図面 (/)

技術 モータ駆動装置

出願人 ダイキン工業株式会社
発明者 石関晋一黒澤靖田岡健太郎
出願日 2013年5月20日 (7年7ヶ月経過) 出願番号 2013-105870
公開日 2014年12月8日 (6年0ヶ月経過) 公開番号 2014-230317
状態 拒絶査定
技術分野 DC‐DCコンバータ
主要キーワード 磁束エネルギー 整流後電圧 モータ起動前 カレントセンサ プリンタ基板 起動直前 駆動電圧出力 昇圧目標値
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2014年12月8日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (11)

課題

昇圧部を構成する部品として大型な部品を使わずとも、電源電圧の変動の発生時における当該部品の発熱量を抑える。

解決手段

昇圧部34は、整流後電圧V1を昇圧して昇圧後電圧V2を生成する。駆動電圧出力部37は、昇圧後電圧V2を用いて駆動電圧SU〜SWを生成し、圧縮機用モータM12に出力する。入力側検出部33は、電源変動時の整流後電圧V1の値または基準値に対する変動幅電源変動情報Vflとして検出する。メモリ42は、昇圧目標値Tpと電源変動情報Vflとが関連付けられた目標関連情報Inf1を記憶する。昇圧目標値Tpは、昇圧部34が生成するべき昇圧後電圧V2の目標値である。決定部43は、目標値関連情報Inf1及び検出された電源変動情報Vflに基づいて、昇圧目標値Tpを決定する。特に、目標値関連情報Inf1は、駆動電圧出力部37の動作範囲に基づいて決定されている。

概要

背景

空気調和装置に含まれる圧縮機やファン等の駆動源としては、モータがよく用いられている。モータは、インバータ等を含むモータ駆動装置によって駆動される。

モータ駆動装置としては、整流部、平滑部及びインバータによって構成されているものが一般的に知られている。先ず、商用電源から出力される電源電圧は、整流部によって整流される。次いで、仮に商用電源が単相電源の場合には、更に昇圧部として昇圧型力率改善回路が用いられ、当該昇圧部によって所望の電圧に昇圧される。昇圧された後の電圧は、平滑部によって平滑にされ、インバータに供給される。インバータは、供給された電圧を用いてモータを駆動するための電圧を生成し、モータに出力する。これにより、モータは駆動される。

上述したモータ駆動装置に関連する技術としては、例えば特許文献1(特開2000−14153号公報)に示される技術が知られている。

概要

昇圧部を構成する部品として大型な部品を使わずとも、電源電圧の変動の発生時における当該部品の発熱量を抑える。昇圧部34は、整流後電圧V1を昇圧して昇圧後電圧V2を生成する。駆動電圧出力部37は、昇圧後電圧V2を用いて駆動電圧SU〜SWを生成し、圧縮機用モータM12に出力する。入力側検出部33は、電源変動時の整流後電圧V1の値または基準値に対する変動幅電源変動情報Vflとして検出する。メモリ42は、昇圧目標値Tpと電源変動情報Vflとが関連付けられた目標関連情報Inf1を記憶する。昇圧目標値Tpは、昇圧部34が生成するべき昇圧後電圧V2の目標値である。決定部43は、目標値関連情報Inf1及び検出された電源変動情報Vflに基づいて、昇圧目標値Tpを決定する。特に、目標値関連情報Inf1は、駆動電圧出力部37の動作範囲に基づいて決定されている。

目的

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

電源電圧(V0)に関する電圧入力側電圧として印加され、該入力側電圧を昇圧して昇圧後電圧(V2)を生成する昇圧部(34)と、前記昇圧後電圧を用いてモータ(M12)を駆動するための駆動電圧(SU〜SW)を生成し、前記モータに出力する駆動電圧出力部(37)と、電源変動が生じている場合の前記入側電圧の値または前記入力側電圧の基準値に対する変動幅を電源変動情報として検出する検出部(33)と、前記昇圧部が生成するべき前記昇圧後電圧の目標値である昇圧目標値と前記電源変動情報とが関連付けられた目標値関連情報、を記憶する記憶部(42)と、検出された前記電源変動情報及び前記目標値関連情報に基づいて、前記昇圧目標値を決定する決定部(43)と、を備え、前記目標値関連情報は、前記駆動電圧出力部の動作範囲に基づいて決定されている、モータ駆動装置(30)。

請求項2

前記目標値関連情報は、更に、前記昇圧目標値が前記モータ駆動装置を構成する電気部品定格電圧以下となる条件に基づいて決定されている、請求項1に記載のモータ駆動装置(30)。

請求項3

前記昇圧部の出力側かつ前記駆動電圧出力部の入力側に位置しており、前記昇圧後電圧を平滑して前記駆動電圧出力部に供給する平滑コンデンサ(36)、を更に備え、前記駆動電圧出力部は、オン及びオフを行うことで前記駆動電圧を生成する複数のスイッチング素子(Q38a〜Q38f)を含み、前記電気部品には、前記平滑コンデンサ及び前記スイッチング素子の少なくとも1つが含まれる、請求項2に記載のモータ駆動装置(30)。

請求項4

前記目標値関連情報における前記昇圧目標値の上限値及び下限値の少なくとも1つが、前記駆動電圧出力部の動作範囲に応じて決定されている、請求項1から3のいずれか1項に記載のモータ駆動装置(30)。

請求項5

前記検出部は、前記電源変動情報の検出動作を、前記モータが駆動を開始する前に行い、前記決定部は、前記昇圧目標値の決定動作を、前記モータが駆動を開始する前に行う、請求項1から4のいずれか1項に記載のモータ駆動装置(30)。

請求項6

前記検出部は、前記電源変動情報の検出動作を、前記モータが駆動している間に行い、前記決定部は、前記昇圧目標値の決定動作を、前記モータが駆動している間に行う、請求項1から5のいずれか1項に記載のモータ駆動装置(30)。

請求項7

前記決定部は、前記電源変動情報に応じて前記昇圧目標値を変化させる、請求項1から6のいずれか1項に記載のモータ駆動装置(30)。

請求項8

前記目標値関連情報では、前記電源電圧の値の上昇に伴い前記昇圧目標値が所定値ずつ上昇するように、前記電源変動情報と前記昇圧目標値とが関連付けられている、請求項7に記載のモータ駆動装置(30)。

技術分野

0001

本発明は、モータ駆動装置に関する。

背景技術

0002

空気調和装置に含まれる圧縮機やファン等の駆動源としては、モータがよく用いられている。モータは、インバータ等を含むモータ駆動装置によって駆動される。

0003

モータ駆動装置としては、整流部、平滑部及びインバータによって構成されているものが一般的に知られている。先ず、商用電源から出力される電源電圧は、整流部によって整流される。次いで、仮に商用電源が単相電源の場合には、更に昇圧部として昇圧型力率改善回路が用いられ、当該昇圧部によって所望の電圧に昇圧される。昇圧された後の電圧は、平滑部によって平滑にされ、インバータに供給される。インバータは、供給された電圧を用いてモータを駆動するための電圧を生成し、モータに出力する。これにより、モータは駆動される。

0004

上述したモータ駆動装置に関連する技術としては、例えば特許文献1(特開2000−14153号公報)に示される技術が知られている。

発明が解決しようとする課題

0005

一般的に、商用電源では、電源電圧の変動が生じる。また、世界各国では、商用電源の基準値である定格電圧値が国ごとに異なっている。

0006

一方で、昇圧部の中には、たとえ電源電圧が変動したとしても、昇圧部が出力する電圧の値が、昇圧部に入力される電圧の値に関係なく常に一定となるものもある。

0007

しかしながら、例えば電源電圧の変動によって電源電圧の値が基準値よりも低くなると、昇圧部に入力される電圧の値も、低くなる傾向にある。この場合、昇圧部が当該電圧を昇圧する昇圧量は、電源電圧の値が基準値である場合よりも大きくなる。すると、昇圧部を構成する部品には、昇圧量に伴い大きな電流が流れる。そのため、昇圧部を構成する部品の発熱量は大きくなり、ひいては部品が故障する虞がある。

0008

これに対し、大きな電流にも耐えられるような定格値を有する部品を、昇圧部を構成する部品として選定する手法が考えられる。しかしながら、この手法では、部品の大型化が招来される。

0009

そこで、本発明の課題は、昇圧部を構成する部品として大型な部品を使わずとも、電源電圧の変動の発生時における当該部品の発熱量を抑えることにある。

課題を解決するための手段

0010

本発明の第1観点に係るモータ駆動装置は、昇圧部と、駆動電圧出力部と、検出部と、記憶部と、決定部とを備える。昇圧部は、電源電圧に関する電圧が入力側電圧として印加され、この入力側電圧を昇圧して昇圧後電圧を生成する。駆動電圧出力部は、昇圧後電圧を用いて駆動電圧を生成し、モータに出力する。駆動電圧は、モータを駆動するための電圧である。検出部は、電源変動情報を検出する。電源変動情報とは、電源変動が生じている場合の、入力側電圧の値または入力側電圧の基準値に対する変動幅である。記憶部は、目標関連情報を記憶する。目標値関連情報は、昇圧目標値と電源変動情報とが関連付けられた情報である。昇圧目標値は、昇圧部が生成するべき昇圧後電圧の目標値である。決定部は、目標値関連情報及び検出された電源変動情報に基づいて、昇圧目標値を決定する。そして、目標値関連情報は、駆動電圧出力部の動作範囲に基づいて決定されている。

0011

ここでは、その時々の入力側電圧の値または入力側電圧の基準値に対する変動幅と、目標値関連情報とに応じて、昇圧部によって生成される昇圧後電圧の値が決定される。特に、目標値関連情報は、駆動電圧出力部の動作範囲に基づいて決定されているため、昇圧後電圧の値は、例えば駆動電圧出力部の動作範囲内となるような値となっている。これにより、電源電圧の変動が生じても、駆動電圧出力部が確実に動作できることを確保しつつ、且つ昇圧部による電圧の昇圧量を適切な量に抑えることができる。即ち、昇圧部を構成する部品として大型な部品を使わずとも、電源電圧の変動の発生時における当該部品の発熱量を抑えることができる。従って、部品の小型化及び低コスト化を図ることが可能となる。

0012

本発明の第2観点に係るモータ駆動装置は、第1観点に係るモータ駆動装置において、目標値関連情報は、更に、昇圧目標値がモータ駆動装置を構成する電気部品定格電圧以下となる条件に基づいて決定されている。

0013

ここでは、駆動電圧出力部の動作範囲のみならず、昇圧目標値がモータ駆動装置を構成する電気部品の定格電圧以下となる条件を満たすようにして、目標値関連情報が決定されている。従って、電源電圧の変動が生じ昇圧目標値がどのような値となったとしても、電気部品に印加される電圧は、定格電圧以下に抑えられる。従って、電気部品の故障を防止できる。

0014

本発明の第3観点に係るモータ駆動装置は、第2観点に係るモータ駆動装置において、平滑コンデンサを更に備える。平滑コンデンサは、昇圧部の出力側、かつ、駆動電圧出力部の入力側に位置している。平滑コンデンサは、昇圧後電圧を平滑し、駆動電圧出力部に供給する。駆動電圧出力部は、複数のスイッチング素子を含む。スイッチング素子は、オン及びオフを行うことで、駆動電圧を生成する。そして、電気部品には、平滑コンデンサ及びスイッチング素子の少なくとも1つが含まれる。

0015

上述した電気部品には、昇圧部の出力側に位置している電気部品、具体的には平滑コンデンサや、駆動電圧出力部内のスイッチング素子が含まれる。

0016

本発明に係るモータ駆動装置では、電源変動情報つまりは入力側電圧の値または入力側電圧の基準値に対する変動幅に応じて、昇圧目標値が決定される。すると、場合によっては、昇圧部が生成する昇圧後電圧が上昇し、昇圧後電圧が印加されるであろう昇圧部の後段側に位置する機能部の耐圧が問題となる。しかし、ここでは、昇圧目標値は、これらの機能部、つまりは昇圧部の出力側の機能部を構成する電気部品の定格電圧以下に決定される。従って、電源変動に応じて昇圧目標値が変化したことにより、昇圧後電圧の値が変化したとしても、昇圧部の出力側に位置している電気部品の故障を、確実に防ぐことができる。

0017

本発明の第4観点に係るモータ駆動装置は、第1観点から第3観点のいずれかに係るモータ駆動装置において、目標値関連情報における昇圧目標値の上限値及び下限値の少なくとも1つが、駆動電圧出力部の動作範囲に応じて決定されている。

0018

ここでは、例えば昇圧目標値の上限値及び下限値が、駆動電圧出力部の動作範囲内となるようにして決定されている。これにより、電源電圧の変動が生じたとしても、駆動電圧出力部に印加される昇圧後電圧は、確実に駆動電圧出力部の動作範囲内となる。

0019

本発明の第5観点に係るモータ駆動装置は、第1観点から第4観点のいずれかに係るモータ駆動装置において、検出部は、電源変動情報の検出動作を、モータが駆動を開始する前に行う。決定部は、昇圧目標値の決定動作を、モータが駆動を開始する前に行う。

0020

ここでは、モータ起動前の電源変動情報、つまりは入力側電圧の値または入力側電圧の基準値に対する変動幅に基づき決定された昇圧目標値が、モータ起動後に実際に昇圧部が昇圧するべき電圧値となる。従って、駆動電圧出力部には、モータの起動前に決定された値を有する昇圧後電圧が供給される。

0021

本発明の第6観点に係るモータ駆動装置は、第1観点から第5観点のいずれかに係るモータ駆動装置において、検出部は、電源変動情報の検出動作を、モータが駆動している間に行う。決定部は、昇圧目標値の決定動作を、モータが駆動している間に行う。

0022

ここでは、モータ起動後におけるその時々の電源変動情報、つまりは入力側電圧の値または入力側電圧の基準値に対する変動幅に応じた昇圧目標値が決定される。これにより、昇圧部が昇圧するべき電圧値は、電源電圧のリアルタイムな変動に対応した値となり、当該値を有する昇圧後電圧は、駆動電圧出力部に供給される。従って、駆動電圧出力部が動作できることを、より確実に確保することができる。且つ、昇圧部による電圧の昇圧量をより適切な量に抑えることができるため、昇圧部を構成する部品の発熱量も、より確実に抑えることができる。

0023

本発明の第7観点に係るモータ駆動装置は、第1観点から第6観点のいずれかに係るモータ駆動装置において、決定部は、電源変動情報に応じて昇圧目標値を変化させる。

0024

これにより、駆動電圧出力部には、電源変動情報、つまりは入力側電圧の値または入力側電圧の基準値に対する変動幅に応じて変化した値を有する昇圧後電圧が供給される。従って、駆動電圧出力部が動作できることを、より確実に確保することができる。且つ、昇圧部による電圧の昇圧量をより適切な量に抑えることができるため、昇圧部を構成する部品の発熱量も、より確実に抑えることができる。

0025

本発明の第8観点に係るモータ駆動装置は、第7観点に係るモータ駆動装置において、目標値関連情報では、電源電圧の値の上昇に伴い昇圧目標値が所定値ずつ上昇するように、電源変動情報と昇圧目標値とが関連付けられている。

0026

例えば、電源電圧の値が高いために入力側電圧の値が高い程、昇圧目標値は高くなり、逆に電源電圧の値が低いために入力側電圧の値が小さい程、昇圧目標値は低くなる。従って、例えば電源電圧の値が低く入力側電圧の値が小さいのに対して昇圧目標値が高いために、昇圧部を構成する部品に流れる電流が大きくなり、故に昇圧部を構成する部品の発熱量が大きくなってしまうことを、確実に防ぐことができる。

発明の効果

0027

本発明の第1観点に係るモータ駆動装置によると、電源電圧の変動が生じても、駆動電圧出力部が確実に動作できることを確保しつつ、且つ昇圧部による電圧の昇圧量を適切な量に抑えることができる。即ち、昇圧部を構成する部品として大型な部品を使わずとも、電源電圧の変動の発生時における当該部品の発熱量を抑えることができる。従って、部品の小型化及び低コスト化を図ることが可能となる。

0028

本発明の第2観点及び第3観点に係るモータ駆動装置では、電気部品の故障を防止できる。

0029

本発明の第4観点に係るモータ駆動装置によると、電源電圧の変動が生じたとしても、駆動電圧出力部に印加される昇圧後電圧は、確実に駆動電圧出力部の動作範囲内となる。

0030

本発明の第5観点に係るモータ駆動装置では、駆動電圧出力部には、モータの起動前に決定された値を有する昇圧後電圧が供給される。

0031

本発明の第6観点及び第7観点に係るモータ駆動装置によると、駆動電圧出力部が動作できることを、より確実に確保することができる。且つ、昇圧部による電圧の昇圧量をより適切な量に抑えることができるため、昇圧部を構成する部品の発熱量も、より確実に抑えることができる。

0032

本発明の第8観点に係るモータ駆動装置によると、例えば電源電圧の値が低く入力側電圧の値が小さいのに対して昇圧目標値が高いために、昇圧部を構成する部品に流れる電流が大きくなり、故に昇圧部を構成する部品の発熱量が大きくなってしまうことを、確実に防ぐことができる。

図面の簡単な説明

0033

本実施形態に係るモータ駆動装置を含むモータ駆動システムの構成図。
モータ駆動装置が搭載された空気調和装置の構成を簡単に示す図。
整流後電圧と、入力側検出部の出力である入力側電圧値と、の関係を説明するための図。
駆動電圧出力部の拡大図。
目標値関連情報の概念を説明するための図。
電源電圧の変動が生じた場合の、昇圧後電圧の経時的変化を表す図。
本実施形態に係るモータ駆動装置の動作の流れを表す図。
変形例Bに係る目標値関連情報の概念を説明するための図。
変形例Dに係るモータ駆動装置の動作の流れを表す図。
変形例Eに係るモータ駆動装置の動作の流れを表す図。

実施例

0034

以下、本発明に係るモータ駆動装置について、図面を参照しつつ詳述する。なお、以下の実施形態は、本発明の具体例であって、本発明の技術的範囲を限定するものではない。

0035

(1)概要及び空気調和装置の構成
図1は、圧縮機用モータM12と、このモータM12を駆動制御するための本実施形態に係るモータ駆動装置30とを含むモータ駆動システム100全体の構成を表している。モータ駆動システム100は、図2に示す構成からなる空気調和装置10内に搭載されている。特に、図2に示すように、圧縮機用モータM12は、後述するように室外ユニット11内に設けられているため、本実施形態に係るモータ駆動装置30も、室外ユニット11内に搭載されている。

0036

ここで、空気調和装置10の構成について説明する。図2に示すように、空気調和装置10は、主として、屋外に設置される室外ユニット11と、室内の天井や壁面等に設置される室内ユニット21とを有する、セパレートタイプ空調機である。これらのユニット11,21は、冷媒配管Pi1,Pi2によって接続されており、蒸気圧縮式の冷媒回路10aが構成されている。このような空気調和装置10は、冷房運転及び暖房運転等を行うことができる。

0037

(1−1)室外ユニット
室外ユニット11は、主として、圧縮機12、四路切換弁13、室外熱交換器14、膨張弁15、液側閉鎖弁16、ガス側閉鎖弁17、及び室外ファン18を有している。

0038

圧縮機12は、低圧ガス冷媒吸入し、圧縮して高圧のガス冷媒とした後に吐出する機構である。ここでは、圧縮機12として、ケーシング(図示せず)内に収容されたロータリ式スクロール式等の容積式圧縮要素(図示せず)が、同じくケーシング内に収容された圧縮機用モータM12を駆動源として駆動される密閉式圧縮機が採用されており、これにより圧縮機12の容量制御が可能になっている。即ち、圧縮機12は、容量可変自在なタイプの圧縮機である。

0039

圧縮機用モータM12は、3相ブラシレスDCモータである。図示してはいないが、圧縮機用モータM12は、ステータロータ及びホール素子等を有している。ステータは、複数の駆動コイルで構成されている。ロータは、永久磁石で構成されている。ホール素子は、ステータに対するロータの位置を検出するための素子である。

0040

四路切換弁13は、冷房運転と暖房運転との切換時に、冷媒の流れの方向を切り換えるための弁である。四路切換弁13は、冷房運転時には、圧縮機12の吐出側と室外熱交換器14のガス側とを接続するとともにガス側閉鎖弁17と圧縮機12の吸入側とを接続する(図2における四路切換弁13の実線を参照)。また、四路切換弁13は、暖房運転時には、圧縮機12の吐出側とガス側閉鎖弁17とを接続するとともに室外熱交換器14のガス側と圧縮機12の吸入側とを接続する(図2における四路切換弁13の破線を参照)。つまり、四路切換弁13の採り得る接続状態は、空気調和装置10の運転種類に応じて変化する。

0041

室外熱交換器14は、冷房運転時には冷媒の放熱器として機能し、暖房運転時には冷媒の蒸発器として機能する熱交換器である。例えば、室外熱交換器14は、複数のフィンと、このフィンに挿入された複数の伝熱管とで構成されており、室内ファン18によって供給された室外空気伝熱管内を流れる冷媒との間で熱交換を行う。室外熱交換器14は、その液側が膨張弁15に接続されており、ガス側が四路切換弁13に接続されている。

0042

膨張弁15は、電動膨張弁で構成されている。膨張弁15は、冷房運転時には、室外熱交換器14において放熱した高圧の液冷媒室内熱交換器23(後述)に送る前に減圧する。また、膨張弁15は、暖房運転時には、室内熱交換器23において放熱した高圧の液冷媒を室外熱交換器14に送る前に減圧する。

0043

液側閉鎖弁16及びガス側閉鎖弁17は、外部の機器及び冷媒配管Pi1,Pi2との接続口に設けられた弁である。室外ユニット11内部において、液側閉鎖弁16は、膨張弁15に接続されている。ガス側閉鎖弁17は、四路切換弁13に接続されている。

0044

室外ファン18は、室外空気を室外ユニット11内に吸入して室外熱交換器14に供給した後に、当該空気を該ユニット11の外に排出する。室外ファン18としては、例えばプロペラファンが採用されており、室外ファンモータM18を駆動源として回転駆動される。室外ファンモータM18は、圧縮機用モータM12と同様、ステータ及びロータ等を有する3相のブラシレスモータである。

0045

その他、室外ユニット11は、冷媒圧力センサ冷媒温度検知センサ外気温度検知センサ等の様々なセンサの他、該ユニット11内の各種機器を制御する室外制御部(図示せず)等を有している。

0046

(1−2)室内ユニット
室内ユニット21は、主として、室内ファン22及び室内熱交換器23を有しており、これらは、該ユニット21のケーシング内部に配置されている。

0047

室内ファン22は、室内空気を吸い込み口(図示せず)を介してケーシング内に吸い込むと共に、室内熱交換器23にて熱交換された後の空気を吹き出し口(図示せず)を介してケーシング内から室内に吹き出す遠心送風機である。室内ファン22は、例えばシロッコファンで構成され、室内ファンモータM22を駆動源として回転駆動される。室内ファンモータM22は、室外ファンモータM18と同様、ステータ及びロータ等を有する3相のブラシレスモータである。

0048

室内熱交換器23は、冷房運転時には、冷媒の蒸発器として機能し、暖房運転時には、冷媒の放熱器として機能する熱交換器である。室内熱交換器23は、各冷媒配管Pi1,Pi2に接続されている。室内熱交換器23は、例えば、複数のフィンと、このフィンに挿入された複数の伝熱管とで構成されている。室内熱交換器23は、ケーシング内に吸い込まれた室内の空気と伝熱管を流れる冷媒との間で、熱交換を行う。

0049

その他、室内ユニット21は、図示してはいないが、吹き出し口に設けられた水平フラップ吸込空気温度センサ等の各種センサ、該ユニット21内の各種機器を制御する室内制御部等を有している。

0050

(2)モータ駆動装置の構成
本実施形態に係るモータ駆動装置30は、図1に示すように、主として、フィルタ31、整流部32、入力側検出部33(検出部に相当)、昇圧部34、出力側検出部35、平滑コンデンサ36、駆動電圧出力部37、昇圧駆動部40、及びコントローラ41を備える。モータ駆動装置30のこれらの構成要素は、プリント基板P1上に実装されている。

0051

更に、プリント基板P1には、2つのコネクタIF1,IF2が実装されている。コネクタIF1は、複数相交流電圧(以下、電源電圧V0と言う)の出力源である商用電源91とプリンタ基板P1とを、ハーネスを介して繋ぐインターフェースである。コネクタIF2は、圧縮機用モータM12とプリンタ基板P1とを、ハーネスを介して繋ぐインターフェースである。

0052

(2−1)フィルタ
フィルタ31は、商用電源91と整流部32との間に位置している。フィルタ31は、コイル31aとコンデンサ31bとで構成されたローパスフィルタであって、昇圧部34及び駆動電圧出力部37にて発生した高周波ノイズ成分を除去する。

0053

コイル31aは、商用電源91の出力に対して直列に接続されており、コンデンサ31bは、コイル31aの出力側(即ち、整流部32側)において、コイル31aに対して並列に接続されている。

0054

(2−2)整流部
整流部32は、フィルタ31の後段に接続されており、フィルタ31通過後の電源電圧V0を整流する。

0055

整流部32は、4つのダイオード32a,32b,32c,32dで構成された、いわゆるダイオードブリッジである。4つのダイオード32a〜32dのうち、2つずつが互いに直列に接続されることで2つのダイオード群をなすと共に、該ダイオード群が互いに並列となるように接続されている。具体的には、ダイオード32a,32cの各カソード端子は、互いに電源配線51に接続されており、ダイオード32b,32dの各アノード端子は、互いにGND配線52に接続されている。

0056

そして、各ダイオード群におけるダイオード同士の接続点は、それぞれ商用電源91の出力に接続されている。具体的には、ダイオード32aのアノード端子及びダイオード32bのカソード端子は、互いに接続されるとともに、商用電源91の一方の出力に接続されている。ダイオード32cのアノード端子及びダイオード32dのカソード端子は、互いに接続されるとともに、商用電源91の他方の出力に接続されている。

0057

このような構成を有する整流部32によると、商用電源91から出力されフィルタ31を通過した交流各相の電源電圧V0は、図3に示すように全波整流される。以下では、説明の便宜上、整流部32によって整流された後の電源電圧V0を、「整流後電圧V1」を言う。

0058

(2−3)入力側検出部
入力側検出部33は、整流部32の後段、より具体的には整流部32と昇圧部34との間に位置している。入力側検出部33は、電源電圧V0の変動が生じている場合及び生じてない場合も含め、整流後電圧V1の値を検出する。

0059

ここで、整流後電圧V1は、電源電圧V0が整流された後の電圧であって、昇圧部34に印加される。そのため、整流後電圧V1は、昇圧部34を基準とすると、電源電圧V0に関する入力側電圧であると言うことができる。

0060

以下では、説明の便宜上、電源電圧V0の変動が生じている場合の入力側電圧の値を、「電源変動情報Vfl」と呼称する。

0061

ここで、電源変動情報Vflについて説明する。電源電圧V0の変動は、様々な要因によって生じる。一例としては、商用電源91から出力される電源電圧V0を様々な機器が電源として用いる際に、様々な機器が一斉に稼動することによって、商用電源91の設備容量に対する負荷が一時的にも過剰となる場合がある。この場合には、電源電圧V0が基準の値から低下する。これは、商用電源91から様々な機器側へと大きな電流が流れ込み、商用電源91がその影響に耐えられないことに起因する。逆に、殆どの機器が稼動していないために、負荷が標準よりも小さい場合には、電源電圧V0は基準の値よりも上昇する。これは、稼動する機器が少ないため、商用電源91から機器側へと流れる電流が小さいことに起因する。この他にも、電源電圧V0の変動は、様々な原因によって生じる。

0062

このような電源電圧V0の変動が生じた場合、電源電圧V0の値は、当該電圧V0の基準値に対して、例えばマイナス10%からプラス10%の範囲でばらつくこともある。

0063

なお、上述した電源電圧V0の変動は、一時的、つまりは過渡的に生じる場合がある。更に、上述した電源電圧V0の変動は、常時生じている場合もあり得る。即ち、電源電圧V0の値が基準値である定格電圧値に対して常時ずれたままの状態が保たれた場合も、電源電圧V0の変動が生じていると言える。

0064

電源電圧V0が変動すると、整流部32に入力される電圧が変動し、故に昇圧部34に入力される電圧も変動することとなる。そこで、本実施形態に係る入力側検出部33は、整流された後の電源電圧V0である整流後電圧V1が基準の値からどの程度変動したのかを把握するべく、電源変動情報Vfl、つまりは整流された後の電源電圧V0である整流後電圧V1(即ち、入力側電圧)の値を検出する。

0065

特に、本実施形態に係る入力側検出部33は、図3に示すように、全波整流された電源電圧V0(即ち、整流後電圧V1)の波高値を、検出結果である電源変動情報Vflとして出力する。なお、入力側検出部33は、図3に示すような電源電圧V0の代わりに、電源電圧V0の実効値平均値、もしくは変動値等を検出する仕様であってもよい。本実施形態では、入力側検出部33が電源電圧V0の波高値を検出する仕様である場合について説明を行っている。

0066

電源電圧V0の波高値を検出する入力側検出部33は、図1に示すように、互いに直列に接続された2つの抵抗33a,33bの他、図示していないコンデンサやピークホールド回路ADコンバータDC−DCコンバータ等によって構成されている。互いに直列に接続された2つの抵抗33a,33bは、整流部32に対し並列に接続されている。つまり、抵抗33aの一端は電源配線51に接続され、抵抗33bの一端はGND配線52に接続されている。抵抗33a,33bの各他端は、互いに接続されている。抵抗33a,33bの接続点における電圧値は、図示しないピークホールド回路に入力され、整流後電圧V1の最大値である波高値は、ピークホールド回路において所定時間保持される。整流後電圧V1の最大値は、ADコンバータにおいてAD変換された後、入力側検出部33の検出結果としてコントローラ41に入力される。

0067

従って、例えば図3に示すように、電源電圧V0の変動が生じる前までは、例えば整流後電圧V1の波高値が176Vであって、電源電圧V0の変動が生じた後では、例えば整流後電圧V1の波高値が264Vであったとする。この場合、入力側検出部33は、電源電圧V0の変動が生じる前までは、176Vをピークホールドして、これを検出結果として出力する。入力側検出部33は、電源電圧V0の変動が生じた後であって次に整流後電圧V1の波高値が変化するまでは、264Vをピークホールドして、これを検出結果として出力する。

0068

ここで、本実施形態に係る入力側検出部33が電源変動情報Vflの検出動作を行う時期としては、圧縮機用モータM12が実際に駆動している間が挙げられる。他に、本実施形態に係る入力側検出部33が電源変動情報Vflの検出動作を行う時期としては、圧縮機用モータM12が駆動を開始する前、即ち圧縮機用モータM12の起動前が挙げられる。

0069

(2−4)昇圧部
昇圧部34は、入力側検出部33の後段、より具体的には入力側検出部33と出力側検出部35との間に位置している。昇圧部34には、整流後電圧V1が入力側電圧として印加される。昇圧部34は、この整流後電圧V1を昇圧して昇圧後電圧V2を生成する。

0070

このような昇圧部34は、昇圧型力率改善回路であって、いわゆる昇圧チョッパ回路を構成している。具体的に、昇圧部34は、図1に示すように、3つのコイルL34a,L34b,L34c、3つの絶縁ゲート型バイポーラトランジスタQ34a,Q34b,Q34c(以下、単にトランジスタという)、3つの抵抗R34a,R34b,R34c、及び3つのダイオードD34a,D34b,D34cによって構成されている。

0071

コイルL34aは、電源配線51上に直列に接続されている。コイルL34aは、昇圧部34への入力側電圧である整流後電圧V1を電気エネルギーとし、これを磁束エネルギーに変化して蓄える役割を担う。なお、コイルL34aのインダクタンス値は、電源配線51上を流れる電流値やトランジスタQ34aのスイッチング周波数等に応じて、適宜決定される。

0072

トランジスタQ34aは、Nchのトランジスタであって、コイルL34aの充放電を制御するスイッチの役割を担う。トランジスタQ34aのコレクタ端子はコイルL34aの電流出力側、エミッタ端子は抵抗R34aの一端に接続されている。トランジスタQ34aのベース端子は、昇圧駆動部40の出力に接続されており、昇圧駆動部40によってトランジスタQ34aのオン及びオフが制御される。具体的に、トランジスタQ34aは、ベース端子に印加される電圧が所定値よりも高い場合にはオン状態となり、トランジスタQ34aのコレクタからエミッタに向かって電流が流れることとなる。逆に、トランジスタQ34aは、ベース端子に印加される電圧が所定値よりも低い場合にはオフ状態となり、トランジスタQ34aには電流が流れない。

0073

抵抗R34aの他端は、GND配線52に接続されている。抵抗R34aは、トランジスタQ34aに流れる電流検出用シャント抵抗である。抵抗R34aは、昇圧後電圧V2の値がある程度上下したとしても、安定したエネルギーが昇圧部34の後段へと供給されるようにするため、電流検出を行う。故に、抵抗R34aの値は、昇圧部34による電圧の昇圧動作を妨げることのない適切な値に、決定されている。

0074

ダイオードD34aは、コイルL34aの電流出力側において、電源配線51上に直列に接続されていう。ダイオードD34aのアノード端子は、コイルL34aの電流出力側であって、且つコイルL34aとトランジスタQ34aとの接続点よりも電流の流れ方向下流側に接続されている。ダイオードD34aのカソード端子は、駆動電圧出力部37側に接続されている。ダイオードD34aは、ダイオードD34aの端子間に印加される電圧値の大きさが所定電圧(例えば、0.7V)よりも大きい場合には、コイルL34a側から駆動電圧出力部37側への電流の流れを許容する。逆に、ダイオードD34aは、ダイオードD34aの端子間に印加される電圧値の大きさが所定電圧よりも小さい場合には、コイルL34a側から駆動電圧出力部37側への電流の流れを禁止する。

0075

このような構成を有するコイルL34a、トランジスタQ34a、抵抗R34a及びダイオードD34aの動作について説明する。先ずは、トランジスタQ34aがオンすると、電源配線51からコイルL34a、トランジスタQ34a、抵抗R34aを経てGND配線52への電流経路が形成され、電流がこの順に流れる。すると、コイルL34aに電流が流れることにより、コイルL34aには磁気エネルギー蓄積される。次いで、この状態の後にトランジスタQ34aがオフすると、上記電流経路がトランジスタQ34aによって経たれる。そのため、それまでコイルL34aに流れた電流は、ダイオードD34aを経て昇圧部34から出力され、昇圧部34の後段に位置する平滑コンデンサ36へと流れ込む。このように、ダイオードD34aを経て平滑コンデンサ36へと電流が流れ込む動作は、コイルL34aの磁気エネルギーがなくなるまで行われる。すると、平滑コンデンサ36は充電され、平滑コンデンサ36の両端電圧は高くなる。

0076

次に、コイルL34b、トランジスタQ34b、抵抗R34b及びダイオードD34bの接続構成についてする。コイルL34b及びダイオードD34bは、コイルL34a及びダイオードD34aと同様に互いに直列に接続されているが、互いに接続されたコイルL34a及びダイオードD34aに対し並列に接続されている。コイル34b及びダイオードD34bの接続点は、トランジスタQ34b及び抵抗R34bを介してGND配線52に接続されている。トランジスタQ34bは、Nchのトランジスタであって、ベース端子は昇圧駆動部40に接続されている。トランジスタQ34bは、昇圧駆動部40によってオン及びオフが制御される。

0077

このような構成を有するコイルL34b、トランジスタQ34b、抵抗R34b及びダイオードD34bの動作は、上述したコイルL34a、トランジスタQ34a、抵抗R34a及びダイオードD34aと同様である。つまり、コイルL34bは、昇圧部34への入力側電圧である整流後電圧V1を電気エネルギーとし、これを磁束エネルギーに変化して蓄える役割を担う。トランジスタQ34bは、コイルL34bの充放電を制御するスイッチの役割を担う。抵抗R34bは、トランジスQ34bに流れる電流検出用のシャント抵抗である。ダイオードD34bは、その端子間に印加される電圧値の大きさにより、コイルL34b側から駆動電圧出力部37側への電流の流れを許容したり、電流の流れを遮断したりする。

0078

トランジスタQ34bがオンすると、電源配線51からコイルL34b、トランジスタQ34b、抵抗R34bを経てGND配線52への電流経路が形成され、電流がこの順に流れる。コイルL34bに電流が流れることにより、コイルL34bには磁気エネルギーが蓄積される。次いで、この状態の後にトランジスタQ34bがオフすると、上記電流経路がトランジスタQ34bによって経たれる。そのため、それまでコイルL34bに流れた電流は、ダイオードD34bを経て昇圧部34から出力され、昇圧部34の後段に位置する平滑コンデンサ36へと流れ込む。このように、ダイオードD34bを経て平滑コンデンサ36へと電流が流れ込む動作は、コイルL34aの磁気エネルギーがなくなるまで行われる。すると、平滑コンデンサ36は充電され、その両端電圧は高くなる。

0079

なお、コイルL34c、トランジスタQ34c、抵抗R34c及びダイオードD34cの接続構成及び動作については、上述したコイルL34b、トランジスタQ34b、抵抗R34b及びダイオードD34bの接続構成及び動作と同様である。故に、コイルL34c、トランジスタQ34c、抵抗R34c及びダイオードD34cの接続構成及び動作についての詳細な説明は、省略する。

0080

(2−5)出力側検出部
出力側検出部35は、昇圧部34の後段側、より具体的には昇圧部34と平滑コンデンサ36との間に接続されている。出力側検出部35は、昇圧後電圧V2の値Valを検出する。出力側検出部35によって検出された昇圧後電圧V2の値Valは、コントローラ41へと出力される。

0081

このような出力側検出部35は、図1に示すように、互いに直列に接続された2つの抵抗35a,35bの他、ADコンバータ等によって構成されている。互いに直列に接続された2つの抵抗35a,35bは、昇圧部35に並列に接続されている。抵抗35aの一端は、電源配線51に接続され、抵抗35bの一端は、GND配線52に接続されている。抵抗35a,35bの他端は、互いに接続されている。抵抗35a,35b同士の接続点における電圧値は、ADコンバータによってAD変換された後、コントローラ41に入力される。AD変換後の値から、コントローラ41は、昇圧後電圧V2の値Valを把握することができる。

0082

ここで、出力側検出部35が昇圧後電圧V2の値Valの検出動作を行う時期としては、入力側検出部33の検出時期と同様、圧縮機用モータM12が実際に駆動している間、及び圧縮機用モータM12の起動前が挙げられる。

0083

(2−6)平滑コンデンサ
平滑コンデンサ36は、例えば電解コンデンサによって構成されており、昇圧部34に対して並列に接続されている。具体的に、平滑コンデンサ36は、昇圧部34の出力側と駆動電圧出力部37の入力側との間に位置している。平滑コンデンサ36は、昇圧部34によって昇圧された後の昇圧後電圧V2を平滑することで、比較的リップルの低い直流電圧を生成する。

0084

生成された直流電圧は、平滑コンデンサ36の後段における駆動電圧出力部37に出力される。

0085

(2−7)駆動電圧出力部
駆動電圧出力部37は、平滑コンデンサ36の後段に接続されている。駆動電圧出力部37は、平滑コンデンサ36によって生成された直流電圧、即ち平滑された昇圧後電圧V2を用いて、圧縮機用モータM12を駆動するための3相の駆動電圧SU,SV,SWを生成し、該モータM12に出力する。このような駆動電圧出力部37は、図4に示すように、インバータ38及びゲートドライバ39を有する。

0086

インバータ38は、平滑コンデンサ36に対して並列に接続されている。インバータ38は、直流電圧を、交流電圧である駆動電圧SU,SV,SWに変換する。このようなインバータ38は、図4に示すように、複数の絶縁ゲート型バイポーラトランジスタQ38a,Q38b,Q38c,Q38d,Q38e,Q38f(スイッチング素子に相当。以下、単にトランジスタという)及び複数の還流用ダイオードD38a,D38b,D38c,D38d,D38e,D38fで構成される。トランジスタQ38aとQ38b、Q38cとQ38d、Q38eとQ38fは、それぞれ互いに直列に接続されており、各ダイオードD38a〜D38fは、各トランジスタQ38a〜Q38fに並列接続されている。

0087

このようなインバータ38は、各トランジスタQ38a〜Q38fが所定のタイミングでオン及びオフを行うことで、駆動電圧SU〜SWを生成する。この駆動電圧SU〜SWにより、圧縮機用モータM12は回転することができる。

0088

ゲートドライバ39は、主として、コントローラ41と、インバータ38における各トランジスタQ38a〜Q38fのゲート端子とに接続されている。ゲートドライバ39は、コントローラ41から出力されるモータ駆動信号Pwmに基づいて、インバータ38における各トランジスタQ38a〜Q38fへのゲート電圧印加制御を行うことで、各トランジスタQ38a〜Q38fをオン及びオフさせる。

0089

このようなゲートドライバ39は、例えば、複数のMOSトランジスタ等によって構成された集積回路によって構成されている。

0090

(2−8)昇圧駆動部
昇圧駆動部40は、昇圧部34の各トランジスタQ34a〜Q34cのゲート端子、及びコントローラ41と接続されている。昇圧駆動部40は、コントローラ41から出力される昇圧駆動信号Conに基づいて、各トランジスタQ34a〜Q34cへのゲート電圧の印加制御を行うことで、各トランジスタQ34a〜Q34cをオン及びオフさせる。

0091

このような昇圧駆動部40は、ゲートドライバ39と同様、例えば、複数のMOSトランジスタ等によって構成された集積回路によって構成されている。

0092

(2−9)コントローラ
コントローラ41は、メモリ42及びCPU43によって構成されるマイクロコンピュータである。図1及び図4に示すように、コントローラ41は、入力側検出部33の出力側、昇圧駆動部40の入力側、出力側検出部35の出力側、昇圧部34内の抵抗R34cの両端、及び駆動電圧出力部37におけるゲートドライバ39の入力側と接続されている。

0093

コントローラ41は、圧縮機用モータM12におけるロータの位置情報に基づいて、モータ駆動信号Pwmを決定し、これを駆動電圧出力部37に出力する。圧縮機用モータM12のロータの位置情報は、圧縮機用モータM12のホール素子、図示しないカレントトランス、図示しないGND配線52上の電流検出部等から出力される。更に、コントローラ41は、圧縮機用モータM12が駆動している間、図示しないGND配線52上の電流検出部による検出結果から、圧縮機用モータM12に通電されているモータ電流の値を把握する。そして、コントローラ41は、把握したモータ電流や、その時々の各検出部33,35の検出結果のいずれかまたは両方を更に用いて、圧縮機用モータM12の駆動に対してフィードバック制御を行う。

0094

また、コントローラ41は、昇圧部34内における3相分の抵抗R34a〜R34cのうち、少なくともいずれか1相分である抵抗の両端と接続される。コントローラ41は、当該両端の電圧を用いてトランジスタQ34a〜Q34cに流れる電流を把握できればよい。コントローラ41は、図1では、昇圧部34内の抵抗R34cの両端と接続されているが、抵抗R34cではなく、抵抗R34aの両端または抵抗34bの両端と接続されていてもよい。

0095

更に、本実施形態に係るコントローラ41は、昇圧部34の昇圧動作の制御を行う。以下では、主に昇圧部34の昇圧動作に着目し、コントローラ41のメモリ42(記憶部に相当)及びCPU43(決定部に相当)について説明する。

0096

(2−9−1)メモリ
メモリ42は、例えばEEPROM等の不揮発性メモリで構成されている。メモリ42には、CPU43が実行するための各種プログラムが格納されている。

0097

また、メモリ42には、CPU43に接続された各種機器から得られたリアルタイムな各種情報が、更に格納される。リアルタイムな各種情報としては、入力側検出部33の検出結果である電源変動情報Vfl(即ち、入力側電圧である整流後電圧V1の値)、出力側検出部35の検出結果である昇圧後電圧V2の値Val、抵抗R34cの両端電圧Vr1−Vr2に基づきCPU43によって得られる昇圧内部電流値等、が挙げられる。

0098

特に、本実施形態に係るメモリ42は、目標値関連情報Inf1を記憶している(図5参照)。目標値関連情報Inf1は、電源変動情報Vflと昇圧部34の昇圧目標値Tpとが関連付けられた情報である。昇圧目標値Tpとは、昇圧部34が生成するべき昇圧後電圧V2の目標値を言う。

0099

更に、本実施形態に係る目標値関連情報Inf1では、電源変動情報Vfl(具体的には、電源電圧V0の変動が生じている場合の、入力側電圧である整流後電圧V1の値)がたとえ変化しても昇圧目標値Tpが常に一定の値に保たれているのではなく、電源変動情報Vflに応じて、昇圧目標値Tpが変化している。図5は、横軸に電源電圧V0、縦軸に電圧値を採り、電源変動情報Vfl(つまり、入力側電圧である整流後電圧V1の値)の変化とともに本実施形態に係る昇圧目標値Tpがどのように変化するかを、表した図である。具体的に、図5では、電源電圧V0の値が小さいために整流後電圧V1の値が小さい程、昇圧目標値Tpは小さい値を採り、逆に電源電圧V0の値が大きいために整流後電圧V1の値が大きい程、昇圧目標値Tpは大きい値を採っている。更に言うと、目標値関連情報Inf1では、電源電圧V0の値の上昇に伴い昇圧目標値Tpが所定値ずつ上昇するように、昇圧目標値Tpは、電源変動情報Vflの変化に伴ってリニアに変化する関係を、電源変動情報Vflとの間で有している。このような目標値関連情報Inf1は、以下の式(1)で表される。

0100

Tp=Vfl+Vα・・・(1)
上式(1)の“Vα”は定数であって、上述した所定値に相当する。昇圧目標値Tpが、その時々の電源変動情報Vfl(具体的には、入力側電圧である整流後電圧V1の値)に定数Vαを加算して求められることを、上式(1)は表している。言い換えると、上式(1)は、昇圧部34の入力側電圧である整流後電圧V1の値の変化に関係なく、昇圧部34の昇圧量“Vα”が常に一定であることを示している。これにより、昇圧部34内に流れる電流は、整流後電圧V1の値に関係なく一定となるため、昇圧部34を構成するコイルL34a〜L34cやパワーモジュールであるトランジスタQ34a〜Q34cでの電力損失も、ほぼ一定となる。

0101

特に、上式(1)にて示された目標値関連情報Inf1は、駆動電圧出力部37の動作範囲、具体的には駆動電圧出力部37におけるインバータ38の動作範囲に基づいて決定されている。より具体的には、図5に示すように、電源電圧V0の変動が予測される範囲内にて生じ、電源変動情報Vflにおける整流後電圧V1がどのような値となったとしても、昇圧目標値Tpの値は、インバータ38が昇圧後電圧V2を用いて問題なく動作できる範囲内の値に決定される。これは、以下の理由による。

0102

上式(1)にて表されているように、電源変動情報Vflの変化と共に昇圧目標値Tpが変化する。このような昇圧目標値Tpは、昇圧後電圧V2に反映されるため、昇圧目標値Tpと同じ値の昇圧後電圧V2が、駆動電圧出力部37のインバータ38へと供給される。しかし、昇圧目標値Tpの変化によって昇圧後電圧V2が低い値もしくは高い値となり、昇圧後電圧V2がインバータ38の許容することのできない値に至ると、インバータ38は正常に動作することができず、ひいては圧縮機用モータM12の駆動の異常を招来する虞がある。そこで、上式(1)にて表される目標値関連情報Inf1では、図5に示すように、電源変動情報Vflに応じて変化する昇圧目標値Tpが、常にインバータ38の動作範囲内となるように決定されている。

0103

更に、本実施形態に係る上式(1)にて示された目標値関連情報Inf1は、駆動電圧出力部37の動作範囲のみならず、昇圧目標値Tpがモータ駆動装置30を構成する電気部品の定格電圧以下となる条件に基づいても、決定される。ここに言う電気部品とは、昇圧部34の後段側に位置する機能部を構成する電気部品が挙げられる。具体的に、電気部品としては、平滑コンデンサ36、駆動電圧出力部37のインバータ28を構成するトランジスタQ38a〜Q38fが挙げられる。

0104

つまり、本実施形態に係るモータ駆動装置30では、上式(1)に示されるように、電源変動情報Vflに応じて昇圧目標値Tpが決定される。すると、電源変動情報Vflによっては、昇圧部34から出力される昇圧後電圧V2が上昇し、当該昇圧後電圧V2の印加先となる昇圧部34の後段側(具体的には、平滑コンデンサ36及び駆動電圧出力部37)の耐圧(即ち、定格電圧値)を超えてしまう虞が生じる。しかし、ここでは、昇圧目標値Tpが、平滑コンデンサ36やトランジスタQ38a〜Q38fの各定格電圧以下となるように、目標値関連情報Inf1が決定されている。従って、電源電圧V0の変動に応じて昇圧目標値Tpが変化したことにより、昇圧後電圧V2の値が変化したとしても、昇圧後電圧V2の値を平滑コンデンサ36やトランジスタQ38a〜Q38fの各定格電圧以下に抑えることができる。

0105

昇圧目標値Tpが常にインバータ38の動作範囲内に収まっており、且つ昇圧目標値Tpが常に平滑コンデンサ36及びトランジスタQ38a〜Q38fの各定格電圧以下に収まるように、昇圧目標値Tpを決定するためには、上式(1)では、定数Vαが重要な鍵となる。定数Vαが採る値によっては、電源変動情報Vflに定数Vαを加算することで得られる昇圧目標値Tpが、インバータ38の動作範囲を越えてしまったり、平滑コンデンサ36及びトランジスタQ38a〜Q38fの各定格電圧を超えてしまったりする虞があるからである。そこで、定数Vαは、少なくともインバータ38の動作範囲、電源電圧V0の変動が予測される範囲、及び平滑コンデンサ36及びトランジスタQ38a〜Q38fの各定格電圧以下の範囲に応じて、上計算、シミュレーション及び実験等により適宜決定されることが好ましい。

0106

ここで、上述した“電源電圧V0の変動が予測される範囲内”とは、例えば、電源電圧V0の基準値に対して−20%〜+20%の範囲内で電源電圧V0が変動した場合を言う。

0107

なお、定数Vαの決定に関しては、定数Vαは、更に昇圧駆動部40の仕様やゲートドライバ39の仕様等も考慮して決定されてもよい。

0108

(2−9−2)CPU
CPU43は、昇圧部34の動作制御を行う。CPU43は、圧縮機用モータM12を駆動させる間、より具体的には昇圧部34の動作前から動作終了後まで、昇圧部34における抵抗R34cの抵抗値と、所定時間毎の抵抗R34cの両端電圧Vr1−Vr2の値とに基づいて、昇圧部34の内部に流れる電流である昇圧内部電流の値を算出する。CPU43は、所定時間毎に算出した昇圧内部電流を、メモリ42に次々と書き込んでいく。そして、CPU43は、算出したその時々の昇圧内部電流及びその時々の出力側検出部35の検出結果(即ち、昇圧後電圧V2の値)を用いて、昇圧部34が出力する昇圧後電圧V2が昇圧目標値Tpに合致するように、昇圧部34の各トランジスタQ34a〜Q34cをオン及びオフさせる幅を調整する。即ち、CPU43は、リアルタイムな昇圧内部電流及び昇圧後電圧V2の値を用いて、各トランジスタQ34a〜Q34cについてPWM制御を行うことで、昇圧部34の昇圧動作に対してフィードバック制御を行う。

0109

特に、本実施形態に係るCPU43は、入力側検出部33による検出結果(即ち、電源変動情報Vfl)と、メモリ42が記憶している目標値関連情報Inf1とに基づいて、昇圧目標値Tpを決定する。具体的には、CPU43は、その時々に検出された電源変動情報Vfl(つまりは、入力側電圧である整流後電圧V1の値)を、目標値関連情報Inf1を表す上式(1)に当てはめることで、その時々の電源電圧V0に応じた昇圧目標値Tpを決定する。故に、電源電圧V0の変動が生じた場合には、CPU43は、変動した電源電圧V0に関する整流後電圧V1の値(即ち、電源変動情報Vfl)に応じて、昇圧目標値Tpを変化させる。

0110

ここで、主に図6を用いて、電源電圧V0の変動が生じた際に、CPU43により決定される昇圧目標値Tp及び昇圧部34から出力される昇圧後電圧V2の具体例を説明する。以下では、上式(1)における定数Vαが、“15V”であると仮定する。

0111

先ず、整流された電源電圧V0である整流後電圧V1の波高値が“176V”であるとする。この場合、入力側検出部33の検出結果は、“176V”となり、CPU43は、当該検出結果及び上式(1)に基づき、昇圧目標値Tpを“191V”と決定する(176+15=191)。CPU43は、昇圧目標値Tp“191V”に対応する昇圧駆動信号Conを生成して、昇圧駆動部40に出力する。これにより、昇圧駆動部40からは、昇圧後電圧V2が“191V”となるように各トランジスタQ34a〜Q34cをオン及びオフさせるためのゲート電圧が、各トランジスタQ34a〜Q34cに出力される。各トランジスタQ34a〜Q34cはパルス幅が制御され、昇圧部34は、約“191V”である昇圧後電圧V2を出力することができる。約“191V”の昇圧後電圧V2が出力され続けている区間Aの間、当該電圧V2の値を維持するべく、抵抗R34cの両端電圧Vr2−Vr1による昇圧内部電流の算出、及び出力側検出部35の検出動作は所定時間毎(例えば、10msec)に行われ、昇圧部34に対するフィードバック制御が行われる。また、入力側検出部33も、所定時間毎に検出動作を行い、その検出結果は、CPU43が電源電圧V0に変動が生じているか否かを監視するために利用される。

0112

次いで、電源電圧V0が変動し(電源電圧変動1)、やがて整流後電圧V1の波高値が“200V”に上昇したとする。この場合、入力側検出部33の検出結果は、“200V”となり、CPU43は、当該検出結果及び上式(1)に基づき、昇圧目標値Tpを“191V”から“215V”へと上昇させる(200+15=215V)。CPU43は、昇圧目標値Tp“215V”に対応する昇圧駆動信号Conを生成して、昇圧駆動部40に出力する。これにより、昇圧駆動部40からは、昇圧後電圧V2が“215V”となるためのゲート電圧が各トランジスタQ34a〜Q34cに出力され、昇圧部34が出力する昇圧後電圧V2は、約“191V”から約“215V”に変化する。約“215V”の昇圧後電圧V2が出力され続けている区間Bの間も、当該電圧V2の値を維持するべく、抵抗R34cの両端電圧Vr2−Vr1による昇圧内部電流の算出、及び出力側検出部35の検出動作は所定時間毎(例えば、10msec)に行われ、昇圧部34に対するフィードバック制御が行われる。また、入力側検出部33も、所定時間毎に検出動作を行い、その検出結果は、CPU43が電源電圧V0に変動が生じているか否かを監視するために利用される。これにより、昇圧部34は、安定して昇圧動作を続けることができる。

0113

次いで、電源電圧V0が更に変動し(電源電圧変動2)、やがて整流後電圧V1の波高値が“244V”に上昇したとする。この場合、入力側検出部33の検出結果は、“244V”となり、CPU43は、当該検出結果及び上式(1)に基づき、昇圧目標値Tpを“215V”から“259V”へと更に上昇させる(244+15=259V)。CPU43は、昇圧目標値Tp“259V”に対応する昇圧駆動信号Conを生成して、昇圧駆動部40に出力する。これにより、昇圧駆動部40からは、昇圧後電圧V2が“259V”となるためのゲート電圧が各トランジスタQ34a〜Q34cに出力され、昇圧部34が出力する昇圧後電圧V2は、約“215V”から約“259V”に変化する。約“259V”の昇圧後電圧V2が出力され続けている区間Cの間も、当該電圧V2の値を維持するべく、抵抗R34cの両端電圧Vr2−Vr1による昇圧内部電流の算出、及び出力側検出部35の検出動作は所定時間毎(例えば、10msec)に行われ、昇圧部34に対するフィードバック制御が行われる。また、入力側検出部33も、所定時間毎に検出動作を行い、その検出結果は、CPU43が電源電圧V0に変動が生じているか否かを監視するために利用される。

0114

次いで、電源電圧V0が更に変動し(電源電圧変動3)、やがて整流後電圧V1の波高値が“231V”に下降したとする。この場合、入力側検出部33の検出結果は、“231V”となり、CPU43は、当該検出結果及び上式(1)に基づき、昇圧目標値Tpを“259V”から“246V”へと下降させる(231+15=246V)。CPU43は、昇圧目標値Tp“246V”に対応する昇圧駆動信号Conを生成して、昇圧駆動部40に出力する。これにより、昇圧駆動部40からは、昇圧後電圧V2が“246V”となるためのゲート電圧が各トランジスタQ34a〜Q34cに出力され、昇圧部34が出力する昇圧後電圧V2は、約“259V”から約“246V”に変化する。約“246V”の昇圧後電圧V2が出力され続けている区間Dの間も、当該電圧V2の値を維持するべく、抵抗R34cの両端電圧Vr2−Vr1による昇圧内部電流の算出、及び出力側検出部35の検出動作は所定時間毎(例えば、10msec)に行われ、昇圧部34に対するフィードバック制御が行われる。また、入力側検出部33も、所定時間毎に検出動作を行い、その検出結果は、CPU43が電源電圧V0に変動が生じているか否かを監視するために利用される。これにより、昇圧部34に余計なエネルギーを蓄えておく必要がないため、昇圧部34を構成する各種電気部品の発熱が抑えられる。

0115

なお、上述したように、上式(1)で表される目標値関連情報Inf1は、インバータ38の動作範囲、平滑コンデンサ36及びトランジスタQ38a〜Q38fの各定格電圧以下の範囲を考慮して決定されている。そのため、図6の各区間A〜Dにおいて昇圧部34から出力される昇圧後電圧V2の各値“191V”“215V”“246V”“259V”が、インバータ38の動作範囲内の値であって、且つ平滑コンデンサ36及びトランジスタQ38a〜Q38fの各定格電圧以下であることは、言うまでもない。

0116

ここで、本実施形態に係るCPU43が上述した昇圧目標値Tpの決定動作を行う期間としては、各検出部33,35の検出タイミングと同様、圧縮機用モータM12が実際に駆動している間、及び圧縮機用モータM12の起動前が挙げられる。即ち、圧縮機用モータM12が起動する際には、昇圧部34は、起動直前の電源変動情報Vflに応じて決定された昇圧目標値Tpに基づき、整流後電圧V1を昇圧させる動作を行う。圧縮機用モータM12の起動後は、昇圧部34は、所定時間毎に検出された電源変動情報Vflに応じて決定された昇圧目標値Tpに基づき、整流後電圧V1を昇圧させる動作を行う。

0117

(3)動作
次に、本実施形態に係るモータ駆動装置30が行う動作を、特に昇圧部34の昇圧動作に着目して、図7を用いて説明する。

0118

テップS1:リモートコントローラ等を介して空気調和装置10の運転開始指示がなされた場合、モータ駆動装置30のCPU43は、圧縮機用モータM12の起動指示が成されたと把握する(S1のYes)。空気調和装置10の運転開始指示が未だ成されてない場合には(S1のNo)、モータ駆動装置30におけるCPU43及び駆動電圧出力部37は、圧縮機用モータM12の駆動停止状態を維持する。

0119

ステップS2〜S3:実際に圧縮機用モータM12が起動する前に、入力側検出部33は、電源変動情報Vfl、つまりは昇圧部34に対する入力側電圧である整流後電圧V1の値の検出を行う(S2)。そして、CPU43は、ステップS2において検出された電源変動情報Vflと、インバータ38の動作範囲等に基づいて予め決定されている目標値関連情報Inf1とに基づいて、モータ駆動装置30内における昇圧部34の昇圧目標値Tpを決定する(S3)。

0120

ステップS4:ステップS3の後、CPU43及び駆動電圧出力部37は、実際に圧縮機用モータM12の起動を開始させる。

0121

ステップS5:圧縮機用モータM12が起動を開始した直後から、入力側検出部33は、所定時間毎に電源変動情報Vflを検出し、CPU43は、電源変動情報Vlfの監視を行う。また、CPU43は、所定時間毎に、昇圧内部電流の算出も行う。出力側検出部35は、所定時間毎に昇圧後電圧V2の検出を行う。CPU43は、電源電圧V0が変動しないかぎり、所定時間毎の昇圧後電圧V2及び昇圧内部電流を用いて、昇圧部34の昇圧動作に対しフィードバック制御を行う。

0122

ステップS6〜S7:CPU43は、監視している電源変動情報Vflから、電源電圧V0の変動が生じたことを把握した場合(S6のYes)、現時点における電源変動情報Vflと、メモリ42内の目標値関連情報Inf1とに基づいて、昇圧目標値Tpを変更させる(S7)。なお、ステップS6において、電源電圧V0の変動が生じたと把握していない場合には(S6のNo)、モータ駆動装置30は、ステップS7の動作を行わない。

0123

ステップS8:ステップS7の後、もしくはステップS6にて電源電圧V0の変動が生じなかった場合において(S6のNo)、リモートコントローラ等を介して空気調和装置10の運転停止指示が成されるまでは(S8のNo)、モータ駆動装置30は、ステップS5以降の動作を繰り返す。空気調和装置10の運転停止指示がなされた場合(S8のYes)、モータ駆動装置30は、一連の動作を終了する。

0124

(4)特徴
(4−1)
本実施形態に係るモータ駆動装置30によると、昇圧部34は、整流された電源電圧V0である整流後電圧V1が入力側電圧として入力されると、これを昇圧して、昇圧後電圧V2を生成する。昇圧後電圧V2は、駆動電圧出力部37のインバータ38に供給される。入力側検出部33は、電源変動が生じている場合における整流後電圧V1の値を、電源変動情報Vflとして検出する。メモリ42には、昇圧目標値Tpと電源変動情報Vflとが関連付けられた目標値関連情報Inf1が記憶されている。

0125

そして、CPU43は、目標値関連情報Inf1と、その時々の電源変動情報Vflとに基づいて、昇圧目標値Tpを決定する。特に、目標値関連情報Inf1は、駆動電圧出力部37(具体的には、インバータ38)の動作範囲に基づいて、昇圧目標値Tpが当該動作範囲内となるように決定されている。そのため、昇圧部34から出力される昇圧後電圧V2の値は、インバータ38の動作範囲内の値となることができる。これにより、電源電圧V0の変動が生じても、インバータ38が確実に動作できることを確保しつつ、且つ昇圧部34による電圧の昇圧量を適切な量に抑えることができる。即ち、昇圧部34を構成する部品として大型な部品を使わずとも、電源電圧V0の変動の発生時における当該部品(例えば、コイルL34a〜L34c及びトランジスタQ34a〜Q34c)の発熱量を抑えることができる。従って、当該部品の小型化を図ることが可能となる。

0126

(4−2)
更に、本実施形態では、駆動電圧出力部37の動作範囲のみならず、昇圧目標値Tpがモータ駆動装置30を構成する電気部品の定格電圧以下となる条件を満たすようにして、目標値関連情報Inf1が決定されている。

0127

従って、電源電圧V0の変動が生じ昇圧目標値Tpがどのような値となったとしても、電気部品に印加される電圧は、定格電圧以下に抑えられる。従って、電気部品の故障を防止できる。

0128

(4−3)
上述のように、本実施形態に係るモータ駆動装置30では、電源変動情報Vflに応じて昇圧目標値Tpが決定される。すると、場合によっては、昇圧部34が生成する昇圧後電圧V2が上昇し、昇圧後電圧V2が印加されるであろう昇圧部34の後段側に位置する機能部(具体的には、平滑コンデンサ36及び駆動電圧出力部37)の耐圧が問題となる。

0129

しかし、本実施形態では、昇圧目標値Tpは、昇圧部34の後段に位置している平滑コンデンサ36、及び駆動電圧出力部37内のトランジスタQ38a〜Q38fの各定格電圧以下に決定される。従って、電源電圧V0の変動に応じて昇圧目標値Tpが変化したことにより、昇圧後電圧V2の値が変化したとしても、平滑コンデンサ36及びトランジスタQ38a〜Q38fの故障を、確実に防ぐことができる。

0130

(4−4)
また、本実施形態では、入力側検出部33による電源変動情報Vflの検出動作及びCPU43による昇圧目標値Tpの決定動作が、圧縮機用モータM12の駆動開始前、つまりは起動前に行われる。

0131

これにより、圧縮機用モータM12起動前の電源変動情報Vflに基づき決定された昇圧目標値Tpが、圧縮機用モータM12の起動開始時に実際に昇圧部34が昇圧するべき電圧値となる。従って、駆動電圧出力部37におけるインバータ38には、圧縮機用モータM12の起動前に決定された値を有する昇圧後電圧V2が供給される。

0132

(4−5)
更に、本実施形態では、入力側検出部33による電源変動情報Vflの検出動作及びCPU43による昇圧目標値Tpの決定動作が、圧縮機用モータM12の駆動中にも行われる。

0133

これにより、圧縮機用モータM12の起動後におけるその時々の電源変動情報Vflに応じた昇圧目標値Tpが決定される。故に、昇圧部34が昇圧するべき電圧値は、電源電圧V0のリアルタイムな変動に対応した値となり、当該値を有する昇圧後電圧V2は、駆動電圧出力部37におけるインバータ38に供給される。従って、駆動電圧出力部37におけるインバータ38が動作できることをより確実に確保することができる。且つ、昇圧部34による電圧の昇圧量をより適切な量に抑えることができるため、昇圧部34を構成する部品の発熱量も、より確実に抑えることができる。

0134

(4−6)
特に、本実施形態に係るCPU43は、電源変動情報Vflに応じて昇圧目標値Tpを変化させる。

0135

これにより、駆動電圧出力部37におけるインバータ38には、電源変動情報Vflに応じて変化した値を有する昇圧後電圧V2が供給される。従って、駆動電圧出力部37におけるインバータ38が動作できることをより確実に確保することができる。且つ、昇圧部34による電圧の昇圧量をより適切な量に抑えることができるため、昇圧部34を構成する部品の発熱量も、より確実に抑えることができる。

0136

(4−7)
特に、本実施形態に係る目標値関連情報Inf1では、図5及び上式(1)に示されるように、電源電圧V0の値(より具体的には、整流後電圧V1の値)の上昇に伴い昇圧目標値Tpが所定値ずつ上昇するように、電源変動情報値Vflと昇圧目標値Tpとが関連付けられている。

0137

即ち、本実施形態では、図5に示されるように、電源変動情報Vflが高い程、昇圧目標値Tpは高くなり、逆に電源変動情報Vflが小さい程、昇圧目標値Tpは低くなっている。従って、電源電圧の値が低く電源変動情報Vflが小さいのに対して昇圧目標値が高いために、例えば昇圧部を構成する部品に流れる電流が大きくなり、故に昇圧部を構成する部品の発熱量が大きくなってしまうことを、確実に防ぐことができる。

0138

(5)変形例
(5−1)変形例A
上記実施形態では、電源変動情報Vflが、昇圧部34への入力側電圧の値、つまりは整流後電圧V1の値である場合について説明した。しかし、電源変動情報Vflは、整流後電圧V1の値に代えて、入力側電圧である整流後電圧V1の基準値に対する変動幅ΔVであってもよい。ここで、整流後電圧V1の基準値としては、モータ駆動装置130に電源が投入された時の整流後電圧V0の値、もしくは、空気調和装置10が設置されている地域における商用電源91の定格電圧値等が挙げられる。

0139

この場合、図示してはいないが、入力側検出部33は、上記変動幅ΔVを検出可能なように、図1の抵抗33a,33bの他、コンデンサ、ピークホールド回路、ADコンバータ、更にはメモリ42及びCPU43を有するコントローラ41によって実現されることが好ましい。即ち、入力側検出部33の構成は、抵抗33a,33bからADコンバータまでの構成と、コントローラ41による構成との、2つに大別される。この場合、前者の構成によって、入力側電圧である整流後電圧V1の値が検出される。後者の構成によって、整流後電圧V1の値と予め記憶している基準値とに基づき変動幅ΔVが検出される。

0140

なお、この場合、上記実施形態とは、電源変動情報Vflの内容が異なっているが、目標値関連情報Inf1の詳細や昇圧目標値Tpの決定方法等については、上記実施形態と同様である。従って、詳細な説明を省略する。

0141

(5−2)変形例B
上記実施形態では、図5の目標値関連情報Inf1及び上式(1)に示すように、電源電圧V0の上昇に伴って昇圧目標値Tpがリニアに変化するように、電源変動情報Vflと昇圧目標値Tpとが関連付けられている場合について説明した。

0142

しかし、本発明に係るモータ駆動装置では、電源変動情報Vflの変化に応じて昇圧部34の出力である昇圧後電圧V2が一定ではなく、変化すればよい。故に、本発明の目標値関連情報は、図5及び上式(1)に限定されない。

0143

目標値関連情報の他の例としては、例えば図8に示す目標値関連情報Inf2が挙げられる。図8では、横軸に電源電圧V0、縦軸に電圧値を採り、電源変動情報Vflの変化とともに昇圧目標値Tp’がどのように変化するかを表している。図8では、電源電圧V0の値及び電源変動情報Vflの変化に応じて、昇圧目標値Tp’はリニアではなく、階段状に変化している。具体的には、電源電圧V0の値及び電源変動情報Vflが所定の範囲の間であれば、昇圧目標値Tp’は同じ値を有しており、電源電圧V0の値及び電源変動情報Vflが所定の範囲を越えると、昇圧目標値Tp’の値は変化している。

0144

なお、図8に示される目標値関連情報Inf2を全体的に見ると、電源電圧V0の値及び電源変動情報Vflが小さい程、昇圧目標値Tp’は小さい値を採る傾向にあり、逆に電源電圧V0の値及び電源変動情報Vflが大きい程、昇圧目標値Tp’は大きい値を採る傾向にある点では、上記実施形態に係る図5と共通している。

0145

このように、目標値関連情報Inf2では、電源電圧V0の値及び電源変動情報Vflに応じて、昇圧目標値Tp’が階段状に変化するように、電源変動情報Vflと昇圧目標値Tp’とが関連付けられていてもよい。このような場合においても、図8に示すように、目標値関連情報Inf2は、少なくともインバータ38の動作範囲に基づいて決定されている。即ち、昇圧目標値Tp’は、たとえ変化したとしても、インバータ38の動作範囲内に常に収まっている。従って、昇圧部34を構成するコイルL34a〜L34c等の部品における発熱を防ぎつつも、インバータ38を問題なく動作させることができる。

0146

また、目標値関連情報Inf2は、上記実施形態に係る目標値関連情報Inf1と同様、インバータ38の動作範囲のみならず、昇圧目標値Tp’が平滑コンデンサ36及びトランジスタQ38a〜Q38fの各定格電圧以下となる条件を考慮して、決定されていてもよい。

0147

なお、上述した所定の範囲、及び階段状に変化する昇圧目標値Tp’の幅は、上記実施形態に係る定数Vαと同様、インバータ38の動作範囲、電源電圧V0の変動が予測される範囲に基づいて、机上計算、シミュレーション及び実験等により適宜決定されることが好ましい。更には、上述した所定の範囲、及び階段状に変化する昇圧目標値Tp’の幅は、昇圧目標値Tp’が平滑コンデンサ36及びトランジスタQ38a〜Q38fの各定格電圧以下となる範囲に基づいて、机上計算等により適宜決定されることが、より好ましい。

0148

なお、本変形例Bについては、電源変動情報Vflが整流後電圧V1の値である場合のみならず、整流後電圧V1の基準値に対する変動幅ΔVである場合においても、同様に言うことができる。

0149

(5−3)変形例C
上記実施形態では、図5の目標値関連情報Inf1及び上式(1)に示すように、昇圧目標値Tpが、その時々の電源変動情報Vflに定数Vαが加算されることで得られる場合について説明した。

0150

しかし、電源変動情報Vflの加算対象となる“Vα”は、定数でなくてもよい。“Vα”は、電源変動情報Vflに応じて適宜変化する値であってもよい。

0151

なお、本変形例Cについては、電源変動情報Vflが整流後電圧V1の値である場合のみならず、整流後電圧V1の基準値に対する変動幅ΔVである場合においても、同様に言うことができる。

0152

(5−4)変形例D
上記実施形態では、図7に示されるように、入力側検出部33による電源変動情報Vflの検出動作及びCPU43による昇圧目標値Tpの決定動作が、圧縮機用モータM12の起動前及び駆動中の両方において行われると説明した。

0153

しかし、入力側検出部33による電源変動情報Vflの検出動作及びCPU43による昇圧目標値Tpの決定動作は、圧縮機用モータM12の駆動中には行われず、圧縮機用モータM12の起動前にのみ行われても良い。

0154

この場合のモータ駆動装置30の動作を、図9に示す。

0155

ステップS11:リモートコントローラ等を介して空気調和装置10の運転開始指示がなされた場合、モータ駆動装置30のCPU43は、圧縮機用モータM12の起動指示が成されたと把握する(S1のYes)。空気調和装置10の運転開始指示が未だ成されてない場合には(S1のNo)、モータ駆動装置30におけるCPU43及び駆動電圧出力部37は、圧縮機用モータM12の駆動停止状態を維持する。

0156

ステップS12〜S13:実際に圧縮機用モータM12が起動する前に、入力側検出部33は、電源変動情報Vflの検出を行う(S12)。そして、CPU43は、ステップS12において検出された電源変動情報Vflと、インバータ38の動作範囲等に基づいて予め決定されている目標値関連情報Inf1とに基づいて、モータ駆動装置30内における昇圧部34の昇圧目標値Tpを決定する(S13)。

0157

ステップS14:ステップS13の後、CPU43及び駆動電圧出力部37は、実際に圧縮機用モータM12の起動を開始させる。圧縮機用モータM12の駆動中には、昇圧部34は、ステップS13にて決定された昇圧目標値Tpを有する昇圧後電圧V2を出力する。また、CPU43は、所定時間毎に昇圧内部電流の算出を行い、出力側検出部35は、所定時間毎に昇圧後電圧V2の検出を行う。CPU43は、所定時間毎の昇圧後電圧V2及び昇圧内部電流を用いて、昇圧部34の昇圧動作に対しフィードバック制御を行う。

0158

ステップS15:リモートコントローラ等を介して空気調和装置10の運転停止指示がなされるまでは(S15のNo)、モータ駆動装置30は、圧縮機用モータM12を駆動させる。空気調和装置10の運転停止指示がなされた場合(S15のYes)、モータ駆動装置30は、一連の動作を終了する。

0159

即ち、上述のように、本変形例Dの場合、図7のS5〜S7の動作は行われないこととなる。

0160

これにより、少なくとも入力側検出部33は、圧縮機用モータM12の駆動中は動作せずとも良い。従って、本変形例Dの場合、上記実施形態の場合に比して、モータ駆動装置30全体の消費電流を抑えることができる。

0161

なお、本変形例Dに係る昇圧目標値Tpは、上記実施形態の図5で示された目標値関連情報Inf1に基づいて決定されてもよいし、上記変形例Aの図8で示された目標値関連情報Inf2に基づいて決定されてもよい。

0162

なお、本変形例Dについては、電源変動情報Vflが整流後電圧V1の値である場合のみならず、整流後電圧V1の基準値に対する変動幅ΔVである場合においても、同様に言うことができる。

0163

(5−5)変形例E
逆に、入力側検出部33による電源変動情報Vflの検出動作及びCPU43による昇圧目標値Tpの決定動作は、圧縮機用モータM12の起動前は行われず、圧縮機用モータM12の駆動中にのみ行われてもよい。

0164

この場合のモータ駆動装置30の動作を、図10に示す。

0165

ステップS21:リモートコントローラ等を介して空気調和装置10の運転開始指示がなされた場合、モータ駆動装置30のCPU43は、圧縮機用モータM12の起動指示が成されたと把握する(S21のYes)。空気調和装置10の運転開始指示が未だ成されてない場合には(S21のNo)、モータ駆動装置30におけるCPU43及び駆動電圧出力部37は、圧縮機用モータM12の駆動停止状態を維持する。

0166

ステップS22:CPU43及び駆動電圧出力部37は、実際に圧縮機用モータM12の起動を開始させる。なお、この場合の昇圧目標値Tpとしては、予め定められた初期値が用いられる。

0167

ステップS23:圧縮機用モータM12が起動を開始した直後から、入力側検出部33は、所定時間毎に電源変動情報Vflを検出し、CPU43は、電源変動情報Vlfの監視を行う。また、CPU43は、所定時間毎に、昇圧内部電流の算出も行う。出力側検出部35は、所定時間毎に昇圧後電圧V2の検出を行う。CPU43は、電源電圧V0が変動しないかぎり、所定時間毎の昇圧後電圧V2及び昇圧内部電流を用いて、昇圧部34の昇圧動作に対してフィードバック制御を行う。

0168

ステップS24〜S25:CPU43は、監視している電源変動情報Vflから、電源電圧V0の変動が生じたことを把握した場合(S24のYes)、現時点における電源変動情報Vflと、メモリ42内の目標値関連情報Inf1とに基づいて、昇圧目標値Tpを変更させる(S25)。なお、ステップS24において、電源電圧V0の変動が生じたと把握していない場合には(S24のNo)、モータ駆動装置30は、ステップS25の動作を行わない。

0169

ステップS26:ステップS25の後、もしくはステップS24にて電源電圧V0の変動が生じなかった場合において(S24のNo)、リモートコントローラ等を介して空気調和装置10の運転停止指示が成されるまでは(S26のNo)、モータ駆動装置30は、ステップS23以降の動作を繰り返す。空気調和装置10の運転停止指示がなされた場合(S26のYes)、モータ駆動装置30は、一連の動作を終了する。

0170

即ち、上述のように、本変形例Eの場合、図7のS2〜S3の動作は行われないこととなる。

0171

これにより、たとえ圧縮機用モータM12の駆動中に電源電圧V0の変動が生じたとしても、昇圧部34が昇圧するべき電圧値は、電源電圧V0のリアルタイムな変動に応じた値となり、インバータ38に供給される。従って、インバータ38が動作できることをより確実に確保することができる。且つ、昇圧部34による電圧の昇圧量をより適切な量に抑えることができるため、昇圧部34を構成する部品の発熱量も、より確実に抑えることができる。

0172

なお、本変形例Eに係る昇圧目標値Tpは、上記実施形態の図5で示された目標値関連情報Inf1に基づいて決定されてもよいし、上記変形例Bの図8で示された目標値関連情報Inf2に基づいて決定されてもよい。

0173

なお、本変形例Eについては、電源変動情報Vflが整流後電圧V1の値である場合のみならず、整流後電圧V1の基準値に対する変動幅ΔVである場合においても、同様に言うことができる。

0174

(5−6)変形例F
更に、本発明では、入力側検出部33が電源変動情報Vflの検出動作を行う時期は、昇圧部34による昇圧動作と関連していても良い。

0175

例えば、入力側検出部33は、昇圧部34による昇圧動作が開始される直前に、電源変動情報Vflの検出動作を行ってもよい。または、入力側検出部33は、昇圧部34が昇圧動作を行っている間、電源変動情報Vflの検出動作を行っても良い。または、昇圧部34が昇圧動作を行う直前から、実際に昇圧動作を行っている間、更には昇圧動作を終了した直後に至るまでの間、入力側検出部33は、電源変動情報Vflの検出動作を行っても良い。

0176

また、入力側検出部33は、モータ駆動装置30に電源が投入された時から圧縮機用モータM12の駆動が終了するまでの間、電源変動情報Vflの検出動作を行っても良い。

0177

なお、本変形例Fについては、電源変動情報Vflが整流後電圧V1の値である場合のみならず、整流後電圧V1の基準値に対する変動幅ΔVである場合においても、同様に言うことができる。

0178

(5−7)変形例G
上記実施形態では、図1に示すように、昇圧部34が、整流部32の後段に接続されていると説明した。

0179

しかし、整流部32は、設けられなくともよい。この場合、昇圧部34への入力側電圧は、電源電圧V0そのものとなる。

0180

また、図1では、整流部32の前にフィルタ31が設けられている場合について説明した。しかし、フィルタ31は、設けられていなくてもよい。

0181

なお、本変形例Gについては、電源変動情報Vflが整流後電圧V1の値である場合のみならず、整流後電圧V1の基準値に対する変動幅ΔVである場合においても、同様に言うことができる。

0182

(5−8)変形例H
上記実施形態では、図1に示すように、入力側検出部33が整流部32の後段に位置している場合について説明した。

0183

しかし、入力側検出部33は、昇圧部34に入力される入力側電圧を検出することができればよく、その位置は図1にて示された位置に限定されない。例えば、整流部32の前段整流回路別途設けられている場合、入力側検出部は、当該回路の出力に設けられていても良い。

0184

なお、本変形例Hについては、電源変動情報Vflが整流後電圧V1の値である場合のみならず、整流後電圧V1の基準値に対する変動幅ΔVである場合においても、同様に言うことができる。

0185

(5−9)変形例I
上記実施形態では、昇圧部34を構成する抵抗R34a〜R34cが、トランジスタQ34a〜Q34cに流れる電流を検出するためのシャント抵抗であると説明した。

0186

しかし、昇圧部34は、抵抗R34a〜R34cの代わりに、カレントセンサを備えていても良い。

0187

なお、本変形例Iについては、電源変動情報Vflが整流後電圧V1の値である場合のみならず、整流後電圧V1の基準値に対する変動幅ΔVである場合においても、同様に言うことができる。

0188

(5−10)変形例J
上記実施形態では、コントローラ41が、駆動電圧出力部37の制御及び昇圧部34の制御を行うと説明した。

0189

しかし、駆動電圧出力部37の制御を行う制御部分と、昇圧部34の制御を行う部分とは、別々のCPUやICによって構成されていてもよい。

0190

なお、本変形例Jについては、電源変動情報Vflが整流後電圧V1の値である場合のみならず、整流後電圧V1の基準値に対する変動幅ΔVである場合においても、同様に言うことができる。

0191

(5−11)変形例K
上記実施形態では、上式(1)に示される定数Vαが、少なくともインバータ38の動作範囲、電源電圧V0の変動が予測される範囲等に応じて決定されると説明した。

0192

しかし、インバータ38の動作範囲等に応じて定数Vαを決定する代わりに、インバータ38の動作範囲等に応じて昇圧目標値Tp自体の上限値及び下限値の少なくとも1つが決定されても良い。もしくは、インバータ38の動作範囲等に応じて定数Vαが決定されると共に、昇圧目標値Tp自体の上限値及び下限値の少なくとも1つが決定されてもよい。

0193

また、上記実施形態では、入力側電圧である整流後電圧V1に応じて昇圧目標値Tpが変化することで、駆動電圧出力部37におけるインバータ38に印加される昇圧後電圧V2が変化した。しかし、インバータ38自体の負荷に応じて昇圧目標値Tpが変化することで、インバータ38に印加される昇圧後電圧V2が変化してもよい。但し、この場合、昇圧目標値Tpの上限値及び下限値は、インバータ38の動作範囲内であって、且つ昇圧部34が正常に動作する範囲となるように、予め設定されている。

0194

これにより、電源電圧V0の変動が生じたとしても、駆動電圧出力部37におけるインバータ38に印加される昇圧後電圧V2は、確実にインバータ38の動作範囲内となる。

0195

なお、本変形例Kについては、電源変動情報Vflが整流後電圧V1の値である場合のみならず、整流後電圧V1の基準値に対する変動幅ΔVである場合においても、同様に言うことができる。

0196

(5−12)変形例L
上記実施形態では、目標値関連情報Inf1が、インバータ38の動作範囲、平滑コンデンサ36及びトランジスタQ38a〜Q38fの各定格電圧以下となる条件に基づいて決定されると説明した。

0197

しかし、目標値関連情報Inf1は、少なくともインバータ38の動作範囲に基づいて決定されていればよい。従って、目標値関連情報Inf1は、必ずしも平滑コンデンサ36及びトランジスタQ38a〜Q38fの各定格電圧以下となる条件を考慮して決定されていなくともよい。

0198

また、上記実施形態では、定格電圧の考慮対象となる電気部品として、昇圧部34の後段に位置する機能部の構成部品(つまりは、平滑コンデンサ36及びトランジスタQ38a〜Q38f)を挙げている。しかし、定格電圧の考慮対象となる電気部品は、平滑コンデンサ36及びトランジスタQ38a〜Q38f以外であってもよいし、これらのいずれか1つであってもよい。また、定格電圧の考慮対象となる電気部品には、昇圧部34の前段に位置している電気部品が更に含まれていてもよい。

0199

なお、本変形例Lについては、電源変動情報Vflが整流後電圧V1の値である場合のみならず、整流後電圧V1の基準値に対する変動幅ΔVである場合においても、同様に言うことができる。

0200

(5−13)変形例M
上記実施形態にて示した全てのコンデンサは、平滑コンデンサ及び電解コンデンサに限定されない。

0201

(5−14)変形例N
上記実施形態では、モータ駆動装置30の駆動対象が圧縮機用モータM12である場合について説明した。しかし、モータ駆動装置30の駆動対象は、圧縮機用モータM12に限定されない。駆動対象のその他の例としては、ファンモータが挙げられる。

0202

なお、本変形例Mについては、電源変動情報Vflが整流後電圧V1の値である場合のみならず、整流後電圧V1の基準値に対する変動幅ΔVである場合においても、同様に言うことができる。

0203

10空気調和装置
11室外ユニット
M12圧縮機用モータ
21室内ユニット
30モータ駆動装置
31フィルタ
32整流部
33 入力側検出部(検出部)
34 昇圧部
35出力側検出部
36平滑コンデンサ
37駆動電圧出力部
38インバータ
39ゲートドライバ
40昇圧駆動部
41コントローラ
42メモリ(記憶部)
43 CPU(決定部)
51電源配線
52GND配線
100モータ駆動システム
Con 昇圧駆動信号
Inf1,Inf2目標値関連情報
Pwmモータ駆動信号
SU〜SWモータ駆動電圧
Tp昇圧目標値
V0電源電圧
V1整流後電圧(入力側電圧)
V2昇圧後電圧
Vfl電源変動情報
Val 昇圧後電圧の値
Vr1−Vr2抵抗R34cの両端電圧
Vα定数
ΔV 変動幅

先行技術

0204

特開2000−14153号公報

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 株式会社エフェクトメイジの「 コンバータおよびこれを用いたイルミネーション装置」が 公開されました。( 2020/10/29)

    【課題】並列接続させた複数のワイヤーイルミネーションに対して電力供給可能なコンバータを提供する。【解決手段】イルミネーション装置10において、コンバータ14は、入力側のDC電圧を所定のDC出力電圧に変... 詳細

  • 三菱電機株式会社の「 電力変換装置」が 公開されました。( 2020/10/29)

    【課題】ワイドバンドギャップ半導体のスイッチング素子を保護する低コストの電力変換装置を提供する。【解決手段】電力変換装置1は、電力変換部3、4と、電力変換部3、4のスイッチング素子を制御する制御部6、... 詳細

  • 三菱電機株式会社の「 電力変換装置」が 公開されました。( 2020/10/29)

    【課題】半導体スイッチング素子を有する電力変換装置において、部品等を追加することなく、小型、高密度化を満足しながらスイッチングノイズの抑制を図る。【解決手段】半導体スイッチング素子を有する電力変換回路... 詳細

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ