図面 (/)

技術 インバータ装置

出願人 株式会社デンソー
発明者 久禮健司
出願日 2013年5月28日 (7年11ヶ月経過) 出願番号 2013-111873
公開日 2014年12月11日 (6年5ヶ月経過) 公開番号 2014-233118
状態 特許登録済
技術分野 インバータ装置
主要キーワード 大地アース 非駆動期間 素子駆動電源 還流経路 増幅電圧 絶縁部品 誤差電流 ボディアース
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2014年12月11日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (10)

課題

インバータ主回路電源電圧に比べ低い耐圧を持つ回路部品を用いて精度よく漏電電流を検出する。

解決手段

バッテリ14とインバータ主回路13とを繋ぐ電源線15、16の何れか一方にシャント抵抗20を備える。絶縁電線19uの芯線ボディアースEとの間に地絡抵抗Reを介して漏電が生じた場合、制御回路22は、インバータ主回路13について、シャント抵抗20が設けられた電源線16の側のアームを構成する全てのIGBT17un、17vn、17wnがオン駆動されている期間に電圧検出回路21により検出された電圧Vsを入力し、その電圧Vsに基づいて漏電電流を検出する。

概要

背景

ハイブリッド自動車電気自動車などの車両は、動力源であるモータを駆動するインバータ装置を備えている。インバータ装置には、バッテリから高電圧が供給されている。ユーザがこの高電圧系配線に誤って接触した際の感電を防止するため、インバータ装置を含む高電圧系は、ボディ(車体)アースに対し絶縁されている。しかし、ボディアースと高電圧系の間に漏電が発生すると、ユーザが高電圧系の配線に接触したときに、ボディアースおよびユーザを介した電流経路が形成されて感電の虞が生じる。そこで、漏電を検出してユーザに報知する機能が必要になる。

従来の漏電検出回路は、バッテリの正極端子からインバータ主回路に至る経路と、バッテリの負極端子からインバータ主回路に至る経路にシャント抵抗を備えている。漏電検出回路は、増幅回路により各シャント抵抗の電圧増幅し、差分演算回路により電圧差を求め、その電圧差が所定値以上になったときに漏電を検出する。この検出方法は、バッテリからインバータ主回路に流れる負荷電流は両方のシャント抵抗に流れるのに対し、漏電電流片方のシャント抵抗にのみ流れる点に着目している。両シャント抵抗による検出電圧の差分を取ることにより、負荷電流がキャンセルされ、漏電電流のみを検出することができる。

概要

インバータ主回路の電源電圧に比べ低い耐圧を持つ回路部品を用いて精度よく漏電電流を検出する。バッテリ14とインバータ主回路13とを繋ぐ電源線15、16の何れか一方にシャント抵抗20を備える。絶縁電線19uの芯線とボディアースEとの間に地絡抵抗Reを介して漏電が生じた場合、制御回路22は、インバータ主回路13について、シャント抵抗20が設けられた電源線16の側のアームを構成する全てのIGBT17un、17vn、17wnがオン駆動されている期間に電圧検出回路21により検出された電圧Vsを入力し、その電圧Vsに基づいて漏電電流を検出する。

目的

本発明は上記事情に鑑みてなされたもので、その目的は、インバータ主回路の電源電圧に比べ低い耐圧を持つ回路部品を用いて精度よく漏電電流を検出可能なインバータ装置を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

ダイオード(18xp,18xn)が逆並列に設けられた2つのスイッチング素子(17xp,17xn)をそれぞれ上側、下側アームとして直列接続した回路を、直流電源(14)が接続される一対の電源線(15,16)間に複数並列に接続して構成されたインバータ主回路(13,13A,13B)と、高電位側の電源線(15)および低電位側の電源線(16)の何れか一方に設けられたシャント抵抗(20)と、前記シャント抵抗の電圧を検出する電圧検出回路(21)と、前記インバータ主回路について、前記シャント抵抗が設けられた電源線の側のアームを構成する全てのスイッチング素子がオン駆動されている期間に前記電圧検出回路により検出された第1電圧を入力し、その第1電圧に基づいて漏電電流を検出する制御手段(22)とを備えていることを特徴とするインバータ装置

請求項2

前記制御手段は、さらに、前記シャント抵抗が設けられた電源線とは反対側のアームを構成する全てのスイッチング素子がオン駆動されている期間に前記電圧検出回路により検出された第2電圧を入力し、前記第1電圧と前記第2電圧との差分電圧に基づいて漏電電流を検出することを特徴とする請求項1記載のインバータ装置。

請求項3

前記制御手段は、前記シャント抵抗が設けられた電源線の側のアームを構成する全てのスイッチング素子を同時にオン駆動する第1状態と、前記シャント抵抗が設けられた電源線とは反対側のアームを構成する全てのスイッチング素子を同時にオン駆動する第2状態とを交互に切り替えながら漏電電流を検出することを特徴とする請求項1または2記載のインバータ装置。

請求項4

前記電圧検出回路から出力される電圧を入力とするローパスフィルタ(52)を備え、前記制御手段は、前記シャント抵抗が設けられた電源線の側のアームを構成する全てのスイッチング素子を同時にオン駆動する第1状態と、前記シャント抵抗が設けられた電源線とは反対側のアームを構成する全てのスイッチング素子を同時にオン駆動する第2状態とを交互に切り替えながら、前記第1状態の期間に前記電圧検出回路により検出された前記第1電圧および前記第2状態の期間に前記電圧検出回路により検出された第2電圧が前記ローパスフィルタに入力された状態で、前記ローパスフィルタから出力される電圧に基づいて漏電電流を検出することを特徴とする請求項1記載のインバータ装置。

請求項5

前記一対の電源線間に前記インバータ主回路(13A,13B)を複数並列に備え、前記制御手段は、前記複数のインバータ主回路の中から順に1つのインバータ主回路を選択し、非選択としたインバータ主回路について前記スイッチング素子の駆動を停止し、選択したインバータ主回路について前記第1状態と前記第2状態とを交互に切り替えながら漏電電流を検出することを特徴とする請求項3または4記載のインバータ装置。

請求項6

前記一対の電源線間にコンデンサ(42)を備え、前記シャント抵抗は、前記コンデンサと前記インバータ主回路との間に設けられていることを特徴とする請求項1または2記載のインバータ装置。

請求項7

前記一対の電源線間にコンデンサを備え、前記シャント抵抗は、前記直流電源と前記コンデンサとの間または前記コンデンサと前記インバータ主回路との間に設けられていることを特徴とする請求項3から5の何れか一項に記載のインバータ装置。

請求項8

前記シャント抵抗が設けられた電源線に他の電源(32)および当該他の電源により動作する回路(21,22)が接続されている場合、前記シャント抵抗は、これらの接続点よりも前記直流電源側に設けられていることを特徴とする請求項1から7の何れか一項に記載のインバータ装置。

請求項9

前記制御手段は、前記電圧検出回路から入力した検出電圧複数周期に亘り平均化処理して漏電電流を検出することを特徴とする請求項1から3の何れか一項に記載のインバータ装置。

技術分野

0001

本発明は、漏電電流を検出する機能を備えたインバータ装置に関する。

背景技術

0002

ハイブリッド自動車電気自動車などの車両は、動力源であるモータを駆動するインバータ装置を備えている。インバータ装置には、バッテリから高電圧が供給されている。ユーザがこの高電圧系配線に誤って接触した際の感電を防止するため、インバータ装置を含む高電圧系は、ボディ(車体)アースに対し絶縁されている。しかし、ボディアースと高電圧系の間に漏電が発生すると、ユーザが高電圧系の配線に接触したときに、ボディアースおよびユーザを介した電流経路が形成されて感電の虞が生じる。そこで、漏電を検出してユーザに報知する機能が必要になる。

0003

従来の漏電検出回路は、バッテリの正極端子からインバータ主回路に至る経路と、バッテリの負極端子からインバータ主回路に至る経路にシャント抵抗を備えている。漏電検出回路は、増幅回路により各シャント抵抗の電圧増幅し、差分演算回路により電圧差を求め、その電圧差が所定値以上になったときに漏電を検出する。この検出方法は、バッテリからインバータ主回路に流れる負荷電流は両方のシャント抵抗に流れるのに対し、漏電電流は片方のシャント抵抗にのみ流れる点に着目している。両シャント抵抗による検出電圧の差分を取ることにより、負荷電流がキャンセルされ、漏電電流のみを検出することができる。

先行技術

0004

特開平4−238272号公報

発明が解決しようとする課題

0005

上述した従来構成において、正極側の増幅回路は正極側電位を基準に動作し、負極側の増幅回路は負極側電位を基準に動作する。差分演算回路は、一般に負極側電位を基準に動作する。このため、正極側の増幅回路の出力電圧を、負極側電位を基準とする電圧に変換する必要がある。例えば、アナログ電圧を一旦デューティ信号に変換してフォトカプラで絶縁した後、再びアナログ電圧に変換する回路が必要になる。

0006

しかし、フォトカプラの立ち上がり時間と立ち下がり時間遅延相違による変換誤差、正極側の増幅電圧と負極側の増幅電圧のサンプリングタイミングの相違などにより、検出精度が悪化する虞がある。また、フォトカプラなどの高耐圧の絶縁部品が必要になるので、漏電検出回路に要するコストの上昇を招く。

0007

本発明は上記事情に鑑みてなされたもので、その目的は、インバータ主回路の電源電圧に比べ低い耐圧を持つ回路部品を用いて精度よく漏電電流を検出可能なインバータ装置を提供することにある。

課題を解決するための手段

0008

請求項1に記載したインバータ装置は、インバータ主回路、シャント抵抗、電圧検出回路および制御手段を備えている。インバータ主回路は、ダイオードが逆並列に設けられた2つのスイッチング素子をそれぞれ上側、下側アームとして直列接続した回路を、直流電源が接続される一対の電源線間に複数並列に接続して構成されている。シャント抵抗は、従来構成とは異なり、高電位側の電源線および低電位側の電源線の何れか一方に設けられている。電圧検出回路は、シャント抵抗の電圧を検出する。以下の説明では、シャント抵抗が設けられた電源線の側のアームをシャント抵抗側アーム、シャント抵抗が設けられていない電源線の側のアームを非シャント抵抗側アームと言う。

0009

インバータ主回路は、大地アース、ボディアース等のアースから絶縁されており、インバータ主回路とアースとの間には静電結合による容量が存在する。例えば、インバータ主回路の出力線地絡抵抗を介してアースに地絡した場合、シャント抵抗側アームの全てのスイッチング素子がオン駆動されている期間では、インバータ主回路のスイッチング素子と負荷との間で負荷電流が還流し、シャント抵抗に負荷電流が流れない。これに対し、同期間では、静電結合による容量、アース、シャント抵抗側アームのスイッチング素子を介してシャント抵抗に漏電電流が流れる。

0010

そこで、制御手段は、インバータ主回路について、シャント抵抗が設けられた電源線の側のアームを構成する全てのスイッチング素子がオン駆動されている期間に電圧検出回路により検出された第1電圧を入力し、その第1電圧に基づいて漏電電流を検出する。これにより、シャント抵抗が設けられた電源線の電位を基準として動作する回路を用いて、漏電電流を検出できる。その結果、インバータ主回路の電源電圧に比べ低い耐圧を持つ回路部品を採用でき、フォトカプラなどの絶縁部品を介した電圧変換が不要になるので、漏電電流の検出精度が向上する。

0011

請求項2記載の手段によれば、制御手段は、シャント抵抗が設けられた電源線とは反対側のアームを構成する全てのスイッチング素子がオン駆動されている期間に、電圧検出回路により検出された第2電圧を入力する。この期間では、シャント抵抗に負荷電流も漏電電流も流れない。

0012

シャント抵抗が設けられた電源線に、他の電源制御電源素子駆動電源など)および当該他の電源により動作する回路が接続されていると、これらの回路電流がシャント抵抗に流れ、漏電電流を検出する際の誤差になる場合がある。そこで、制御手段は、第1電圧と第2電圧との差分電圧に基づいて漏電電流を検出する。第1電圧と第2電圧との差分を演算することにより、誤差電流により生じる電圧をキャンセルすることができる。

0013

請求項3記載の手段によれば、制御手段は、シャント抵抗が設けられた電源線の側のアームを構成する全てのスイッチング素子を同時にオン駆動する第1状態と、シャント抵抗が設けられた電源線とは反対側のアームを構成する全てのスイッチング素子を同時にオン駆動する第2状態とを交互に切り替えながら漏電電流を検出する。この構成では、漏電電流は流れるが、負荷電流は流れない。

0014

一対の電源線間にコンデンサを備えている場合、負荷に電力が供給されていると、直流電源からコンデンサに充電電流が流れる。シャント抵抗に充電電流が流れると、漏電電流に検出誤差が生じる。本手段により漏電電流を検出すると、負荷に電力が供給されないので、直流電源からコンデンサに充電電流が流れない。このため、請求項7記載の手段のように、シャント抵抗を、コンデンサとインバータ主回路との間のみならず、直流電源とコンデンサとの間に設けることができる。

0015

請求項4記載の手段によれば、電圧検出回路から出力される電圧を入力とするローパスフィルタを備えている。制御手段は、シャント抵抗が設けられた電源線の側のアームを構成する全てのスイッチング素子を同時にオン駆動する第1状態と、シャント抵抗が設けられた電源線とは反対側のアームを構成する全てのスイッチング素子を同時にオン駆動する第2状態とを交互に切り替える。

0016

この構成では、漏電電流は流れるが、負荷電流は流れない。そのため、負荷電流が流れる期間を除いてシャント抵抗の電圧を検出する必要がない。従って、制御手段は、第1状態の期間に電圧検出回路により検出された第1電圧および第2状態の期間に電圧検出回路により検出された第2電圧がローパスフィルタに入力された状態で、ローパスフィルタから出力される電圧に基づいて漏電電流の平均値を検出することができる。

0017

請求項5記載のインバータ装置は、一対の電源線間にインバータ主回路を複数並列に備えている。制御手段は、複数のインバータ主回路の中から順に1つのインバータ主回路を選択し、非選択としたインバータ主回路についてスイッチング素子の駆動を停止し、選択したインバータ主回路について第1状態と第2状態とを交互に切り替えながら漏電電流を検出する。本手段によれば、共通の直流電源に複数のインバータ主回路を並列に接続した構成であっても、漏電が生じているインバータ主回路を特定することができる。

0018

請求項6記載のインバータ装置は、一対の電源線間にコンデンサを備えている。負荷に電力が供給されているとき、直流電源からコンデンサに充電電流が流れる。この充電電流は、コンデンサからインバータ主回路に入力される負荷電流を補う電流であって、負荷電流とは波形も流れる時期も一致しない。シャント抵抗に充電電流が流れると、検出する漏電電流に誤差が生じる。そこで、シャント抵抗は、充電電流が流れない位置、すなわちコンデンサとインバータ主回路との間に設けられている。

0019

請求項8記載の手段によれば、シャント抵抗が設けられた電源線に他の電源および当該他の電源により動作する回路が接続されている。この場合、これらの回路電流がシャント抵抗に流れ、漏電電流を検出する際の誤差となる場合がある。そこで、これらの回路電流がシャント抵抗に流れないように、シャント抵抗は、他の電源および当該他の電源により動作する回路の接続点よりも直流電源側に設けられている。

0020

請求項9記載の手段によれば、制御手段は、電圧検出回路から入力した検出電圧を複数周期に亘り平均化処理して漏電電流を検出する。これにより、ノイズの影響を低減でき、漏電電流をより正確に検出することができる。

図面の簡単な説明

0021

第1の実施形態を示すインバータ装置の構成図
モータジェネレータを駆動しているときの波形図
第2の実施形態を示す制御回路ブロック構成
第3の実施形態を示す図1相当図
第4の実施形態を示す図1相当図
第5の実施形態を示す漏電検出時の波形図
第6の実施形態を示す図1相当図
第7の実施形態を示す図1相当図
第8の実施形態を示す図1相当図

実施例

0022

以下、インバータ主回路と負荷との間で漏電が生じているものとして各実施形態を説明する。各実施形態において実質的に同一部分には同一符号を付して説明を省略する。
(第1の実施形態)
第1の実施形態について図1および図2を参照しながら説明する。図1に示すインバータ装置11は、ハイブリッド自動車、電気自動車などに搭載された動力源としてのモータジェネレータ12を駆動する。インバータ装置11は、インバータ主回路13を備えている。図示しない昇圧コンバータは、バッテリ14の電圧(例えば288V)を昇圧し、その昇圧電圧(例えば650V)を一対の電源線15、16を介してインバータ主回路13に出力する。ここでは、昇圧コンバータを省略した構成について説明する。

0023

インバータ主回路13は、IGBT17up、17unの直列回路、IGBT17vp、17vnの直列回路およびIGBT17wp、17wnの直列回路が、電源線15、16間に並列に接続された三相ブリッジ構成を備えている。スイッチング素子であるIGBT17up〜17wnには、それぞれダイオード18up〜18wnが逆並列に接続されている。

0024

IGBT17up、17vp、17wpとダイオード18up、18vp、18wpは上側アームを構成し、IGBT17un、17vn、17wnとダイオード18un、18vn、18wnは下側アームを構成している。インバータ主回路13の出力端子Nu、Nv、Nwは、車両内に配設されたケーブル19を介してモータジェネレータ12の各相端子に接続されている。ケーブル19は、3相分の絶縁電線19u、19v、19wの周囲を、シールドとなる金属シースで覆ったものである。

0025

低電位側の電源線16にはシャント抵抗20が設けられている。電圧検出回路21は、シャント抵抗20の電圧Vsを検出する。制御回路22は、マイクロコンピュータ主体に構成された制御手段である。マイクロコンピュータは、CPU、揮発性メモリ(RAM)、不揮発性メモリ(ROM、フラッシュメモリ等)、通信I/F、A/D変換器23、入出力ポートなどを備えている。制御回路22は、IGBT17up、17vp、17wpのゲート電圧を生成するため、チャージポンプ回路を備えている。電圧検出回路21と制御回路22は、低電位側の電源線16の電位を基準電位とする制御用の電源電圧Vcc(例えば5V)により動作する。

0026

制御回路22は、不揮発性メモリに書き込まれた制御プログラムに従ってIGBT17up〜17wnにゲート信号を出力し、モータジェネレータ12を駆動し或いはモータジェネレータ12の発電電力回生してバッテリ14を充電する。さらに、制御回路22は、上記制御プログラムに従って、電圧検出回路21が検出した電圧VsをA/D変換器23を通して取り込み、その検出電圧Vsに基づいて漏電電流を検出する。

0027

ユーザがバッテリ14の端子、電源線15、16、インバータ主回路13、絶縁電線19u、19v、19w、モータジェネレータ12の端子などの高電圧系に接触した際の感電を防止するため、高電圧系は、ボディ(車体)アースEに対し絶縁されている。ケーブル19の金属シースおよびモータジェネレータ12の筺体は、ボディアースEに接地されている。

0028

次に、ケーブル19の芯線シースとの間の絶縁材の腐食や亀裂により絶縁電線19uの絶縁が破れ、ボディアースEとの間に地絡抵抗Reを介して漏電が生じた場合について説明する。図2に示す波形は、モータジェネレータ12を力行動作させているときのU相、V相、W相のゲート信号Gu、Gv、Gw、シャント抵抗20の電圧Vs、絶縁電線19uの電位、電源線16の電位、ボディアースEの電位を示している。ここでは、電源線16の電位を0Vとして示しているので、ボディアースEの電位が変動しているように見える。

0029

ゲート信号Gx(x:u、v、w)は、Hレベルのとき上側アームのIGBT17xpをオンさせ、Lレベルのとき下側アームのIGBT17xnをオンさせる信号である。シャント抵抗20に生じる電圧Vsは、電源線16をインバータ主回路13側からバッテリ14側に流れる場合に正になる。PWMキャリア信号の1周期について、スイッチング状態に応じた期間をT1からT6で表している。

0030

期間T1では、全相とも上側アームのIGBT17up、17vp、17wpがオンしている。このとき、モータジェネレータ12(負荷)に流れる負荷電流は、IGBT17xpおよびダイオード18xpとモータジェネレータ12との間で還流する。漏電電流は、図1に一点鎖線の矢印で示すように、バッテリ14の正極端子から電源線15、IGBT17up、地絡抵抗Re、ボディアースE、容量Ce、バッテリ14の負極端子の経路で流れる。容量Ceは、インバータ装置11とボディアースEとの間の静電結合による容量である。バッテリ14とシャント抵抗20の間もハーネスとなっており、この芯線と金属シースとの間の容量がCeの主たる成分となる。漏電電流が流れると、容量CeにはボディアースE側を正極、電源線16側を負極とする電荷蓄積される。

0031

期間T2、T3、T5、T6では、上側アームのIGBT17upがオン、下側アームのIGBT17wnがオンしている。このとき、負荷電流は、バッテリ14の正極端子から電源線15、IGBT17upまたは17vp、モータジェネレータ12、IGBT17wnまたは17vn、電源線16、シャント抵抗20、バッテリ14の負極端子の経路で流れる。漏電電流は期間T1と同様の経路で流れ、容量CeにはボディアースE側を正極とする電荷が蓄積される。

0032

期間T4では、全相とも下側アームのIGBT17un、17vn、17wnがオンしている。下側アームとは、シャント抵抗20が設けられた電源線16側のアームである。このとき、負荷電流は、IGBT17xnおよびダイオード18xnとモータジェネレータ12との間で還流する。漏電電流は、図1破線の矢印で示すように、容量Ce、ボディアースE、地絡抵抗Re、IGBT17un、電源線16、シャント抵抗20の経路で流れる。これにより、容量Ceに蓄積された電荷が放電される。この漏電電流の経路は上記還流経路に比べてインピーダンスが格段に高いので、負荷電流は漏電電流の経路には流れない。

0033

以上の説明から明らかになるように、期間T1では、シャント抵抗20に負荷電流も漏電電流も流れない。期間T2、T3、T5、T6では、シャント抵抗20に負荷電流が流れ、漏電電流は流れない。期間T4では、シャント抵抗20に負荷電流は流れず、漏電電流が流れる。そこで、制御回路22は、PWM信号の期間T4、例えば期間T4の中央付近におけるシャント抵抗20の電圧Vs(第1電圧に相当)をA/D変換して入力する。シャント抵抗20の抵抗値をRsとすれば、漏電電流IleakはVs/Rsで求められる。制御回路22は、インバータ主回路13のゲート信号も生成しているので、インバータ主回路13の駆動と同期して電圧Vsをサンプリングすることができる。

0034

制御回路22は、予め漏電の有無を判定するためのしきい値Vthを有している。制御回路22は、電圧Vsの絶対値をしきい値Vthと比較し、電圧Vsの絶対値がしきい値Vthよりも大きい場合に、漏電が発生していると判定する。電圧Vsとしきい値Vthとの比較に替えて、漏電電流Ileakとしきい値Ithとの比較を行ってもよい。制御回路22は、漏電が発生したと判定すると、例えば車両のインスツルメントパネルに設けられた漏電警告灯点灯させる。

0035

以上説明したように、本実施形態のインバータ装置11は、低電位側の電源線16にシャント抵抗20を備え、このシャント抵抗20に漏電電流だけが流れる期間T4の電圧Vsに基づいて漏電電流を検出する。高電位側の電源線15にシャント抵抗は不要である。このため、漏電電流の検出に用いる回路(電圧検出回路21と制御回路22)を、電源線16の電位を基準電位とする電源電圧Vccにより動作させることができ、バッテリ14の電圧よりも低い耐圧を持つ素子で構成できる。

0036

低耐圧素子を用いると、半導体集積回路として構成したときに素子のレイアウト面積が小さくなるので、製造コスト下げることができる。さらに、電源線15を基準電位とする電圧を、電源線16を基準電位とする電圧に変換する必要がない。このため、電圧変換に伴う誤差が発生せず、漏電電流の検出精度が向上し、漏電の発生を確実に検出することができる。

0037

(第2の実施形態)
第2の実施形態について図3を参照しながら説明する。本実施形態のインバータ装置は、差分演算部24を除いて図1と同様の回路構成を備えている。制御回路22の差分演算部24は、下側アームのIGBT17un、17vn、17wnが全てオンしている期間T4に入力した第1電圧Vs1と、上側アームのIGBT17up、17vp、17wpが全てオンしている期間T1に入力した第2電圧Vs2との差分電圧Vd(=|Vs2−Vs1|)を演算する。差分演算部24は、マイクロコンピュータのCPUが実行する演算機能を表している。制御回路22は、Vd/Rsにより漏電電流Ileakを求める。電圧Vs1、Vs2は、電圧検出回路21により検出された電圧である。

0038

第1の実施形態で説明したように、期間T4では、シャント抵抗20に負荷電流は流れず漏電電流が流れる。期間T1では、シャント抵抗20に負荷電流も漏電電流も流れない。しかし、シャント抵抗20の配設位置によっては、シャント抵抗20に制御電流が流れる場合がある。

0039

すなわち、制御用の電源電圧Vccを生成する制御電源、電圧検出回路21および制御回路22は、電源線16を基準電位として動作するので、それらのグランドは電源線16に接続されている。このため、電源線16において、制御電源のグランド接続点と電圧検出回路21と制御回路22のグランド接続点との間には制御電流(リターン電流)が流れる。この制御電流はほぼ一定である。

0040

本実施形態によれば、シャント抵抗20がこれらグランド接続点の間に設けられており、電圧Vs1、Vs2に上記制御電流による電圧が重畳する場合でも、差分演算を行うことにより当該制御電流による電圧が相殺される。従って、シャント抵抗20に制御電流が流れる場合でも、漏電電流をより正確に求めることができ、漏電の発生を確実に検出することができる。その他、第1の実施形態と同様の効果が得られる。

0041

(第3の実施形態)
第3の実施形態について図4を参照しながら説明する。第2の実施形態でも説明したように、制御電源32のグランド、電圧検出回路21のグランドおよび制御回路22のグランドは、それぞれノードNa、Nb、Ncで電源線16に接続されている。このため、ノードNb、NcからノードNaに至る電源線16に制御電流が流れる。

0042

本実施形態のインバータ装置31は、電源線16において上記制御電流が流れない区間、すなわち全てのノードNa、Nb、Ncよりもバッテリ14側の区間にシャント抵抗20を備えている。制御電源32は、バッテリ14とは異なる低電圧バッテリ(図示せず)の電圧(一例として12V)を降圧して制御用の電源電圧Vccを生成する。

0043

本実施形態によれば、第1の実施形態と同様に期間T4の電圧Vsに基づいて漏電電流を検出する場合でも、シャント抵抗20に制御電流による電圧が重畳しない。従って、漏電電流をより正確に求めることができ、漏電の発生を確実に検出できる。勿論、第2の実施形態と同様に、差分電圧Vdに基づいても漏電電流を検出できる。

0044

(第4の実施形態)
第4の実施形態について図5を参照しながら説明する。本実施形態のインバータ装置41は、電源線15、16間にコンデンサ42を備えている。コンデンサ42は、電源線15、16間の電圧を平滑して安定化させる作用を持つ。シャント抵抗20は、電源線16において、コンデンサ42とインバータ主回路13との間に設けられている。その他の構成は、図1に示したインバータ装置11と同様である。

0045

インバータ主回路13によりモータジェネレータ12が駆動されているとき、バッテリ14からコンデンサ42に充電電流が流れる。この充電電流は、コンデンサ42からインバータ主回路13に入力される負荷電流を補う電流である。充電電流は、期間T1、T4にも流れ、負荷電流とは波形も流れる時期も一致しない。

0046

本手段によれば、コンデンサ42とインバータ主回路13との間にシャント抵抗20を配置したので、バッテリ14からコンデンサ42への充電電流がシャント抵抗20に流れない。従って、第1の実施形態と同様に期間T4の電圧Vsに基づいて漏電電流を検出する場合、第2の実施形態と同様に期間T4の電圧Vs1と期間T1の電圧Vs2との差分電圧Vdに基づいて漏電電流を検出する場合の何れにおいても、充電電流の影響を受けることなく漏電電流を正確に求めることができる。

0047

(第5の実施形態)
第5の実施形態について図6を参照しながら説明する。本実施形態のインバータ装置は、モータジェネレータ12の駆動を停止している状態で、下側アームのIGBT17un、17vn、17wnを同時にオン駆動する第1状態と、上側アームのIGBT17up、17vp、17wpを同時にオン駆動する第2状態とを交互に切り替えながら漏電電流を検出する。第1状態は期間T4に対応し、第2状態は期間T1に対応する。すなわち、期間T1と期間T4が順に繰り返される。この場合のデューティ比(=T1/(T1+T4))は、50%に限られない。

0048

インバータ装置は、第1の実施形態と同様に期間T4の電圧Vsに基づいて漏電電流を検出し、或いは第2の実施形態と同様に期間T4の電圧Vs1と期間T1の電圧Vs2との差分電圧Vdに基づいて漏電電流を検出する。本実施形態によれば、モータジェネレータ12の非駆動期間に漏電電流を検出でき、漏電の有無を判定できる。

0049

本実施形態は、上述した各実施形態のインバータ装置に適用することができる。モータジェネレータ12を駆動しないので、電源線15、16には負荷電流およびコンデンサ42への充電電流が流れない。このため、コンデンサ42を備える場合には、コンデンサ42とインバータ主回路13との間のみならず、バッテリ14とコンデンサ42との間にシャント抵抗20を配置した構成であっても漏電電流を正確に検出できる。

0050

(第6の実施形態)
第6の実施形態について図7を参照しながら説明する。本実施形態のインバータ装置51は、電圧検出回路21から出力される電圧Vsを入力とするローパスフィルタ52を備えている。制御回路22は、ローパスフィルタ52から出力される電圧VsfをA/D変換器23を通して取り込む。制御電源32、電圧検出回路21および制御回路22のグランドを電源線16に接続する場合には、第3の実施形態と同様にシャント抵抗20を配置し、シャント抵抗20に制御電流が流れないようにする。コンデンサ42を備える場合には、第5の実施形態と同様に配置すればよい。

0051

制御回路22は、第5の実施形態と同様に、モータジェネレータ12の非駆動期間に、下側アームのIGBT17un、17vn、17wnを同時にオン駆動する第1状態と、上側アームのIGBT17up、17vp、17wpを同時にオン駆動する第2状態とを交互に切り替えながら漏電電流を検出する。期間T1では、シャント抵抗20に負荷電流も漏電電流も流れない。期間T4では、シャント抵抗20に漏電電流だけが流れる。

0052

期間T1と期間T4は交互に繰り返されるので、ローパスフィルタ52の出力電圧Vsfは、期間T4にシャント抵抗20に流れる漏電電流を1周期(=T1+T4)に亘り平均した値となる。制御回路22は、IGBT17up〜17wnのゲート信号との同期を取ることなく、任意のタイミングで出力電圧VsfをA/D変換することにより、そのA/D変換値に基づいて漏電電流を検出することができる。

0053

(第7の実施形態)
第7の実施形態について図8を参照しながら説明する。本実施形態のインバータ装置61は、冷却系が必要な複数(ここでは2つ)のインバータ主回路13A、13BをPCU(Power Control Unit)としてまとめた構成を備えている。インバータ主回路13A、13Bには、それぞれケーブル19A、19Bを介してモータジェネレータ12A、12Bが接続されている。ケーブル19A、19Bの金属シースおよびモータジェネレータ12A、12Bの筺体は、ボディアースEに接地されている。

0054

制御回路22は、モータジェネレータ12A、12Bの非駆動期間において、インバータ主回路13Bの駆動を停止し、インバータ主回路13Aについて第5の実施形態と同様に第1状態と第2状態とを交互に切り替えながら漏電電流を検出する。続いて、インバータ主回路13Aの駆動を停止し、インバータ主回路13Bについて第5の実施形態と同様に第1状態と第2状態とを交互に切り替えながら漏電電流を検出する。この場合、制御回路22は、電圧検出回路21から入力した電圧Vsを複数周期に亘り平均化処理して漏電電流を検出する。

0055

本実施形態によれば、共通の電源線15、16に複数のインバータ主回路13A、13Bが接続された構成であっても、順に1つのインバータ主回路を選択して第1状態と第2状態とを交互に切り替えることにより、漏電が生じているインバータ主回路を特定することができる。また、平均化処理をした電圧Vsに基づいて漏電電流を検出するので、ノイズの影響を低減でき、高精度の漏電検出が可能となる。その他、第5の実施形態と同様の作用および効果が得られる。

0056

(第8の実施形態)
第8の実施形態について図9を参照しながら説明する。本実施形態のインバータ装置71は、高電位側の電源線15にシャント抵抗20を備えている。電圧検出回路21と制御回路22は、電源線15の電位を基準電位とする制御用の電源電圧Vcc(例えば5V)により動作する。その他の構成は、図1に示したインバータ装置11と同様である。

0057

図2に示した期間T1では、全相とも、シャント抵抗20が設けられた電源線15側のアームのIGBT17up、17vp、17wpがオンしている。このとき、負荷電流は、IGBT17xpおよびダイオード18xp(x:u、v、w)とモータジェネレータ12との間で還流する。漏電電流は、図9に一点鎖線の矢印で示すように、バッテリ14の正極端子から電源線15、シャント抵抗20、IGBT17up、地絡抵抗Re、ボディアースE、容量Ce、バッテリ14の負極端子の経路で流れる。

0058

期間T2、T3、T5、T6では、負荷電流は、バッテリ14の正極端子から電源線15、シャント抵抗20、IGBT17upまたは17vp、モータジェネレータ12、IGBT17wnまたは17vn、電源線16、バッテリ14の負極端子の経路で流れる。漏電電流は期間T1と同様の経路で流れる。

0059

期間T4では、全相とも下側アームのIGBT17un、17vn、17wnがオンしている。このとき、負荷電流は、IGBT17xnおよびダイオード18xnとモータジェネレータ12との間で還流する。漏電電流は、図9に破線の矢印で示すように、容量Ce、ボディアースE、地絡抵抗Re、IGBT17un、電源線16の経路で流れる。

0060

すなわち、期間T1では、シャント抵抗20に負荷電流は流れず、漏電電流が流れる。期間T2、T3、T5、T6では、シャント抵抗20に負荷電流と漏電電流が流れる。期間T4では、シャント抵抗20に負荷電流も漏電電流も流れない。そこで、制御回路22は、PWM信号の期間T1、例えば期間T1の中央付近におけるシャント抵抗20の電圧Vs(第1電圧に相当)をA/D変換して入力する。

0061

制御回路22は、電圧Vsの絶対値をしきい値Vthと比較し、電圧Vsの絶対値がしきい値Vthよりも大きい場合に、漏電が発生していると判定する。このように、シャント抵抗20を高電位側の電源線15に備えた本実施形態によっても、第1の実施形態と同様の作用および効果が得られる。

0062

(その他の実施形態)
以上、本発明の好適な実施形態について説明したが、本発明は上述した実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲内で種々の変形、拡張を行うことができる。

0063

第2から第7の実施形態についても、シャント抵抗20を高電位側の電源線15に備えた構成とすることができる。この場合の作用および効果は、シャント抵抗20を低電位側の電源線16に備えた構成と同様である。

0064

各実施形態において、モータジェネレータ12を駆動しながら漏電電流を検出する場合には、コンデンサ42とインバータ主回路13との間にシャント抵抗20を配置する。モータジェネレータ12の非駆動期間に漏電電流を検出する場合には、コンデンサ42とインバータ主回路13との間のみならず、バッテリ14とコンデンサ42との間にシャント抵抗20を配置する。

0065

第1から第6の実施形態および第8の実施形態においても、第7の実施形態と同様に電源線15、16間に複数のインバータ主回路13A、13B、…を複数並列に備えてもよい。この場合、モータジェネレータ12A、12Bの駆動期間に漏電電流を検出する場合には、インバータ主回路13A、13B、…を互いに同一のゲート信号で駆動する必要がある。

0066

第1から第5の実施形態および第8の実施形態においても、第7の実施形態と同様に平均化処理をして漏電電流を検出してもよい。平均化処理は、漏電電流を演算した後に行ってもよい。

0067

電圧検出回路21により検出された電圧Vsまたは電圧Vs1、Vs2に基づいて漏電電流を検出する制御手段と、スイッチング素子を駆動する制御手段とは、別体の回路であってもよい。

0068

上述した実施形態では、ケーブル19の芯線と金属シースとの間の絶縁が破れて漏電が生じたと説明したが、モータジェネレータ12の巻線と筺体との間の絶縁が破れて漏電が生じる場合でも同様の作用となる。

0069

図面中、11、31、41、51、61、71はインバータ装置、13、13A、13Bはインバータ主回路、14はバッテリ(直流電源)、15、16は電源線、17up〜17wnはIGBT(スイッチング素子)、18up〜18wnはダイオード、20はシャント抵抗、21は電圧検出回路、22は制御回路(制御手段)である。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 日本電産テクノモータ株式会社の「 制御装置、駆動装置、及び制御方法」が 公開されました。( 2020/01/09)

    【課題】直流電源部の出力変動に対する負荷機器の駆動制御の追従性が良い制御装置、駆動装置、及び制御方法を提供する。【解決手段】直流電源部10から直流電力が供給され、負荷機器20の駆動を制御する制御装置3... 詳細

  • 株式会社日立製作所の「 電力変換装置」が 公開されました。( 2019/12/05)

    【課題】太陽光発電サイト内に設置するに好適な冷却に工夫された電力変換装置を提供する。【解決手段】電力変換ユニット群を構成する複数の電力変換ユニットは、電力変換装置筐体100の長手方向に沿って配置され、... 詳細

  • 東芝キヤリア株式会社の「 モータ制御装置及びヒートポンプ式冷凍サイクル装置」が 公開されました。( 2019/11/28)

    【課題】電流検出率を低下させることなくスイッチング損失をより低減できるモータ制御装置を提供する。【解決手段】実施形態のモータ制御装置は、3相ブリッジ接続された複数のスイッチング素子を所定のPWM信号パ... 詳細

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ