムに適用した。ペプチドを100mlの30%エタノールで溶出し、真空下蒸発乾固させ、無水メタノールから無水エーテルにより析出した。得られた析出物をろ過し、P2O5、KOHおよびパラフィンにより真空下デシケーターで乾燥させ、その間、乾燥剤を数回交換した。
収率:0.7g(1.43mmol)(87%)
融点129〜131℃
Rf 0.201(ブタノール:酢酸:ピリジン:水)(30:6:20:24);
0.156(クロロホルム:メタノール:アンモニア)(4:4.5:1.5)

0072

実施例1〜7に記載した、ペプチド配列のクロマトグラフィーおよび質量分析計による分析を表2に示す。

0073

0074

表3は、合成ペプチドの分離についての勾配形状を示す。

0075

0076

ファルマコフォア位置の同定
ファルマコフォアを同定するために、親ペプチドSelankのフラグメント、Thr-Lys; Thr-Lys-Pro; Pro-Gly-Pro; Arg-Pro-Gly-Pro; Pro-Arg-Pro-Gly-Proを合成し、関連する前臨床モデルを用いて有効性試験を生体内で行なった(ロードシス試験)。

0077

我々は、雌ラット性行動に関連して、100μg/ラットの用量で、Thr-Lys; Thr-Lys-Pro; Pro-Gly-Pro; Arg-Pro-Gly-Pro; Pro-Arg-Pro-Gly-Proからなるペプチドの群の有効性を研究した。性的に活動的な雄と直接接触した、またはこのような接触が不可能であったときの、卵巣摘出され、ホルモンで刺激された雌において性行動を記録した。監視中、Thr-Lys-Proペプチドは、雌における交尾好意的な行動(proceptive behavior)の強さを14±4から29±6の行為に増加させたことが認められた(p=0.028、ウィルコクソン検定)。雌におけるロードシス反応に対する効果も同様の傾向を有しており(p=0.09)、Thr-Lys-Proペプチドの作用下でのロードシスの数は、0.73±0.12から0.97±0.12に増加した。これらの結果は、Thr-Lys-Proペプチド作用を背景とした性的意欲強化を示している。効果は特異的であり、適切な行動状況下で表される。ロードシスのモデルにおけるThr-Lys; Thr-Lys-Pro; Pro-Gly-Pro; Arg-Pro-Gly-Pro; およびPro-Arg-Pro-Gly-Proのペプチドの有効性研究の結果を表4に示す。

0078

0079

ファルマコフォア試験
ファルマコフォアを試験するために、ファルマコフォアに基づくペプチド、すなわち、一般式A-Thr-Lys-Pro-B-C-D-Xに対応する、Thr-Lys-Proトリペプチド、Thr-Lys-Pro-ArgおよびThr-Lys-Pro-Pheテトラペプチド、Thr-Lys-Pro-Arg-Proペンタペプチド、ならびにThr-Lys-Pro-Arg-Pro-Pheヘキサペプチドを合成し、関連する前臨床モデルを用いて有効性試験を生体内で行なった(ロードシス試験)。

0080

我々は、雌ラットの性行動に関連して、100μg/ラットの用量で、Thr-Lys-Pro; Thr-Lys-Pro-Arg; Thr-Lys-Pro-Arg-Pro; およびThr-Lys-Pro-Arg-Pro-Pheからなるペプチドの群の有効性を研究した。性的に活動的な雄と直接接触した、またはこのような接触が不可能であったときの、卵巣摘出され、ホルモンで刺激された雌において性行動を記録した。監視中、Thr-Lys-Pro、Thr-Lys-Pro-Arg-Pro、およびThr-Lys-Pro-Arg-Pro-Pheを含む群からのペプチドは、雌における交尾に好意的な行動の強さを14±4から26±4〜36±6の行為に増加させたことが認められた(p=0.028、ウィルコクソン検定)。同時に、Thr-Lys-Pro-ArgおよびThr-Lys-Pro-Pheは、雌の交尾に好意的な行動(proceptive behavior)の強さに影響を及ぼさず、ロードシスの数を増加させず、Thr-Lys-Pro-ArgおよびThr-Lys-Pro-Pheテトラペプチドの基本的パラメータは、陰性コントロールのレベルに留まっている。雌におけるロードシス反応に対する効果も同様の傾向を有していた(p=0.09)。パートナーの直接的な接触が無くても、ペプチド作用は表された。結果は、Thr-Lys-Pro、Thr-Lys-Pro-Arg-Pro、Thr-Lys-Pro-Arg-Pro-Pheのペプチド作用を背景とした性的意欲の強化と、Thr-Lys-Pro-ArgおよびThr-Lys-Pro-Pheテトラペプチドにおける性的意欲効果の欠如を示している。効果は特異的であり、適切な行動状況下で表される。ロードシスのモデルにおけるペプチドThr-Lys-Pro; Thr-Lys-Pro-Arg; Thr-Lys-Pro-Phe; Thr-Lys-Pro-Arg-Pro; Thr-Lys-Pro-Arg-Pro-Pheの有効性研究の結果を表5に示す。

0081

実施例

0082

産業上の利用可能性
発明は、生化学の分野に関し、特に、非常に高い活性を示し、障害が生じた器官において自然治癒を刺激することの可能なペプチドを生産するための方法に関する。特に、発明は、治療の経過の期間を短縮し、薬剤のコストを低下しつつ、性的機能の刺激および性的機能障害の処置のための手法の範囲を拡大することを可能にする。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

該当するデータがありません

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

該当するデータがありません

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

この 技術と関連性が強い技術

該当するデータがありません

この 技術と関連性が強い法人

該当するデータがありません

この 技術と関連性が強い人物

該当するデータがありません

この 技術と関連する社会課題

該当するデータがありません

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ