図面 (/)

この項目の情報は公開日時点(2014年9月22日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (5)

課題・解決手段

本発明は、粒子ビーム(2、10)の粒子エネルギ可変的に変更する粒子エネルギ変調装置(1)に関する。粒子エネルギ変調装置(1)は、供給された制御値(11)を補正するための制御値補正装置(7)を備えた可変エネルギ変動装置(8)を有している。制御値補正装置(7)は、先に決定された較正データ(15)を用いることを通じて、供給された制御値(11)を補正する。

概要

背景

ところで、非常に広い範囲の技術分野において、物品放射線にさらされる。これには、特定の使用のための要件に応じて、様々なタイプの照射方法および異なるタイプの放射線が用いられる。よって、一部の技術分野では、広い領域にわたり、または、3次元的に、物品を放射線にさらすことが必要であり、また、そうする際には、可能な限り一様に放射線にさらすことが必要である。例えば、物質硬化させる、または何らかのそれ以外の方法で変化させるときなどが、そのような場合である。他方で、食品技術では、食品の保管期限延長するために、あるタイプの放射線を用いることが一般的な慣行にもなっている。

しかし、他の技術分野では、照射を受ける物品の部分領域は、ある所定の線量を用いて、典型的には格別に高い線量を用いて、照射されなければならない。ところが、その物品の他の部分は、通常、まったく照射を受けるべきではないか、または、照射を可能な限り少量に抑えるべきである。この例として、電磁照射X線範囲に至る場合もある)と画像作成マスクとを用いて、マイクロプロセッサまたはそれ以外のマイクロ構造もしくはナノ構造構築する場合がある。

それぞれの構造に印加される線量は、2次元だけではなく、空間の3方向すべてにも、構成することが可能である。3次元的に構成することにより、例えば、本体(特に、その外装部分)を開くまたは損傷することを必要とすることなく、照射されるべき本体の内部に含まれる体積領域を直接に照射することが可能になる。

更に、照射を受ける本体(または、照射を受ける本体の内部に含まれている照射を受ける体積領域)は、静的な本体または移動しない本体に限られない。そうではなく、照射を受ける本体または照射を受ける本体の一部(例えば、照射のターゲットとなる体積領域)が移動するという問題が、実際の使用において、しばしば生じる。これは、外部の座標系との関係で移動する本来の剛体としての移動に限定されない。照射を受ける本体の異なる領域の間での相対的な移動もありうる。これは、並進的な移動だけに必ずしも限定されない。考えられるところであるが、回転運動密度の変化など、他のタイプの変化も存在しうる。

そのような(時折本来的に)移動する本体への照射を可能にするためには、いわゆる4次元的な照射方法が用いられる。究極的には、時間的な変動を有する3次元的な照射方法が存在する(そこでは、時間が第4の次元として機能する)。そのような材料への照射方法の例は、材料科学の分野で見ることができる。例としては、高度に統合されたコンポーネント(マイクロプロセッサおよび/またはメモリチップなど)の製造や、マイクロ構造およびナノ構造を有する機構の製造がある。

この種類の3次元または4次元照射方法を最近使い始めた他の技術分野として、医療技術部門がある。この場合にも、身体の内部に存在する(腫瘍などの)特定の体積領域に、可能な限り高い線量を搬送することが必要であるのが典型的である。その際に、周囲にある(健康な)組織が、可能な限り少量の線量を受けること、または、好ましくは実質的に線量をまったく受けないようにすべきである。周囲の組織が感覚臓器などのいわゆるクリティカルな組織(専門の業界内では「リスク臓器」の略語であるOARと称される)を構成している場合には、これは特に当てはまる。この文脈では、例えば、脊髄主要な血管、または神経節などが、そのような組織でありうる。特に、移動するターゲット体積に照射を行うときには、多数の問題が生じ、その内の一部は、まだ解決されていないか、または、まだ満足できる程度まで解決されていない。

本質的にいって、多数の可能性のある解決策が存在する。特に、走査方法と共に用いるものに関しては、例えば、3つの特別なアプローチを論じることにする。いわゆる再走査法ゲーティング法、およびトラッキング法である。

再走査法では、照射を受ける身体は、多数の照射走査で照射される。移動する身体(あるいは照射を受けるターゲット領域)には巡回的に反復する移動パターンがあることにより、結果的に、統計的に平均すると十分に強力なターゲット体積の照射が生じる。

ゲーティング法では、照射されるべき体積領域が比較的狭く限定された移動フェーズにあるときにだけ、ターゲット身体の活性的な照射が生じる。しかし、それ以外の時間には、照射は生じない。

特にトラッキング法が、現時点では、特に効果を示しているように思われる。トラッキング法では、照射が最終的に作用する領域(例えば、ブラッグピーク区域)は、照射されるべきターゲット身体の体積領域の移動に従って移動される。

これら3つの方法は、すべて、粒子ビーム(より正確には、粒子の主たる効果領域)は空間の3つの次元すべてについて移動(走査)しなければならないという事実を共有している。Z方向(粒子ビームに対してほぼ並行である方向)の走査を生じさせるには、したがって、粒子のエネルギを変動させることが必要である。

これを実装するための1つの可能性は、粒子加速器が異なる複数のエネルギで粒子を放出するように、粒子加速器自体を変動する態様でトリガすることにある。これに伴う問題は、この場合の粒子エネルギの変動が比較的低速でしか生じることができないことにある。例えば、シンクロトロンでは、粒子エネルギをある収縮サイクルから次のサイクルに変動させることが、従来は、最良の可能性であった。この結果として、その領域において、約10秒のエネルギ調整時間が生じる。特にトラッキング法との関係では、この長さの調整時間では時間がかかりすぎであり、したがって適切でない。しかし、同様に、再走査法とゲーティング法でも、その長さの調整時間では、結果的に、ビーム時間に関して著しい量の不必要な損失が生じる。

可能性のある解決策として、受動エネルギ変調器の使用が、既に提案されている。この場合、粒子ビームは、エネルギ吸収媒体を通過する。適切な調整機構を通じて、(粒子ビームによって「知覚される」)媒体の厚さを変更すると、粒子ビームは、エネルギ吸収材料を通過して異なる距離を移動しなければならなくなる。これに対応して、通過する粒子のエネルギが変更される。そのような吸収器システムの例には、ウェッジ状または二重ウェッジ状のエネルギ吸収器ステムが含まれる。高速で移動する水カラムや回転する変調器ホイールも、提案されてきた。この場合にも、また、最終的には、対応する変調器材料を粒子が通過して移動しなければならない距離が変更される。

このような変調器システムは、基本的に急速なエネルギ変調に適しているが、依然として短所を抱えている。例えば、「トリガされた」エネルギの減衰(すなわち、制御信号入力値)と変調器システムによる現実のエネルギ減衰との間には、時折、著しい齟齬が存在することがありうることが判明している。この結果に対応して、処理方法または治療方法において不正確さが生じ、それに応じた不利益が生じる。

概要

本発明は、粒子ビーム(2、10)の粒子のエネルギを可変的に変更する粒子エネルギ変調装置(1)に関する。粒子エネルギ変調装置(1)は、供給された制御値(11)を補正するための制御値補正装置(7)を備えた可変エネルギ変動装置(8)を有している。制御値補正装置(7)は、先に決定された較正データ(15)を用いることを通じて、供給された制御値(11)を補正する。

目的

これを実装するための1つの可能性は、粒子加速器が異なる複数のエネルギで粒子を放出するように、粒子加速器自体を変動する態様でトリガすることにある

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

少なくとも1つの可変エネルギ変動装置(8)を有しており、通過する粒子ビーム(2、10)の粒子のエネルギを可変的に変更する粒子エネルギ変調装置(1)であって、前記粒子エネルギ変調装置(1)に供給される制御値(11)を補正する少なくとも1つの制御値補正装置(7)を備えており、前記制御値補正装置(7)は、前記粒子エネルギ変調装置(1)に供給される前記制御値(11)が較正データ(15)の使用を通じて少なくとも時折および/または少なくとも部分的に補正されるように、実現され装備されていることを特徴とする粒子エネルギ変調装置(1)。

請求項2

少なくとも一部の領域では、較正データ(15)が、2次元グリッド(図3)の形態などのある面積上で決定されていることを特徴とする請求項1に記載の粒子エネルギ変調装置(1)。

請求項3

前記制御値補正装置(7)が少なくとも1つの補間手段を有することを特徴とする請求項1または2に記載の粒子エネルギ変調装置(1)。

請求項4

例えば前記制御値補正装置(7)などの前記粒子エネルギ変調装置(1)が、少なくとも時折および/または少なくとも一部の面積では、前記粒子エネルギ変調装置を通過する前記粒子(2、10)のエネルギの変化に関して補正を実行することを特徴とする請求項1乃至3のいずれか1項に記載の粒子エネルギ変調装置(1)。

請求項5

例えば前記制御値補正装置(7)などの前記粒子エネルギ変調装置(1)が、少なくとも時折および/または少なくとも一部の面積では、例えばその移動方向に関しておよび/またはその横方向オフセット(10)に関してなど前記粒子の軌跡に関して補正を実行することを特徴とする請求項1乃至4のいずれか1項に記載の粒子エネルギ変調装置(1)。

請求項6

例えば前記制御値補正装置(7)などの前記粒子エネルギ変調装置(1)が、少なくとも1つの好適な電子計算機(7)および/または少なくとも1つの好適な電子メモリ装置を有していることを特徴とする請求項1乃至5のいずれか1項に記載の粒子エネルギ変調装置(1)。

請求項7

好ましくは前記少なくとも1つの可変エネルギ変動装置(8)などの前記粒子エネルギ変調装置(1)が、少なくとも1つのエネルギ吸収装置(8)を有しており、前記少なくとも1つのエネルギ吸収装置(8)は、例えば、少なくとも部分的におよび/または少なくとも一部のエリアでは、スライド式ウェッジ装置(8)として、高速で移動する水のカラム装置として、および/または変調器ホイール装置として実現されることを特徴とする請求項1乃至6のいずれか1項に記載の粒子エネルギ変調装置(1)。

請求項8

通過する粒子ビーム(2、10)の粒子のエネルギを可変的に変更する粒子エネルギ変調装置(1)のための制御値補正装置(7)であって、前記制御値補正装置(7)に供給される制御値(11)が較正データ(15)の使用を通じて少なくとも時折および/または少なくとも部分的に補正されるように、実現され装備されていることを特徴とする制御値補正装置(7)。

請求項9

請求項1乃至7のいずれか1項に記載の粒子エネルギ変調装置(1)のために、請求項1乃至7のいずれか1項に記載の粒子エネルギ変調装置(1)の制御値補正装置(7)のために、および/または請求項8に記載の制御値補正装置(7)のために、用いられることが意図されている補正値などの補正値を決定するための方法(16、17)であって、少なくとも1つの較正値(15)が、または、好ましくは複数の較正データ点(15)が決定されることを特徴とする方法(16、17)。

請求項10

前記較正データ(15)が、あるエリア上に延長する構成に対して、好ましくはあるエリア(図3)上に延長するグリッド構成に対して、決定されることを特徴とする請求項9に記載の方法(16、17)。

請求項11

前記較正データが、前記制御値補正装置(7)の使用の前に、および/もしくは前記粒子エネルギ変調装置(1)の使用の前に取得され、ならびに/または好ましくは電子メモリ装置に記憶されることを特徴とする請求項9または10に記載の方法(16、17)。

技術分野

0001

本発明は、少なくとも1つの可変エネルギ変動装置を有しており、通過する粒子ビーム粒子のエネルギを可変的に変更する粒子エネルギ変調装置に関する。本発明は、また、通過する粒子ビームの粒子のエネルギを可変的に変更する粒子エネルギ変調装置のための制御値補正装置に関する。本発明は、また、例えば、粒子エネルギ変調装置のためにおよび/または上述したタイプの制御値補正装置のために用いる補正値を決定するための方法に関する。

背景技術

0002

ところで、非常に広い範囲の技術分野において、物品放射線にさらされる。これには、特定の使用のための要件に応じて、様々なタイプの照射方法および異なるタイプの放射線が用いられる。よって、一部の技術分野では、広い領域にわたり、または、3次元的に、物品を放射線にさらすことが必要であり、また、そうする際には、可能な限り一様に放射線にさらすことが必要である。例えば、物質硬化させる、または何らかのそれ以外の方法で変化させるときなどが、そのような場合である。他方で、食品技術では、食品の保管期限延長するために、あるタイプの放射線を用いることが一般的な慣行にもなっている。

0003

しかし、他の技術分野では、照射を受ける物品の部分領域は、ある所定の線量を用いて、典型的には格別に高い線量を用いて、照射されなければならない。ところが、その物品の他の部分は、通常、まったく照射を受けるべきではないか、または、照射を可能な限り少量に抑えるべきである。この例として、電磁照射X線範囲に至る場合もある)と画像作成マスクとを用いて、マイクロプロセッサまたはそれ以外のマイクロ構造もしくはナノ構造構築する場合がある。

0004

それぞれの構造に印加される線量は、2次元だけではなく、空間の3方向すべてにも、構成することが可能である。3次元的に構成することにより、例えば、本体(特に、その外装部分)を開くまたは損傷することを必要とすることなく、照射されるべき本体の内部に含まれる体積領域を直接に照射することが可能になる。

0005

更に、照射を受ける本体(または、照射を受ける本体の内部に含まれている照射を受ける体積領域)は、静的な本体または移動しない本体に限られない。そうではなく、照射を受ける本体または照射を受ける本体の一部(例えば、照射のターゲットとなる体積領域)が移動するという問題が、実際の使用において、しばしば生じる。これは、外部の座標系との関係で移動する本来の剛体としての移動に限定されない。照射を受ける本体の異なる領域の間での相対的な移動もありうる。これは、並進的な移動だけに必ずしも限定されない。考えられるところであるが、回転運動密度の変化など、他のタイプの変化も存在しうる。

0006

そのような(時折本来的に)移動する本体への照射を可能にするためには、いわゆる4次元的な照射方法が用いられる。究極的には、時間的な変動を有する3次元的な照射方法が存在する(そこでは、時間が第4の次元として機能する)。そのような材料への照射方法の例は、材料科学の分野で見ることができる。例としては、高度に統合されたコンポーネント(マイクロプロセッサおよび/またはメモリチップなど)の製造や、マイクロ構造およびナノ構造を有する機構の製造がある。

0007

この種類の3次元または4次元照射方法を最近使い始めた他の技術分野として、医療技術部門がある。この場合にも、身体の内部に存在する(腫瘍などの)特定の体積領域に、可能な限り高い線量を搬送することが必要であるのが典型的である。その際に、周囲にある(健康な)組織が、可能な限り少量の線量を受けること、または、好ましくは実質的に線量をまったく受けないようにすべきである。周囲の組織が感覚臓器などのいわゆるクリティカルな組織(専門の業界内では「リスク臓器」の略語であるOARと称される)を構成している場合には、これは特に当てはまる。この文脈では、例えば、脊髄主要な血管、または神経節などが、そのような組織でありうる。特に、移動するターゲット体積に照射を行うときには、多数の問題が生じ、その内の一部は、まだ解決されていないか、または、まだ満足できる程度まで解決されていない。

0008

本質的にいって、多数の可能性のある解決策が存在する。特に、走査方法と共に用いるものに関しては、例えば、3つの特別なアプローチを論じることにする。いわゆる再走査法ゲーティング法、およびトラッキング法である。

0009

再走査法では、照射を受ける身体は、多数の照射走査で照射される。移動する身体(あるいは照射を受けるターゲット領域)には巡回的に反復する移動パターンがあることにより、結果的に、統計的に平均すると十分に強力なターゲット体積の照射が生じる。

0010

ゲーティング法では、照射されるべき体積領域が比較的狭く限定された移動フェーズにあるときにだけ、ターゲット身体の活性的な照射が生じる。しかし、それ以外の時間には、照射は生じない。

0011

特にトラッキング法が、現時点では、特に効果を示しているように思われる。トラッキング法では、照射が最終的に作用する領域(例えば、ブラッグピーク区域)は、照射されるべきターゲット身体の体積領域の移動に従って移動される。

0012

これら3つの方法は、すべて、粒子ビーム(より正確には、粒子の主たる効果領域)は空間の3つの次元すべてについて移動(走査)しなければならないという事実を共有している。Z方向(粒子ビームに対してほぼ並行である方向)の走査を生じさせるには、したがって、粒子のエネルギを変動させることが必要である。

0013

これを実装するための1つの可能性は、粒子加速器が異なる複数のエネルギで粒子を放出するように、粒子加速器自体を変動する態様でトリガすることにある。これに伴う問題は、この場合の粒子エネルギの変動が比較的低速でしか生じることができないことにある。例えば、シンクロトロンでは、粒子エネルギをある収縮サイクルから次のサイクルに変動させることが、従来は、最良の可能性であった。この結果として、その領域において、約10秒のエネルギ調整時間が生じる。特にトラッキング法との関係では、この長さの調整時間では時間がかかりすぎであり、したがって適切でない。しかし、同様に、再走査法とゲーティング法でも、その長さの調整時間では、結果的に、ビーム時間に関して著しい量の不必要な損失が生じる。

0014

可能性のある解決策として、受動エネルギ変調器の使用が、既に提案されている。この場合、粒子ビームは、エネルギ吸収媒体を通過する。適切な調整機構を通じて、(粒子ビームによって「知覚される」)媒体の厚さを変更すると、粒子ビームは、エネルギ吸収材料を通過して異なる距離を移動しなければならなくなる。これに対応して、通過する粒子のエネルギが変更される。そのような吸収器システムの例には、ウェッジ状または二重ウェッジ状のエネルギ吸収器ステムが含まれる。高速で移動する水カラムや回転する変調器ホイールも、提案されてきた。この場合にも、また、最終的には、対応する変調器材料を粒子が通過して移動しなければならない距離が変更される。

0015

このような変調器システムは、基本的に急速なエネルギ変調に適しているが、依然として短所を抱えている。例えば、「トリガされた」エネルギの減衰(すなわち、制御信号入力値)と変調器システムによる現実のエネルギ減衰との間には、時折、著しい齟齬が存在することがありうることが判明している。この結果に対応して、処理方法または治療方法において不正確さが生じ、それに応じた不利益が生じる。

発明が解決しようとする課題

0016

したがって、本発明の目的は、従来技術と比較して改善されている粒子エネルギ変調装置と、従来技術と比較して改善されている制御値補正装置と、従来技術と比較して改善されている補正値決定方法と、を提供することである。

0017

本発明は、この目的を達成する。

課題を解決するための手段

0018

本発明は、少なくとも1つの可変エネルギ変動装置を有しており、通過する粒子ビームの粒子のエネルギを可変的に変更する粒子エネルギ変調装置が、以下のような態様で実現されることを提案している。すなわち、少なくとも1つの制御値補正装置が、この粒子エネルギ変調装置に供給される制御値補正するために提供されており、制御値補正装置は、粒子エネルギ変調装置に供給される制御値が較正データの使用を通じて少なくとも時折および/または少なくとも部分的に補正されるように、実現され装備されている。発明者らは、粒子エネルギ変調装置がより多数の潜在的な誤差の原因を含むと判断した。例えば、材料の不正確さの結果として、ビームが移動する材料の長さが「適切」であっても、局所的には異なる減衰の効果が生じうる。同様に、製造における公差(特に、ウェッジ状の吸収システムにおける)の結果として、吸収材料に意図しなかった厚さの揺らぎが生じる可能性がある。別の潜在的な誤差の原因は、作動装置と、粒子ビーム自体の領域における粒子エネルギ変調装置の組み立てとに存在する。複数の潜在的な誤差の原因は、興味深いことに、本質的にシステム上のものとなる。よって、適切な較正データを決定し、それらの較正データを用いることを通じて、粒子のエネルギ変調の「最終結果」を改善することが、驚くべきことではあるが可能である。これにより、次には、照射の品質の改善も生じる。基本的に、較正データは、どのような方法を用いても得ることが可能である。しかし、較正データは、実験的に(すなわち、粒子エネルギ変調装置の測量を通じて)入手することが好ましいことが判明した。これにより、一般論として特に厳密な較正データを決定することが可能になる。更に、測定を通じて決定されたそのような較正データは、特に対数の潜在的な誤差の原因を補正するのに用いることができる。この文脈において、較正データは、粒子エネルギ変調装置の製造と組み立てプロセスにおいて、可能な限り「遅い時点で」決定されるべきである。例えば、較正データを決定するための測定は、粒子加速装置との関係で、そして、可能性として治療設備などとの関係で、粒子エネルギ変調装置が完成した後で(換言すると、システムが「生成動作」を開始する準備ができる直前に)、実行されると有益である。後者の場合には、例えば、粒子ビームの誘導(ビーム・パイプなどへの)との関係する粒子エネルギ変調装置の組み立てにおける組み立て誤差の補正が、考慮されることになる。別の好適な特徴は、いつ、較正データを用いることを通じた制御値の補正が粒子エネルギ変調装置自体において生じるか、ということである。粒子エネルギ変調装置は、次に、「ブラックボックス」として理解することができ、このブラック・ボックスは、制御値を用いて作動されると、特別に高品質で正確な減衰を提供する。よって、この粒子エネルギ変調装置を、「スナップイン」解決策として用いることが可能である。以上のような理由で、例えば粒子エネルギ変調装置の事後的な設置および/または交換を行うことが特に容易である。例えば、補正のために要求される計算は、実際の加速器装置コンピュータにおいて必ずしも実行しなくてもかまわない。したがって、例えば計算能力の調整やプログラムシーケンスの変更などが、必ずしも要求されない。

0019

基本的に、較正データは、任意の方法で得ることが可能である(より正確に述べるならば、較正データは、任意の幾何学的位置において得ることが可能である)。しかし、少なくとも一部の領域において、較正データが2次元のグリッドの形態などのある面積の上で既に決定されている場合に、有益であることが判明した。複数の粒子エネルギ変調装置において、ビームを、そのエネルギに関して調整可能であるだけでなく、その横方向の位置に関して変更可能であることも、必要である。例えば、横方向の位置は、通常、2次元的に変更可能である。すなわち、ビームを、原則的に、(等エネルギ層などの)所定の面積の範囲内にある任意の点の「全体を掃引する」ことが可能である。よって、粒子エネルギ(したがってZ方向における等エネルギ層の位置)の変調と共に、本来的に任意の3次元的な体積を達成することが可能である。当然、達成可能な面積および/または達成可能な体積の大きさと範囲とは、粒子加速装置(例えば、粒子エネルギ変調装置など、その部分システムを含む)によって制限される。広い面積にわたる較正データの決定が、この場合に有益であることが判明している。その理由は、例えば粒子ビームが横方向に偏向されたときに、特に重大なシステム上の誤差が生じうるからである。これらは、例えば、幾何学的な理由のために通路が傾斜して延長する経路になっていることに起因して、または、視差に起因して、生じうる。基本的に、粒子ビームが例えばエネルギ変動装置などの粒子エネルギ変調装置に特に頻繁に衝突する点などの領域において較正データの決定が実行される場合に、有益である。それに限定されることはないが、そのような点が存在しないまたは(まだ)知られていないときを含めて、決定は、おそらく規則的な2次元グリッドの形態で、追加的にまたは代替的に実行することが可能である。あるグリッド(そうでなければ規則的な)グリッドの使用に加えて、または、それの代わりに、測定点グリッド点の密度を高めることを、粒子ビームが粒子エネルギ変調装置に特に頻繁に衝突する領域において用いることも可能である。このようにして、(場合によっては、近似的な態様にすぎない場合であっても)補正において、全面積を考慮に入れることが可能になる。

0020

特に好ましい修正として、粒子エネルギ変調装置における制御値補正装置は、少なくとも1つの補間手段を有する。そのような補間手段を用いると、本来は較正データ点(例えば測定値)を含んでいない領域においても、(より正確な)補正を実行することが可能である。中間的な値は、例えば、線形補間法キュービック補間法スプライン補間法、またはそれ以外の補間法により、計算することができる。当然、補間の代わりに、例えば、直近の隣接較正データ点の値を用いることも、考えることが可能である。

0021

制御値補正装置などの粒子エネルギ変調装置が、少なくとも時折、および/または、少なくとも一部の面積において、その粒子エネルギ変調装置自体を通過する粒子のエネルギの変化に関して補正を実行することが、有益であることも判明した。結果的に、粒子エネルギ変調装置から出力される粒子のエネルギを、特に正確な方法で、所望の値に設定することが可能である。粒子エネルギに関する提案されている補正が特に有益であることが判明したのは、通常、粒子エネルギ変調装置は、粒子エネルギの所望の値への変調において「最後の瞬間」を表すからである。したがって、通常は、粒子エネルギの(新たな)変調は生じることがないため、粒子エネルギ変調装置の精度が、全体的なシステムの精度を、少なくともかなりの程度まで決定する。

0022

制御値補正装置などの粒子エネルギ変調装置が、少なくとも時折および/または少なくとも一部の面積において、その移動方向に関しておよび/またはその横方向のオフセットに関してなど、粒子の軌跡に関して補正を実行するならば、有益であることも判明している。特に、粒子エネルギ変調装置のある設計(例えば、ウェッジ状のエネルギ吸収器または二重ウェッジ式のエネルギ吸収器のある設計)により、物理的効果(特に偏向効果)が、粒子の軌跡に影響する場合がありうる。したがって、この(典型的にはシステム上の)誤差が同様に考慮に入れられると、有益である。この誤差を考慮に入れることは、その存在が粒子エネルギの(追加的な)補正を生じさせるという点で、含めることが可能である。しかし、この補正は、例えば粒子の軌跡に対する効果を低減させるまたは(ほぼ)回避するという点でも、含めることが可能である。

0023

粒子エネルギ変調装置の別の有益な実施形態では、制御値補正装置などの粒子エネルギ変調装置は、少なくとも1つの好ましくは電子計算機および/または少なくとも1つの好ましくは電子記憶装置を有する。例えば、数値デジタル・システムを、電子計算機および/または電子記憶装置として、用いることができる。これらには、従来型計算機だけではなくて、例えばシングルボードのコンピュータなども含まれる。例えば、これらは、スタンドアロンユニットの形態で実現が可能である。しかし、例えば、(既にどんな場合でも提供されているが)マルチタスク機能を有する計算機において、この機能を擬似同時的に実行することも可能である。計算機の助けがあれば、(補間などの)補正を極めて柔軟な態様で実行することが可能である。記憶装置には、例えば、決定された較正データを記憶することができる。記憶装置は、例えばメモリ・チップの形態など、任意の形態で実現が可能である。なお、ハードディスクドライブまたは同様のものの形態でも実現可能である。好ましくは、停電時でもデータが失われないように、不揮発性のメモリで(少なくとも一部は)構成されていることが好ましい。

0024

粒子エネルギ変調装置、好ましくは少なくとも1つの可変エネルギ変動装置が、少なくとも一部はおよび/または少なくとも、例えば、スライド式のウェッジ装置、高速で移動する水のカラム装置および/または変調器ホイール装置として実現された一部の面積において少なくとも1つのエネルギ吸収装置を有するならば、これも有益である。粒子エネルギ変調は、基本的には、粒子の「ブレーキ作動」によってだけではなく、その「加速」によっても生じうる。しかし、粒子のブレーキ作動が粒子エネルギ変調装置において好ましくはまたはそれだけが生じるのならば、はるかに単純であることが判明した。実際の実践においては、管理および/または達成することの方が、はるかに容易である。結果的に時折必要である出力エネルギの増加は、粒子加速器から出力される粒子のエネルギが、粒子エネルギ変調装置において正確なそれぞれの所望値まで後で再び減少させるために、適切に増加させられるということによって、達成することができる。粒子加速器から出力されたエネルギは、例えば、粒子の加速器側で増加させることができる(粒子エネルギの増加の後では、粒子加速器側は、粒子エネルギ変調装置に送られる制御値信号を対応して適応させる)。しかし、更に、または、その代わりに、粒子エネルギ変調装置は、それぞれの現在の所望値を生じさせることが(もはや)できないときには、対応するフィードバック信号を粒子加速装置に送ることも可能である。なお、これは、粒子加速器から出力されるエネルギの増加に関係するだけではなく、論理的には、粒子加速器から出力されるエネルギの減少にも関係している。例えば、スライド式のウェッジ装置、高速で移動する水カラム装置、および/または変調器ホイール装置が、エネルギ吸収装置のための好適な実施形態であることが判明している。これは、スライド式ウェッジ装置の場合に特に当てはまる。スライド式ウェッジ装置は、個別的なスライド式ウェッジとしてだけではなく、(好ましくは)二重ウェッジ式のシステムとしても実現が可能である。多数の(好ましくは偶数個の)ウェッジを提供することも可能である。偶数個のウェッジを設けることは、幾何学的な理由から特に有益であり、これにより、「ハードウェア側」で、粒子ビームの横方向の偏向に起因して生じるおそれがある誤差を最小化することが可能になる。一般的に、この有益な効果により、通常のより複雑な設計に起因して生じる不利益を消しにして、それに対する過度補償が与えられる。

0025

本発明は、更に、通過する粒子ビームの粒子のエネルギを可変的に変更する粒子エネルギ変調装置のための制御値補正装置を提案している。この制御値補正装置は、制御値補正装置に供給される制御値が較正データの使用を通じて少なくとも時折および/または少なくとも部分的に補正されるように、実現され装備されている。この場合には、上述の説明に従って制御値補正装置を実現するおよび/または修正することが可能である。例えば、この種類の制御値補正装置は、上述した粒子エネルギ変調装置の内の1つで用いるのに、特に有益である。制御値補正装置の対応する実施形態および/または修正によると、類似の態様でも、上述した効果を得ることができる。

0026

粒子エネルギ変調装置のために、粒子エネルギ変調装置の制御値補正装置のために、または少なくとも1つの較正値であって好ましくは複数の較正データ点が決定される上述の設計を備えた制御値補正装置のために、用いられる補正値を決定するための方法を、本発明は更に提案している。この決定は、既に基本的には上述したように、数学的であると共に測定に基づいて実行することができる。測定を用いることが、この場合には好ましい。また、測定は可能な限り「遅い時点」で実行することが好ましく、それによって、可能な限り多数の(システム上の)誤差の原因を較正値において考慮に入れることが可能になる。

0027

提案されている方法は、以上の説明に従って、実現が可能である、または、この場合がそうであるように、修正が可能である。類似の態様において、提案されている方法は、上述した長所と性質とを有する。

0028

例えば、この方法は、較正データがある面積上に延長する配列に対して、または、この場合がそうであるように、ある面積上に延長するグリッド配列に対して、決定されるように、修正することが可能である。これによって達成することができる特定の効果および性質は、(少なくとも基本的には)以上で既に説明した。

0029

この方法の別の特に好適な修正では、制御値補正装置を用いる前および/もしくは粒子エネルギ変調装置を用いる前にデータが取得される、ならびに/または、好適な電子記憶装置に記憶されるという点が含まれる。既に上述したように、データは可能な限り「遅い時点で」取得されるべきであり、それによって、可能な限り多数の潜在的な誤差の原因を考慮に入れることが可能になる。それ以外の点については、可能な実施形態、可能な修正、効果、および性質に関する上述の説明を(少なくとも基本的な点で)参照してほしい。

0030

本発明は、効果を奏する例示的な実施形態との関係で、そして、添付の図面を参照して、以下でより詳細に説明される。図面は、次の通りである。

図面の簡単な説明

0031

粒子ビームに対する二重ウェッジ式のエネルギ吸収装置の概略的な図である。
図1のエネルギ変調器の異なる最大距離を示す概略的な上面図である。
較正データを決定するための測定点グリッドの概略的な図である。
粒子エネルギ変調方法の概略的な流れ図である。

実施例

0032

図1は、その本質的なサブアセンブリと共にエネルギ変調器1を示している概略的な斜視図である。エネルギ変調器1は、このエネルギ変調器1を通過する粒子ビーム2の強度の減衰(エネルギ吸収、減速)を変動させるのに用いられる。粒子ビーム2の実際の減衰は、この場合には、相互に点対称であるように配置されている2つのウェッジ3において、生じる。2つのウェッジ3は、材料の均一性が高いエネルギ吸収性の材料で作られている。しかし、実際に実践する場合には、材料の不均一性および/または表面における不均一性(形状の不均一性)が、ウェッジ3の製造において不可避的に発生する。結果的に、エネルギ変調器1を通過する粒子ビーム2の減衰においては、(初期の時点から)誤差を含む揺らぎが発生する。ウェッジ3のための典型的な材料は、プレキシガラスである。しかし、基本的に、この目的のために他の材料を用いることも可能である。

0033

2つのウェッジ3はそれぞれが保持ロッド4に固定されており、リニアモータ5(図1では、対応する両向きの矢印Aによって、それぞれが示されている)によって相互に対して相対的な移動が可能である。リニア・モータ5は、電子コンピュータ7により、制御ケーブル6を介して作動される。電子コンピュータ7は、この場合には、シングルボードのコンピュータの形態で実現されている。この場合の作動は、2つのウェッジ3が、互いに近づく方向か互いから遠ざかる方向かのいずれかの方向に、相互に同じように反対の方向に移動されるように、実行される。2つのウェッジ3の相互に対する位置に応じて、粒子ビーム2は、(図1で明確に見ることができるように)2つのウェッジの材料を通過し、異なる距離を移動する。エネルギの減衰はウェッジ3の材料の内部を移動する距離に相関するので、粒子ビーム2は、エネルギ変調器1への侵入とエネルギ変調器1からの脱出との間で、異なる強度の減衰を経験することになる。したがって、2つのウェッジ3で構成されるサブアセンブリは、純粋に、エネルギ減衰ユニット8として機能する。ただし、このエネルギ減衰ユニット8の減衰作用は、リニア・モータ5の助けを借りて変更することが可能である。ここに示されているエネルギ変調器1の構造的設計では、粒子ビーム2の加速は不可能である。万一、エネルギ変調器1の可能な最大の初期値(つまりエネルギ減衰ユニット8の最小減衰作用)を超えてエネルギを増加させることが必要な場合には、電子コンピュータ7が、データ線9を経由して、エネルギ変調器1の上流に接続されている粒子加速器(図示せず)に信号を送ることにより、この粒子加速器が適切な量だけ粒子エネルギを増加させるようにすることが可能である。所望の粒子エネルギをエネルギ変調器1の最小の初期エネルギ(すなわち、エネルギ減衰ユニット8の最大減衰作用)よりも下のレベルまで低下させなければならない場合には、上述したのと同じことを適用することも可能である。

0034

ウェッジ3が対称的に設計され配置されているため、(エネルギ減衰ユニット8の)二重ウェッジ・システムの減衰作用は、粒子ビーム2がエネルギ変調器1に横方向にオフセットして侵入する場合(図1には、横方向にオフセットした2つの粒子ビーム10が示されている)であっても、変化しない。これは、横方向にオフセットした粒子ビーム10の場合には、横方向にオフセットした粒子ビーム10が例えば前方のウェッジ3の中を移動する距離が、後方のウェッジ3の中を移動する距離が対応して減少する分を打ち消すという事実に起因する(逆の場合もある)。当然であるが、より高次の効果が粒子ビーム2、10の減衰作用の(通常はより小さな)変化を結果的に生じさせる可能性がある、という事実を妨げることはできない。

0035

エネルギ変調器1は、電子コンピュータ7の中に至るデータ線11を経由して、作動される。エネルギ減衰ユニット8の所望の減衰作用などの(補正されていない)制御値は、データ線11を経由して入力することができる。これらの制御値は、例えば、粒子ビーム2、10を生成する粒子加速器の中央コンピュータによって、予め決めておくことができる。しかし、データ線11経由の入力は、必ずしもこれに限定されることはない。例えば、横方向にオフセットした粒子ビーム10の横方向のオフセットの大きさなど追加の情報も、データ線11経由で送ることが可能である。このようなデータを用いると、電子コンピュータ7が、エネルギ減衰ユニット8の減衰作用のよりよい補正を実行することが可能である(後述する)。横方向のオフセットに関する入力データは、必ずしも測定値である必要はなく、例えば、粒子ビーム2、10の横方向のオフセットを生じさせるユニットに送られる制御値であることも可能である。そのような横方向のオフセット・ユニットとして、例えば、相互に直角に(そして、それぞれが粒子ビームの方向に垂直であるように)配置されている2対の磁気コイル(図示せず)を用いることが可能である。完全である目的だけのために申し添えるが、データ線11は、例えば、パケット指向のデータ線(例えば、イーサネット登録商標プロトコルトークンリング・プロトコル、光ファイバ・データ・ケーブルなど)の形態で実現することができることに注意すべきである。特にそのような「パケット指向」の設計の場合には、入力信号のためのデータ線11とフィードバック信号のためのデータ線9とを組み合わせられたデータ線(図示せず)の形態で実現することも可能である。

0036

図2では、図1に示されているエネルギ変調器1の2つのウェッジ3は、これらのウェッジ3が、相互の間の距離が最大となるように離隔している位置13と、相互の間の距離が最小となるように離隔している位置14(破線を用いて示されている)とに、それぞれが示されている。粒子ビーム2、10の減衰のための使用可能な領域12は、この場合には、2つのウェッジ3が相互の間の距離が最大となるように離隔している位置13における2つのウェッジの重なり合う領域によって、画定される。この使用可能な領域12は、図3の上面図に示されている。

0037

図3では、複数の測定点15が、使用可能な領域12の内部に示されている。ここに示されている例示的な実施形態においては、測定点15は、規則的なグリッドの形態に配置されている。この場合における2つの測定点15の間の距離は、ローに沿った方向とカラムに沿った方向との両方について、それぞれ一定である。しかし、基本的に、それ以外のパターンもまた可能である。例えば、クラスタ状の点を、粒子ビーム2が通常またはより頻繁に衝突する領域に確立することが可能である。

0038

個別的測定点15は、例えばエネルギ変調器1を粒子加速装置の中に設置した後で、次々に近づかれる(図4も参照のこと)。個別的測定点15それぞれに対する実際の減衰作用は、測定を通じて実験的に決定される。実際の減衰と「理論的」な減衰との差は、それぞれの測定点15に対して個別的に計算され、電子コンピュータ7のメモリ・ユニットに(例えば、いわゆる「ルックアップ」テーブルの形態で)記憶される。これらの値は、次に、粒子加速器またはエネルギ変調器1の「生成動作」において、較正データとして用いられる。

0039

この場合における測定点15ごとの実際の減衰の測定は、2つのウェッジ3の相互に対する単独の位置だけで実行するのではなく、2つのウェッジ3の相互からの最大距離の位置13と最小距離の位置14との両方で、また、適切な複数の数の中間的な位置でも、実行する。

0040

点グリッド15の密度と、2つのウェッジ3の相互に対する中間的な位置の数とは、一方で、十分によい較正が可能になるように大きく選択されるべきであるが、他方で、測定に異常な長さの時間を要することのない程度に小さく選択されるべきでもある。「生成動作」の間に、まだ測定されていない値が要求される場合には、例えば、直近の隣接する測定点15の値を用いることが可能である。しかし、隣接する複数の測定点15に対する補間法を用いることによって、値を決定することも可能である。

0041

図4は、エネルギ変調器(例えば、図1のエネルギ変調器1)を「設計」し、動作させるために用いることができる方法16を示している。全体としての方法16は、本質的に、2つの部分的な方法17、18から、すなわち、較正データを決定するための方法17と制御値を補正するための方法18とから構成される。この場合、方法17を例えば一度だけ実行して、その場合に決定された較正データを電子コンピュータ7の不揮発性メモリに記憶することが可能である。しかし、較正データを決定するための方法17を、周期的な間隔で実行することも可能である。例えばそれぞれに最新補正データを入手するために、較正データを決定するための方法17を、各治療日が始まる時点で実行することが可能である。

0042

全体としての方法16は、開始のステップ19で開始する。このステップでは、例えば、電子コンピュータ7の初期化などがなされる。

0043

方法の第1のステップ20では、第1の(または新たな)測定点15が決定される。これは、エネルギ減衰ユニット8および/またはエネルギ変調器1の実際の減衰作用を測定するために近づけられなければならない。20で決定される新たな測定点15は、次に、21において近づけられる。対応する信号は、例えば、フィードバック・データ線9を経由して出力することができる。更に、実際の減衰作用は、方法のステップ21で測定される。

0044

結果が生じたら直ちに、ステップ21で得られたデータが、現在の測定点15に対する有効な較正値を計算する(22)のに用いられる。

0045

これで、第1の測定点15の測定が終了する。次に、チェックを行うステップ23において、測定グリッドのすべての測定点15が既に測定されたかどうかに関するチェックがなされる。まだすべてが測定されていない場合には、方法は、新たな測定点15が決定されるステップ20に戻る(24)。

0046

しかし、グリッドが完全に測定された場合には、次に、チェックのための後続のステップ25において、相互に対するウェッジ3の所望の位置のすべてが測定されたかどうかについてのチェックが行われる。すべてが測定されていない場合には、ウェッジ3を相互に対する新たな位置に移動させ、方法は、新たな(第1の)測定点15が決定され(20)、次に測定される方法のステップ20に戻る(24)。

0047

他方で、ウェッジのすべての位置が測定された場合には、較正データを決定するための方法17は終了し、補正された制御値18を決定するための方法18が開始される。この方法では、エネルギ減衰ユニット8および/またはエネルギ変調器1によって考慮される所望の減衰値が、データ線11を経由して読み取られる(26)。データは、例えば、粒子加速器システムのメイン・コンピュータによって提供される。この設定点の値に基づいて、次にステップ27において、相互に対するウェッジ3の設定点位置が、「ゼロ番目の近似」において決定される。これは、例えば、解析的な方法を用いて実行することができる。

0048

このようにして決定された設定点の値は、方法の次のステップ28において補正される。これには、第1の方法ブロック17で得られた較正データを用いる。制御値の補正を通じて、例えば、ウェッジ3の表面や、ウェッジ3の材料(例えば、材料密度差異)や、リニア・モータ5の制御値の誤差などに関する不均一性を考慮することが可能になる。制御値28の補正により、エネルギ変調器1および/またはエネルギ減衰ユニット8の実際の減衰作用の精度の向上を達成することができる。

0049

方法の次のステップ29では、以上で得られた補正された位置の設定点の値が実現される。すなわち、ウェッジ3が、対応する補正された設定点位置に移動される(29)。次に、方法は、新たな設定点の値が読み取られる方法のステップ26に戻る(30)。

0050

1エネルギ変調器
2粒子ビーム
3ウェッジ
4保持ロッド
5リニア・モータ
6制御ケーブル
7電子コンピュータ
8 エネルギ減衰ユニット
9データ線(フィードバック)
10 横方向にオフセットした粒子ビーム
11 データ線(入力)
12使用可能領域
13最大距離
14最小距離
15測定点
16 全体としての方法
17較正データを決定するための方法
18制御値を補正するための方法
19開始点
20 新たな測定点の決定
21 測定点へのアプローチ/測定点の測定
22較正値の計算
23 測定グリッドの終了のチェック
24 戻る
25 ウェッジ位置のチェック
26設定点減衰の読み取り
27設定点位置の決定
28 設定点位置の補正
29 ウェッジの移動
30 戻る

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ