図面 (/)

技術 新規モジュレーターと使用の方法

出願人 アッヴィ・ステムセントリックス・エルエルシー
発明者 ハンプル,ヨハネスディラ,スコット・ジェイフォード,オリットスタル,ロバート・エイ
出願日 2011年12月7日 (7年8ヶ月経過) 出願番号 2013-543326
公開日 2014年3月27日 (5年4ヶ月経過) 公開番号 2014-507117
状態 特許登録済
技術分野 突然変異または遺伝子工学 生物学的材料の調査,分析 酵素、微生物を含む測定、試験 微生物による化合物の製造 微生物、その培養処理 蛋白脂質酵素含有:その他の医薬 抗原、抗体含有医薬:生体内診断剤 化合物または医薬の治療活性 ペプチド又は蛋白質 医薬品製剤
主要キーワード ベースプラットフォーム 初期手順 支持条件 汚染体 線形値 反復値 不連続配列 既定義
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2014年3月27日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題・解決手段

新規モジュレーター(その抗体及び誘導体が含まれる)、及び過剰増殖性障害治療するためのかかるモジュレーターの方法が提供される。

概要

背景

幹細胞及び前駆細胞分化細胞増殖は、器官形成の間の組織成長とすべての生存生物生涯の間でのほとんどの組織細胞置換及び修復とを支援するように協奏的に作用する、正常な進行プロセスである。分化と増殖の決定は、多くの場合、細胞運命の決定と組織構造とを維持するように均衡している数多くの因子及びシグナルによって制御される。正常な組織構造は、通常、細胞分裂と組織成熟化とを調節する微小環境の合図へ応答する細胞によって維持される。従って、細胞の増殖及び分化が正常に起こるのは、損傷を受けた細胞又は瀕死の細胞の置換のために、又は成長のために必要な場合だけである。残念ながら、例えば、様々なシグナル伝達化学物質の過少又は過剰、改変した微小環境の存在、遺伝子の突然変異、又はこれらの何らかの組合せが含まれる無数要因より、細胞の増殖及び/又は分化の破綻が生じ得る。正常な細胞の増殖及び/又は分化が妨害されるか又は何らかの様式で破綻すると、それは、癌のような過剰増殖性障害が含まれる様々な疾患又は障害をもたらす可能性がある。

癌への従来の治療法には、化学療法放射線療法外科手術免疫療法(例、生物学的応答調節物質ワクチン、又は標的化治療剤)、又はこれらの組合せが含まれる。悲しむべきことに、このような従来の治療法に対して、ずっと多くの癌が非応答性であるか又はほとんど応答せず、患者には治療選択肢がほとんど残っていない。例えば、ある患者では、ある種の癌が遺伝子変異を示して、選択された療法が一般には有効であるにも拘らず、それらを非応答性にする。さらに、癌の種類によっては、外科手術のようないくつかの利用可能な療法が有効な代替法でない場合もある。現行標準的な治療薬剤内在する限界が特に明らかになるのは、すでにいくつかの治療法を経験してその後で癌が再燃した患者への治療を試みるときである。そのような症例では、失敗した療法レジメンとそれにより生じる患者の悪化が難治性腫瘍の原因となる場合があり、その腫瘍は、最終的に治癒不能であることが明らかとなるより進行性の疾患として多くの場合現れる。ここ数年にわたって癌の診断及び治療には多大な改善があったものの、既存の療法では再燃、腫瘍の再発及び転移を防ぐことができないために、多くの固形腫瘍全生存率はほとんど変化していない。従って、より標的化されて強力な療法を開発することが依然として挑戦課題なのである。

1つの有望な研究領域は、多くの癌の根底にあるように思われる腫瘍原性の「種」細胞を狙撃する標的化治療剤の使用に関連する。そのために、ほとんどの固形組織は、その組織の大多数を含む分化細胞種を産生する、成体の組織常在性幹細胞集団を含有することが今日知られている。これらの組織に生じる腫瘍は、同様に、幹細胞からも発生する細胞の異種集団からなるが、それらの全体的な増殖性及び組織化は著しく異なる。腫瘍細胞の大多数には限られた増殖能力しかないことがますます認知されているが、癌細胞少数集団(通常、癌幹細胞(cancer stem cell)又はCSCとして知られる)は、広汎に自己再生する独占的な能力を有しており、それにより固有の腫瘍再始動能を可能にしている。より具体的には、この癌幹細胞仮説は、それぞれの腫瘍の内部に、無限の自己再生が可能であって、腫瘍前駆細胞とその後の最終分化腫瘍細胞への分化の結果としてその複製能力進行的に制限される腫瘍細胞を産生することが可能である別個の細胞(即ち、CSC)の亜集団が(ほぼ0.1〜10%)存在することを提唱する。

近年、これらのCSC(腫瘍永続化細胞(tumor perpetuating cell)又はTPCとしても知られる)が従来の化学療法剤又は放射線に対してより抵抗性であって、それにより標準的な臨床治療法の後にも存続して、後に難治性腫瘍続発性腫瘍の増殖を促して転移を助長する可能性があることがより明白になっている。さらに、ますます増える証拠は、器官形成及び/又は正常な組織常在型幹細胞の自己再生を調節する経路がCSCでは調節解除又は改変されていて、自己再生する癌細胞の不断の拡張腫瘍形成がもたらされることを示唆する。一般論としては、Al-Hajj et al., 2004,PMID: 15378087;及びDalerba et. al, 2007, PMID: 17548814 を参照のこと(このそれぞれは、その全体において参照により本明細書に組み込まれる)。このように、従来の治療法だけでなくより最近の標的化治療法の有効性も、これらの多様な治療法に直面しても癌を永続化することが可能である抵抗性癌細胞の存在及び/又は出現によって制限されているようである。Huff et. al., European Journal of Cancer 42: 1293-1297 (2006) 及び Zhou et al., Nature Reviews Drug Discovery 8: 806-823 (2009)(このそれぞれは、その全体において参照により本明細書に組み込まれる)。このような観察事実は、従来の腫瘍減量剤(debulking agent)では、固形腫瘍に罹患している場合の患者生存を実質的に高めることが常にできないことによって、そして腫瘍が増殖、再発、及び転移する方法についてのますます洗練された理解が進展するにつれて確実になっている。従って、新生物障害を治療するための最新戦略では、腫瘍再発、転移、又は患者再燃の可能性を減らすように、腫瘍永続化細胞を消失させる、枯渇する、沈静化する、又はその分化を促進することの重要性が認められてきた。

そのような戦略を開発するための努力では、ヒトの原発性固形腫瘍標本免疫不全マウス排他的に移植して継代する、非従来的異種移植片NTX)モデルに関連する最近の研究が取り込まれている。数多くの癌において、そのような技術により、異種な腫瘍を産生してその増殖を無限に促進する独自の能力がある細胞の亜集団の存在が確かめられている。先に仮定されたように、NTXモデルでの研究は、同定された腫瘍細胞のCSC亜集団が化学療法や放射線のような腫瘍減量レジメン(debulking regimen)に対してより抵抗性であるらしいことが確認され、臨床応答率と全生存率の間の不一致を潜在的に説明している。さらに、CSC研究におけるNTXモデルの利用は、腫瘍の再発及び転移に重大な影響を及ぼすことによって患者生存率を改善するCSC標的化療法をもたらし得る医薬候補物質医薬探索及び前臨床評価における根本的な変の火付けになってきた。進展が見られた一方で、原発性及び/又は異種移植片腫瘍組織を取り扱うことに付随する固有の技術上の難題は、CSCの同一性及び分化能特徴付けるための実験基盤不足と相俟って、重大な挑戦課題を提起する。それで、癌幹細胞に選択的に標的指向して、過剰増殖性障害の治療、予防、及び/又は管理に使用し得る、診断、予防、又は治療用化合物又は方法を開発するという実質的なニーズが依然として存在するのである。

概要

新規モジュレーター(その抗体及び誘導体が含まれる)、及び過剰増殖性障害を治療するためのかかるモジュレーターの方法が提供される。

目的

本発明の好ましい態様は、腫瘍始原細胞頻度の低下を含んでなる、悪性腫瘍の免疫療法的治療への、そのようなEFNAモジュレーターの使用を提供する

効果

実績

技術文献被引用数
0件
牽制数
1件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

単離されたEFNモジュレーター

請求項2

EFNAモジュレーターがEFNAアンタゴニストを含む、請求項1に記載の単離されたEFNAモジュレーター。

請求項3

EFNAモジュレーターが抗体又はその免疫反応性断片を含む、請求項1に記載の単離されたEFNAモジュレーター。

請求項4

抗体又はその免疫反応性断片がモノクローナル抗体を含む、請求項3に記載の単離されたEFNAモジュレーター。

請求項5

モノクローナル抗体が、キメラ抗体CDR移植抗体、ヒト化抗体、及びヒト抗体からなる群より選択される、請求項4に記載の単離されたEFNAモジュレーター。

請求項6

前記モノクローナル抗体が中和抗体を含む、請求項4に記載の単離されたEFNAモジュレーター。

請求項7

前記モノクローナル抗体が内在化抗体を含む、請求項4に記載の単離されたEFNAモジュレーター。

請求項8

前記モノクローナル抗体が枯渇性抗体を含む、請求項4に記載の単離されたEFNAモジュレーター。

請求項9

前記モノクローナル抗体がEFNA4と会合する抗体を含む、請求項4に記載の単離されたEFNAモジュレーター。

請求項10

前記モノクローナル抗体が3つの相補性決定領域を有する軽鎖可変領域と3つの相補性決定領域を有する重鎖可変領域とを含み、ここで重鎖及び軽鎖の相補性決定領域は、図面7Aに示す相補性決定領域を含む、請求項9に記載の単離されたEFNAモジュレーター。

請求項11

前記モノクローナル抗体が軽鎖可変領域と重鎖可変領域とを含み、ここで前記軽鎖可変領域は、配列番号99、配列番号103、配列番号107、配列番号111、配列番号115、配列番号119、配列番号123、配列番号127、配列番号131、配列番号135、配列番号139、配列番号143、配列番号147、配列番号151、配列番号155、配列番号159、及び配列番号163に示されるアミノ酸配列からなる群より選択されるアミノ酸配列に対して少なくとも60%の同一性を有するアミノ酸配列を含み、そしてここで前記重鎖可変領域は、配列番号97、配列番号101、配列番号105、配列番号109、配列番号113、配列番号117、配列番号121、配列番号125、配列番号129、配列番号133、配列番号137、配列番号141、配列番号145、配列番号149、配列番号153、配列番号157、及び配列番号161に示されるアミノ酸配列からなる群より選択されるアミノ酸配列に対して少なくとも60%の同一性を有するアミノ酸配列を含む、請求項9に記載の単離されたEFNAモジュレーター。

請求項12

細胞傷害剤をさらに含んでなる、請求項9、10又は11に記載の単離されたEFNAモジュレーター。

請求項13

請求項11に記載のアミノ酸重鎖可変領域又はアミノ酸軽鎖可変領域をコードする核酸

請求項14

請求項13に記載の核酸を含んでなるベクター

請求項15

請求項14に記載のベクターを含んでなる宿主細胞

請求項16

配列番号2に示されるアミノ酸配列又はその断片を含んでなる、請求項1に記載の単離されたEFNAモジュレーター。

請求項17

EFNAモジュレーターが免疫グロブリン定常領域の少なくとも一部をさらに含む、請求項16に記載の単離されたEFNAモジュレーター。

請求項18

モジュレーターが、腫瘍始原細胞頻度を低下させることの必要な被検者への投与時に腫瘍始原細胞の頻度を低下させる、請求項1に記載の単離されたEFNAモジュレーター。

請求項19

頻度の低下が、腫瘍始原細胞について濃縮することが知られている腫瘍細胞表面マーカーフローサイトメトリー分析を使用して決定される、請求項18に記載の単離されたEFNAモジュレーター。

請求項20

頻度の低下が、腫瘍始原細胞について濃縮することが知られている腫瘍細胞表面マーカーの免疫組織化学検出を使用して決定される、請求項18に記載の単離されたEFNAモジュレーター。

請求項21

前記腫瘍始原細胞が腫瘍永続化細胞を含む、請求項18に記載の単離されたEFNAモジュレーター。

請求項22

細胞傷害剤をさらに含んでなる、請求項1に記載の単離されたEFNAモジュレーター。

請求項23

前記EFNAモジュレーターが汎EFNAモジュレーターを含む、請求項1に記載の単離されたEFNAモジュレーター。

請求項24

請求項1に記載の単離されたEFNAモジュレーターを含んでなる、医薬組成物

請求項25

単離されたEFNA4モジュレーター。

請求項26

前記EFNA4モジュレーターが汎EFNA4モジュレーターを含む、請求項25に記載の単離されたEFNA4モジュレーター。

請求項27

請求項25に記載の単離されたEFNA4モジュレーターを含んでなる、医薬組成物。

請求項28

治療有効量のEFNAモジュレーターを、EFNA関連障害の治療が必要な被検者へ投与することを含んでなる、EFNA関連障害を治療する方法。

請求項29

前記EFNAモジュレーターがEFNAアンタゴニストを含む、請求項28に記載の方法。

請求項30

前記EFNAモジュレーターが抗体又はその免疫反応性断片を含む、請求項28に記載の方法。

請求項31

抗体又はその免疫反応性断片がモノクローナル抗体を含む、請求項30に記載の方法。

請求項32

モノクローナル抗体が、キメラ抗体、CDR移植抗体、ヒト化抗体、及びヒト抗体からなる群より選択される、請求項31に記載の方法。

請求項33

前記モノクローナル抗体が3つの相補性決定領域を有する軽鎖可変領域と3つの相補性決定領域を有する重鎖可変領域とを含み、ここで重鎖及び軽鎖の相補性決定領域は、図面7Aに示す相補性決定領域を含む、請求項32に記載の方法。

請求項34

前記モノクローナル抗体がEFNA4と会合する、請求項31に記載の方法。

請求項35

前記モノクローナル抗体が中和抗体を含む、請求項31に記載の方法。

請求項36

前記モノクローナル抗体が内在化抗体を含む、請求項31に記載の方法。

請求項37

前記内在化抗体が細胞傷害剤を含む、請求項36に記載の方法。

請求項38

前記EFNA関連障害が過剰増殖性障害を含む、請求項28に記載の方法。

請求項39

前記過剰増殖性障害が新生物障害を含む、請求項38に記載の方法。

請求項40

前記新生物障害が固形腫瘍を含む、請求項39に記載の方法。

請求項41

新生物障害が、副腎癌、膀胱癌子宮頚部癌子宮内膜癌腎臓癌肝臓癌肺癌卵巣癌、結直腸癌膵臓癌前立腺癌、又は乳癌を含む、請求項40に記載の方法。

請求項42

前記新生物障害が血液系腫瘍を含む、請求項39に記載の方法。

請求項43

前記血液系腫瘍が白血病又はリンパ腫を含む、請求項42に記載の方法。

請求項44

前記新生物障害に罹患している被検者が、腫瘍始原細胞を含んでなる腫瘍を明示する、請求項39に記載の方法。

請求項45

腫瘍始原細胞の頻度を前記被検者において低下させる工程をさらに含んでなる、請求項44に記載の方法。

請求項46

頻度の低下が、腫瘍始原細胞について濃縮することが知られている腫瘍細胞表面マーカーのフローサイトメトリー分析、又は腫瘍始原細胞について濃縮することが知られている腫瘍細胞表面マーカーの免疫組織化学検出を使用して決定される、請求項45に記載の方法。

請求項47

頻度の低下が、in vitro 又は in vivo の限界希釈分析を使用して決定される、請求項45に記載の方法。

請求項48

頻度の低下が、生きたヒト腫瘍細胞免疫不全マウス中への移植を含んでなる in vivo限界希釈分析を使用して決定される、請求項47に記載の方法。

請求項49

in vivo限界希釈分析を使用して決定される頻度の低下が、ポアソン分布統計を使用する腫瘍始原細胞頻度の定量を含む、請求項48に記載の方法。

請求項50

頻度の低下が、生きたヒト腫瘍細胞の in vitroコロニー支持条件中への限界希釈沈着を含んでなる in vitro 限界希釈分析を使用して決定される、請求項47に記載の方法。

請求項51

in vivo限界希釈分析を使用して決定される頻度の低下が、ポアソン分布統計を使用する腫瘍始原細胞頻度の定量を含む、請求項50に記載の方法。

請求項52

抗癌剤を投与する工程をさらに含んでなる、請求項28に記載の方法。

請求項53

前記EFNAモジュレーターが配列番号2に示されるアミノ酸配列又はその断片を含む、請求項28に記載の方法。

請求項54

前記EFNAモジュレーターが汎EFNAモジュレーターを含む、請求項28に記載の方法。

請求項55

腫瘍始原細胞の頻度を低下させることの必要な被検者において腫瘍始原細胞の頻度を低下させる方法であって、前記被検者へEFNAモジュレーターを投与する工程を含んでなる、前記方法。

請求項56

腫瘍始原細胞が腫瘍永続化細胞を含む、請求項55に記載の方法。

請求項57

前記腫瘍永続化細胞がCD44+細胞又はCD133+細胞である、請求項56に記載の方法。

請求項58

前記EFNAモジュレーターが抗体を含む、請求項55に記載の方法。

請求項59

前記抗体がモノクローナル抗体を含む、請求項58に記載の方法。

請求項60

前記EFNAモジュレーターが抗EFNA4抗体を含む、請求項59に記載の方法。

請求項61

被検者が、副腎癌、膀胱癌、子宮頚部癌、子宮内膜癌、腎臓癌、肝臓癌、肺癌、卵巣癌、結直腸癌、膵臓癌、前立腺癌、及び乳癌からなる群より選択される新生物障害に罹患している、請求項55に記載の方法。

請求項62

被検者が血液系腫瘍に罹患している、請求項55に記載の方法。

請求項63

腫瘍始原細胞の頻度が少なくとも10%低下する、請求項55に記載の方法。

請求項64

頻度の低下が、腫瘍始原細胞について濃縮することが知られている腫瘍細胞表面マーカーのフローサイトメトリー分析、又は腫瘍始原細胞について濃縮することが知られている腫瘍細胞表面マーカーの免疫組織化学検出を使用して決定される、請求項55に記載の方法。

請求項65

頻度の低下が、in vitro 又は in vivo の限界希釈分析を使用して決定される、請求項55に記載の方法。

請求項66

血液系腫瘍に罹患している被検者を治療する方法であって、前記被検者へEFNAモジュレーターを投与する工程を含んでなる、前記方法。

請求項67

前記EFNAモジュレーターがEFNA4モジュレーターである、請求項66に記載の方法。

請求項68

EFNAモジュレーターを被検者へ投与する工程を含んでなる、被検者における腫瘍を抗癌剤での治療のために増感させる方法。

請求項69

前記EFNAモジュレーターが抗体を含む、請求項68に記載の方法。

請求項70

前記腫瘍が固形腫瘍である、請求項68に記載の方法。

請求項71

前記抗癌剤が化学療法剤を含む、請求項68に記載の方法。

請求項72

前記抗癌剤が免疫療法剤を含む、請求項68に記載の方法。

請求項73

過剰増殖性障害を診断することの必要な被検者において過剰増殖性障害を診断する方法であって:a)前記被検者より組織試料入手する工程;b)該組織試料を少なくとも1つのEFNAモジュレーターと接触させる工程;及びc)該試料と会合したEFNAモジュレーターを検出又は定量する工程を含んでなる、前記方法。

請求項74

EFNAモジュレーターがモノクローナル抗体を含む、請求項73に記載の方法。

請求項75

抗体がレポーター作動可能に会合している、請求項74に記載の方法。

請求項76

EFNAモジュレーターを含んでなる容器(receptacle)とEFNA関連障害を治療又は診断するのに前記EFNAモジュレーターを使用するための指示物(instructional materials)とを含んでなる、EFNA関連障害を診断するか又は治療するのに有用な製造品

請求項77

前記EFNAモジュレーターがモノクローナル抗体である、請求項76に記載の製造品。

請求項78

容器が読取り可能プレートを含む、請求項76に記載の製造品。

請求項79

少なくとも1つの内在化EFNAモジュレーターの治療有効量を投与する工程を含んでなる、新生物障害に罹患している被検者を治療する方法。

請求項80

前記EFNAモジュレーターが抗体を含む、請求項79に記載の方法。

請求項81

前記抗体がモノクローナル抗体を含む、請求項80に記載の方法。

請求項82

モノクローナル抗体が細胞傷害剤をさらに含む、請求項81に記載の方法。

請求項83

モノクローナル抗体がEFNA4と会合する、請求項81に記載の方法。

請求項84

少なくとも1つの中和EFNAモジュレーターの治療有効量を投与する工程を含んでなる、新生物障害に罹患している被検者を治療する方法。

請求項85

前記EFNAモジュレーターが抗体を含む、請求項84に記載の方法。

請求項86

前記抗体がモノクローナル抗体を含む、請求項85に記載の方法。

請求項87

前記モノクローナル抗体が抗EFNA4抗体を含む、請求項86に記載の方法。

請求項88

前記EFNA4抗体が汎EFNA抗体を含む、請求項87に記載の方法。

請求項89

新生物障害が、副腎癌、膀胱癌、子宮頚部癌、子宮内膜癌、腎臓癌、肝臓癌、肺癌、卵巣癌、結直腸癌、膵臓癌、前立腺癌、及び乳癌からなる群より選択される、請求項84に記載の方法。

請求項90

腫瘍始原細胞をEFNAモジュレーターと接触させる工程を含んでなる、腫瘍始原細胞の集団を同定する、単離する、分画する、又は濃縮する方法。

請求項91

前記EFNAモジュレーターが抗体を含む、請求項90に記載の方法。

請求項92

hSC4.5、hSC4.15、hSC4.22、及びhSC4.47からなる群より選択される抗体上に見出されるヒト化可変領域に実質的に類似したヒト化抗体可変領域と医薬的に許容される担体とを含んでなる、組成物

請求項93

軽鎖可変領域と重鎖可変領域とを含んでなる抗EFNA4抗体であって、ここで前記軽鎖可変領域は、配列番号151、配列番号155、配列番号159、及び配列番号163に示されるアミノ酸配列からなる群より選択されるアミノ酸配列に対して少なくとも60%の同一性を有するアミノ酸配列を含み、そしてここで前記重鎖可変領域は、配列番号149、配列番号153、配列番号157、及び配列番号161に示されるアミノ酸配列からなる群より選択されるアミノ酸配列に対して少なくとも60%の同一性を有するアミノ酸配列を含む、前記抗EFNA4抗体。

請求項94

医薬有効量のEFNAモジュレーターを投与する工程を含んでなる、転移阻害するか又は予防することの必要な被検者において転移を阻害又は予防する方法。

請求項95

被検者がEFNAモジュレーターの投与の前又は後に腫瘍減量術を受ける、請求項94に記載の方法。

請求項96

前記腫瘍減量術が少なくとも1つの抗癌剤の投与を含む、請求項94に記載の方法。

請求項97

医薬有効量のEFNAモジュレーターを投与する工程を含んでなる、維持療法の必要な被検者に維持療法を実施する方法。

請求項98

前記被検者がEFNAモジュレーターの投与に先立って新生物障害について治療された、請求項97に記載の方法。

請求項99

EFNAモジュレーターを投与する工程を含んでなる、過剰増殖性障害に罹患している被検者において腫瘍細胞を枯渇する方法。

請求項100

前記腫瘍細胞が腫瘍始原細胞を含む、請求項99に記載の方法。

請求項101

EFNAモジュレーターを投与する工程を含んでなる、EFNA関連障害を in vivo で診断する、検出する、又はモニターすることの必要な被検者において、EFNA関連障害を in vivo で診断する、検出する、又はモニターする方法。

技術分野

0001

相互参照される特許出願
本出願は、そのそれぞれがその全体において参照により本明細書に組み込まれる、米国仮特許出願シリアル番号:61/421,157(2010年12月8日出願)及び特許協力条約(PCT)番号:PCT/US2011/050451(2011年9月2日出願)に対する優先権を主張する。

0002

配列表
本出願は、EFS−WebよりASCII形式提出されて、その全体において参照により本明細書に組み込まれる「配列表」を含有する。2011年11月22日に作成された前記ASCIIコピーは、11200PCT.txtと指定されて、サイズは80,102バイトである。

0003

技術分野
本出願は、新規組成物と、過剰増殖性障害とその拡張再発(recurrence)、再燃(relapse)、又は転移を予防、治療、又は改善することにおけるそれらの使用の方法に概して関する。広い側面において、本発明は、新生物障害の治療又は予防のためのエフリンリガンド(EFNA)モジュレーター(抗EFNA抗体及び融合構築体が含まれる)の使用に関する。特に、本発明の好ましい態様は、腫瘍始原細胞頻度の低下を含んでなる、悪性腫瘍免疫療法的治療への、そのようなEFNAモジュレーターの使用を提供する。

背景技術

0004

幹細胞及び前駆細胞分化細胞増殖は、器官形成の間の組織成長とすべての生存生物生涯の間でのほとんどの組織細胞置換及び修復とを支援するように協奏的に作用する、正常な進行プロセスである。分化と増殖の決定は、多くの場合、細胞運命の決定と組織構造とを維持するように均衡している数多くの因子及びシグナルによって制御される。正常な組織構造は、通常、細胞分裂と組織成熟化とを調節する微小環境の合図へ応答する細胞によって維持される。従って、細胞の増殖及び分化が正常に起こるのは、損傷を受けた細胞又は瀕死の細胞の置換のために、又は成長のために必要な場合だけである。残念ながら、例えば、様々なシグナル伝達化学物質の過少又は過剰、改変した微小環境の存在、遺伝子の突然変異、又はこれらの何らかの組合せが含まれる無数要因より、細胞の増殖及び/又は分化の破綻が生じ得る。正常な細胞の増殖及び/又は分化が妨害されるか又は何らかの様式で破綻すると、それは、癌のような過剰増殖性障害が含まれる様々な疾患又は障害をもたらす可能性がある。

0005

癌への従来の治療法には、化学療法放射線療法外科手術、免疫療法(例、生物学的応答調節物質ワクチン、又は標的化治療剤)、又はこれらの組合せが含まれる。悲しむべきことに、このような従来の治療法に対して、ずっと多くの癌が非応答性であるか又はほとんど応答せず、患者には治療選択肢がほとんど残っていない。例えば、ある患者では、ある種の癌が遺伝子変異を示して、選択された療法が一般には有効であるにも拘らず、それらを非応答性にする。さらに、癌の種類によっては、外科手術のようないくつかの利用可能な療法が有効な代替法でない場合もある。現行標準的な治療薬剤内在する限界が特に明らかになるのは、すでにいくつかの治療法を経験してその後で癌が再燃した患者への治療を試みるときである。そのような症例では、失敗した療法レジメンとそれにより生じる患者の悪化が難治性の腫瘍の原因となる場合があり、その腫瘍は、最終的に治癒不能であることが明らかとなるより進行性の疾患として多くの場合現れる。ここ数年にわたって癌の診断及び治療には多大な改善があったものの、既存の療法では再燃、腫瘍の再発及び転移を防ぐことができないために、多くの固形腫瘍全生存率はほとんど変化していない。従って、より標的化されて強力な療法を開発することが依然として挑戦課題なのである。

0006

1つの有望な研究領域は、多くの癌の根底にあるように思われる腫瘍原性の「種」細胞を狙撃する標的化治療剤の使用に関連する。そのために、ほとんどの固形組織は、その組織の大多数を含む分化細胞種を産生する、成体の組織常在性幹細胞集団を含有することが今日知られている。これらの組織に生じる腫瘍は、同様に、幹細胞からも発生する細胞の異種集団からなるが、それらの全体的な増殖性及び組織化は著しく異なる。腫瘍細胞の大多数には限られた増殖能力しかないことがますます認知されているが、癌細胞少数集団(通常、癌幹細胞(cancer stem cell)又はCSCとして知られる)は、広汎に自己再生する独占的な能力を有しており、それにより固有の腫瘍再始動能を可能にしている。より具体的には、この癌幹細胞仮説は、それぞれの腫瘍の内部に、無限の自己再生が可能であって、腫瘍前駆細胞とその後の最終分化腫瘍細胞への分化の結果としてその複製能力進行的に制限される腫瘍細胞を産生することが可能である別個の細胞(即ち、CSC)の亜集団が(ほぼ0.1〜10%)存在することを提唱する。

0007

近年、これらのCSC(腫瘍永続化細胞(tumor perpetuating cell)又はTPCとしても知られる)が従来の化学療法剤又は放射線に対してより抵抗性であって、それにより標準的な臨床治療法の後にも存続して、後に難治性腫瘍続発性腫瘍の増殖を促して転移を助長する可能性があることがより明白になっている。さらに、ますます増える証拠は、器官形成及び/又は正常な組織常在型幹細胞の自己再生を調節する経路がCSCでは調節解除又は改変されていて、自己再生する癌細胞の不断の拡張と腫瘍形成がもたらされることを示唆する。一般論としては、Al-Hajj et al., 2004,PMID: 15378087;及びDalerba et. al, 2007, PMID: 17548814 を参照のこと(このそれぞれは、その全体において参照により本明細書に組み込まれる)。このように、従来の治療法だけでなくより最近の標的化治療法の有効性も、これらの多様な治療法に直面しても癌を永続化することが可能である抵抗性癌細胞の存在及び/又は出現によって制限されているようである。Huff et. al., European Journal of Cancer 42: 1293-1297 (2006) 及び Zhou et al., Nature Reviews Drug Discovery 8: 806-823 (2009)(このそれぞれは、その全体において参照により本明細書に組み込まれる)。このような観察事実は、従来の腫瘍減量剤(debulking agent)では、固形腫瘍に罹患している場合の患者生存を実質的に高めることが常にできないことによって、そして腫瘍が増殖、再発、及び転移する方法についてのますます洗練された理解が進展するにつれて確実になっている。従って、新生物障害を治療するための最新戦略では、腫瘍再発、転移、又は患者再燃の可能性を減らすように、腫瘍永続化細胞を消失させる、枯渇する、沈静化する、又はその分化を促進することの重要性が認められてきた。

0008

そのような戦略を開発するための努力では、ヒトの原発性固形腫瘍標本免疫不全マウス排他的に移植して継代する、非従来的異種移植片NTX)モデルに関連する最近の研究が取り込まれている。数多くの癌において、そのような技術により、異種な腫瘍を産生してその増殖を無限に促進する独自の能力がある細胞の亜集団の存在が確かめられている。先に仮定されたように、NTXモデルでの研究は、同定された腫瘍細胞のCSC亜集団が化学療法や放射線のような腫瘍減量レジメン(debulking regimen)に対してより抵抗性であるらしいことが確認され、臨床応答率と全生存率の間の不一致を潜在的に説明している。さらに、CSC研究におけるNTXモデルの利用は、腫瘍の再発及び転移に重大な影響を及ぼすことによって患者生存率を改善するCSC標的化療法をもたらし得る医薬候補物質医薬探索及び前臨床評価における根本的な変の火付けになってきた。進展が見られた一方で、原発性及び/又は異種移植片腫瘍組織を取り扱うことに付随する固有の技術上の難題は、CSCの同一性及び分化能特徴付けるための実験基盤不足と相俟って、重大な挑戦課題を提起する。それで、癌幹細胞に選択的に標的指向して、過剰増殖性障害の治療、予防、及び/又は管理に使用し得る、診断、予防、又は治療用化合物又は方法を開発するという実質的なニーズが依然として存在するのである。

0009

本発明は、上記及び他の目的のために、広義には、EFNA関連障害(例、過剰増殖性障害又は新生物障害)の治療に使用し得る方法、化合物、組成物、及び製造品へ向けられる。そのために、本発明は、腫瘍細胞又は癌幹細胞に効果的に標的指向して、多種多様な悪性腫瘍に罹患している患者を治療するために使用し得る、新規EFNA(又はエフリンAリガンド)モジュレーターを提供する。本明細書においてより詳しく考察されるように、現在、6種のエフリンAリガンド(即ち、EFNA1〜6)が知られていて、開示モジュレーターは、いずれか1種の、又は1種より多いエフリンAリガンドを含むか又はそれと会合する可能性がある。さらに、ある態様において、開示されるEFNAモジュレーターは、EFNAポリペプチド、その受容体又はその遺伝子を認識する、それと競合する、それに作動する、それと拮抗する、それと相互作用する、結合する、又は会合して、1以上の生理学的経路に対するEFNAタンパク質の影響を調節する、調整する、改変させる、変化させる、又は修飾するどの分子も含んでよい。このように、広義において、本発明は、単離(された)EFNAモジュレーターへ向けられる。好ましい態様において、本発明は、より具体的には、単離EFNA1モジュレーター又は単離EFNA4モジュレーター(即ち、少なくともEFNA1又はEFNA4を含むか又はそれと会合するモジュレーター)へ向けられる。さらに、下記に広汎に考察されるように、そのようなモジュレーターは、医薬組成物を提供するために使用し得る。

0010

本発明の選択された態様において、EFNAモジュレーターは、エフリンAリガンドそれ自体又はその断片を、単離型でも、他の部分との融合型又は会合型(例、Fc−EFNA、PEG−EFNA、又は標的化部分と会合したEFNA)でも含んでよい。他の選択された態様において、EFNAモジュレーターは、EFNAアンタゴニストを含んでよく、それは、本出願の目的のためには、EFNAを認識する、それと競合する、相互作用する、結合する、又は会合して、腫瘍始原細胞が含まれる新生物細胞中和する、消失させる、低下させる、増感させる、再プログラム化する、その増殖を阻害又は制御する如何なる構築体又は化合物も意味すると理解される。好ましい態様において、本発明のEFNAモジュレーターは、新生物細胞を増やす、維持する、拡大する、増殖させる、又は他の方法でその生存、再発、再生、及び/又は転移を促進する腫瘍始原細胞の能力を沈静化する、中和する、低下させる、減少させる、枯渇する、緩和する、減衰させる、再プログラム化する、消失させる、又は他の方法で阻害することが意外にも見出された、抗EFNA抗体又はその断片若しくは誘導体を含む。特に好ましい態様において、この抗体又は免疫反応性断片は、1以上の抗癌剤と会合しても、それへコンジュゲートしてもよい。

0011

1つの態様において、当該EFNAモジュレーターは、ヒト化抗体を含んでよく、ここで前記抗体は、配列番号149、配列番号153、配列番号157、及び配列番号161からなる群より選択される重鎖可変領域アミノ酸配列と、配列番号151、配列番号155、配列番号159、及び配列番号163からなる群より選択される軽鎖可変領域アミノ酸配列を含む。他の好ましい態様において、本発明は、hSC4.5、hSC4.15、hSC4.22、及びhSC4.47からなる群より選択されるヒト化抗体と医薬的に許容される担体を含んでなる組成物の形態であろう。別の好ましい態様において、EFNAモジュレーターは、図面7A(配列番号8〜59及び70〜95)由来の1以上のCDRを含む抗体を含んでよい。好ましくは、図面7A由来の少なくとも1つのCDRを含んでなる抗体は、ヒト化抗体を含むであろう。

0012

ある他の態様において、本発明は、被検者への投与時に腫瘍始原細胞の頻度を低下させるEFNAモジュレーターを含む。好ましくは、頻度の低下は、in vitro 又は in vivo の限界希釈分析を使用して決定される。特に好ましい態様において、そのような分析は、生きたヒト腫瘍細胞の免疫不全マウス中への移植を含んでなる in vivo 限界希釈分析を使用して実施してよい。あるいは、限界希釈分析は、生きたヒト腫瘍細胞の in vitroコロニー支持条件(colony supporting condition)中への限界希釈沈着(limiting dilution deposition)を含んでなる in vitro 限界希釈分析を使用して実施してよい。いずれの場合でも、頻度の低下の分析、計算、又は定量は、好ましくは、正確な数的処理を提供するポアソン分布統計の使用を含むであろう。そのような定量法が好ましい一方で、望まれる数値を提供するには、フローサイトメトリー又は免疫組織化学のような、他のさほど労働集約的ではない方法論も使用してよく、従って、それも本発明の範囲内にあるものと明白に考慮されると理解されよう。そのような場合、頻度の低下は、腫瘍始原細胞について濃縮することが知られている腫瘍細胞表面マーカーのフローサイトメトリー分析又は免疫組織化学検出を使用して決定してよい。

0013

そのように、別の好ましい態様において、本発明は、治療有効量のEFNAモジュレーターをその必要な被検者へ投与することによって腫瘍始原細胞の頻度を低下させることを含んでなる、EFNA関連障害を治療する方法を含む。ここでも、腫瘍始原細胞頻度の低下は、好ましくは、in vitro 又は in vivo の限界希釈分析を使用して決定されるであろう。

0014

この点に関して言えば、本発明は、少なくとも一部は、様々な新生物の病因関与している腫瘍永続化細胞(即ち、癌幹細胞)とEFNAポリペプチド(そして特に、下記に考察するようなEFNA4)が会合するという発見に基づくものと認識されるであろう。より具体的には、本出願は、意外にも、様々な例示のEFNAモジュレーターの投与が腫瘍始原細胞による腫瘍形成性のシグナル伝達に媒介する、それを低下させる、阻害する、又は消失させる(即ち、腫瘍始原細胞の頻度を低下させる)ことができることを証明する。この低下したシグナル伝達は、腫瘍始原細胞の低下、消失、再プログラム化、又は沈静化によっても、又は腫瘍細胞形態を変化させること(例、分化誘導ニッチ破壊)によっても、腫瘍形成性、腫瘍の維持、拡張、及び/又は転移及び再発を阻害することによるEFNA関連障害のより有効な治療を次々に可能にする。他の態様において、開示モジュレーターは、腫瘍増殖を制限又は束縛し得るEFNA媒介性シグナル伝達を促進する、支援する、又は他の方法で増強する場合がある。他の態様において、開示モジュレーターは、腫瘍増殖を促し得るEFNA媒介性シグナル伝達に干渉する、それを抑制する、又は他の方法で遅らせる場合がある。さらに、以下でより詳しく考察するように、EFNAポリペプチドは、インテグリン細胞骨格再配列を介して細胞間の付着力反発力を産生することに関与する。本明細書に記載の新規EFNAモジュレーターを使用する、そのような細胞間の相互作用における介入は、それによって、相加効果又は相乗効果をもたらす1より多い機序(即ち、腫瘍始原細胞の低下と細胞付着の破綻)により障害を改善する場合がある。なお他の好ましい態様は、エフリンAリガンドの細胞内在化を利用して、モジュレーター媒介性の抗癌剤を送達する場合がある。この点に関して言えば、本発明は、どの特別な作用機序にも制限されず、むしろEFNA関連障害(様々な新生物が含まれる)を治療するための開示モジュレーターの広汎な使用が含まれると理解されよう。

0015

このように、本発明の別の好ましい態様は、EFNA関連障害を治療することの必要な被検者へEFNAモジュレーターを投与する工程を含んでなる、前記被検者においてそれを治療する方法を含む。特に好ましい態様において、EFNAモジュレーターは、抗癌剤と会合(例えば、コンジュゲート)している。さらに、本発明の有益な側面(あらゆる細胞の付着破綻と付帯的な利益が含まれる)は、被検者の腫瘍組織が正常隣接組織と比較して上昇レベルのEFNAを明示しても、低下又は抑圧レベルのEFNAを明示しても、達成され得る。

0016

上記に述べて、下記により詳しく考察するように、現在、6種のエフリンAリガンド(即ち、EFNA1〜6)が知られている。本発明に従えば、開示モジュレーターは、単一のエフリンAリガンド(例、EFNA4)、エフリンAリガンドの亜集合(例、EFNA4及びEFNA1)、又は全6種のエフリンAリガンドと反応するように、産生、作製、及び/又は選択してよいことが理解されるであろう。より具体的には、本明細書に記載して、以下の「実施例」で説明するように、抗体のような好ましいモジュレーターは、単一のエフリンAリガンド上で発現されるドメイン又はエピトープと、又は多数又はすべてのEFNAポリペプチド(例、EFNA1及び4、又はEFNA3及び4)にわたって(少なくともある程度は)保存されて提示されているエピトープと反応又は結合するように産生されて選択され得る。このことが本発明に関して重要であるのは、下記の実施例18に示すように、TICでは、あるエフリンAリガンド(複数)が選好的に発現されることが判明して、腫瘍形成細胞頻度の選択的な低下、及び/又は癌幹細胞集団の枯渇をもたらす、特に有効な療法上の標的として組合せにおいて役立つ場合があるからである。

0017

故に、選択される態様において、本発明は、2以上のエフリンAリガンドと免疫特異的に会合する汎EFNAモジュレーターを含む。このような態様において、選択されるモジュレーターは、特別なリガンド(例、EFNA4)での免疫化により産生されて、様々な被検リガンドと大なり小なりの度合いで会合又は交差反応し得る。従って、なお他の態様において、本発明は、治療有効量の汎EFNAモジュレーターを投与することを含んでなる、その必要な被検者を治療する方法を含む。なお他の態様は、1以上のエフリンAリガンドと免疫特異的に会合するEFNAモジュレーターの治療有効量を投与することを含んでなる、その必要な被検者を治療する方法を含む。

0018

従って、なお他の態様において、本発明は、汎EFNAモジュレーターを含むであろう。なお他の態様において、本発明は、EFNA関連障害を治療することの必要な被検者へ汎EFNAモジュレーターを投与する工程を含んでなる、前記被検者においてそれを治療する方法を含むであろう。

0019

当然ながら、開示されるEFNAモジュレーターは、単一のエフリンAリガンド(例、EFNA4)と選好的に反応又は会合して、他のエフリンAリガンドとの会合をほとんど又は全く示さないように産生、作製、及び/又は選択され得ると理解されよう。従って、本発明の他の態様は、選択されたエフリンAリガンドと免疫特異的に会合して、他のあらゆるエフリンAリガンドとの会合をほとんど又は全く示さないEFNAモジュレーターへ向けられる。この点に関して言えば、本明細書に開示される好ましい態様は、EFNAモジュレーターを投与する工程を含んでなる、EFNA関連障害を治療することの必要な被検者においてそれを治療する方法を含み、ここで該EFNAモジュレーターは、選択されたエフリンAリガンドと免疫特異的に会合して、あらゆる他のエフリンAリガンドとは実質的に非反応性である。さらに、このようなモジュレーターを産生、作製、及び選択する方法は、本発明の範囲内にある。

0020

本発明の他の面は、腫瘍始原細胞を沈静化する一方で同時に細胞付着相互作用を潜在的に妨害する、開示モジュレーターの能力を利用する。このような多重活性EFNAモジュレーター(例、EFNAアンタゴニスト)は、標準治療の抗癌剤又は腫瘍減量剤と組み合わせて使用されるときに特に有効であることが判明するかもしれない。加えて、2以上のEFNAアンタゴニスト(例、エフリンAリガンド上の2つの別々のエピトープへ特異的に結合するか又は別々のリガンドと会合する抗体)を、本教示に従って組み合わせて使用してよい。さらに、下記にやや詳しく考察するように、本発明のEFNAモジュレーターは、コンジュゲート状態でも非コンジュゲート状態でも使用してよく、多様な化学品又は生物学的な抗癌剤との組合せにおいて増感剤として使用してもよい。

0021

このように、本発明の別の好ましい態様は、EFNAモジュレーターを被検者へ投与する工程を含んでなる、抗癌剤での治療のために前記被検者において腫瘍を増感させる方法を含む。本発明の特に好ましい側面において、EFNAモジュレーターは、in vitro 又は in vivo の限界希釈分析を使用して決定されるように、腫瘍始原細胞頻度の低下を特異的にもたらして、それによって、同時に又はその後に生じる腫瘍減量のために腫瘍を増感させる。

0022

同様に、本発明の化合物は、様々な生理学的機序を介して治療利益を発揮し得るので、本発明はまた、ある細胞プロセスを利用するように特異的に作製される、選択されたエフェクター又はモジュレーターへ向けられる。例えば,ある態様において、好ましいモジュレーターは、腫瘍始原細胞の表面の上又は近くでEFNAと会合して被検者の免疫応答刺激するように設計され得る。他の態様において、モジュレーターは、インテグリンと細胞骨格との再配列を介した細胞間の付着力及び反発力に影響を及ぼし得る、エフリンAのリガンド活性とエフリン受容体との相互作用を中和するエピトープへ指向される抗体を含んでよい。なお他の態様において、開示モジュレーターは、EFNA会合細胞を枯渇するか又は消失させることによって作用し得る。このように、本発明がある特別な作用形式に制限されず、むしろ本発明には、所望の結果を達成するあらゆる方法又はEFNAモジュレーターが含まれると理解することが重要である。

0023

このような枠組み内で、開示される態様の好ましい態様は、少なくとも1つの中和性EFNAモジュレーターの治療有効量を投与する工程を含んでなる、新生物障害に罹患している被検者を治療する方法へ向けられる。

0024

他の態様は、少なくとも1つの枯渇性EFNAモジュレーターの治療有効量を投与する工程を含んでなる、EFNA関連障害に罹患している被検者を治療する方法へ向けられる。関連した方法は、EFNAモジュレーターを投与する工程を含んでなる、EFNA会合細胞を枯渇することの必要な被検者においてそれを枯渇することへ向けられる。

0025

なお別の態様において、本発明は、腫瘍量の少なくとも一部を取り除くように設計された初期手順(例、化学療法、放射線、又は外科手術)に続く時間帯にわたって、開示されるエフェクター又はモジュレーターが投与される、維持療法の方法を提供する。このような療法レジメンは、数週の期間、数ヶ月の期間、又は数年の期間にもわたって投与してよく、ここでEFNAモジュレーターは、転移及び/又は腫瘍再発を阻むように予防的に作用し得る。なお他の態様において、開示モジュレーターは、転移を防ぐか又は遅らせるために、既知の腫瘍減量レジメンと連携して投与してよい。

0026

上記に考察した療法上の使用にとどまらず、本発明のモジュレーターは、EFNA関連障害、及び、特に過剰増殖性障害を診断するために使用し得ることも理解されよう。いくつかの態様において、該モジュレーターは、被検者へ投与して、in vivo で検出又はモニターされ得る。当業者は、このようなモジュレーターを、下記に開示するようなマーカー又はレポーターで標識するか又はそれと会合させて、数多くの標準技術(例、MRI又はCATスキャン)のいずれかを使用して検出し得ることを理解されよう。他の例において、モジュレーターは、当該技術分野で認められた手順を使用する in vitro 診断の場で使用してよい。このように、好ましい態様は、過剰増殖性障害を診断することの必要な被検者においてそれを診断する方法を含み、該方法は:
a.前記被検者より組織試料入手する工程;
b.該組織試料を少なくとも1つのEFNAモジュレーターと接触させる工程;及び
c.該試料と会合したEFNAモジュレーターを検出又は定量する工程を含んでなる。

0027

このような方法は、本出願と併せて容易に理解し得て、自動プレートリーダー、専用レポーター系、等のような一般に利用可能な市販技術を使用して、容易に実施し得る。選択された態様において、EFNAモジュレーターは、試料中に存在する腫瘍永続化細胞と会合する。他の好ましい態様において、検出又は定量の工程は、腫瘍始原細胞頻度の低下とその検出を含むであろう。さらに、限界希釈分析は、上記においてすでに述べたように実施してよくて、好ましくは、頻度の低下に関する正確な数的処理をもたらすために、ポアソン分布統計の使用を利用する。

0028

同じように、本発明はまた、癌のようなEFNA関連障害の診断及びモニタリングに有用であるキットを提供する。このために、本発明は、好ましくは、EFNAモジュレーターを含んでなる容器(receptacle)とEFNA関連障害を治療又は診断するのに前記EFNAモジュレーターを使用するための指示物(instructional materials)とを含んでなる、EFNA関連障害を診断するか又は治療するのに有用な製造品を提供する。

0029

本発明の他の好ましい態様はまた、蛍光活性細胞選別FACS)又はレーザー媒介分画法のような方法を介して腫瘍始原細胞の集団又は亜集団を同定、単離、分画、又は濃縮するのに有用な道具としての開示モジュレーターの特性を利用する。

0030

このように、本発明の別の好ましい態様は、腫瘍始原細胞をEFNAモジュレーターと接触させる工程を含んでなる、前記腫瘍始原細胞の集団を同定、単離、分画、又は濃縮する方法へ向けられる。

0031

上述のことは、概要であるので、必要上、簡略化、一般化、及び詳細の省略を含有する;従って、当業者は、この概要が説明にすぎず、限定的であることを決して企図しないと理解されよう。本明細書に記載する方法、組成物、及び/又はデバイスの他の側面、特徴、及び利点、及び/又は他の主題は、本明細書で説明する教示において明らかになろう。この概要を提供するのは、選択される概念単純化された形式で紹介するためであって、それについては「発明を実施するための形態」において以下でさらに記載する。この概要は、特許請求される主題の重要な特徴又は本質的な特徴を特定することを企図するものでも、特許請求される主題の範囲を決定するときの一助として使用することを企図するものでもない。

図面の簡単な説明

0032

図面1A〜Cは、それぞれ、ヒトEFNA4をコードする核酸配列(配列番号1)、対応するヒトEFNA4アイソフォームaのアミノ酸配列(配列番号2)、及びアミノ酸相違を示すヒトEFNA4a、b、及びcアイソフォームの配列(配列番号2〜4)のアラインメントを図示し、一方、図面1D〜Fは、それぞれ、ヒトEFNA1をコードする核酸配列(配列番号5)、対応するヒトEFNA1アイソフォームaのアミノ酸配列(配列番号6)、及びアミノ酸の相違を示すヒトEFNA1a及びbアイソフォームの配列(配列番号6及び7)のアラインメントを示す;
図面1A〜Cは、それぞれ、ヒトEFNA4をコードする核酸配列(配列番号1)、対応するヒトEFNA4アイソフォームaのアミノ酸配列(配列番号2)、及びアミノ酸の相違を示すヒトEFNA4a、b、及びcアイソフォームの配列(配列番号2〜4)のアラインメントを図示し、一方、図面1D〜Fは、それぞれ、ヒトEFNA1をコードする核酸配列(配列番号5)、対応するヒトEFNA1アイソフォームaのアミノ酸配列(配列番号6)、及びアミノ酸の相違を示すヒトEFNA1a及びbアイソフォームの配列(配列番号6及び7)のアラインメントを示す;
図面1A〜Cは、それぞれ、ヒトEFNA4をコードする核酸配列(配列番号1)、対応するヒトEFNA4アイソフォームaのアミノ酸配列(配列番号2)、及びアミノ酸の相違を示すヒトEFNA4a、b、及びcアイソフォームの配列(配列番号2〜4)のアラインメントを図示し、一方、図面1D〜Fは、それぞれ、ヒトEFNA1をコードする核酸配列(配列番号5)、対応するヒトEFNA1アイソフォームaのアミノ酸配列(配列番号6)、及びアミノ酸の相違を示すヒトEFNA1a及びbアイソフォームの配列(配列番号6及び7)のアラインメントを示す;
図面1A〜Cは、それぞれ、ヒトEFNA4をコードする核酸配列(配列番号1)、対応するヒトEFNA4アイソフォームaのアミノ酸配列(配列番号2)、及びアミノ酸の相違を示すヒトEFNA4a、b、及びcアイソフォームの配列(配列番号2〜4)のアラインメントを図示し、一方、図面1D〜Fは、それぞれ、ヒトEFNA1をコードする核酸配列(配列番号5)、対応するヒトEFNA1アイソフォームaのアミノ酸配列(配列番号6)、及びアミノ酸の相違を示すヒトEFNA1a及びbアイソフォームの配列(配列番号6及び7)のアラインメントを示す;
図面2A及び2Bは、結直腸腫瘍標本全体の一部より入手した、高度に濃縮された腫瘍始原細胞(TProg)及び腫瘍永続化細胞(TPC)及び非腫瘍形成細胞(NTG)の集団の全トランスクリプトーム(transcriptome)配列決定法を使用して測定した、未処置(図面2A)及びイリノテカン処置(図面2B)マウス中の選択したヒトエフリンAリガンド及びエフリンA受容体の遺伝子発現レベルを図示するグラフ表示である;
図面3A及び3Bは、高度に濃縮された腫瘍始原細胞(TProg)及び腫瘍永続化細胞(TPC)及び非腫瘍形成細胞(NTG)集団又は腫瘍形成細胞(TG)及び非腫瘍形成細胞(NTG)集団の全トランスクリプトーム配列決定法を使用して測定した、結直腸腫瘍試料(図面3A)及び膵臓腫瘍試料(図面3B)中のヒトエフリンA4リガンドの遺伝子発現レベルを図示するグラフ表示である;
図面4は、定量的RTPCRを使用して測定した、4種の異なる非従来型異種移植片(NTX)の結直腸又は膵臓腫瘍細胞株の1つを担うマウスより入手した、高度に濃縮された腫瘍始原細胞(TProg)及び腫瘍永続化細胞(TPC)集団と、非腫瘍形成細胞(NTG)に対して正規化した濃縮細胞集団中のヒトEFNA4の相対的な遺伝子発現レベルを示すグラフ表示である;
図面5A及び5Bは、ステージI〜IVの疾患の患者由来の全結直腸腫瘍標本においてRT−PCRを使用して測定した、ヒトEFNA4の相対的な遺伝子発現レベルを、正常な結腸及び直腸組織中の発現の平均に対して正規化して(図面5A)、又は正常隣接組織と比べて(図面5B)示すグラフ表示である;
図面6A〜6Eは、測定したヒトEFNA遺伝子の遺伝子発現レベルを表し、図面6A及び6Bでは、18種の異なる固形腫瘍型の1つを有する患者由来の全腫瘍標本(灰色のドット)又は比較したNAT(白色のドット)中のEFNA4をRT−PCRによって測定し、図面6C及び6Dでは、選択したNTX腫瘍細胞株中のEFNA4及びEFNA1をRT−PCRによって測定し、そして図面6Eでは、正常な組織と選択したNTX腫瘍細胞株中のEFNA4についてウェスタンブロット分析によって測定した;
図面6A〜6Eは、測定したヒトEFNA遺伝子の遺伝子発現レベルを表し、図面6A及び6Bでは、18種の異なる固形腫瘍型の1つを有する患者由来の全腫瘍標本(灰色のドット)又は比較したNAT(白色のドット)中のEFNA4をRT−PCRによって測定し、図面6C及び6Dでは、選択したNTX腫瘍細胞株中のEFNA4及びEFNA1をRT−PCRによって測定し、そして図面6Eでは、正常な組織と選択したNTX腫瘍細胞株中のEFNA4についてウェスタンブロット分析によって測定した;
図面6A〜6Eは、測定したヒトEFNA遺伝子の遺伝子発現レベルを表し、図面6A及び6Bでは、18種の異なる固形腫瘍型の1つを有する患者由来の全腫瘍標本(灰色のドット)又は比較したNAT(白色のドット)中のEFNA4をRT−PCRによって測定し、図面6C及び6Dでは、選択したNTX腫瘍細胞株中のEFNA4及びEFNA1をRT−PCRによって測定し、そして図面6Eでは、正常な組織と選択したNTX腫瘍細胞株中のEFNA4についてウェスタンブロット分析によって測定した;
図面7A〜7Rは、いくつかのEFNAモジュレーターの配列を図示し、ここで図面7Aは、本明細書に記載のように単離してクローン化した別々のEFNAモジュレーターの遺伝子配置と重鎖及び軽鎖CDR配列(Chothia et al. によって定義されるような)を示す表の表示であり、図面7B〜7Nは、図面7Aに示したのと同じモジュレーターについての、マウスの重鎖及び軽鎖可変領域の核酸及びアミノ酸配列を提供し、図面7O〜7Rは、開示されるEFNAモジュレーターの例示のヒト化バージョンの重鎖及び軽鎖可変領域の核酸及びアミノ酸配列を提供する;
図面7A〜7Rは、いくつかのEFNAモジュレーターの配列を図示し、ここで図面7Aは、本明細書に記載のように単離してクローン化した別々のEFNAモジュレーターの遺伝子配置と重鎖及び軽鎖のCDR配列(Chothia et al. によって定義されるような)を示す表の表示であり、図面7B〜7Nは、図面7Aに示したのと同じモジュレーターについての、マウスの重鎖及び軽鎖可変領域の核酸及びアミノ酸配列を提供し、図面7O〜7Rは、開示されるEFNAモジュレーターの例示のヒト化バージョンの重鎖及び軽鎖可変領域の核酸及びアミノ酸配列を提供する;
図面7A〜7Rは、いくつかのEFNAモジュレーターの配列を図示し、ここで図面7Aは、本明細書に記載のように単離してクローン化した別々のEFNAモジュレーターの遺伝子配置と重鎖及び軽鎖のCDR配列(Chothia et al. によって定義されるような)を示す表の表示であり、図面7B〜7Nは、図面7Aに示したのと同じモジュレーターについての、マウスの重鎖及び軽鎖可変領域の核酸及びアミノ酸配列を提供し、図面7O〜7Rは、開示されるEFNAモジュレーターの例示のヒト化バージョンの重鎖及び軽鎖可変領域の核酸及びアミノ酸配列を提供する;
図面7A〜7Rは、いくつかのEFNAモジュレーターの配列を図示し、ここで図面7Aは、本明細書に記載のように単離してクローン化した別々のEFNAモジュレーターの遺伝子配置と重鎖及び軽鎖のCDR配列(Chothia et al. によって定義されるような)を示す表の表示であり、図面7B〜7Nは、図面7Aに示したのと同じモジュレーターについての、マウスの重鎖及び軽鎖可変領域の核酸及びアミノ酸配列を提供し、図面7O〜7Rは、開示されるEFNAモジュレーターの例示のヒト化バージョンの重鎖及び軽鎖可変領域の核酸及びアミノ酸配列を提供する;
図面7A〜7Rは、いくつかのEFNAモジュレーターの配列を図示し、ここで図面7Aは、本明細書に記載のように単離してクローン化した別々のEFNAモジュレーターの遺伝子配置と重鎖及び軽鎖のCDR配列(Chothia et al. によって定義されるような)を示す表の表示であり、図面7B〜7Nは、図面7Aに示したのと同じモジュレーターについての、マウスの重鎖及び軽鎖可変領域の核酸及びアミノ酸配列を提供し、図面7O〜7Rは、開示されるEFNAモジュレーターの例示のヒト化バージョンの重鎖及び軽鎖可変領域の核酸及びアミノ酸配列を提供する;
図面7A〜7Rは、いくつかのEFNAモジュレーターの配列を図示し、ここで図面7Aは、本明細書に記載のように単離してクローン化した別々のEFNAモジュレーターの遺伝子配置と重鎖及び軽鎖のCDR配列(Chothia et al. によって定義されるような)を示す表の表示であり、図面7B〜7Nは、図面7Aに示したのと同じモジュレーターについての、マウスの重鎖及び軽鎖可変領域の核酸及びアミノ酸配列を提供し、図面7O〜7Rは、開示されるEFNAモジュレーターの例示のヒト化バージョンの重鎖及び軽鎖可変領域の核酸及びアミノ酸配列を提供する;
図面7A〜7Rは、いくつかのEFNAモジュレーターの配列を図示し、ここで図面7Aは、本明細書に記載のように単離してクローン化した別々のEFNAモジュレーターの遺伝子配置と重鎖及び軽鎖のCDR配列(Chothia et al. によって定義されるような)を示す表の表示であり、図面7B〜7Nは、図面7Aに示したのと同じモジュレーターについての、マウスの重鎖及び軽鎖可変領域の核酸及びアミノ酸配列を提供し、図面7O〜7Rは、開示されるEFNAモジュレーターの例示のヒト化バージョンの重鎖及び軽鎖可変領域の核酸及びアミノ酸配列を提供する;
図面7A〜7Rは、いくつかのEFNAモジュレーターの配列を図示し、ここで図面7Aは、本明細書に記載のように単離してクローン化した別々のEFNAモジュレーターの遺伝子配置と重鎖及び軽鎖のCDR配列(Chothia et al. によって定義されるような)を示す表の表示であり、図面7B〜7Nは、図面7Aに示したのと同じモジュレーターについての、マウスの重鎖及び軽鎖可変領域の核酸及びアミノ酸配列を提供し、図面7O〜7Rは、開示されるEFNAモジュレーターの例示のヒト化バージョンの重鎖及び軽鎖可変領域の核酸及びアミノ酸配列を提供する;
図面7A〜7Rは、いくつかのEFNAモジュレーターの配列を図示し、ここで図面7Aは、本明細書に記載のように単離してクローン化した別々のEFNAモジュレーターの遺伝子配置と重鎖及び軽鎖のCDR配列(Chothia et al. によって定義されるような)を示す表の表示であり、図面7B〜7Nは、図面7Aに示したのと同じモジュレーターについての、マウスの重鎖及び軽鎖可変領域の核酸及びアミノ酸配列を提供し、図面7O〜7Rは、開示されるEFNAモジュレーターの例示のヒト化バージョンの重鎖及び軽鎖可変領域の核酸及びアミノ酸配列を提供する;
図面7A〜7Rは、いくつかのEFNAモジュレーターの配列を図示し、ここで図面7Aは、本明細書に記載のように単離してクローン化した別々のEFNAモジュレーターの遺伝子配置と重鎖及び軽鎖のCDR配列(Chothia et al. によって定義されるような)を示す表の表示であり、図面7B〜7Nは、図面7Aに示したのと同じモジュレーターについての、マウスの重鎖及び軽鎖可変領域の核酸及びアミノ酸配列を提供し、図面7O〜7Rは、開示されるEFNAモジュレーターの例示のヒト化バージョンの重鎖及び軽鎖可変領域の核酸及びアミノ酸配列を提供する;
図面8A〜8Dは、図面8Aの表形式で表される例示モジュレーターの生化学的及び免疫学的特性を示す。図面8B及び8Cでは、一定量の抗体と系列希釈液の抗原との非標識相互作用分析を使用して決定されるようなマウスSC4.47とヒト化SC4.47それぞれの親和性の比較を示し、図面8Dでは、選択したヒト化モジュレーターとマウスモジュレーターの特性の表形式の比較を示す;
図面8A〜8Dは、図面8Aの表形式で表される例示モジュレーターの生化学的及び免疫学的特性を示す。図面8B及び8Cでは、一定量の抗体と系列希釈液の抗原との非標識相互作用分析を使用して決定されるようなマウスSC4.47とヒト化SC4.47それぞれの親和性の比較を示し、図面8Dでは、選択したヒト化モジュレーターとマウスモジュレーターの特性の表形式の比較を示す;
図面9は、本発明の50種の例示のエフリンAリガンドモジュレーターの、Jurkat E6細胞とZ138細胞それぞれに関する細胞表面結合特性を例証する;
図面10A及び10Bは、エフリンA受容体を発現する細胞に対するエフリンAリガンドの用量依存的な様式での結合(図面10A)と、例示の開示モジュレーターへの曝露によるエフリンAリガンド細胞表面結合の阻害(図面10B)を図示する;
図面11A〜11Dは、ヒト及びマウスのエフリンAリガンドの細胞表面結合を阻害する開示モジュレーターの能力を例証するグラフ表示であって、ここで図面11Aは、陽性対照曲線を示して、図面11B〜11Dは、3種の例示EFNAモジュレーターの、リガンド結合を低下させる能力を証明する;
図面12A〜12Eは、本発明のモジュレーターの、可溶性エフリンA受容体の細胞表面結合を阻害する能力を示すグラフ表示であり、ここで図面12Aは、受容体結合の標準曲線を提供し、図面12Bは、可溶性受容体の濃度が変動するときの例示モジュレーターの特性を例証し、図面12Cは、受容体の量を一定に保ちながらモジュレーターの濃度を変化させることの結果を証明し、そして図面12D及び12Eは、エフリンA受容体がエフリンA4とエフリンA1リガンドへそれぞれ結合することを阻害する、当該モジュレーターの能力を示す;
図面12A〜12Eは、本発明のモジュレーターの、可溶性エフリンA受容体の細胞表面結合を阻害する能力を示すグラフ表示であり、ここで図面12Aは、受容体結合の標準曲線を提供し、図面12Bは、可溶性受容体の濃度が変動するときの例示モジュレーターの特性を例証し、図面12Cは、受容体の量を一定に保ちながらモジュレーターの濃度を変化させることの結果を証明し、そして図面12D及び12Eは、エフリンA受容体がエフリンA4とエフリンA1リガンドへそれぞれ結合することを阻害する、当該モジュレーターの能力を示す;
図面13A〜13Cは、本発明の選択したモジュレーターの、エフリンA4リガンドのマウス相同分子種(ortholog)と交差反応する能力を例証し、ここで図面13Aは、非反応性モジュレーターを例証して、図面13B及び図面13Cは、交差反応するマウスのモジュレーターとヒト化モジュレーターをそれぞれ例証する;
図面13A〜13Cは、本発明の選択したモジュレーターの、エフリンA4リガンドのマウス相同分子種(ortholog)と交差反応する能力を例証し、ここで図面13Aは、非反応性モジュレーターを例証して、図面13B及び図面13Cは、交差反応するマウスのモジュレーターとヒト化モジュレーターをそれぞれ例証する;
図面14A〜14Dは、エフリンAリガンドの発現が、全結直腸腫瘍試料(図面14A)において、結直腸NTX腫瘍細胞の腫瘍形成性亜集団(図面14B)において、そしてNTX細胞株の腫瘍形成性亜集団(図面14D)において上方調節されているが、正常な末梢血単核細胞(図面14C)上では上方調節されていないことを証明する;
図面14A〜14Dは、エフリンAリガンドの発現が、全結直腸腫瘍試料(図面14A)において、結直腸NTX腫瘍細胞の腫瘍形成性亜集団(図面14B)において、そして肺NTX細胞株の腫瘍形成性亜集団(図面14D)において上方調節されているが、正常な末梢血単核細胞(図面14C)上では上方調節されていないことを証明する;
図面15A〜15Dは、本発明の選択したモジュレーターがエフリンAリガンドとの結合時に内在化する能力を例証し、ここで図面15Aは、3種の例示モジュレーターに関連した蛍光シフトを示し、図面15Bは、19種の開示モジュレーターが内在化を示唆するデルタ平均蛍光強度を示すことを証明し、図面15Cは、EFNA発現が低い細胞では、相対的に内在化がほとんど無いことを示し、そして図面15Dは、高レベルのEFNAを発現する細胞に関連した実質的な内在化を示す;
図面15A〜15Dは、本発明の選択したモジュレーターがエフリンAリガンドとの結合時に内在化する能力を例証し、ここで図面15Aは、3種の例示モジュレーターに関連した蛍光シフトを示し、図面15Bは、19種の開示モジュレーターが内在化を示唆するデルタ平均蛍光強度を示すことを証明し、図面15Cは、EFNA発現が低い細胞では、相対的に内在化がほとんど無いことを示し、そして図面15Dは、高レベルのEFNAを発現する細胞に関連した実質的な内在化を示す;
図面16A〜16Fは、開示モジュレーターが、エフリンAリガンドを発現している細胞へ細胞傷害性ペイロードを指向させる標的化部分として有効に使用し得る(ここでは、下方傾斜曲線により、内在化毒素を介した細胞殺傷が示唆される)ことの証拠を提供し、ここで図面16Aは、モジュレーターSC4.5の殺傷効果を示し、図面16Bは、肺及び皮膚のNTX腫瘍細胞株に内在化して殺傷する、選択したモジュレーターの能力を例証し、図面16C及び16Dは、モジュレーターが会合した細胞毒素HEK293T細胞(図面16C)とHEK−.hEFNA4細胞(図面16D)の中へ運ぶことを示し、図面16Eは、ヒト化モジュレーターが同様に反応することを例証し、そして図面16Fは、マウス又はヒトのエフリンAリガンドを発現している標的細胞の殺傷を証明する(図面16を通して、モジュレーターは、SC4よりむしろEと呼称される場合があることに留意されたい);
図面16A〜16Fは、開示モジュレーターが、エフリンAリガンドを発現している細胞へ細胞傷害性ペイロードを指向させる標的化部分として有効に使用し得る(ここでは、下方傾斜曲線により、内在化毒素を介した細胞殺傷が示唆される)ことの証拠を提供し、ここで図面16Aは、モジュレーターSC4.5の殺傷効果を示し、図面16Bは、肺及び皮膚のNTX腫瘍細胞株に内在化して殺傷する、選択したモジュレーターの能力を例証し、図面16C及び16Dは、モジュレーターが会合した細胞毒素をHEK293T細胞(図面16C)とHEK−.hEFNA4細胞(図面16D)の中へ運ぶことを示し、図面16Eは、ヒト化モジュレーターが同様に反応することを例証し、そして図面16Fは、マウス又はヒトのエフリンAリガンドを発現している標的細胞の殺傷を証明する(図面16を通して、モジュレーターは、SC4よりむしろEと呼称される場合があることに留意されたい);
図面16A〜16Fは、開示モジュレーターが、エフリンAリガンドを発現している細胞へ細胞傷害性ペイロードを指向させる標的化部分として有効に使用し得る(ここでは、下方傾斜曲線により、内在化毒素を介した細胞殺傷が示唆される)ことの証拠を提供し、ここで図面16Aは、モジュレーターSC4.5の殺傷効果を示し、図面16Bは、肺及び皮膚のNTX腫瘍細胞株に内在化して殺傷する、選択したモジュレーターの能力を例証し、図面16C及び16Dは、モジュレーターが会合した細胞毒素をHEK293T細胞(図面16C)とHEK−.hEFNA4細胞(図面16D)の中へ運ぶことを示し、図面16Eは、ヒト化モジュレーターが同様に反応することを例証し、そして図面16Fは、マウス又はヒトのエフリンAリガンドを発現している標的細胞の殺傷を証明する(図面16を通して、モジュレーターは、SC4よりむしろEと呼称される場合があることに留意されたい);
図面16A〜16Fは、開示モジュレーターが、エフリンAリガンドを発現している細胞へ細胞傷害性ペイロードを指向させる標的化部分として有効に使用し得る(ここでは、下方傾斜曲線により、内在化毒素を介した細胞殺傷が示唆される)ことの証拠を提供し、ここで図面16Aは、モジュレーターSC4.5の殺傷効果を示し、図面16Bは、肺及び皮膚のNTX腫瘍細胞株に内在化して殺傷する、選択したモジュレーターの能力を例証し、図面16C及び16Dは、モジュレーターが会合した細胞毒素をHEK293T細胞(図面16C)とHEK−.hEFNA4細胞(図面16D)の中へ運ぶことを示し、図面16Eは、ヒト化モジュレーターが同様に反応することを例証し、そして図面16Fは、マウス又はヒトのエフリンAリガンドを発現している標的細胞の殺傷を証明する(図面16を通して、モジュレーターは、SC4よりむしろEと呼称される場合があることに留意されたい);
図面17A〜17Eは、分泌されたエフリンAリガンドに指向する開示モジュレーターの能力を証明する生化学アッセイの様々な側面のグラフ表示であり、ここで図面17Aは、標準曲線を提供し、図面17Bは、選択した血液系腫瘍より分泌されたEFNAのレベルを定量し、図面17Cは、腫瘍量と分泌されたEFNAの相関性を提示し、図面17Dは、健常成人中の循環エフリンAリガンドの範囲を確定し、そして図面17Eは、選択した固形腫瘍のある患者が有意により高いレベルの循環エフリンAリガンドを有することを証明する;
図面17A〜17Eは、分泌されたエフリンAリガンドに指向する開示モジュレーターの能力を証明する生化学アッセイの様々な側面のグラフ表示であり、ここで図面17Aは、標準曲線を提供し、図面17Bは、選択した血液系腫瘍より分泌されたEFNAのレベルを定量し、図面17Cは、腫瘍量と分泌されたEFNAの相関性を提示し、図面17Dは、健常成人中の循環エフリンAリガンドの範囲を確定し、そして図面17Eは、選択した固形腫瘍のある患者が有意により高いレベルの循環エフリンAリガンドを有することを証明する;
図面18A〜18Cは、様々なエフリンAリガンドモジュレーターが、細胞傷害性ペイロードを選択した細胞と会合させる標的化部分として使用することができる(ここでは、下方傾斜曲線により、内在化毒素を介した細胞殺傷が示唆される)ことを例証するグラフ表示であり、そしてここで図面18A〜18Cは、エフリンA4リガンド(図面18A)、エフリンA3リガンド(図面18B)、及びエフリンA1リガンド(図面18C)を過剰発現しているHEK293T細胞の結合サポリン(Saporin)存在下での殺傷に媒介する、モジュレーターSC4.2.1(又はE2.1)とSC9.65(又は9M065)の能力を具体的に証明する;
図面19A及び19Bは、数多くのEPHA受容体と選択的に相互作用するエフリンAリガンドの能力を例証し、ここでHEK293T細胞は、内因的に発現されるエフリンAリガンドを介して、EPHA−ECD−Fc受容体構築体へ限られた度合いでのみ結合し(図面19A)、一方、HEK293T.hEFNA4細胞は、結合しないEPHA1以外は、試験したすべてのEPHA受容体構築体へ様々な度合いで結合する(図面19B);及び
図面20A及び20Bは、EPHB受容体と選択的に相互作用するエフリンAリガンドの能力を例証し、ここでHEK293T細胞は、内因的に発現されるエフリンAリガンドを介して、EPHB−ECD−Fc受容体構築体へ限られた度合いでのみ結合し(図面20A)、一方、HEK293T.hEFNA4細胞は、EphB2受容体へ結合するが、EphB3受容体とEphB4受容体へは結合しない(図面20B)。

0033

I.序論
本発明は、多くの異なる形態で具現化され得るが、本明細書に開示するのは、本発明の諸原理を具体化する、本発明の例示の具体的態様である。本発明が例証される具体的態様に限定されないことが強調されるべきである。さらに、本明細書に使用するどのセクション見出しも、編成上の目的のみのためであって、記載される主題を限定するものと解釈してはならない。

0034

先に述べたように、驚くべきことに、エフリンAリガンド(又はEFNA)の発現が新生物増殖と過剰増殖性障害に関連していること、そしてそのようなリガンドが関連疾患の治療に利用し得る有用な腫瘍マーカーを提供することが見出された。より具体的には、本明細書に開示するようなEFNAモジュレーターが、有利にも、その必要な被検者における新生物障害の診断、セラグノーシス(theragnosis)、治療、又は予防に使用し得ることが発見された。従って、本発明の好ましい態様について、特に癌幹細胞と開示モジュレーターとのその相互作用の文脈で、以下に広汎に考察するが、当業者は、本発明の範囲がそのような例示態様によって限定されないことを理解されよう。むしろ、本発明と付帯の特許請求項は、どの特別な作用機序にも、特異的に標的化される腫瘍成分にも拘ることなく、EFNAモジュレーターと、新生物障害又は過剰増殖性障害が含まれる、多様なEFNA関連障害又はEFNA媒介障害の診断、セラグノーシス、治療、又は予防におけるそれらの使用へ概括的かつ明白に向けられる。

0035

さらに、多くの先行技術の開示とは対照的に、本発明は、エフリン受容体(即ち、EPH)モジュレーターではなく、エフリンリガンドモジュレーター(即ち、EFN)へ主に向けられる。即ち、エフリン受容体が数種の障害との関連が広く示唆されて、概して治療的介入の標的とされてきたのに対し、エフリンリガンドはこれまでさほど注意を惹いてこなかった。これは、一部は、そのリガンドに起因する雑多な挙動の結果であろうし、それらを筋道の通らない治療標的とするそのような多様な相互作用は、余剰経路のためにあらゆるリガンド拮抗作用を相殺するはずだとする誤った信念の結果であろう。しかしながら、本明細書において証明されるように、開示されるエフリンAリガンドモジュレーターは、効果的に、腫瘍形成細胞に標的指向して、それを消失させるか又は他の方法で無能力化するために使用することができる。さらに、選択態様において、本発明は、1種より多いエフリンAリガンドと会合又は反応して、それによって1種より多いエフリンリガンド媒介経路の静止を可能にし得る、予期せぬ相加又は相乗効果を提供する汎EFNAモジュレーターを含む。

0036

直前に考察した一般的な会合とは別に、本発明者は、選択した「腫瘍始原細胞」(TIC)とエフリンAリガンドの間のこれまで知られていなかった表現型的な会合をさらに発見した。この点に関して言えば、選択したTICでは、正常組織及び非腫瘍形成細胞(NTG)(一緒に固形腫瘍の多くを含む)と比べるときに、上昇レベルのエフリンAリガンドが発現されていることが見出された。このように、エフリンAリガンドは、腫瘍関連マーカー(又は抗原)を含んで、細胞表面上又は腫瘍微小環境中のこのタンパク質の上昇レベルの故に、TICと関連新生物との検出及び抑制に有効な薬剤を提供することが見出された。より具体的には、EFNAモジュレーターは、このタンパク質と会合又は反応する免疫反応性のアンタゴニスト及び抗体を含めて、腫瘍始原細胞の頻度を有効に低下させて、それ故に、腫瘍始原細胞を消失させ、無能化し、低下させ、その分化を促進し、あるいは他の方法で、これらの腫瘍始原細胞の患者の中での潜伏能力、及び/又は腫瘍の増殖、転移、又は再発を促すことを続ける能力を排除するか又は制限するのに有用であることがさらに発見された。下記により詳しく考察するように、TIC腫瘍細胞の亜集団は、腫瘍永続化細胞(TPC)と高増殖性腫瘍始原細胞(TProg)からなる。

0037

上記の発見に鑑みて、当業者は、さらに本発明がEFNAモジュレーターと腫瘍始原細胞の頻度を低下させることにおけるそれらの使用を提供することを理解されよう。以下に広汎に考察するように、本発明のEFNAモジュレーターは、エフリンAリガンド又はその遺伝子を認識する、それと反応する、競合する、拮抗する、相互作用する、結合する、それを作動させる、又はそれと会合するどの化合物も概括的に含む。これらの相互作用によって、EFNAモジュレーターは、それにより腫瘍始原細胞の頻度を低下させるか又は適度にする。本明細書に開示する例示のモジュレーターは、ヌクレオチドオリゴヌクレオチドポリヌクレオチドペプチド、又はポリペプチドを含む。ある好ましい態様において、選択されるモジュレーターは、EFNAに対する抗体又はその免疫反応性断片若しくは誘導体を含むであろう。そのような抗体は、本質的に拮抗性であっても作動性であってもよく、場合により、細胞傷害剤とコンジュゲートしても会合してもよい。他の態様において、本発明内のモジュレーターは、エフリンAリガンド又はその反応性断片を含んでなるEFNA構築体を含むであろう。そのような構築体は、融合タンパク質を含んでよくて、免疫グロブリン又は生物学的応答調節物質のような他のポリペプチド由来の反応性ドメインを含み得ることが理解されるであろう。なお他の側面において、EFNAモジュレーターは、所望の効果をゲノムレベルで発揮する核酸アセンブリーを含むであろう。本教示と適合可能な更なる他のモジュレーターについては、下記に詳しく考察する。

0038

どの形態のモジュレーターが最終的に選択されたとしても、それは、被検者への導入に先立って、好ましくは、単離及び精製された状態にある。この点に関して、「単離(された)EFNAモジュレーター」という用語は、広義に解釈されて、標準の薬務に従って、望まれない混在物質(生物学的又は他の)が実質的に存在しない状態で該モジュレーターを含んでなるあらゆる調製物又は組成物を意味するように解釈されよう。以下にやや詳しく考察するように、上記の調製物は、当該技術分野で認められた様々な技術を使用して、所望のように精製及び製剤化してよい。当然ながら、そのような「単離」調製物は、最終製品の市販、製造、又は療法上の側面を改善して医薬組成物を提供するために所望されるように、活性又は不活性成分とともに意図的に製剤化又は複合化してよいと理解されるであろう。

0039

II.EFNAの生理学
I型膜貫通タンパク質であるエフリン受容体チロシンキナーゼ(EPH)は、動物ゲノム内で最大の受容体チロシンキナーゼのファミリーを含み、やはり細胞表面に会合しているエフリンリガンド(EFN)と相互作用する。EPHサブファミリー中の受容体は、典型的には、単一のキナーゼドメイン、並びにCysリッチドメイン及び2つのフィブロネクチンIII型リピートを含有する細胞外領域を有する。慣例によれば、エフリン受容体は、その細胞外ドメイン配列とエフリンAリガンド及びエフリンBリガンドへ結合するそれらの親和性の類似性に基づいて、2つの群へ分けられる。これまでの研究は、EPH媒介性シグナル伝達事象が、特に神経系において、胚発生の多重の側面を制御して、細胞の付着、形状、及び移動性を調節する細胞間連絡の重要なメディエーターであることを示した。さらに、エフリン受容体ファミリーの多くのメンバーは、エフリンリガンドとは対照的に、癌の発症及び進行の重要なマーカー及び/又は制御因子として同定されてきた。今日まで、9種のエフリンA受容体と6種のエフリンB受容体が知られている。

0040

本出願の目的のために、「エフリン受容体」、「エフリンA受容体」、「エフリンB受容体」、「EPHA」又は「EPHB」(又は、EphA又はEphB)という用語は、可換的に使用してよく、文脈によって指示されるように、特定のファミリー、サブファミリー、又は個別の受容体(即ち、EPHA1、EPHA2、EPHA3、EPHA4、EPHA5、EPHA6、EPHA7、EPHA8、EPHA9、EPHB1、EPHB2、EPHB3、EPHB4、EPHB5、EPHB6)を意味するものとする。

0041

配列分析に基づいて、エフリンリガンドは、2つの群へ分けることができる:典型的には、グリコシルホスファチジルイノシトール連結を介して細胞表面へ繋留される6種のエフリンAリガンド(又はEFNA)(但し、エフリンmRNA選択的スプライシングによって産生される非GPI繋留タンパク質もある;例、EFNA4)と、膜貫通ドメイン並びに保存されたチロシン残基及びPDZ結合モチーフがある短い細胞質領域を含有する3種のエフリンBリガンド(又はEFNB)とである。EFNAリガンドが9種の異なるEPHA受容体のいずれとも選好的に相互作用するのに対し、EFNBリガンドは、6種の異なるEPHB受容体のいずれとも選好的に相互作用するが、いくつかの特異的なEFNA−EPHB及びEFNB−EPHAの交差相互作用も報告されている。

0042

本出願の目的のために、「エフリンリガンド」、「エフリンAリガンド」、「エフリンBリガンド」、「EFNA」又は「EFNB」という用語は、可換的に使用してよく、文脈によって指示されるように、特定のファミリー、サブファミリー、又は個別のリガンド(即ち、EFNA1、EFNA2、EFNA3、EFNA4、EFNA5、EFNA6、EFNB1、EFNB2、EFNB3)を意味するものとする。例えば、「エフリンA4」、「エフリンA4リガンド」、又は「EFNA4」という用語は、同じファミリーのタンパク質アイソフォーム(例えば、図面1Cに示されるような)を意味し、一方、「エフリンAリガンド」及び「ENFA」という用語は、全6種のA型リガンドとそのあらゆるアイソフォームを含んでなるエフリンサブファミリー(即ち、Bに対するA)を意味するものとする。この点に関して言えば、「エフリンAモジュレーター」、「エフリンAリガンドモジュレーター」、又は「EFNAモジュレーター」は、1以上のA型リガンド若しくはアイソフォーム、又はその断片若しくは誘導体と会合、結合、又は反応するあらゆるモジュレーター(本明細書に定義されるような)を意味する。

0043

エフリン受容体及びリガンドの命名法のより詳しい要約を直下の表1に見出すことができる。

0044

0045

すべての細胞表面受容体−リガンド相互作用と同様に、エフリンリガンドによるエフリン受容体の会合(engagement)は、最終的には、細胞内シグナル伝達カスケードの活性化をもたらす。受容体−リガンド相互作用は、同じ細胞の表面上の分子間で起こり得る(シス相互作用)が、一般的には、シス相互作用は、シグナル伝達カスケードの誘発に通じないか、或いはシス相互作用は、トランス相互作用(例えば、別々の細胞上の受容体とリガンドの間での)によって始動されるシグナル伝達カスケードに実際は拮抗しない場合があると考えられている。EPH−EFNトランス相互作用の1つの独特な側面は、受容体−リガンド会合時に2つのシグナル伝達カスケード(エフリン受容体を発現している細胞中の前方シグナル伝達カスケードと、エフリンリガンドを発現している細胞中の後方シグナル伝達カスケード)の引き金となる能力である。この2種の別々のシグナル伝達カスケードの活性化は、動物の胚発生において調整するようにEPHとEFNが進化させてきた細胞選別及び細胞定位のプロセスを反映するのかもしれない。

0046

EPH−EFNシグナル伝達は、細胞骨格の動態を調節する細胞シグナル伝達経路を頻繁に活性化して、異なる種類の細胞間の付着及び反発の相互作用の調節をもたらす。一般的なこととして、EPH及びEFNタンパク質は、成体組織において観測されるレベルに対してずっと高いレベルで、胚発生の間に見出されるが、成体にあっても低レベルの発現が継続していることは、成体の腸管(分化途上の細胞が腸陰窩中の組織幹細胞でのその供給源から腸管腔に対面する柔突起の表面にあるその最終位置へ移動することより生じる、明確化された構造を有する)のような組織の正常な機能におけるこれら分子の役割を反映するのかもしれない。エフリン受容体は、最初に、肝細胞癌において確認されて、EPH及びEFNの発現は、典型的には成体に限られているので、ヒト癌におけるエフリンリガンド及び/又はエフリン受容体の発現の再活性化は、癌細胞の脱分化、及び/又は周囲の正常組織に浸潤して原発性腫瘍の部位から離れた場所へ移動するこれら癌細胞の能力に関連する可能性がある。他の研究成果は、EPH−EFN相互作用が血管新生にも何らかの役割があることを示唆している。

0047

非リンパ系組織におけるEPH−EFN相互作用が、インテグリンと細胞骨格との再配列を介して細胞間の付着力又は反発力を産生することによって細胞の相互作用を調節するという知見に一致して、リンパ系細胞上で見出されるEPH及びEFN分子は、細胞外マトリックス成分への細胞付着、走化性、及び細胞遊走を媒介することが示されてきた。例えば、EFNA1(EphA2受容体へ結合して、例えば、Genbankアクセッション番号:NM_004428にあるようなアミノ酸配列を含む)の原発性CD4及びCD8T細胞上での参画(engagement)は、細胞遊走を刺激して、走化性を高めることが見出された。EFNA1のように、EFNA4は、原発性CD4T細胞上で発現されるが、EPH−EFN相互作用の雑多性のために、EFNA4の参画がこれらの細胞に対して類似の影響を及ぼすかどうかは不明である。しかしながら、成熟したヒトBリンパ球がEFNA4を発現して、活性時にそれを分泌することは証明されている。さらに、EFNA4は、他のどのEFN又はEPH分子とも異なり、慢性リンパ球性白血病(CLL)患者のB細胞上でも、又はそれによっても定常的に発現されている。興味深いことに、Q−PCRによって測定されるようなEFNA4アイソフォームの発現は、この疾患の臨床症状と相関する場合がある。また、CLL患者由来のB細胞(EFNA4の発現が増加していることが知られている)は、健常個体由来のB細胞と比較して、経内皮遊走能障害を示した。EFNA4の参画は、細胞外マトリックス分子へ付着するCLL細胞の能力を低下させて、CCL1に対するその走化性応答を低下させたようである。まとめてこれらの報告は、B及びT細胞の膜輸送におけるEFNA4の役割を示唆して、上記に考察した細胞内シグナル伝達データと組み合わせて視ると、エフリンAリガンド、そして特にEFNA4を、抗癌治療剤の開発にとってきわめて興味深い標的とする。

0048

上述の特徴に加えて、本開示は、EFNA4の発現が様々な癌幹細胞集団において上昇していることを証明する。バルク腫瘍においていくつかのEPHA受容体が同時に上方調節されていることと一致して、このことは、EFNA4媒介性リガンド受容体相互作用が、腫瘍増殖、血管新生、及び/又は腫瘍転移に関連した細胞シグナル伝達カスケードの引き金になり得るという可能性を提起する。ある特別な理論によって束縛されることを望まないが、本発明のEFNA4モジュレーター(特に、拮抗性又は中和性の態様)は、少なくとも一部は、腫瘍始原細胞頻度を低下させるか又は消失させるかのいずれかによって、従来の標準的な治療法レジメン(例、イリノテカン)とは異なる様式で、又は免疫療法的なシグナル伝達を介して、又はEFNA4発現細胞を殺傷することが可能なペイロードを送達することを介して、腫瘍の増殖又は生存に干渉することによって作用すると考えられている。例えば、EFNA4に拮抗することによるTPCの消失には、増殖性の細胞を消失させる化学療法レジメン対抗して細胞増殖を単に促進すること、又はTPCの自己再生(即ち、無限の増殖と多能性の維持)能力が失われるようにその分化を促進することを含めてよい。あるいは、好ましい態様では、EFNA4発現細胞を攻撃する細胞傷害性T細胞動員、又は抗EFNA4抗体へコンジュゲートした、内在化することができる強力な毒素の送達によって、TPCを選択的に殺傷するか又は他の方法で無能化することができる。

0049

本明細書に使用するように、EFNA4(eph関連キナーゼ4のリガンド、LERK4;又はeph関連受容体チロシンキナーゼリガンド4、EFL−4としても知られる)という用語は、文脈により他に指定されなければ、天然に存在するヒトEFNA4を意味する。代表的なEFNA4タンパク質の相同分子種には、限定されないが、ヒト(即ち、hEFNA4、NP_005218、NP_872631、又はNP_872632)、マウス(NP_031936)、チンパンジー(XP_001153095、XP_001152971、XP_524893、及びXP_001152916)、及びラット(NP_001101162)のものが含まれる。転写されるヒトEFNA4遺伝子は、第一染色体由来の最低でも5817のbp(塩基対)を含む。3種のmRNA転写物変異体がこれまでに記載されてきた(このそれぞれは、転写されるRNAの選択的スプライシングより生じる):(1)201アミノ酸のプロタンパク質(NP_005218;EFNA4変異体a;配列番号2)をコードする、1276bp変異体(NM_005227;EFNA4転写物変異体1;配列番号1);(2)207アミノ酸プロタンパク質(NM_872631;EFNA4変異体b;配列番号3)をコードする、1110bp変異体(NM_182689;EFNA4転写物変異体2);及び(3)193アミノ酸プロタンパク質(NP_872632;EFNA4変異体c;配列番号4)をコードする、1111bp変異体(NM_182690;EFNA4転写物変異体3)。このヒトEFNA4タンパク質のそれぞれには、脱落してこのタンパク質の成熟型(即ち、168〜182aa)をもたらす、配列番号2のアミノ酸1〜25を含んでなる、予測されるシグナル又はリーダー配列が含まれることが理解されよう。このシグナルペプチドは、このポリペプチドを細胞表面/分泌経路へ標的化する。このタンパク質のコード配列に対する続発的な結果を伴うmRNAの選択的スプライシングにより、このタンパク質のアイソフォームは、細胞によって異なるプロセシングを受けて、アイソフォームaは、膜局在化して、グリコシルホスファチジルイノシトール(GPI)連結によって細胞表面へ繋留され、一方アイソフォームb及びcは、GPI繋留シグナル配列欠くので、その細胞によって分泌されると予測される。ヒトEFNA4の3種のタンパク質アイソフォームのアラインメントを図面1Cに示す。先に示したように、直接の言及又は文脈の必要性によって他に示さなければ、EFNA4という用語は、ヒトEFNA4のアイソフォームaと免疫反応性の同等物を指すものとする。この用語は、抗体又は免疫反応性断片が特異的に結合し得るエピトープを含有する、EFNA4のネイティブ型又は変異型の誘導体又は断片も意味する場合があることがさらに理解されよう。

0050

III.腫瘍永続化細胞
先行技術の教示とは対照的に、本発明は、腫瘍始原細胞、そして特に腫瘍永続化細胞に標的指向して、それによって新生物障害の治療、管理、又は予防を促進するのに特に有用であるEFNAモジュレーターを提供する。より具体的には、先に示したように、驚くべきことに、特定の腫瘍細胞亜集団は、EFNAを発現して、癌幹細胞の自己再生と細胞の生存に重要なモルフォゲンシグナル伝達の局在化調整を変化させる可能性があることが見出された。このように、好ましい態様では、EFNAのモジュレーターを本教示に従って使用して、腫瘍始原細胞頻度を低下させて、それによって過剰増殖性疾患の治療又は管理を促進することができる。

0051

本明細書に使用するように、腫瘍始原細胞(TIC)という用語には、腫瘍永続化細胞(TPC;即ち、癌幹細胞又はCSC)と高増殖性腫瘍始原細胞(TProgと呼ばれる)がともに含まれて、これらは一緒に、バルク腫瘍又は塊の独自の亜集団(即ち、0.1〜40%)を概ね含む。本開示の目的では、腫瘍永続化細胞及び癌幹細胞という用語は、同等であって、本明細書において可換的に使用してよい。逆に、TPCは、腫瘍内部に存在する腫瘍細胞の組成を完全に再現し得て、少数の単離細胞の連続移植(マウスを介した2回以上の継代)によって証明されるような無制限の自己再生能力を有する点で、TProgとは異なる。下記により詳しく考察するように、適正な細胞表面マーカーを使用する蛍光活性化細胞選別(FACS)は、少なくとも一部は、単一の細胞と細胞の塊(即ち、ダブレット等)を識別するその能力の故に、高度に濃縮した細胞亜集団(99.5%より高い純度)を単離するのに信頼し得る方法である。そのような技術を使用して、少ない細胞数の高度精製TProg細胞が免疫不全マウスへ移植されるときに、それらが一次移植体中の腫瘍増殖を促すことができることが示された。しかしながら、精製されたTPC亜集団とは異なり、TProg産生腫瘍は、表現型の細胞異種性において親腫瘍を完全には反映せず、後続の移植体において連続した腫瘍形成を再始動させることが明らかに非効率である。対照的に、TPC亜集団は、親腫瘍の細胞異種性を完全に再構成して、連続的に単離及び移植されるときに、腫瘍を効率的に始動させることができる。このように、当業者は、いずれも一次移植体において腫瘍を産生し得ても、TPCとTProgの間には明確な違いがあって、それは、少ない細胞数での連続移植時に異種な腫瘍増殖を永続的に促進するTPC独自の能力であることを認められよう。TPCの特性決定をするための他の通常のアプローチは、形態学と、細胞表面マーカー、転写プロフィール、及び薬物応答の検証に関連するが、マーカーの発現は、培養条件と in vitro での継代細胞株で変化する場合がある。

0052

従って、本発明の目的では、腫瘍永続化細胞は、正常組織において細胞の階層構造支える正常幹細胞と同様に、好ましくは、多系統分化の能力を維持しながら無限に自己再生するその能力によって定義される。このように、腫瘍永続化細胞は、腫瘍形成性子孫(即ち、腫瘍始原細胞:TPC及びTProg)と非腫瘍形成性(NTG)子孫をともに産生することが可能である。本明細書に使用するように、非腫瘍形成細胞(NTG)は、腫瘍始原細胞より生じるが、それ自体では自己再生する能力も腫瘍を含む異種な系統の腫瘍細胞を産生する能力も有さない、腫瘍細胞を意味する。実験的には、NTG細胞は、過剰の細胞数で移植されるときでも、マウスにおいて腫瘍を再現可能的に形成することができない。

0053

示したように、TProgは、マウス中で腫瘍を産生するその限られた能力により、腫瘍始原細胞(又はTIC)としても分類される。TProgは、TPCの子孫であって、典型的には、有限回の非自己再生性の細胞分裂が可能である。さらに、TProg細胞は、初期腫瘍始原細胞(ETP)と後期腫瘍始原細胞(LTP)へさらに分割される場合があり、このそれぞれは、表現型(例、細胞表面マーカー)と腫瘍細胞構造を再現する能力の差によって識別され得る。そのような技術上の差異にも拘らず、ETPとLTPはともに、少ない細胞数で移植されるときに腫瘍を連続的に再構成することが概ね不可能であって、典型的には、親腫瘍の異種性を反映しないという点で、TPCとは機能的に異なる。上述の差異にも拘らず、様々なTProg集団が、稀な場合に、通常は幹細胞に起因する自己再生能力を獲得して、それ自体でTPC(又はCSC)になることが可能であることも示されてきた。いずれにしても、一人の患者の典型的な腫瘍塊には、両方の種類の腫瘍始原細胞が現れる可能性があって、本明細書に開示するモジュレーターでの治療の影響を受ける。即ち、開示される組成物は、腫瘍に表れる特別な態様又は混在に拘らず、このようなEFNA陽性腫瘍始原細胞の頻度を低下させるか又はその化学療法感受性を変化させるのに概ね有効である。

0054

本発明の文脈では、TPCは、TProg(ETPとLTPの両方)、NTG細胞、及び腫瘍のバルクを含む腫瘍浸潤性非TPC由来細胞(例、線維芽細胞間質細胞内皮及び造血細胞)より腫瘍形成性であって、相対的により不活動性であって、より化学療法抵抗性であることが多い。慣用の療法及びレジメンが、大部分は、腫瘍を減量させるとともに増殖中の細胞を速やかに攻撃するように設計されてきたとすれば、TPCは、慣用の療法及びレジメンに対して、より速く増殖中のTProgや他のバルク腫瘍細胞集団よりも、抵抗性になる可能性がある。さらに、TPCは、慣用の療法に対してそれらを相対的に化学療法抵抗性にする、多剤耐性輸送体発現増加DNA修復機序の増強、及び抗アポトーシスタンパク質といった他の特徴をしばしば発現する。そのそれぞれがTPCによる薬剤耐性に寄与するこれらの特性は、標準腫瘍学治療レジメンが進行期の新生物を担うほとんどの患者に長期の利益を保証することができないこと、即ち、継続した腫瘍の増殖及び再発を促すそれらの細胞(即ち、TPC又はCSC)に充分に標的指向してそれらを根絶することができないことの主要な理由を構成する。

0055

上述した先行技術の治療法の多くと異なり、本発明の新規組成物は、好ましくは、選択したモジュレーターの形態又は特定の標的(例、遺伝物質、EFNA抗体、又はリガンド融合構築体)に拘らず、被検者への投与時に、腫瘍始原細胞の頻度を低下させる。上記に注目したように、腫瘍始原細胞頻度の低下は、a)腫瘍始原細胞の消失、枯渇、増感、沈静化、又は阻害;b)腫瘍始原細胞の増殖、拡張、又は再発を制御すること;c)腫瘍始原細胞の始動、伝播、維持、又は増殖を妨害すること;又はd)他の方法で、腫瘍形成細胞の生存、再生、及び/又は転移を妨げることの結果として起こり得る。いくつかの態様において、腫瘍始原細胞の頻度の低下は、1以上の生理学的経路における変化の結果として起こる。この経路の変化は、腫瘍始原細胞の低下又は消失によっても、それらの潜在能力(例、分化誘導、ニッチ破壊)を変化させるか又は、腫瘍環境又は他の細胞に対して影響を及ぼすそれらの能力に他の方法で干渉することによっても、腫瘍形成、腫瘍維持、及び/又は転移と再発を阻害することによって、EFNA関連障害のより有効な治療を同様に可能にする。

0056

このような腫瘍始原細胞の頻度の低下を評価するために使用し得る方法には、in vitro 又は in vivo のいずれかの限界希釈分析があり、好ましくは、ポアソン分布統計を使用する計数、又は in vivo で腫瘍を産生する能力の有無といった、既定義の決定的な事象の頻度を評価することをそれに続ける。そのような限界希釈分析は、腫瘍始原細胞頻度の低下を計算する好ましい方法であるが、他のさほど厳密でない方法も、やや正確ではないとしても、所望の数値を有効に決定するために使用し得て、本明細書の教示と全く適合可能である。このように、当業者によって理解されるように、頻度値の低下をよく知られたフローサイトメトリー又は免疫組織化学の手段により決定することも可能である。上述のすべての方法に関しては、例えば、そのそれぞれが参照により本明細書に組み込まれる、Dylla et al. 2008, PMCID: PMC2413402 及び Hoey et al. 2009,PMID: 19664991 を参照のこと。

0057

限界希釈分析に関して言えば、コロニー形成を助長する in vitro 増殖条件の中へ分画又は未分画いずれかのヒト腫瘍細胞(例えば、それぞれ、処置済み又は未処置の腫瘍に由来する)を沈着させることによって、腫瘍始原細胞頻度の in vitro計数を達成することができる。この方法では、コロニーの単純なカウンティング及び特性決定によっても、例えば、系列希釈液のプレート中へのヒト腫瘍細胞の沈着と、各ウェルについてコロニー形成が陽性又は陰性かをプレート培養後少なくとも10日間採点することからなる分析によっても、コロニー形成細胞を計数することができる。腫瘍始原細胞頻度を決定するその能力が概してより正確である、in vivo の限界希釈実験又は分析には、未処置対照又は処置条件のいずれかに由来のヒト腫瘍細胞を、例えば免疫不全マウスの中へ系列希釈液で移植した後で、各マウスについて腫瘍形成が陽性又は陰性かを移植後少なくとも60日間採点することが含まれる。in vitro 又は in vivo での限界希釈分析による細胞頻度値の導出は、好ましくは、ポアソン分布統計を陽性及び陰性事象の既知頻度へ適用して、それにより陽性事象(この場合は、それぞれ、コロニー又は腫瘍の形成)の定義を満たす事象の頻度を提供することによって行う。

0058

腫瘍始原細胞頻度を計算するために使用し得る、本発明と適合可能な他の方法に関して言えば、ごく普通の方法は、定量可能なフローサイトメトリー技術と免疫組織化学染色手順を含む。直前に記載した限界希釈分析技術ほど正確ではないが、これらの手順は、ずっと労働集約的ではなくて、妥当な数値を相対的に短い時間枠で提供する。このように、当業者は、腫瘍始原細胞について濃縮することが知られている、当該技術分野で認められた細胞表面タンパク質(例えば、下記の実施例1で説明するような、潜在的に適合可能なマーカー)と結合する1以上の抗体又は試薬を利用して、それによって様々な試料由来のTICレベルを測定する、フローサイトメトリー細胞表面マーカープロフィール決定法を使用し得ることが理解されよう。なお別の適合可能な方法において、当業者は、これらの細胞を区別すると考えられる細胞表面タンパク質へ結合することが可能である1以上の抗体又は試薬を使用する免疫組織化学によって、TIC頻度を in situ で(例えば、組織切片において)計数することができよう。

0059

従って、上記に参照した方法のいずれを使用しても、本明細書の教示に従って、開示されるEFNAモジュレーター(細胞傷害剤へコンジュゲートしたものを含めて)によって提供されるTIC(又はその中のTPC)の頻度の低下を定量することが可能である。いくつかの事例において、本発明の化合物は、TICの頻度を(消失、分化誘導、ニッチ破壊、沈静化、等が含まれる、上記に注目した多様な機序によって)10%、15%、20%、25%、30%、又は35%も低下させる場合がある。他の態様において、TICの頻度の低下は、約40%、45%、50%、55%、60%、又は65%のオーダーであり得る。ある態様において、開示される化合物は、TICの頻度を、70%、75%、80%、85%、90%、又は95%も低下させる場合がある。当然ながら、TICの頻度のどの低下も、新生物の腫瘍形成性、永続性、再発、及び攻撃性の対応する低下をもたらす可能性がある。

0060

IV.EFNAモジュレーター
いずれにしても、本発明は、いくつかのEFNA関連悪性腫瘍のいずれもの診断、治療及び/又は予防のためのEFNAモジュレーター(EFNAアンタゴニストが含まれる)の使用へ向けられる。開示モジュレーターは、単独で使用しても、化学療法剤又は免疫療法剤又は生物学的応答調節物質のような多種多様な抗癌化合物と一緒に使用してもよい。他の選択された態様では、2以上の別々のEFNAモジュレーターを組み合わせて使用して増強された抗新生物効果をもたらす場合もあれば、それを使用して多重特異性の構築体を作製する場合もある。

0061

ある態様において、本発明のEFNAモジュレーターは、ヌクレオチド、オリゴヌクレオチド、ポリヌクレオチド、ペプチド、又はポリペプチドを含む。なおより好ましくは、当該モジュレーターは、可溶性EFNA(sEFNA)、又はその形態、変異体、誘導体又は断片を含み、それには、例えば、EFNA融合構築体(例、EFNA−Fc、EFNA−標的化部分、等)又はEFNA−コンジュゲート(例、EFNA−PEG、EFNA−細胞傷害剤、EFNA−brm、等)が含まれる。また、他の態様において、EFNAモジュレーターは、抗体(例、抗EFNA1又は抗EFNA4 mAb)又はその免疫反応性断片若しくは誘導体を含むと理解される。特に好ましい態様において、本発明のモジュレーターは、中和抗体又はその誘導体若しくは断片を含む。他の態様において、EFNAモジュレーターは、内在化抗体(internalizing antibody)又はその断片を含んでよい。なお他の態様において、EFNAモジュレーターは、枯渇性抗体又はその断片を含んでよい。さらに、上述した融合構築体に関して言えば、これらの抗体モジュレーターは、選択される細胞傷害剤、ポリマー、生物学的応答調節物質(BRM)、等とコンジュゲートする、連結する、又は他の方法で会合して、様々な(そして任意選択的に、多数の)作用機序で、指向される免疫療法を提供することができる。上記に述べたように、そのような抗体は、汎EFNA抗体であって2以上のエフリンAリガンドと会合しても、6種のエフリンAリガンドの1つと選択的に反応する免疫特異抗体であってもよい。なお他の態様において、当該モジュレーターは、遺伝子レベルで機能し得て、アンチセンス構築体、siRNA、マイクロRNA、等といった化合物を含んでよい。

0062

本明細書の教示に基づいて、当業者は、本発明の特に好ましい態様が、sEFNA4又はsEFNA1を含んでも、EFNA4又はEFNA1の一方又は両方と会合する抗体モジュレーターを含んでもよいことを理解されよう。

0063

開示されるEFNAモジュレーターは、選択される経路に作動するか又は拮抗すること、又は、例えば、EFNAモジュレーター、あらゆる会合ペイロード、又は投薬、及び送達法の形態に依存して、特定の細胞を消失させることが含まれる多様な機序を介して、腫瘍細胞(特にTPC)及び/又は関連する新生物を枯渇する、沈静化する、中和する、消失させる、又はその増殖、伝播、又は生存を阻害し得ることがさらに理解されよう。従って、本明細書に開示する好ましい態様は、腫瘍永続化細胞のような特定の腫瘍細胞亜集団の枯渇、阻害、又は沈静化へ向けられるが、そのような態様は、単に例示であって、いかなる意味でも限定的ではないことが強調されなければならない。むしろ、付帯の特許請求項において説明されるように、本発明は、如何なる特別な機序にも標的腫瘍細胞集団にも関係なく、EFNAモジュレーターと、様々なEFNA関連過剰増殖性障害の治療、管理、又は予防におけるそれらの使用へ概括的に向けられる。

0064

同じ意味において、本発明の開示態様は、1以上のEFNAアンタゴニストを含んでよい。そのために、本発明のEFNAアンタゴニストは、EFNAタンパク質又はその断片を認識する、それと反応する、結合する、複合する、競合する、会合する、又は他の方法で相互反応して、腫瘍始原細胞又は他の新生物細胞(バルク腫瘍又はNTG細胞が含まれる)の増殖を消失させる、沈静化する、低下させる、阻害する、妨害する、束縛する、又は制御する、如何なるリガンド、ポリペプチド、ペプチド、融合タンパク質、抗体、又は免疫学的に活性なその断片若しくは誘導体も含んでよいことが理解されよう。選択される態様において、EFNAモジュレーターは、EFNAアンタゴニストを含む。

0065

本明細書に使用するように、アンタゴニストは、特別又は特定のタンパク質の活性(受容体のリガンドへの結合、又は酵素基質との相互作用が含まれる)を中和する、遮断する、阻害する、廃絶する、低下させる、又はそれに干渉することが可能な分子を意味する。より一般的には、本発明のアンタゴニストは、抗体とその抗原結合性断片若しくは誘導体、タンパク質、ペプチド、糖タンパク質糖ペプチド糖脂質多糖オリゴ糖、核酸、アンチセンス構築体、siRNA、miRNA、生体有機分子ペプチド模倣体、薬剤とその代謝産物、転写及び翻訳制御配列、等を含んでよい。アンタゴニストには、該タンパク質へ特異的に結合して、それによってその基質標的へのその結合を隔離する、低分子阻害剤、融合タンパク質、受容体の分子及び誘導体、該タンパク質のアンタゴニスト変異体、該タンパク質へ指向されるアンチセンス分子RNAアプタマー、並びに該タンパク質に対するリボザイムも含めてよい。

0066

本明細書に使用するように、そして2以上の分子又は化合物へ適用されるように、「認識する」又は「会合する」という用語は、それによって一方の分子が他方の分子に対して影響を及ぼす、共有結合的又は非共有結合的な、両分子の反応、結合、特異結合、複合、相互作用、接続、連結、一体化合体合併、又は接合を意味するものとする。

0067

さらに、本発明の実施例において証明するように、ヒトEFNAのモジュレーターには、ある事例において、ヒト以外の種由来の(例、マウスの)EFNAと交差反応するものがある。他の事例において、例示のモジュレーターは、ヒトEFNAの1以上のアイソフォームに特異的であり得、他の種由来のEFNA相同分子種との交差反応性を示さない。当然ながら、本明細書の教示に一致して、そのような態様は、単一の種由来の2以上のエフリンAリガンドと会合する汎EFNA抗体、又は単一のエフリンAリガンドと排他的に会合する抗体を含んでよい。

0068

いずれにしても、そして下記により詳しく考察するように、当業者は、開示モジュレーターをコンジュゲート形態でも非コンジュゲート形態でも使用してよいことを理解されよう。即ち、当該モジュレーターは、医薬活性化合物、生物学的応答調節物質、抗癌剤、細胞傷害剤又は細胞増殖抑制剤、診断部分、又は生体適合可能な修飾剤と(例えば、共有結合的又は非共有結合的に)会合又はコンジュゲートしてよい。この点について言えば、そのようなコンジュゲートは、ペプチド、ポリペプチド、タンパク質、融合タンパク質、核酸分子、低分子、模倣剤、合成薬、無機分子、有機分子、及び放射性核種を含んでよいと理解されよう。さらに、本明細書で示したように、選択したコンジュゲートは、そのコンジュゲーションに影響を及ぼすのに使用される方法に少なくとも一部は依存して、EFNAモジュレーターへ様々なモル比で共有結合的又は非共有結合的に連結してよい。

0069

IV.抗体
a.概説
先に述べたように、本発明の特に好ましい態様は、EFNAモジュレーターを抗体の形態で含む。抗体という用語は最も広義に使用されて、具体的には、合成抗体モノクローナル抗体オリゴクローナル又はポリクローナル抗体マルチクローナル抗体、組換え産生抗体、細胞内抗体、多重特異性抗体、二重特異性抗体一価抗体多価抗体ヒト抗体、ヒト化抗体、キメラ抗体、CDR移植抗体(CDR-grafted antibody)、霊長類化抗体、Fab断片、F(ab’)断片、単鎖FvFcs(scFvFc)、単鎖Fvs(scFv)、抗イディオタイプ(抗Id)抗体、及び(所望される生理活性、即ち、EFNAとの会合又は結合を示す限りにおいて)他のあらゆる免疫学的に活性な抗体断片網羅する。より広義において、本発明の抗体には、免疫グロブリン分子と免疫グロブリン分子の免疫学的に活性な断片(即ち、抗原結合部位を含有する分子)が含まれて、ここでこれらの断片は、限定されないが、Fc領域又はその断片が含まれる、別の免疫グロブリンドメインへ融合してもしなくてもよい。さらに、本明細書においてより詳しく概説されるように、抗体及び抗体(複数)という用語には、具体的には、下記に記載のようなFc変異体が含まれ、完全長の抗体と、Fc領域又はその断片を含んでなり、少なくとも1つのアミノ酸残基修飾を含んでもよく、そして免疫グロブリンの免疫学的に活性な断片へ融合してもよい、変異体Fc融合体が含まれる。

0070

下記により詳しく考察するように、抗体又は免疫グロブリンという一般用語は、生化学的に、そしてその重鎖の定常ドメインのアミノ酸配列に依って、識別することができて、適正なクラスへ容易に帰属させることができる、5種の別個の抗体のクラスを含む。史的な理由のために、インタクト抗体の主要クラスは、IgAIgDIgEIgG、及びIgMと呼ばれる。ヒトでは、IgG及びIgAのクラスが、構造とある種の生化学的特性に依って、認知されたサブクラスアイソタイプ)、即ち、IgG1、IgG2、IgG3、IgG4、IgA1、及びIgA2へさらに分類され得る。ヒトのIgGアイソタイプは、血清中のその豊富さの順で命名されて、IgG1が最も豊富であることが理解されよう。

0071

全5種の抗体クラス(即ち、IgA、IgD、IgE、IgG、及びIgM)とすべてのアイソタイプ(即ち、IgG1、IgG2、IgG3、IgG4、IgA1、及びIgA2)、並びにその変異体が本発明の範囲内にあるが、IgGクラスの免疫グロブリンを含んでなる好ましい態様について、単に例証の目的のために、やや詳しく考察する。しかしながら、そのような開示は、本発明を実施する例示の組成物及び方法について単に実証するのであって、本発明の範囲又は付帯の特許請求項を決して限定するものではないことを理解されたい。

0072

この点に関して言えば、ヒトIgG免疫グロブリンは、分子量がほぼ23,000ダルトンの2つの同一の軽いポリペプチド鎖と、分子量がアイソタイプに依存して53,000〜70,000である2つの同一の重鎖を含む。抗体の異なるクラスに対応する重鎖定常ドメインは、対応するギリシャ語の小文字、α、δ、ε、γ、及びμによってそれぞれ示される。どの脊椎動物種由来の抗体の軽鎖も、その定常ドメインのアミノ酸配列に基づいて、カッパκ)及びラムダ(λ)と呼ばれる、2つの明らかに別個の型の1つへ帰属させることができる。当業者は、異なるクラスの免疫グロブリンのサブユニット構造及び三次元配置がよく知られていることを理解されよう。

0073

この4本の鎖は、ジスルフィド結合によってY配置で結合して、ここで軽鎖は、重鎖の外側にあって、Yの開口部より始まって、可変領域を通して続いて、Yの両端に至る。それぞれの軽鎖が重鎖へ1つの共有ジスルフィド結合によって連結するのに対し、ヒンジ領域にある2つのジスルフィド連結は、重鎖を結合する。それぞれの重鎖及び軽鎖はまた、一定間隔の鎖内ジスルフィド架橋を有するが、その数は、IgGのアイソタイプに基づいて変動し得る。

0074

それぞれの重鎖は、一端に可変ドメイン(VH)を有し、いくつかの定常ドメインがこれに続く。それぞれの軽鎖は、一端に可変ドメイン(VL)を、そしてその他端に定常ドメインを有し;軽鎖の定常ドメインは、重鎖の第一定常ドメインと並置して、軽鎖可変ドメインは、重鎖の可変ドメインと並置している。この点に関して言えば、軽鎖の可変ドメイン(VL)と重鎖の可変ドメイン(VH)の両方の部分が抗原認識と特異性を決定すると理解される。一方、軽鎖の定常ドメイン(CL)と重鎖の定常ドメイン(CH1、CH2、又はCH3)は、分泌、経胎盤移動性、循環半減期補体結合、等といった重要な生物学的特性を付与して制御する。転換によって、定常領域ドメインの番号付けは、それらが抗体の抗原結合部位又はアミノ末端からより離れるにつれて増加する。このように、抗体のアミノ又はN末端は、可変領域を含み、カルボキシ又はC末端は、定常領域を含む。このように、CH3ドメインとCLドメインは、それぞれ重鎖及び軽鎖のカルボキシ末端を実際に含む。

0075

「可変」という用語は、可変ドメインのある部分が免疫グロブリン間の配列において広範囲に異なっていて、これらのホットスポットが特別な抗体の結合及び特異性の特徴を概ね決定するという事実に関連する。これらの超可変部位は、軽鎖可変ドメインと重鎖可変ドメインの両方において、相補性決定領域(CDR)として知られる、それぞれ3つのセグメントで出現する。CDRの近傍にある可変ドメインのより高度に保存された部分は、フレームワーク領域(FR)と呼ばれる。より具体的には、天然に存在する単量体IgG抗体において、抗体の各アームに存在するこの6つのCDRは、抗体が水性環境においてその三次元構造をとるときに、抗原結合部位を形成するように特異的に定位される、アミノ酸の短い不連続配列である。

0076

重鎖及び軽鎖の可変ドメインの残りを含んでなるフレームワーク領域は、アミノ酸配列において、より少ない分子間変動性を示す。むしろ、フレームワーク領域は、概ねβシートコンホメーションを採って、CDRは、このβシート構造に連結して、ある場合はその一部となるループを形成する。このように、これらのフレームワーク領域は、6つのCDRを非共有結合性の鎖間相互作用によって正確な配向で定位することをもたらす骨格を形成するように作用する。この定位されたCDRによって形成される抗原結合部位は、免疫反応性抗原(即ち、EFNA4)上のエピトープに対する表面相補性を決定する。この相補的な表面は、免疫反応性抗原エピトープに対する抗体の非共有結合を促進する。CDRの位置は、当業者によって容易に確定され得ると理解されよう。

0077

下記により詳しく考察するように、そして付帯の「実施例」において示すように、有効な抗体を提供するために、標準の組換え及び発現技術を使用して、重鎖及び軽鎖の可変領域の全部又は一部を再結合又は工学処理してよい。即ち、第一抗体(又はそのあらゆる部分)由来の重鎖又は軽鎖可変領域を、第二抗体由来の重鎖又は軽鎖可変領域のどの選択される部分とも混合して適合させてよい。例えば、1つの態様では、第一抗体の3つの軽鎖CDRを含んでなる軽鎖可変領域全体を、第二抗体の3つの重鎖CDRを含んでなる重鎖可変領域全体と対合させて、作動可能な(operative)抗体を提供することができる。さらに、他の態様では、様々な抗体に由来する個々の重鎖及び軽鎖CDRを混合して適合させて、最適化された特徴を有する所望の抗体を提供することができる。このように、例示の抗体は、第一抗体由来の3つの軽鎖CDR、第二抗体由来の2つの重鎖CDR、及び第三抗体由来の第三の重鎖CDRを含んでよい。

0078

より具体的には、本発明の文脈では、図面7Aにおいて開示される重鎖及び軽鎖CDRのいずれも、本明細書の教示に従ってこの方法で再配置させて、最適化された抗EFNA(例、抗hEFNA4)抗体を提供し得ることが理解されよう。即ち、図面7Aに開示されるCDRの1以上を、EFNAモジュレーターに、そして特に好ましい態様では、1以上のエフリンAリガンドと免疫特異的に会合するCDR移植又はヒト化抗体に取り込むことができる。

0079

いずれにしても、相補性決定領域の残基番号は、Kabat et al.(1991, NIH公開公報 91-3242, National Technical Information Service, Springfield, Va.)のそれのように定義し得て、具体的には、軽鎖可変ドメイン中の残基24〜34(CDR1)、50〜56(CDR2)及び89〜97(CDR3)と重鎖可変ドメイン中の31〜35(CDR1)、50〜65(CDR2)及び95〜102(CDR3)である。CDRは、抗体ごとにかなり変動する(そして、定義上、カバット(Kabat)コンセンサス配列との相同性を示さない)ことに留意されたい。フレームワーク残基の最大の並置には、しばしば、Fv領域に使用するために、スペーサー残基をこの番号付けシステムに挿入することが求められる。加えて、ある個別残基の同一性は、どの所与のカバット部位番号でも、種間又は対立遺伝子多様性により、抗体鎖ごとに変動する場合がある。Chothia et al., J. Mol. Biol. 196: 901-917 (1987); Chothia et al., Nature 342, pp.877-883 (1989) 及び MacCallum et al., J. Mol. Biol. 262: 732-745 (1996) も参照のこと。ここでその定義には、互いに対して比較するときのアミノ酸残基の重なり又は亜集合が含まれる。上述した参考文献のそれぞれは、その全体において参照により本明細書に組み込まれて、上記に引用した参考文献のそれぞれによって定義されるようなCDRが含まれるアミノ酸残基を比較のために示す。

0080

CDRの諸定義

0081

0082

簡便性のために、図面7Aに示すCDR(配列番号8〜59及び70〜95)は、Chothia et al. の命名法を使用して定義されているが、本出願の内容があれば、当業者は、それぞれの各重鎖及び軽鎖配列について、Kabat et al. 又は MacCallum et al. によって定義されるようにCDRを容易に同定して列挙することができよう。この点に関して言えば、実施例7(b)で説明するヒト化分析には、Kabat et al. によって定義されるようなCDRを使用して、本発明に従ってヒト化抗体配列を図示する図面7O〜7R(配列番号148〜163)において下線を施している。従って、本発明の範囲内には、すべてのそのような命名法によって定義されるCDRを含んでなる抗体が明白に含まれる。より概括的に言えば、「可変領域CDRアミノ酸残基」という用語には、上記に示したようなどの配列又は構造ベースの方法を使用しても同定されるようなCDR中のアミノ酸が含まれる。

0083

本明細書に使用するように、「可変領域フレームワーク(FR)アミノ酸残基」という用語は、Ig鎖のフレームワーク領域中のアミノ酸に言及する。本明細書に使用する「フレームワーク領域」又は「FR領域」という用語には、可変領域の一部であるが、CDRの一部ではない(例えば、CDRのカバット定義を使用する)アミノ酸残基が含まれる。故に、可変領域フレームワークは、長さが約100〜120個のアミノ酸の不連続配列であるが、CDRの外側のアミノ酸だけが含まれる。

0084

重鎖可変領域の具体例では、そして Kabat et al. によって定義されるようなCDRでは、フレームワーク領域1がアミノ酸1〜30を囲む可変領域のドメインに対応し;フレームワーク領域2がアミノ酸36〜49を囲む可変領域のドメインに対応し;フレームワーク領域3がアミノ酸66〜94を囲む可変領域のドメインに対応して、フレームワーク領域4がアミノ酸103〜可変領域の末端までの可変領域のドメインに対応する。軽鎖のフレームワーク領域も、軽鎖可変領域CDRのそれぞれによって同様に分離している。同様に、Chothia et al. 又は McCallum et al. によるCDRの定義を使用すると、フレームワーク領域の境界は、上記に記載のようなそれぞれのCDR末端によって分離される。

0085

上述した構造上の考慮事項記して、当業者は、本発明の抗体が、いくつかの機能的な態様のいずれも含んでよいことを理解されよう。この点に関して言えば,適合可能な抗体は、被検者において所望される生理学的応答をもたらす、どの免疫反応性抗体(この用語は、本明細書において定義される)も含んでよい。開示される抗体のいずれも本教示に従って使用してよいが、本発明のある態様は、キメラ、ヒト化、又はヒトモノクローナル抗体、又はそれらの免疫反応性断片を含む。なお他の態様は、例えば、ホモ(homogeneous)又はヘテロ(heterogeneous)の多量体構築体、Fc変異体、及びコンジュゲートされたか又はグリコシル化により改変された抗体を含んでよい。さらに、そのような配置が相互に排他的ではないこと、そして適合可能な個々の抗体が本明細書に開示する機能的な側面の1以上を含んでよいことが理解されよう。例えば、適合可能な抗体は、ヒト化可変領域がある一本鎖の二重特異性抗体(diabody)、又はグリコシル化パターンを変化させて血清半減期を調節するFc修飾がある、完全にヒトの完全長IgG3抗体を含んでよい。当業者には、他の例示態様が容易に明らかであって、本発明の範囲内にあるものとして容易に識別可能であり得る。

0086

b.抗体作製
よく知られているように、本明細書の教示に従った抗体を提供するには、ウサギ、マウス、ラット、等が含まれる様々な宿主動物接種して、これを使用してよい。免疫学的応答を高めるために使用し得る、当該技術分野で知られたアジュバントには、接種される種に依存して、限定されないが、フロイント(完全及び不完全)アジュバント、水酸化アルミニウムのような鉱物ゲル剤リゾレシチンプルロニックポリオールポリアニオン、ペプチド、油乳剤スカシヘモシアニンジニトロフェノールのような界面活性物質、並びにBCGカルメットゲラン桿菌)及びコリネバクテリウムパルブム(corynebacterium parvum)のような、潜在的に有用なヒトアジュバントが含まれる。このようなアジュバントは、抗原を局所貯蔵部位(deposit)へ隔離することによってその速やかな拡散を防ぐ場合もあれば、マクロファージにとって走化性である因子や免疫系の他の成分を分泌するように宿主を刺激する物質を含有する場合もある。好ましくは、ポリペプチドを投与するならば、免疫化のスケジュールは、該ポリペプチドの2回以上の投与が数週にわたって行われることを伴う。

0087

選択されるアイソフォーム及び/又はペプチド、又は所望のタンパク質を発現する生細胞又は細胞調製物を含み得るEFNA免疫原(例、可溶性EFNA4又はEFNA1)での動物の接種後、その動物より、当該技術分野で公知の技術を使用して、抗体及び/又は抗体産生細胞を入手することができる。いくつかの態様では、動物を出血させるか又は犠牲にすることによってポリクローナル抗EFNA抗体含有血清を入手する。この血清は、動物より入手した形態で研究目的に使用しても、あるいは、この抗EFNA抗体を部分的又は完全に精製して、免疫グロブリン画分又は同種の抗体調製物を提供してもよい。

0088

c.モノクローナル抗体
本発明のある側面と併せてポリクローナル抗体を使用してよいが、好ましい態様は、EFNA反応性モノクローナル抗体の使用を含む。本明細書に使用するように、「モノクローナル抗体」又は「mAb」という用語は、実質的に同種の抗体の集団より得られる抗体を意味し、即ち、この集団を含んでなる個々の抗体は、微量に存在し得る可能な突然変異(例、天然に存在する突然変異)以外は、同一である。このように、「モノクローナル」という修飾語は、別々の抗体の混合物ではないという抗体の特徴を示して、どの種類の抗体と併せて使用してもよい。ある態様において、そのようなモノクローナル抗体には、EFNAと結合又は会合するポリペプチド配列を含んでなる抗体が含まれて、ここでEFNA結合ポリペプチド配列は、複数のポリペプチド配列からの単一の標的結合ポリペプチド配列の選択が含まれる方法によって入手される。

0089

好ましい態様では、免疫化した動物より単離した細胞より抗体産生細胞株を調製する。免疫化の後で、その動物を犠牲にして、付帯の「実施例」に示すような、当該技術分野で周知の手段によって、リンパ節及び/又は脾臓B細胞を不死化する。細胞を不死化する方法には、限定されないが、それらを癌遺伝子トランスフェクトすること、それらを癌ウイルスに感染させて不死化細胞選別する条件の下でそれらを培養すること、それらを発癌性化合物又は変異原性化合物へ処すること、それらを不死化細胞(例、骨髄腫細胞)と融合すること、及び腫瘍抑制遺伝子不活性化することが含まれる。骨髄腫細胞との融合を使用する場合、骨髄腫細胞は、好ましくは、免疫グロブリンポリペプチドを分泌しない(非分泌細胞株)。エフリンAリガンド(選択されるアイソフォームが含まれる)又はその免疫反応性部分を使用して、不死化細胞をスクリーニングする。好ましい態様において、最初のスクリーニングは、酵素結合免疫吸着検定法ELISA)又はラジオイムノアッセイを使用して実施する。

0090

より一般的には、ハイブリドーマ、組換え技術、ファージディスプレイ技術、酵母ライブラリー、トランスジェニック動物(例、XenoMouse(登録商標)又はHuMAb Mouse(登録商標))、又はこれらの何らかの組み合わせが含まれる、当該技術分野で公知の多種多様な技術を使用して、本発明に一致した別々のモノクローナル抗体を製造することができる。例えば、上記に概括的に記載されて、Harlow et al.「抗体:実験マニュアル(Antibodies:A Laboratory Manual)」(コールドスプリングハーバーラボラトリー出版局、第2版、1988);「モノクローナル抗体とT細胞ハイブリドーマ(Monoclonal Antibodies and T-Cell Hybridomas)」(エルセヴィエ、ニューヨーク、1981)中、Hammerling, et al., 563-681(このそれぞれは、本明細書に組み込まれる)においてより詳しく教示されるようなハイブリドーマ技術を使用して、モノクローナル抗体を製造することができる。開示されるプロトコールを使用して、好ましくは、関連の抗原とアジュバントの多数の皮下又は腹腔内注射によって、抗体を哺乳動物中で産生する。先に考察したように、この免疫化は、活性化された脾臓細胞又はリンパ球からの抗原反応性抗体(免疫化動物がトランスジェニックであれば、完全にヒトのものであり得る)の産生を含む免疫応答を概ね誘発する。生じる抗体は、この動物の血清より採取してポリクローナル調製物を提供し得るが、一般的には、脾臓、リンパ節、又は末梢血より個々のリンパ球を単離して、モノクローナル抗体の同種調製物を提供することがより望ましい。最も典型的には、脾臓よりリンパ球を入手して不死化して、ハイブリドーマを提供する。

0091

例えば、上記に記載のように、この選択法は、ハイブリドーマクローンファージクローン、又は組換えDNAクローンプールのような複数のクローンからのユニークなクローンの選択であり得る。例えば、標的への親和性を高める、標的結合配列をヒト化する、細胞培養中でのその産生を改善する、その in vivo での免疫原性を低下させる、多重特異性抗体を創出する、等のために選択したEFNA結合配列をさらに改変することができること、そしてその改変した標的結合配列を含んでなる抗体も本発明のモノクローナル抗体であることが理解されるべきである。異なる決定基(エピトープ)に対して指向された別々の抗体が典型的には含まれるポリクローナル抗体調製物とは対照的に、モノクローナル抗体調製物のそれぞれのモノクローナル抗体は、抗原上の単一決定基に対して指向される。その特異性に加えて、モノクローナル抗体調製物は、典型的には、交差反応性であり得る他の免疫グロブリンがそこに混在していない点で有利である。

0092

d.キメラ抗体
別の態様において、本発明の抗体は、少なくとも2つの異なる種又は種類の抗体からの共有結合したタンパク質セグメントに由来するキメラ抗体を含んでよい。本明細書に使用するように、「キメラ抗体」という用語は、重鎖及び/又は軽鎖の一部が特別な種に由来するか又は特別な抗体クラス又はサブクラスに属する抗体中の対応配列と同一又は相同である一方で、この鎖(複数)の残りは、別の種に由来するか又は別の抗体クラス又はサブクラスに属する抗体、並びにそのような抗体の断片(それらが所望される生理活性を示す限りにおいて)の中の対応配列と同一又は相同である構築体へ向けられると理解されよう(米国特許第4,816,567号;Morrison et al., Proc. Natl. Acad. Sci. USA, 81: 6851-6855 (1984))。1つの例示態様において、本明細書の教示に従うキメラ抗体は、マウスのVH及びVLアミノ酸配列とヒトの供給源に由来する定常領域を含んでよい。他の適合可能な態様において、本発明のキメラ抗体は、下記に記載のようなCDR移植抗体又はヒト化抗体を含んでよい。

0093

一般的に言えば、キメラ抗体を作製する目標は、企図される被検者種からのアミノ酸の数が最大化されたキメラを創出することである。1つの例は、CDR移植抗体であって、ここでこの抗体は、特別な種に由来するか又は特別な抗体クラス又はサブクラスに属する1以上の相補性決定領域(CDR)を含む一方で、この抗体鎖(複数)の残りは、別の種に由来するか又は別の抗体クラス又はサブクラスに属する抗体中の対応配列と同一又は相同である。ヒトにおける使用のためには、齧歯動物の抗体からの可変領域又は選択CDRをヒト抗体の中へ移植して、ヒト抗体の天然に存在する可変領域又はCDRに置き換える。これらの構築体は、一般的には、最強のモジュレーター機能(例、CDC、ADCC、等)を提供する一方で、この抗体に対する被検者による望まれない免疫応答を低下させるという利点を有する。

0094

e.ヒト化抗体
CDR移植抗体に似ているのがヒト化抗体である。一般的に言えば、ヒト化抗体は、初めは非ヒト動物において作製されたモノクローナル抗体より産生する。本明細書に使用するように、非ヒト(例、マウス)抗体のヒト化形態は、非ヒト免疫グロブリンに由来する最小の配列を含有するキメラ抗体である。1つの態様において、ヒト化抗体は、レシピエント抗体のCDRからの残基が、所望される特異性、親和性、及び/又は能力を有する、マウス、ラット、ウサギ、又はヒト霊長動物のような非ヒト種(ドナー抗体)のCDRからの残基に置き換わっている、ヒト免疫グロブリン(レシピエント又はアクセプター抗体)である。

0095

一般的に言えば、抗体のヒト化は、ドナー抗体とレシピエント抗体の両方の配列相同性及びカノニカル構造の分析を含む。選択態様において、レシピエント抗体は、コンセンサス配列を含む場合がある。ヒトのコンセンサスフレームワークを創出するには、いくつかのヒト重鎖又は軽鎖アミノ酸配列からのフレームワークを並置して、コンセンサスアミノ酸配列を同定することができる。さらに、多くの事例では、ヒト免疫グロブリンの可変ドメイン中の1以上のフレームワーク残基を、ドナー抗体からの対応する非ヒト残基によって置き換える。これらのフレームワーク置換は、当該技術分野で周知の方法によって(例えば、CDR残基とフレームワーク残基の相互作用をモデル化して、抗原結合に重要なフレームワーク残基を同定すること、及び特別な位置での異常なフレームワーク残基を同定するための配列比較によって)確認される。このような置換は、移植CDR(複数)適正な三次元配置を維持するのに役立ち、フレームワーク置換のない類似の構築体に優って親和性をしばしば改善する。さらに、ヒト化抗体は、レシピエント抗体やドナー抗体に見出されない残基を含んでよい。これらの修飾を施して、既知の技術を使用して抗体性能をさらに洗練させることができる。

0096

CDR移植抗体とヒト化抗体については、例えば、米国特許第6,180,370号、5,693,762号、5,693,761号、5,585,089号、及び5,530,101号に記載されている。概して言えば、ヒト化抗体は、少なくとも1つ、そして典型的には2つの可変ドメインの実質的にすべてを含み、ここでそのCDRのすべて又は実質的にすべては、非ヒト免疫グロブリンのそれに対応して、フレームワーク領域のすべて又は実質的にすべては、ヒト免疫グロブリン配列のそれである。ヒト化抗体はまた、典型的にはヒト免疫グロブリンのそれである、免疫グロブリン定常領域(Fc)の少なくとも一部を含んでもよい。さらなる詳細については、例えば、Jones et al., Nature 321: 522-525 (1986); Riechmann et al., Nature 332: 323-329 (1988);及び Presta, Curr. Op. Struct. Biol. 2: 593-596 (1992) を参照のこと。また、例えば、Vaswani and Hamilton, Ann. Allergy, Asthma & Immunol. 1 :105-115 (1998); Harris, Biochem. Soc. Transactions 23: 1035-1038 (1995); Hurle and Gross, Curr. Op. Biotech. 5:428-433 (1994);及び、米国特許第6,982,321号及び7,087,409号を参照のこと。なお別の方法は、ヒューマニアリング(humaneering)と呼ばれて、例えば、U.S.2005/0008625に記載されている。本出願の目的では、「ヒト化抗体」という用語には、フレームワーク置換が無いかほとんど無いCDR移植抗体(即ち、1以上の移植非ヒトCDRを含んでなるヒト抗体)が明白に含まれるものとする。

0097

追加的に言えば、非ヒト抗EFNA抗体はまた、WO98/52976及びWO00/34317に開示される方法による、ヒトT細胞エピトープの特異的除去又は脱免疫化によって修飾してよい。簡潔に言えば、抗体の重鎖及び軽鎖の可変領域についてMHCクラスIIへ結合するペプチドを解析することができて;これらのペプチドは、潜在的なT細胞エピトープ(WO98/52976及びWO00/34317において定義されるような)を代表する。潜在的なT細胞エピトープの検出には、ペプチドスレディング(peptide threading)と呼ばれるコンピュータモデリングアプローチを適用し得て、加えて、WO98/52976及びWO00/34317に記載のように、VH及びVL配列に存在するモチーフを求めて、ヒトMHCクラスII結合ペプチドデータベース検索することができる。これらのモチーフは、18の主要MHCクラスII DRアロタイプのいずれへも結合して、それにより潜在的なT細胞エピトープを構成する。検出された潜在的なT細胞エピトープは、可変領域中の少数のアミノ酸残基を置換することによるか又は単一アミノ酸置換によって消失させることができる。可能な限り、保守的な置換がなされる。しばしば、絶対的ではないが、ヒト生殖細胞系抗体配列中のある位置に共通のアミノ酸が使用され得る。脱免疫化の変化を確認した後で、突然変異誘発又は他の合成法(例、de novo 合成、カセット置換、等)によって、VH及びVLをコードする核酸を構築することができる。突然変異誘発した可変配列をヒト定常領域へ融合させてもよい。

0098

選択態様では、ヒト化抗体可変領域残基の少なくとも60%、65%、70%、75%、又は80%が親のフレームワーク領域(FR)及びCDR配列の残基に対応する。他の態様では、ヒト化抗体残基の少なくとも85%又は90%が親のフレームワーク領域(FR)及びCDR配列の残基に対応する。さらに好ましい態様では、ヒト化抗体残基の95%より多くが親のフレームワーク領域(FR)及びCDR配列の残基に対応する。

0099

ヒト化抗体は、本明細書に記載のような通常の分子生物学及び生体分子工学の技術を使用して製造することができる。これらの方法には、少なくとも1つの重鎖又は軽鎖由来の免疫グロブリンFv可変領域の全部又は一部をコードする核酸配列を単離すること、操作すること、及び発現させることが含まれる。そのような核酸の供給源は、当業者に周知であり、例えば、上記に記載のような、予め決定された標的に対する抗体又は免疫反応性断片を産生するハイブリドーマ、真核細胞、又はファージより、生殖細胞系免疫グロブリン遺伝子より、又は合成構築体より入手し得る。次いで、ヒト化抗体をコードする組換えDNAを適正な発現ベクターの中へクローン化することができる。

0100

ヒト生殖細胞系配列は、例えば、Tomlinson, I. A. et al. (1992) J. Mol. Biol. 227: 776-798; Cook, G. P. et al. (1995) Immunol. Today 16: 237-242; Chothia, D. et al. (1992) J. Mol. Bio. 227: 799-817; 及び Tomlinson et al. (1995)EMBOJ 14: 4628-4638 に開示されている。V BASEディレクトリは、ヒト免疫グロブリン可変領域配列包括的なディレクトリを提供する(Retter et al., (2005) Nuc Acid Res 33: 671-674 を参照のこと)。これらの配列は、ヒト配列の(例えば、フレームワーク領域及びCDRのための)供給源として使用することができる。本明細書に説明するように、コンセンサスヒトフレームワーク領域も、例えば、米国特許第6,300,064号に記載のように、使用することができる。

0101

f.ヒト抗体
上述した抗体に加えて、当業者は、本発明の抗体が完全ヒト抗体を含み得ることを理解されよう。本出願の目的では、「ヒト抗体」という用語は、ヒトによって産生された、及び/又は本明細書に開示するようなヒト抗体を作製するための技術のいずれも使用して作製された抗体のアミノ酸配列に対応するアミノ酸配列を保有する抗体を含む。このヒト抗体の定義は、具体的には、非ヒト抗原結合残基を含んでなるヒト化抗体を排除する。

0102

当該技術分野で公知の様々な技術を使用して、ヒト抗体を産生することができる。上記に述べたように、ファージディスプレイ技術を使用して、本教示に準拠した免疫活性の結合領域を提供することができる。このように、本発明のある態様は、(好ましくは、ヒト)抗体のライブラリーをファージ上で合成する工程、このライブラリーを選択されるEFNA又はその抗体結合部分でスクリーニングする工程、EFNAへ結合するファージを単離する工程、及びこのファージより免疫反応性断片を入手する工程を含んでなる、抗EFNA抗体又はその抗原結合部分を産生するための方法を提供する。例を挙げると、ファージディスプレイ技術における使用のための抗体ライブラリーを製造するための1つの方法は、ヒト又は非ヒトの免疫グロブリン遺伝子座を含んでなる非ヒト動物を、選択したEFNA又はその抗原性部分で免疫化して、免疫応答を創出する工程、免疫化した動物より抗体産生細胞を抽出する工程;この抽出した細胞より、本発明の抗体の重鎖及び軽鎖をコードするRNAを単離する工程、このRNAを逆転写してcDNAを産生する工程、プライマーを使用してこのcDNAを増幅する工程、及びこのcDNAを、抗体がファージ上で発現されるように、ファージディスプレイベクターへ挿入する工程を含む。より具体的には、VH及びVLドメインをコードするDNAをscFvリンカーと共にPCRによって組換えて、ファージミドベクター(例、pCANTAB6又はpComb3HSS)へクローン化する。次いで、このベクターは、大腸菌(E. coli)中へ電気穿孔させてよく、次いでこの大腸菌にヘルパーファージを感染させる。これらの方法で使用するファージは、典型的には、fd及びM13が含まれる繊維状ファージであって、VH及びVLドメインは、通常、ファージ遺伝子III又は遺伝子VIIIの一方へ組換え的に融合される。

0103

上記のように製造した組換えコンビナトリアル抗体ライブラリーをスクリーニングすることによって、本発明の組換えヒト抗EFNA抗体を単離することができる。好ましい態様において、該ライブラリーは、B細胞より単離したmRNAより製造されるヒトのVL及びVHcDNAを使用して産生される、scFvファージディスプレイライブラリーである。当該技術分野では、このようなライブラリーを製造してスクリーニングする方法が周知であり、ファージディスプレイライブラリーを産生するためのキットが市販されている(例えば、ファルマシア社の組換えファージ抗体システム(Recombinant Phage Antibody System)、カタログ番号:27−9400−01;及び、Stratagene のSurfZAPTMファージディスプレイキット、カタログ番号:240612)。抗体ディスプレイライブラリーを産生してスクリーニングするのに使用し得る他の方法及び試薬も存在する(例えば、米国特許第5,223,409号;PCT公開公報番号:WO92/18619、WO91/17271、WO92/20791、WO92/15679、WO93/01288、WO92/01047、WO92/09690;Fuchs et al., Bio/Technology 9:1370-1372 (1991); Hay et al., Hum. Antibod. Hybridomas 3:81-85 (1992); Huse et al., Science 246:1275-1281 (1989); McCafferty et al., Nature 348:552-554 (1990); Griffiths et al.,EMBO J. 12:725-734 (1993); Hawkins et. al., J. Mol. Biol. 226:889-896 (1992); Clackson et al., Nature 352:624-628 (1991); Gram et al., Proc. Natl. Acad. Sci. USA 89:3576-3580 (1992); Garrad et al., Bio/Technology 9:1373-1377 (1991); Hoogenboom et al., Nuc. Acid Res. 19:4133-4137 (1991); 及び Barbas et al., Proc. Natl. Acad. Sci. USA 88:7978-7982 (1991) を参照のこと)。

0104

イーブライブラリー(天然又は合成のいずれか)によって産生される抗体は、中等度の親和性(約106〜107M−1のKa)であるが、当該技術分野で記載されるような二次ライブラリーより構築して再選択することによって、親和性成熟も in vitro で模倣することができる。例えば、Hawkins et. al., J. Mol. Biol., 226: 889-896 (1992) の方法において、又は Gram et al., Proc. Natl. Acad. Sci. USA, 89: 3576-3580 (1992) の方法において、エラーを起こしやすい(error-prone)ポリメラーゼ(Leung et al., Technique, 1: 11-15 (1989) に報告されている)を使用することによって、突然変異を in vitro で無作為に導入することができる。追加的に言えば、例えば、選択した個々のFvクローンにおいて、対象のCDRが含まれるランダム配列を担うプライマーでPCRを使用して1以上のCDRを無作為に突然変異させて、より高親和性のクローンをスクリーニングすることによって、親和性成熟を実施することができる。WO9607754は、免疫グロブリン軽鎖の相補性決定領域中に突然変異誘発を引き起こして、軽鎖遺伝子のライブラリーを創出するための方法について記載した。別の有効なアプローチは、Marks et al., Biotechnol., 10: 779-783 (1992) に記載のように、ファージディスプレイによって選択されるVH又はVLドメインを、非免疫化ドナーより得られる天然に存在するVドメイン変異体のレパートリーと組換えて、数回の鎖リシャッフリング(chain reshuffling)においてより高い親和性をスクリーニングすることである。この技術により、解離定数:Kd(koff/kon)が約10−9M以下である抗体及び抗体断片の産生が可能になる。

0105

結合対をその表面に発現する真核細胞(例、酵母)を含んでなるライブラリーを使用して同様の手順を利用し得ることがさらに理解されよう。ファージディスプレイ技術と同様に、この真核細胞ライブラリーを対象の抗原(即ち、EFNA)に対してスクリーニングして、候補結合対を発現する細胞を単離してクローン化する。ライブラリー内容を最適にすることと反応性結合対の親和性成熟のために種々の工程を講じてよい。例えば,米国特許第7,700,302号及び米国仮特許出願シリアル番号:12/404,059を参照のこと。1つの態様において、ヒト抗体は、ファージライブラリーより選択されて、ここでそのファージライブラリーは、ヒト抗体を発現する(Vaughan et al. Nature Biotechnology 14:309-314 (1996): Sheets et al. Proc. Natl. Acad. Sci. 95:6157-6162 (1998)); Hoogenboom and Winter, J. Mol. Biol, 227:381 (1991); Marks et al., J. MoI. Biol, 222:581 (1991))。他の態様では、酵母のような真核細胞において産生されるコンビナトリアル抗体ライブラリーよりヒト結合対を単離してよい。例えば、米国特許第7,700,302号を参照のこと。このような技術は、有利にも、多数の候補モジュレーターのスクリーニングを可能にして、候補配列の相対的に容易な操作(例えば、親和性成熟又は組換えシャッフリング(recombinant shuffling)による)を提供する。

0106

ヒト抗体はまた、ヒト免疫グロブリン遺伝子座をトランスジェニック動物(例えば、内因性の免疫グロブリン遺伝子が一部又は完全に不活性化されたマウス)の中へ導入することによって作製することができる。抗原チャレンジすると、ヒト抗体産生が観測されて、これは、遺伝子再編成アセンブリー、及び抗体レパートリーを含めて、ヒトで見られるものとすべての点で酷似している。このアプローチについては、例えば、米国特許第5,545,807号;5,545,806号;5,569,825号;5,625,126号;5,633,425号;5,661,016号に記載され、ゼノマウス(Xenomouse)(登録商標)技術に関しては、以下の科学文献とともに米国特許第6,075,181号及び6,150,584号に記載されている:Marks et al., Bio/Technology 10: 779-783 (1992); Lonberg et al., Nature 368: 856-859 (1994); Morrison, Nature 368:812-13 (1994); Fishwild et al., Nature Biotechnology 14: 845-51 (1996); Neuberger, Nature Biotechnology 14: 826 (1996); Lonberg and Huszar, Intern. Rev. Immunol. 13:65-93 (1995)。あるいは、ヒト抗体は、標的抗原に対して指向された抗体を産生するヒトBリンパ球の不死化により産生してよい(このようなBリンパ球は、新生物障害に罹患している個体より回収してもよく、in vitro で免疫化してもよい)。例えば、Cole et al.「モノクローナル抗体と癌療法(Monoclonal Antibodies and Cancer Therapy)」Alan R. Liss, p. 77 (1985); Boerner et al., J. Immunol, 147 (l):86-95 (1991); 及び米国特許第5,750,373号を参照のこと。

0107

VI.抗体の特徴
当該抗体モジュレーターをどのように入手したとしても、またそれが上述した形態(例、ヒト化、ヒト、等)のいずれを採るとしても、開示モジュレーターの好ましい態様は、様々な特徴を示す可能性がある。この点に関して言えば、抗EFNA抗体産生細胞(例、ハイブリドーマ又は酵母コロニー)を、例えば、活発な増殖、高い抗体産生、及び(下記により詳しく考察するような)望ましい抗体特徴が含まれる望ましい特徴について選択し、クローン化して、さらにスクリーニングしてよい。ハイブリドーマは、同系遺伝子の動物、免疫系を欠損している動物(例、ヌードマウス)において in vivo で、又は細胞培養において in vitro で拡充させることができる。そのそれぞれが別々の抗体種を産生するハイブリドーマ及び/又はコロニーを選択する、クローン化する、及び拡充させる方法は、当業者に周知である。

0108

a.中和抗体
特に好ましい態様において、本発明のモジュレーターは、中和抗体又はその誘導体若しくは断片を含む。「中和抗体」又は「中和アンタゴニスト」という用語は、エフリンAリガンドへ結合するか又はそれと相互作用してリガンドのその結合相手(例、EPHA受容体)への結合又は会合を防ぐことによって、これら分子の相互作用より生じるはずの生体応答を妨害する抗体又はアンタゴニストを意味する。抗体又はその免疫学的に機能的な断片若しくは誘導体の結合と特異性について評価する場合、抗体又は断片がリガンドのその結合相手又は基質への結合を実質的に阻害するのは、例えば、in vitro競合結合アッセイ(例えば、本明細書の実施例9〜12を参照のこと)で測定されるように、過剰の抗体が標的分子へ結合する結合相手の量を少なくとも約20%、30%、40%、50%、60%、70%、80%、85%、90%、95%、97%、又は99%以上低下させるときである。例えば、EFNA4に対する抗体の場合、中和抗体又はアンタゴニストは、好ましくは、EphA4へ結合するEFNA4の能力を少なくとも約20%、30%、40%、50%、60%、70%、80%、85%、90%、95%、97%、又は99%以上減少させる。この減少した活性は、当該技術分野で認められた技術を使用して直接測定しても、そのような低下がEPH(例、EPHA4)受容体活性に及ぼす影響によって測定してもよいと理解されよう。

0109

b.内在化抗体
選択されるエフリンAリガンド又はそれらのアイソフォームが可溶型で存在する場合があることを示す証拠はあるが、少なくともある種のEFNA(例、EFNA1及びEFNA4)は、細胞表面と会合した状態にあるようであり、それにより開示モジュレーターの内在化を可能にしている。従って、本発明の抗EFNA抗体は、エフリンAリガンドを発現する細胞によって、少なくともある程度は、内在化され得る。例えば、腫瘍始原細胞の表面上のEFNA4へ結合する抗EFNA4抗体は、腫瘍始原細胞によって内在化され得る。特に好ましい態様では、そのような抗EFNA抗体を、内在化と同時に細胞を殺傷する細胞傷害性部分のような抗癌剤と会合させるか又はそれへコンジュゲートさせてよい。

0110

本明細書に使用するように、内在化する抗EFNA抗体とは、哺乳動物細胞と会合したEFNAへの結合時にその細胞によって取り込まれるものである。この内在化抗体には、抗体断片、ヒト又はヒト化抗体、及び抗体コンジュゲートが含まれる。内在化は、in vitro でも in vivo でも起こり得る。療法上の応用では、内在化が in vivo で起こり得る。内在化される抗体分子の数は、EFNA発現細胞、特にEFNA発現腫瘍始原細胞を殺傷するのに十分又は充分であり得る。抗体又は抗体コンジュゲートの効力に依っては、いくつかの事例において、抗体が結合する標的細胞を殺傷するのに、該細胞への単一の抗体分子の取込みで十分である。例えば、ある毒素は、殺傷においてきわめて強力であるので、腫瘍細胞を殺傷するには、抗体へコンジュゲートした毒素の1分子の内在化で十分である。抗EFNA抗体が哺乳動物細胞上のEFNAへの結合時に内在化されるかどうかは、下記の実施例(例、実施例15及び16)に記載されるものが含まれる様々なアッセイによって決定することができる。抗体が細胞中へ内在化されるかどうかを検出する方法については、その全体において参照により本明細書に組み込まれる、米国特許第7,619,068号にも記載されている。

0111

c.枯渇性抗体
他の好ましい態様において、本発明のモジュレーターは、枯渇性抗体又はその誘導体若しくは断片を含む。「枯渇性抗体」という用語は、細胞表面の上又は近くにあるEFNAへ結合するか又はそれと会合して、該細胞の死滅又は消失を(例えば、補体依存性細胞傷害又は抗体依存性細胞傷害によって)誘発する、促進する、又は引き起こす抗体又は断片を意味する。下記により詳しく考察するいくつかの態様において、選択した枯渇性抗体は、細胞傷害剤へ会合又はコンジュゲートされる。好ましくは、枯渇性抗体は、ある一定の細胞集団において、少なくとも20%、30%、40%、50%、60%、70%、80%、85%、90%、95%、97%、又は99%の腫瘍永続化細胞を枯渇する、消失させる、又は殺傷する。いくつかの態様において、この細胞集団は、濃縮、分画、精製、又は単離された腫瘍永続化細胞を含んでよい。他の態様において、この細胞集団は、腫瘍永続化細胞を含む腫瘍試料全体又は異種の腫瘍抽出物を含んでよい。当業者は、下記の実施例(例、実施例16)に記載のような標準の生化学技術を本明細書の教示に従って使用して、腫瘍形成細胞又は腫瘍永続化細胞の枯渇をモニターして定量し得ることを理解されよう。

0112

d.エピトープ結合
開示される抗EFNA抗体は、選択された標的(複数)によって提示される別々のエピトープ又は決定基と会合するか又はそれへ結合するとさらに理解されよう。本明細書に使用するように、エピトープという用語は、特別の抗体によって認識されて特異的に結合されることが可能な標的抗原のその部分を意味する。抗原がEFNAのようなポリペプチドである場合、エピトープは、連続したアミノ酸からも、タンパク質の三次元フォールディングによって並列される不連続アミノ酸からも形成され得る。連続したアミノ酸より形成されるエピトープがタンパク質の変性時に典型的には保持されるのに対し、三次元フォールディングによって形成されるエピトープは、タンパク質の変性時に典型的には失われる。エピトープには、典型的には、少なくとも3個、そしてより通常は、少なくとも5又は8個〜10個のアミノ酸が独自の空間コンホメーションに含まれる。より具体的には、当業者は、エピトープという用語には、免疫グロブリン又はT細胞受容体へ特異結合するか又は他の方法で分子と相互作用することが可能などのタンパク質決定基も含まれると理解されよう。エピトープの決定基は、一般的には、アミノ酸又は炭水化物又は糖側鎖のような分子の化学的に活性な表面配置からなり、一般的には、特異的な三次元構造上の特性、並びに特異的な荷電特性を有する。追加的に言えば、エピトープは、線状でも高次構造状でもよい。線状エピトープでは、該タンパク質と相互作用分子(抗体のような)の間の相互作用点のすべてが該タンパク質の一次アミノ酸配列に沿って線状に生じる。高次構造状エピトープでは、相互反応の点が、直線的には互いに分離しているタンパク質上のアミノ酸残基の全体で生じる。

0113

抗原上の所望のエピトープが決定されたならば、例えば、本発明において記載される技術を使用して、エピトープを含んでなるペプチドで免疫化することによって、そのエピトープに対する抗体を産生することが可能である。あるいは、この探索プロセスの間に、抗体の産生及び特性決定によって、望ましいエピトープに関する情報を解明することができる。次いで、この情報より、抗体について同じエピトープへ結合することを競合的にスクリーニングすることが可能である。このことを達成するアプローチは、競合試験を実施して、互いに競合的に結合する抗体(即ち、この抗体は、抗原への結合に関して競合する)を見出すことである。WO03/48731には、それらの交差競合性に基づいて抗体をビニングする(binning)ためのハイスループット法が記載されている。

0114

本明細書に使用するように、「ビニング(binning)」という用語は、それらの抗原結合特性に基づいて抗体を群分けするための方法を意味する。ビン割当ては、試験した抗体の観測された結合パターンがどのくらい異なるかに依存して、やや恣意的である。このように、この技術は、本発明の抗体を分類するのに有用なツールであるが、そのビンは、必ずしも直にエピトープと相関するものではないので、そのような初めの決定は、他の当該技術分野で認められた方法論によってさらに確かめるべきである。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ