図面 (/)

技術 グリースの製造方法

出願人 出光興産株式会社
発明者 末次義幸
出願日 2013年8月6日 (6年3ヶ月経過) 出願番号 2013-163597
公開日 2015年2月16日 (4年8ヶ月経過) 公開番号 2015-030838
状態 特許登録済
技術分野 潤滑剤
主要キーワード 最大せん断速度 押出能力 炭化水素系基油 不均一構造 容器内壁面 ミセル粒子 硫化鉱 溶液流量
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2015年2月16日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (12)

課題

増ちょう剤からなる大きなミセル粒子(大きなダマ)の生成しにくいグリースの製造方法を提供する。

解決手段

増ちょう剤前駆体1を含有する基油1と、増ちょう剤前駆体2を含有する基油2とを混合して混合液にするとともに、前記混合液に対し102s−1以上のせん断速度を与え、前記増ちょう剤前駆体1と前記増ちょう剤前駆体2とを混合分散させながら反応させて増ちょう剤とすることを特徴とするグリースの製造方法。

概要

背景

ウレアグリースの一般的な製造方法では、基油イソシアネートを混合して60℃程度に加熱、撹拌しながら、基油にアミンを混合した60℃程度の溶液を加えてしばらく撹拌し、160℃程度に昇温した後、室温まで放冷する。しかしながら、このような方法では製造(合成反応)に時間を要する上、増ちょう剤からなるミセル粒子(いわゆるダマ)を生成しやすい。また、大きなダマは、グリースベアリング等の摺動機器に適用した際に音響特性を低下させることが知られている。さらに、大きなダマからなる不均一構造グリース本来の性能への寄与が小さいため、増ちょう剤としての効率を低下させる。言い換えれば、一定の硬さにするために多くの増ちょう剤が必要となる。
そこで、大きなダマの生成を抑制し、音響特性を改良しようとするグリースの製造方法が提案されている(特許文献1、2参照)。特許文献1の製造方法は、噴霧ノズルアミン溶液イソシアネート溶液)を直径300μm以下の液滴にしてイソシアネート溶液(アミン溶液)に投入する方法、および、両液を噴霧し反応させる方法である。この製造方法により、増ちょう剤(ウレア化合物)からなるダマの粒径を100μm未満(数10μm程度)に制御している。特許文献2の製造方法は、加圧装置を用いてアミン溶液とイソシアネート溶液を所定圧まで加圧し、両液を衝突混合させ反応させる方法である。この製造方法によりダマの大きさを数100〜数10μm程度に制御している。

概要

増ちょう剤からなる大きなミセル粒子(大きなダマ)の生成しにくいグリースの製造方法を提供する。増ちょう剤前駆体1を含有する基油1と、増ちょう剤前駆体2を含有する基油2とを混合して混合液にするとともに、前記混合液に対し102s−1以上のせん断速度を与え、前記増ちょう剤前駆体1と前記増ちょう剤前駆体2とを混合分散させながら反応させて増ちょう剤とすることを特徴とするグリースの製造方法。なし

目的

本発明は、増ちょう剤からなる大きなミセル粒子(大きなダマ)の生成しにくいグリースの製造方法を提供する

効果

実績

技術文献被引用数
0件
牽制数
3件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

増ちょう剤前駆体1を含有する基油1と、増ちょう剤前駆体2を含有する基油2とを混合して混合液にするとともに、前記混合液に対し102s−1以上のせん断速度を与え、前記増ちょう剤前駆体1と前記増ちょう剤前駆体2とを混合分散させながら反応させて増ちょう剤とすることを特徴とするグリースの製造方法。

請求項2

請求項1に記載のグリースの製造方法において、前記せん断速度が107s−1以下であることを特徴とするグリースの製造方法。

請求項3

請求項1または請求項2に記載のグリースの製造方法において、前記基油1と前記基油2とを混合した後、15分以内に前記せん断速度を混合液に与えることを特徴とするグリースの製造方法。

請求項4

請求項1から請求項3までのいずれか1項に記載のグリースの製造方法において、前記混合液に与えるせん断速度における最高せん断速度(Max)と最低せん断速度(Min)の比(Max/Min)が100以下であることを特徴とするグリースの製造方法。

請求項5

請求項1から請求項4までのいずれか1項に記載のグリースの製造方法において、前記前駆体1がモノアミンであり、前記前駆体2がジイソシアネートであることを特徴とするグリースの製造方法。

請求項6

請求項1から請求項5までのいずれか1項に記載のグリースの製造方法において、前記混合液を、対向する壁面間の相対運動によりせん断を発生させる容器内に導入して前記せん断速度を得ることを特徴とするグリースの製造方法。

請求項7

請求項1から請求項6までのいずれか1項に記載のグリースの製造方法により得られたグリースに対し、さらに混練することを特徴とするグリースの製造方法。

請求項8

請求項1から請求項6までのいずれか1項に記載のグリースの製造方法により得られたグリースに対し、さらに80℃以上200℃以下の温度に加熱することを特徴とするグリースの製造方法。

請求項9

請求項8に記載のグリースの製造方法において、さらに混練することを特徴とするグリースの製造方法。

技術分野

0001

本発明は、グリースの製造方法に関する。

背景技術

0002

ウレアグリースの一般的な製造方法では、基油イソシアネートを混合して60℃程度に加熱、撹拌しながら、基油にアミンを混合した60℃程度の溶液を加えてしばらく撹拌し、160℃程度に昇温した後、室温まで放冷する。しかしながら、このような方法では製造(合成反応)に時間を要する上、増ちょう剤からなるミセル粒子(いわゆるダマ)を生成しやすい。また、大きなダマは、グリースをベアリング等の摺動機器に適用した際に音響特性を低下させることが知られている。さらに、大きなダマからなる不均一構造グリース本来の性能への寄与が小さいため、増ちょう剤としての効率を低下させる。言い換えれば、一定の硬さにするために多くの増ちょう剤が必要となる。
そこで、大きなダマの生成を抑制し、音響特性を改良しようとするグリースの製造方法が提案されている(特許文献1、2参照)。特許文献1の製造方法は、噴霧ノズルアミン溶液イソシアネート溶液)を直径300μm以下の液滴にしてイソシアネート溶液(アミン溶液)に投入する方法、および、両液を噴霧し反応させる方法である。この製造方法により、増ちょう剤(ウレア化合物)からなるダマの粒径を100μm未満(数10μm程度)に制御している。特許文献2の製造方法は、加圧装置を用いてアミン溶液とイソシアネート溶液を所定圧まで加圧し、両液を衝突混合させ反応させる方法である。この製造方法によりダマの大きさを数100〜数10μm程度に制御している。

先行技術

0003

特開2000−248290号公報
特開平3−190996号公報

発明が解決しようとする課題

0004

特許文献1、2に記載の製造方法では、アミンやイソシアネートの飛散による環境汚染および薬害が懸念される上、ダマの微細化に関しては必ずしも十分ではない。

0005

本発明は、増ちょう剤からなる大きなミセル粒子(大きなダマ)の生成しにくいグリースの製造方法を提供するものである。

課題を解決するための手段

0006

本発明者は、イソシアネート溶液とアミン溶液を混合すると、極めて短時間にウレア分子の生成とバンドル繊維構造)の形成が生じることを見出した。そして、従来の製造方法では、混合後のせん断速度が低く、不均一であるために、太いバンドルや大きなダマなどの不均一構造が形成されると推定した。本発明者は、この点に着目し、2種の溶液を混合した直後に、高いせん断を均一に付与しながらグリース化することで、通常の製造方法に比べてダマを小さくできることを見出し、本発明を完成させたものである。
すなわち、本発明は、以下のようなグリースの製造方法を提供するものである。

0007

(1)増ちょう剤前駆体1を含有する基油1と、増ちょう剤前駆体2を含有する基油2とを混合して混合液にするとともに、前記混合液に対し102s−1以上のせん断速度を与え、前記増ちょう剤前駆体1と前記増ちょう剤前駆体2とを混合分散させながら反応させて増ちょう剤とすることを特徴とするグリースの製造方法。
(2)上述の(1)に記載のグリースの製造方法において、前記せん断速度が107s−1以下であることを特徴とするグリースの製造方法。
(3)上述の(1)または(2)に記載のグリースの製造方法において、前記基油1と前記基油2とを混合した後、15分以内に前記せん断速度を混合液に与えることを特徴とするグリースの製造方法。
(4)上述の(1)から(3)までのいずれか1つに記載のグリースの製造方法において、前記混合液に与えるせん断速度における最高せん断速度(Max)と最低せん断速度(Min)の比(Max/Min)が100以下であることを特徴とするグリースの製造方法。
(5)上述の(1)から(4)までのいずれか1つに記載のグリースの製造方法において、前記前駆体1がモノアミンであり、前記前駆体2がジイソシアネートであることを特徴とするグリースの製造方法。
(6)上述の(1)から(5)までのいずれか1つに記載のグリースの製造方法において、前記混合液を、対向する壁面間の相対運動によりせん断を発生させる容器内に導入して前記せん断速度を得ることを特徴とするグリースの製造方法。
(7)上述の(1)から(6)までのいずれか1つに記載のグリースの製造方法により得られたグリースに対し、さらに混練することを特徴とするグリースの製造方法。
(8)上述の(1)から(6)までのいずれか1つに記載のグリースの製造方法により得られたグリースに対し、さらに80℃以上200℃以下の温度に加熱することを特徴とするグリースの製造方法。
(9)上述の(8)に記載のグリースの製造方法において、さらに混練することを特徴とするグリースの製造方法。

発明の効果

0008

本発明によれば、増ちょう剤からなる大きなミセル粒子(大きなダマ)の生成しにくいグリースの製造方法を提供することができる。

図面の簡単な説明

0009

本発明の実施形態において、ウレアグリースの製造方法(製造装置)の一例を示す概略断面図。
図1の製造装置について、側面の概略と上面の概略をともに示す図。
本発明の他の実施形態において、ウレアグリースの製造装置における側面の概略と上面の概略をともに示す図。
従来のウレアグリースの製造方法を示す概略図。
本発明の実施例1で製造されたグリースの光学顕微鏡写真
本発明の実施例2で製造されたグリースの光学顕微鏡写真。
本発明の実施例3で製造されたグリースの光学顕微鏡写真。
本発明の実施例4で製造されたグリースの光学顕微鏡写真。
本発明の実施例5で製造されたグリースの光学顕微鏡写真。
本発明の実施例6で製造されたグリースの光学顕微鏡写真。
本発明の比較例1で製造されたグリースの光学顕微鏡写真。
本発明の比較例2で製造されたグリースの光学顕微鏡写真。

0010

本発明のグリースの製造方法(以下、「本製造方法」ともいう。)では、増ちょう剤前駆体1を含有する基油1と、増ちょう剤前駆体2を含有する基油2とを混合して混合液にするとともに、前記混合液に対し102s−1以上のせん断速度を与える。すなわち、基油1と基油2を混合した後、短時間のうちに高速せん断を混合液に付与する。そして、増ちょう剤前駆体1と増ちょう剤前駆体2を混合分散させながら反応させて増ちょう剤とする。以下、本発明について詳細に説明する。

0011

〔グリース製造の原料
(基油)
本製造方法で用いられる基油1および基油2としては、特に限定はなく、通常のグリース製造に使用される鉱油系基油合成系基油が挙げられる。これらは、単独で、または混合物として使用することができる。
鉱油系基油としては、減圧蒸留溶剤脱れき、溶剤抽出水素化分解、溶剤脱ろう硫酸洗浄白土精製、および水素化精製等を適宜組み合わせて精製したものを用いることができる。また、合成系基油としては、ポリアルファオレフィン(PAO)系基油、その他の炭化水素系基油エステル系基油アルキルジフェニルエーテル系基油、ポリアルキレングリコール系基油(PAG)、アルキルベンゼン系基油などが挙げられる。基油1や基油2の40℃動粘度は、10mm2/s以上600mm2/s以下であることが好ましい。
基油1と基油2の相溶性を考慮すれば同様な極性さらには同様な粘度特性を有することが好ましい。したがって、基油1と基油2は同じ基油を用いることが最も好ましい。

0012

(増ちょう剤)
本発明では、2種類の増ちょう剤前駆体から増ちょう剤を製造(合成)する。このような増ちょう剤前駆体としては特に限定されないが、増ちょう剤がウレアの場合、増ちょう剤前駆体としてはモノアミンおよびイソシアネート(ジイソシアネート)が挙げられる。
モノアミンの例として、芳香族モノアミンではアニリンp−トルイジン、およびナフチルアミン等が挙げられ、脂肪族モノアミンではヘキシルアミンシクロヘキシルアミンオクチルアミンドデシルアミンヘキサデシルアミン、およびエイコシルアミン等が挙げられる。
ポリウレア化合物は、例えば、ジイソシアネートとモノアミン、ジアミンとの反応で得られる。ジイソシアネート、モノアミンとしては、ジウレア化合物の生成に用いられるものと同様のものが挙げられ、ジアミンでは、エチレンジアミンプロパンジアミンブタンジアミンヘキサンジアミンオクタンジアミンフェニレンジアミントリレンジアミンキシレンジアミン、およびジアミノジフェニルメタン等が挙げられる。
イソシアネートの例としては、ジフェニルメタン−4,4’−ジイソシアネート(MDI)、トリレンジイソシアネート、およびナフチレン−1,5−ジイソシアネート等が挙げられる。上記した各アミンは単独で用いてもよく、複数のアミンを混合して用いてもよい。また、上記した各イソシアネートも同様に単独で用いてもよく、複数のイソシアネートを混合し用いても良い。
上記したイソシアネートとモノアミンをモル比1:2で反応容器(グリース製造装置)に連続的に導入し、後述するように、ただちに高せん断を与えながら混合・反応させることで大きなダマが生成しにくいジウレアグリースを製造することができる。また、上記したイソシアネートと、モノアミンとジアミンの混合体イソシアネート基アミノ基が等量となるように反応容器(グリース製造装置)に連続的に導入し、同様に高せん断を与えながら混合・反応させることで大きなダマが生成しにくいポリウレアグリースを製造することができる。

0013

〔グリースの製造方法〕
本製造方法では、増ちょう剤前駆体1を含有する基油1と、増ちょう剤前駆体2を含有する基油2とを混合して混合液にするとともに、この混合液に対し102s−1以上のせん断速度を与える。すなわち、基油1と基油2を混合した後、できるだけ短時間のうちに高速せん断を混合液に付与することがダマの生成または粗大化を抑制する観点より重要である。
具体的には、基油1と基油2の混合から上述のせん断速度を付与するまでの時間は、15分以内であることが好ましく、5分以内であることがより好ましく、10秒以内であることがさらに好ましい。この時間が短いほど、当該前駆体1、2がよく混合分散した後に反応が始まるので、増ちょう剤分子によるバンドルが太くならず、またダマも大きくならない。

0014

また、上述の混合液に付与するせん断速度は、上述したように102s−1以上であるが、好ましくは103s−1以上、より好ましくは104s−1以上である。せん断速度が高い方が増ちょう剤前駆体1、2および生成した増ちょう剤の分散状態が向上し、より均一なグリース構造となる。すなわち、増ちょう剤分子によるバンドルが太くならず、またダマも大きくならない。
ただし、装置の安全性、せん断等による発熱とその除熱の観点より、上述の混合液に付与するせん断速度は107s−1以下であることが好ましい。
このようなせん断速度は、例えば、対向する壁面間の相対運動によりせん断を発生させる反応容器内に混合液を導入することで付与することができる。なお、このせん断速度は、後述する最高せん断速度と同義である。

0015

このような高せん断速度を発生させることができるグリースの製造装置(反応容器)としては、例えば、図1に示すような構造の製造装置が挙げられる。図2は、図1の製造装置について、側面の概略と上面の概略をともに示したものである。
図1の製造装置は、2種類の基油を混合するとともに、極めて短時間で均一に高速せん断を付与できる構造を備えている。高速せん断は、高速回転部と反応容器内壁との隙間(ギャップa、b)により混合液に付与される。高速回転部は径が回転軸方向に一定でもよく(a=b)、ギャップが異なる構造であってもよい。このようなギャップは、高速回転部の径を回転軸方向で変えることにより、あるいは、高速回転部を円錐台状とし、テーパを設けた反応容器内壁に対しこの高速回転部を上下することにより調整してもよい。
さらにギャップが大きい部分を連続的に傾斜させたスクリュウまたはスパイラル形状とすることで押出能力を持たせてもよい。
また、図3は、図1と異なる態様の反応容器(グリースの製造装置)を示したものであるが、ギャップが異なる部分は、回転方向に配されている。この製造装置の場合、ギャップが大きい部分を回転軸に対して傾斜させることでスクリュウのような押出能力を持たせることができる。

0016

上述の反応容器内において、混合液に与えるせん断における最高せん断速度(Max)と最低せん断速度(Min)の比(Max/Min)は100以下であることが好ましく、50以下であることがより好ましく、10以下であることがさらに好ましい。混合液に対するせん断速度ができるだけ均一であることによりダマが粗大化せず均一なグリース構造となる。
ここで、最高せん断速度(Max)とは、混合液に対して付与される最高のせん断速度であり、最低せん断速度(Min)とは、混合液に対して付与される最低のせん断速度であって、図1に記載された反応容器を例にとると、下記のように定義されるものである。
Max=(高速回転部表面と容器内壁面とのギャップが最小になる部分における高速回転部表面の線速度/当該ギャップ)
Min=(高速回転部表面と容器内壁面とのギャップが最大になる部分における高速回転部表面の線速度/当該ギャップ)
なお、図1においては、Maxの計算におけるギャップがaであり、Minの計算におけるギャップがbである。
上記したように、Max/Minは、小さい方が好ましいので、理想的にはa=bである。すなわち、図1のタイプの反応容器であれば、高速回転部は上下に均一な直径を有する円柱状であることが最も好ましい。
なお、ウレアグリースを製造する場合、製造装置としては図2のような構造でもよい。

0017

本製造方法は、基油1と増ちょう剤前駆体1からなる溶液と、基油2と増ちょう剤前駆体2からなる溶液を混合する工程を含むグリースの製造方法には全て適用できる。増ちょう剤を製造する際の温度条件は用いる前駆体によって異なるが、増ちょう剤としてウレアを製造する場合は50〜200℃程度が好ましい。この温度が50℃以上であるとイソシアネートが基油に溶解しやすく、200℃以下であると基油の劣化を十分に抑制できる。反応容器導入前の基油とアミンの溶液温度としては50〜100℃程度の温度が好ましい。

0018

本製造方法では、上述した製造方法により得られたグリースに対し、さらに混練してもよい。この混練には、グリース製造で一般的に使用されるロールミルを用いることができる。上述のグリースはロールミルを2回以上通してもよい。
また、本製造方法では、上述した製造方法により得られたグリースに対し、さらに80℃以上200℃以下の温度に加熱してもよい。さらに、均一に加熱するために混練、撹拌してもよい。なお、加熱の際は、加熱炉等を用いてもよい。

0019

添加剤
本製造方法で得られたグリースには、さらに種々の添加剤を配合することができる。このような添加剤としては、酸化防止剤極圧剤防錆剤、および固体潤滑剤などが挙げられる。
酸化防止剤としては、例えばアルキル化ジフェニルアミンフェニル−α−ナフチルアミン、およびアルキル化−α−ナフチルアミン等のアミン系酸化防止剤、2,6−ジ−t−ブチル−4−メチルフェノール、および4,4−メチレンビス(2,6−ジ−t−ブチルフェノール)等のフェノール系酸化防止剤などが挙げられる。これらの酸化防止剤の好ましい配合量は、グリース全量基準で0.05質量%以上2質量%以下程度である。

0021

防錆剤としては、ベンゾトリアゾールステアリン酸亜鉛コハク酸エステルコハク酸誘導体チアジアゾール、ベンゾトリアゾール、ベンゾトリアゾール誘導体亜硝酸ナトリウム石油スルホネートソルビタンモノオレエート脂肪酸石けん、およびアミン化合物などが挙げられる。防錆剤の好ましい配合量は、グリース全量基準で0.01質量%以上10質量%以下程度である。
固体潤滑剤としては、ポリイミドPTFE、黒鉛金属酸化物窒化硼素メラミンシアヌレート(MCA)、および二硫化モリブデンなどが挙げられる。
以上のような各種添加剤は、単独で、または数種組み合わせて配合してもよい。

0022

以下に、実施例および比較例を挙げて本発明をさらに詳しく説明するが、本発明はこれらの記載内容に何ら制限されるものではない。具体的には、以下に示す各種の条件でウレアグリースを製造し、得られたグリースの性状を評価した。
〔実施例1〕
図3に示すタイプのウレアグリース製造装置によりグリースを製造した。具体的なグリースの製造方法は以下の通りである。
70℃に加温したPAO系基油(INEOS Oligomers社製 Durasyn170、シクロヘキシルアミン28.1質量%含有)と、同じく70℃に加温したPAO系基油(INEOS Oligomers社製 Durasyn170、MDI11.0質量%含有)とをそれぞれ流量144mL/min、504mL/minで連続的に製造装置内に導入し、ただちに高速回転部により、混合液に対しギャップ通過中に42,000s−1の最高せん断速度を付与した。また、ギャップ通過中の最高せん断速度(Max)と最低せん断速度(Min)の比(Max/Min)は1.03であった。また、上記した2種の基油の混合から最高せん断速度を混合液に付与するまでの時間は約3秒であった。製造されたグリースの増ちょう剤量は15質量%である。
また、得られたグリースについては、光学顕微鏡にてダマの形成状況を観察した。後述する各実施例・比較例のグリースについても同様である。

0023

〔実施例2〕
実施例1で製造されたグリースに対し、ロールミルにて2回の混練を行った。

0024

〔実施例3〕
実施例1において、混合液に付与する最高せん断速度を83,900s−1とした以外は、同様にしてグリースを製造した。製造されグリースの増ちょう剤量は15質量%である。

0025

〔実施例4〕
実施例3で製造されたグリースに対し、ロールミルにて2回の混練を行った。

0026

〔実施例5〕
実施例1において、シクロヘキシルアミン濃度を23.8質量%、MDI濃度を9.0質量%、アミン溶液流量、MDI溶液流量をそれぞれ100mL/min、330mL/minとし、最大せん断速度を216,000s−1とした以外は、同様にしてグリースを製造した。製造したグリースの増ちょう剤量は12質量%である。

0027

〔実施例6〕
実施例5で製造されたグリースに対し、ロールミルにて2回の混練を行った。

0028

〔比較例1〕
通常の方法でウレアグリースを製造した。具体的には、図4に示すように、攪拌翼攪拌され、60℃に保たれたPAO系基油(INEOS Oligomers社製 Durasyn170、MDI14.5質量%含有)に対し、60℃のPAO系基油(INEOS Oligomers社製 Durasyn170、シクロヘキシルアミン15.7質量%含有)を滴下した。アミン溶液を滴下した後、攪拌を継続しながら160℃に昇温し、1時間保持した。その後、撹拌しながら放冷した。製造したグリースの増ちょう剤量は15質量%である。

0029

〔比較例2〕
比較例1で製造されたウレアグリースに対し、ロールミルにて2回の混練を行った。

0030

実施例

0031

〔評価結果〕
表1に、上記各実施例・比較例におけるグリース製造時間、混和ちょう度(JIS K 2220 5.3準拠)、および、ダマの状態(大きさ)について示す。また、各グリースの光学顕微鏡写真を図5図12に示す。
表1の結果より、本発明の製造方法で得られた実施例1〜6の各ウレアグリースは、いずれもダマが小さく、均一性に優れている。それ故、音響特性にも優れることが理解できる。特に、ミルロール混練を行った実施例2や、せん断速度を上げた実施例3、5においては、ダマが極めて小さくなっていることに注目すべきである。
これに対して、通常の方法で製造された比較例1のウレアグリースは、ダマが極めて大きく、均一性に著しく劣っている。また、このグリースをミルロールで混練したものが比較例2であるが、ダマは小さくなるが実施例に比べかなり大きい。
さらに、本発明の製造方法によれば、従来の製造方法にくらべ極めて短時間でグリースの製造が可能であることも特すべきである。
なお、表1における製造時間は、基油、アミン、イソシアネート(MDI)の量と基油の加熱、溶解に要する時間は含まず、溶液の混合開始から、グリース製造終了、または、ロールミル終了までの時間である。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ