図面 (/)

技術 直線偏光純度向上器、直線偏光純度向上装置、光計測装置及び医療機器

出願人 セイコーエプソン株式会社
発明者 池田陽
出願日 2013年2月20日 (7年9ヶ月経過) 出願番号 2013-030873
公開日 2014年9月4日 (6年2ヶ月経過) 公開番号 2014-160175
状態 未査定
技術分野 各種分光測定と色の測定 光学的手段による材料の調査、分析 偏光要素
主要キーワード 向上装置 進行方向軸 直交分離 計測波長 所定物質 方位性 前段部分 低速軸
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2014年9月4日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (9)

課題

直線偏光純度を向上させるための新しい手法の提案。

解決手段

直線偏光純度向上器1Aは、円偏光部40と、円偏光部40からの出射光を直線偏光化する直線偏光部50とを備える。そして、直線偏光純度向上器1Aは、円偏光部40に入射された直線偏光を、当該入射光よりも高い直線偏光純度の直線偏光で直線偏光部から射出する。

概要

背景

物質を透過した光を計測することで、その物質に直接触れることなく、物質の成分を知ることができる。例えば、旋光度を調べると、計測対象物に含有された所定成分の濃度を推定できる。旋光とは、例えばグルコースのような光学活性物質直線偏光が通過するとき、その偏光面が回転する性質のことである。

この旋光性を利用した技術として、例えば特許文献1には、直線偏光が計測対象物を透過した透過光偏光ビームスプリッターによって直交分離し、その直交分離された偏光成分それぞれを2つの受光素子受光し、その受光レベルの差から旋光度を計測する技術が開示されている。

概要

直線偏光の純度を向上させるための新しい手法の提案。直線偏光純度向上器1Aは、円偏光部40と、円偏光部40からの出射光を直線偏光化する直線偏光部50とを備える。そして、直線偏光純度向上器1Aは、円偏光部40に入射された直線偏光を、当該入射光よりも高い直線偏光純度の直線偏光で直線偏光部から射出する。

目的

本発明は上述した課題に鑑みてなされたものであり、その目的とする

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

円偏光部と、前記円偏光部からの出射光直線偏光化する直線偏光部と、を備え、前記円偏光部に入射された直線偏光を、当該入射光よりも高い直線偏光純度の直線偏光で前記直線偏光部から射出する直線偏光純度向上器。

請求項2

前記円偏光部に入射する光を直線偏光化する前記円偏光部の前段に設けられた前段直線偏光部を更に備え、前記円偏光部は、1/4波長板を有し、前記前段直線偏光部の光軸方向と当該1/4波長板の光軸方向との成す角度が45°に構成された、請求項1に記載の直線偏光純度向上器。

請求項3

前記円偏光部は、入射光の波長に応じた複数種類の1/4波長板を取り替え可能に有する、請求項1又は2に記載の直線偏光純度向上器。

請求項4

請求項1に記載の直線偏光純度向上器を複数段具備した直線偏光純度向上装置

請求項5

請求項1に記載の直線偏光純度向上器を複数段に具備し、初段の前記直線偏光純度向上器の前段に、当該初段の直線偏光純度向上器の円偏光部に入射する光を直線偏光化する前段直線偏光部を更に具備した、直線偏光純度向上装置。

請求項6

各段の前記直線偏光純度向上器の円偏光部は、1/4波長板を有し、当該円偏光部の直前に位置する直線偏光部の光軸方向と当該1/4波長板の光軸方向との成す角度が45°に構成された、請求項4又は5に記載の直線偏光純度向上装置。

請求項7

請求項1〜3の何れか一項に記載の直線偏光純度向上器、或いは、請求項4〜6の何れか一項に記載の直線偏光純度向上装置(以下、包括して「直線偏光純度向上器」という。)を具備し、当該直線偏光純度向上器からの出射光を計測対象物に透過させ、当該透過光に基づいて当該計測対象物の旋光度計測する光計測装置

請求項8

前記計測対象物を生体透過性を有する所定部位あるいは当該生体の体液として旋光度を計測する請求項7に記載の光計測装置と、前記光計測装置により計測された旋光度を用いて所定物質成分濃度を計測する成分濃度算出部と、を備えた医療機器

技術分野

0001

本発明は、直線偏光純度を向上させる機器等に関する。

背景技術

0002

物質を透過した光を計測することで、その物質に直接触れることなく、物質の成分を知ることができる。例えば、旋光度を調べると、計測対象物に含有された所定成分の濃度を推定できる。旋光とは、例えばグルコースのような光学活性物質を直線偏光が通過するとき、その偏光面が回転する性質のことである。

0003

この旋光性を利用した技術として、例えば特許文献1には、直線偏光が計測対象物を透過した透過光偏光ビームスプリッターによって直交分離し、その直交分離された偏光成分それぞれを2つの受光素子受光し、その受光レベルの差から旋光度を計測する技術が開示されている。

先行技術

0004

国際公開第99/30132号

発明が解決しようとする課題

0005

特許文献1に代表される従来の技術では、計測対象物に入射される直線偏光は完全な直線偏光であることを前提としている。しかし、一般に、光源から射出される光(以下、「光源光」と称す。)は、常にその偏光状態が変動している。例えば、光源光の偏光面の成す角度は、常に微小振動している。このため、偏光特性を有する光学素子によっては、光源光の偏光状態の変動によって透過率反射率が変動し、偏光純度が低減する。

0006

ここで、偏光純度とは、直線偏光であれば、直線偏光成分非直線偏光成分との割合であり、高精度の計測を行うためには、高い偏光純度の直線偏光を用いて計測を行うことが必要とされる。従って、偏光純度が一定以上にない光学素子を用いる場合には、この光学素子自体が原因となって計測上の誤差が生じ得る。

0007

これを未然に防ぐためには、その特性が光源光の偏光状態の変動にほとんど依存しない又はその傾向が少ない光学素子を用いるか、或いは、偏光状態の変動がほとんどない又はその傾向が少ない光源を用いる必要がある。しかし、何れも理想的なものではなく、僅かではあるが偏光状態が変動し得る。そのため、偏光純度を向上させることができれば至便である。

0008

本発明は上述した課題に鑑みてなされたものであり、その目的とするところは、直線偏光の純度を向上させるための新しい手法を提案することにある。

課題を解決するための手段

0009

以上の課題を解決するための第1の発明は、円偏光部と、前記円偏光部からの出射光を直線偏光化する直線偏光部と、を備え、前記円偏光部に入射された直線偏光を、当該入射光よりも高い直線偏光純度の直線偏光で前記直線偏光部から射出する直線偏光純度向上器である。

0010

この第1の発明によれば、円偏光部に入射された直線偏光が円偏光部によって円偏光化される。そして、円偏光部からの出射光が直線偏光部によって直線偏光化される。円偏光部により、入射光は電場強度が一定の等方的な円偏光に変換される。このため、円偏光部からの出射光を直線偏光部で直線偏光化することで、元の直線偏光に揺らぎが生じている場合であっても、その影響が補償された高純度の直線偏光を得ることができる。

0011

また、第2の発明として、第1の発明の直線偏光純度向上器において、前記円偏光部に入射する光を直線偏光化する前記円偏光部の前段に設けられた前段直線偏光部を更に備え、前記円偏光部は、1/4波長板を有し、前記前段直線偏光部の光軸方向と当該1/4波長板の光軸方向との成す角度が45°に構成された、直線偏光純度向上器を構成することとしてもよい。

0012

第2の発明によれば、円偏光部の前段に設けられた直線偏光部によって、円偏光部に入射する光が直線偏光化される。ここで、円偏光部は、1/4波長板を有する。1/4波長板によって直線偏光を円偏光に適切に変換するためには、円偏光部への入射光の高速軸成分と低速軸成分とが等しくなるように円偏光部の角度を決める必要がある。そこで、第2の発明では、前段直線偏光部の光軸方向と1/4波長板の光軸方向との成す角度を45°に構成する。その結果、円偏光部において直線偏光が適切に円偏光化される。

0013

また、第3の発明として、第1又は第2の発明の直線偏光純度向上器における前記円偏光部は、入射光の波長に応じた複数種類の1/4波長板を取り替え可能に有する、直線偏光純度向上器を構成することとしてもよい。

0014

この第3の発明によれば、直線偏光純度向上器における円偏光部は、入射光の波長に応じた複数種類の1/4波長板を取り替え可能に有する。一般に、1/4波長板は波長依存性を有する。このため、入射光の波長に応じた複数種類の1/4波長板を取り替え可能とすることで、入射光の波長に適合した高純度の直線偏光を得ることが可能となる。

0015

また、第4の発明として、第1の発明の直線偏光純度向上器を複数段具備した直線偏光純度向上装置を構成することとしてもよい。

0016

一般に、直線偏光部は、透過軸方向以外の軸方向に対しても僅かながら光を透過させる性質がある。しかし、第4の発明のように、直線偏光純度向上器を複数段に具備した直線偏光純度向上装置を構成し、円偏光化と直線偏光化とを繰り返すことで、透過軸方向以外の軸方向に対する透過光量を段階的に低減させ、更に純度の高い直線偏光を得ることが可能となる。

0017

また、第5の発明として、第1の発明の直線偏光純度向上器を複数段に具備し、初段の前記直線偏光純度向上器の前段に、当該初段の直線偏光純度向上器の円偏光部に入射する光を直線偏光化する前段直線偏光部を更に具備した、直線偏光純度向上装置を構成することとしてもよい。

0018

この第5の発明によれば、直線偏光純度向上器を複数段に具備するばかりでなく、初段の直線偏光純度向上器の前段に、当該初段の直線偏光純度向上器の円偏光部に入射する光を直線偏光化する直線偏光部を備えることで、より一層純度の高い直線偏光を得ることが可能となる。

0019

また、第6の発明として、第4又は第5の発明の直線偏光純度向上装置において、各段の前記直線偏光純度向上器の円偏光部は、1/4波長板を有し、当該円偏光部の直前に位置する直線偏光部の光軸方向と当該1/4波長板の光軸方向との成す角度が45°に構成された、直線偏光純度向上装置を構成することとしてもよい。

0020

この第6の発明によれば、各段の直線偏光純度向上器の円偏光部は、1/4波長板を有し、当該円偏光部の直前に位置する直線偏光部の光軸方向と当該1/4波長板の光軸方向との成す角度が45°に構成されている。これにより、各直線偏光純度向上器の円偏光部において、入射される直線偏光を1/4波長板によって適切に円偏光化することが可能となる。

0021

また、第7の発明として、第1〜第3の何れかの発明の直線偏光純度向上器、或いは、第4〜第6の何れかの発明の直線偏光純度向上装置(以下、包括して「直線偏光純度向上器」という。)を具備し、当該直線偏光純度向上器からの出射光を計測対象物に透過させ、当該透過光に基づいて当該計測対象物の旋光度を計測する光計測装置を構成することとしてもよい。

0022

この第7の発明によれば、上記の発明の直線偏光純度向上器からの出射光を計測対象物に透過させ、当該透過光に基づいて当該計測対象物の旋光度を計測する光計測装置を構成することができる。上記の発明の直線偏光純度向上器を用いることで高純度の直線偏光を得ることができるため、その出射光を用いることで、計測対象物の旋光度を高い精度で計測することが可能となる。

0023

また、第8の発明として、前記計測対象物を生体透過性を有する所定部位あるいは当該生体の体液として旋光度を計測する第7に発明の光計測装置と、前記光計測装置により計測された旋光度を用いて所定物質成分濃度を計測する成分濃度算出部と、を備えた医療機器を構成することとしてもよい。

0024

この第8の発明によれば、計測対象物を生体の透過性を有する所定部位あるいは当該生体の体液として旋光度を計測する。そして、計測された旋光度を用いて所定物質の成分濃度を算出する。これにより、生体や体液に含有された所定物質の成分濃度を正しく計測することが可能となる。

図面の簡単な説明

0025

直線偏光純度向上器の一構成例を示す図。
直線偏光純度向上器の他の構成例を示す図。
(1)入射光の偏光状態の説明図。(2)入射光を直線偏光化した場合の説明図。
(1)入射光の偏光状態を示す図。(2)入射光を円偏光化した場合の説明図。(3)円偏光を直線偏光化した場合の説明図。
(1)血糖値計測装置の構成例を示す図。(2)光学装置の構成例を示す図。
直線偏光純度向上装置の一構成例を示す図。
直線偏光純度向上装置の他の構成例を示す図。
変形例における光源の構成例を示す図。

実施例

0026

以下、図面を参照して、本発明の好適な実施形態の一例について説明する。但し、本発明を適用可能な実施形態が以下説明する実施形態に限定されるわけではないことは勿論である。

0027

1.第1実施形態
図1は、第1実施形態における直線偏光純度向上器1Aの構成を示す図である。直線偏光純度向上器1Aは、円偏光部40と、直線偏光部50とを有して構成される。

0028

円偏光部40は、入射光を円偏光化する偏光素子であり、1/4波長板を有して構成される。1/4波長板は、例えば水晶波長板によって構成され、入射光の直交する偏光成分間に1/4波長分(=π/2)の位相差を与える複屈折素子である。位相板リタデーションプレート)と呼ばれる場合もある。

0029

直線偏光部50は、円偏光部40からの出射光を直線偏光化する偏光素子であり、直線偏光子を有して構成される。直線偏光子としては、例えばグランタイプトソンプリズムといった、複屈折性を持つ方解石プリズムなどの偏光用光学素子を用いることができる。

0030

1/4波長板によって直線偏光を円偏光に適切に変換するためには、円偏光部40への入射光の高速軸成分と低速軸成分とが等しくなるように円偏光部40の角度を決める必要がある。これは、円偏光部40に入射させる直線偏光の偏光方向を1/4波長板の高速軸或いは低速軸に対して45°傾けることで実現できる。

0031

図3及び図4は、上記の直線偏光純度向上器1Aを用いて直線偏光の純度を向上させる原理の説明図である。これらの各図において、Z軸は光の進行方向の軸を示し、X軸及びY軸は、Z軸に直交する軸を示す。Z軸を紙面に垂直な方向の軸とし、X軸を紙面向かって左右方向の軸とし、Y軸を紙面向かって上下方向の軸として図示する。また、図3及び図4では、理解を助けるために、グラフを一部誇張して図示している。

0032

図3は、従来の手法を用いて直線偏光を生成する場合の説明図である。ここでは、所定の光源(例えば半導体レーザー)から射出される光源光を直線偏光子に入射して直線偏光に変換する場合を例示する。また、光源光を直線偏光に近い楕円偏光として説明する。
光源光は楕円偏光であるが、その電場ベクトルの先端をX−Y平面に投影すると、Z軸を中心として楕円を描くように変化する。問題は、この光源光には微小な揺らぎが生じており、楕円の先端が微小に振動している点である。

0033

図3(1)の光源光を直線偏光子に入射した場合の偏光状態の変化を図3(2)に示す。光源光は楕円偏光であり、その偏光状態を一点鎖線で示す。また、光源光の電場の強さ(以下、「電場強度」と称す。)を表すために、便宜的に楕円の長軸方向に一点鎖線で電場ベクトルを描いている。電場ベクトルの長さが電場強度であり、これを「E」として説明する。また、X軸と電場ベクトルとの成す角度(光源光の偏波面の成す角度)を「偏向角」として説明する。

0034

直線偏光子は光の進行方向に対し一つの透過軸を有し、この透過軸に対して偏光を通過させることで直線偏光を生じさせる。しかし、実際には透過軸方向以外の方向に対しても僅かながら光を透過させてしまう。この透過軸方向以外の方向に透過した光のことを「漏れ光」と呼ぶことにする。漏れ光は、直線偏光子の透過軸に対して直交する軸(以下、「透過直交軸」と称す。)の方向に対して最小となる。透過軸方向の偏光成分と透過直交軸方向の偏光成分との比を「消光比」と呼び、この消光比が直線偏光子の性能を表す。

0035

図3(2)に示すように、電場強度Eの楕円偏光である光源光が、X−Y軸から角度φだけ傾いた直線偏光子の透過軸を基準に角度Δθだけ傾いた偏光方向を持って透過する場合を考える。図3(1)で説明したように、光源光には微小な揺らぎが生じており、楕円偏光で表される光源光の偏向角が変動している。従って、光源光が直線偏光子に入射する際の透過軸を基準とする角度Δθは、光源光の偏向角の変動に依存して変化することになる。

0036

この場合、直線偏光子を透過する透過光の透過軸方向の電場強度は「E・cosΔθ」と表され、透過直交軸方向の電場強度は「E・sinΔθ」と表される。この透過光をX−Y軸で直交分離すると、電場ベクトルのX成分及びY成分は、それぞれ次式(1)及び(2)のように表すことができる。

0037

このとき、電場ベクトルのX成分及びY成分を用いて直線偏光の方位角χを算出すると、次式(3)のようになる。

0038

式(3)より、直線偏光の方位角χは、角度Δθに依存することがわかる。上記のように、角度Δθは光源光の揺らぎに依存して変化するため、方位角χも、光源光の揺らぎに依存して変化することがわかる。このような直線偏光を用いて計測対象物の光学的性質(例えば旋光度)を計測した場合、計測精度が低下してしまう。

0039

図4は、図1の直線偏光純度向上器1Aを用いて直線偏光を生成する場合の説明図である。図4(1)は、円偏光部40に入射する光源光の偏光状態を示しており、これは図3(1)と同じように楕円偏光で表される。

0040

この楕円偏光である光源光は円偏光部40によって円偏光化される。円偏光部40は1/4波長板を有するため、光源光の直交成分のうちの一方の成分の位相を1/4波長分だけ進ませる(或いは遅らせる)。円偏光部40に入射する光源光(理想的には直線偏光)は、左右円偏光の合成とみなすことができる。このとき、光源光の偏向角は左右円偏光の位相差となる。このため、左右円偏光の位相差が変動すると、光源光の偏向角も変動することになる。しかし、円偏光は左右偏光の何れかである。従って、光源光が円偏光部40によって円偏光化されることにより、円偏光の位相が変動したとしても、光の進行方向に対して直交する平面において方位性を持った電場変動が生じなくなる。従って、光源光は円偏光部40を通過することにより等方的な電場強度「α・E」の円偏光に変換される(但し、0≦α≦1)。

0041

次に、円偏光部40からの出射光は直線偏光部50に入射する。このとき、円偏光部40からの出射光がX−Y軸から角度φだけ傾いた直線偏光部50の透過軸を基準に角度Δθの変位を持って透過する場合を考える。このとき、上記のように、光源光における偏向角の変動の要因であった左右円偏光の位相差の変動は、円偏光化によって左右何れかの円偏光の位相の変動に帰着するため、円偏光においては偏向角という概念がなくなる。すなわち、電場強度が光の進行方向軸に直交する平面において方位性を持たなくなる。このため、直線偏光部40の透過軸方向を透過する光の電場強度は「α・E」となり、透過直交軸方向を透過する光の電場強度は「R・α・E」となる(但し、0≦α≦1)。但し、「R」は消光比であり、「R=透過直交軸の透過光量/透過軸の透過光量」として表される。

0042

この場合、直線偏光部50からの出射光をX−Y軸で直交成分分離すると、電場ベクトルのX成分及びY成分は、それぞれ次式(4)及び(5)のように表される。

0043

このとき、電場ベクトルのX成分及びY成分を用いて直線偏光の方位角χを算出すると、次式(6)のようになる。

0044

式(6)から、直線偏光の方位角χは、角度Δθに依存せず、透過軸角度φによって定まることがわかる。方位角χが角度Δθに依存しないということは、直線偏光部40から出射する直線偏光は、光源光の揺らぎに依存しないことを意味する。従って、図1の直線偏光純度向上器1Aを用いることで、光源光の揺らぎに依存しない高純度の直線偏光を得ることができる。

0045

なお、本実施形態における直線偏光純度向上器1の構成は、図1に示した直線偏光純度向上器1Aの構成に限られるわけではない。例えば、円偏光部40に光源光を直接入射させるのではなく、直線偏光子によって光源光を直線偏光化した後に、円偏光部40に入射させるように直線偏光純度向上器1を構成することとしてもよい。

0046

図2は、この場合における直線偏光純度向上器1Bの構成を示す図である。
直線偏光純度向上器1Bは、前段直線偏光部30と、円偏光部40と、直線偏光部50とを有して構成される。円偏光部40に入射する光を直線偏光化する前段直線偏光部30が円偏光部40の前段部分に設けられている点が、図1の直線偏光純度向上器1Aとは異なる。

0047

前段直線偏光部30は、円偏光部40の前段で光源光を直線偏光化する偏光素子である。この前段直線偏光部30は、直線偏光部50と同様に、例えばグラントムソンプリズム等の偏光用光学素子を用いた直線偏光子を有して構成される。

0048

前段直線偏光部30の光軸方向と円偏光部40が有する1/4波長板の光軸方向との成す角度が45°となるように、前段直線偏光部30が有する直線偏光子と円偏光部40が有する1/4波長板との配置角度が調整されている。これは、円偏光部40に入射する直線偏光の高速軸成分と低速軸成分とを等しくし、円偏光部40に入射する光源光が適切に円偏光に変換されるようにするためである。

0049

前段直線偏光部30を透過した光は、元の光源光に比べ、前段直線偏光部30の消光比分だけ、透過軸以外の方向の偏光成分が低減されている。この光を円偏光部40によって円偏光化し、再び直線偏光部50を通過させることで、直線偏光部50の消光比分だけ、透過軸以外の方向の偏光成分をさらに低減させることができる。このため、直線偏光純度向上器1Bでは、直線偏光純度向上器1Aよりもさらに高純度の直線偏光を得ることができる。

0050

2.第2実施形態
次に、上記の直線偏光純度向上器1を具備し、計測対象物の光学的特性を計測する装置として、血糖値計測装置3の実施形態について説明する。本実施形態の血糖値計測装置3は、生体内或いは生体の体液に含有された所定の既知物質の成分濃度を計測する医療機器の一種であり、被検者の血液中グルコース濃度非侵襲的に計測する装置である。

0051

2−1.機能構成
図5(1)は、血糖値計測装置3の一構成例を示す図である。
血糖値計測装置3は、主要な構成として、光学装置5と、制御部100と、操作部200と、表示部300と、音出力部400と、通信部500と、記憶部600とを有して構成される。

0052

図5(2)は、光学装置5の構成例を示す図である。
光学装置5は、光源10と、光変換部20と、直線偏光純度向上器1Bと、偏光部60と、光検出部70と、信号処理部80とを有して構成される。直線偏光純度向上器1Bと偏光部60との間に計測対象物Sが配置される。本実施形態において、計測対象物Sは、被検者の耳たぶ指先、手の表皮等とされる。

0053

光源10は、複数の波長の計測光を生成して出射可能に構成された光生成装置であり、例えば多波長レーザー光源として構成される。光源10は、制御部100の制御の下、指示された波長の計測光を生成して出射する。

0054

光変換部20は、光源10から射出された計測光を平行光に変換する変換器であり、例えばコリメートレンズを有して構成される。

0055

直線偏光純度向上器1Bは、光源10から出射されて光変換部20によって平行光に変換された計測光を直線偏光化する。本実施形態の直線偏光純度向上器1Bでは、円偏光部40が、計測光の波長に応じた複数種類の1/4波長板42(42−1,42−2,42−3,・・・)を取り替え可能に構成されている。

0056

一般的に、1/4波長板の屈折率は入射光の波長に依存して変化し、1/4波長板が与える位相差には波長依存性がある。本実施形態では、生体の血液に含有されているグルコースの濃度(血糖値)を計測するために、複数の波長の計測光を用いて旋光度を計測する。そこで、グルコース濃度の計測に使用する波長(以下、「計測波長」と称す。)毎に好適な1/4波長板42を用いて旋光度を計測することを可能にするために、計測波長に応じた複数種類の1/4波長板42を取り替え可能に構成している。

0057

偏光部60は、直線偏光純度向上器1Bから射出される直線偏光が計測対象物Sを透過した透過光を偏光化する偏光子である。この偏光部60としては、透過光を直交成分、すなわち互いに90度異なる偏光成分に分離する直交分離機能を有する光学素子を用いることができ、例えばウォラストンプリズムを適用することができる。

0058

光検出部70は、偏光部60によって偏光された透過光を受光する受光素子であり、フォトダイオード等の光検出器を有して構成される。光検出部70は、例えば2つの光検出器を有して構成され、偏光部60によって直交分離された互いに直交する偏光成分(P偏光成分及びS偏光成分)をそれぞれ受光する。なお、この場合の2つの光検出器は、同一規格の光検出器を用いることにすると好適である。

0059

信号処理部80は、光検出部70から出力される光検出信号を信号処理する回路信号処理回路)を有して構成される。光検出部70が受光光量に応じた電圧検出信号を出力するように構成されている場合は、例えば電圧を所定の増幅率増幅した後、制御部100に出力する。また、光検出部70が受光光量に応じた電流の検出信号を出力するように構成されている場合は、電流電圧変換を行って電流を電圧に変換した後、これを増幅して制御部100に出力する。

0060

制御部100は、血糖値計測装置3の各部を統括的に制御する制御装置及び演算装置であり、CPU(Central Processing Unit)やDSP(Digital Signal Processor)等のマイクロプロセッサーASIC(Application Specific IntegratedCircuit)等を有して構成される。

0061

制御部100は、複数の計測波長それぞれについて、当該計測波長の計測光を光源10に出射させるように制御する。この場合、計測波長に応じた1/4波長板42が挿入された状態で、当該計測波長の計測光を光源10に出射させる。1/4波長板42の取り替えは、手動又は自動で行うように構成することができる。

0062

1/4波長板42の取り替えを手動で行う場合は、波長の異なる計測光を用いて計測を行う度に、その都度オペレーターが当該計測光の波長に対応する1/4波長板42を光学装置5の定位置に挿入して計測を行うようにする。

0063

また、1/4波長板42の取り替えを自動で行う場合は、1/4波長板42を光学装置5の定位置にスライド式に進退させる進退機構を光学装置5に具備させることとし、制御部100がこの進退機構を制御して、計測波長に応じた1/4波長板42を進退機構に進退させるようにすればよい。

0064

制御部100は、複数の計測波長の計測光を計測対象物S(生体)に照射した場合の信号処理部80の処理結果を用いて、当該計測波長での計測対象物Sの旋光度を算出する。そして、各計測波長について算出した旋光度を用いて、生体の血液に含有されているグルコースの濃度を算出・計測する。本実施形態の血糖値計測装置3は旋光度を計測する機能を有するため、計測対象物Sの旋光度を計測する光計測装置を具備していると言うことができる。なお、旋光度の算出方法については従来公知の手法を適用することができるため、本明細書では説明を省略する。

0065

一般に、旋光性を有する物質の旋光度は濃度に比例することが知られている。波長λにおける成分iの比旋光度光路長10cm=1dm当たり、濃度1g/ml当たり旋光角度)をαi(λ)[(°・g)/(dm・ml)]、成分濃度をci[g/dl]、計測対象物Sの光軸に平行な長さをd[mm]とすると、複数成分からなる計測対象物Sの旋光度θ(λ)[°]は、次式(7)のように表すことができる。

0066

本実施形態では、血液に含有されているグルコースの濃度(血糖値)を算出する。このため、血液に含有されている既知物質の比旋光度αi(λ)を予め求めて記憶部600に記憶させておき、血液に含有されている峻別を希望する既知物質の数と同数又はそれ以上の計測波長について式(7)を連立させた連立方程式解くことで、グルコースの濃度を求める。なお、血糖値の計測結果は、例えば表示部300に数値グラフ形式で表示させるなどして被検者に報知する。

0067

操作部200は、ボタンスイッチ等を有して構成される入力装置であり、押下されたボタンの信号を制御部100に出力する。操作部200の操作により、血糖値の計測開始、計測終了等の指示操作がなされる。

0068

表示部300は、制御部100から入力される表示信号に基づく各種表示を行う表示装置である。表示部300には、計測された血糖値等の情報が表示される。

0069

音出力部400は、制御部100から入力される音出力信号に基づく各種音出力を行う音出力装置である。例えば、計測開始や計測終了、エラー発生等の報知音を出力する。

0070

通信部500は、制御部100の制御に従って、装置内部で利用される情報を外部の情報制御装置との間で送受するための通信装置である。通信部500の通信方式としては、所定の通信規格準拠したケーブルを介して有線接続する形式や、近距離無線通信を利用して無線接続する形式等、種々の方式を適用可能である。通信方式は、有線無線を問わない。

0071

記憶部600は、血糖値計測装置3のシステムプログラムや、旋光度計測機能、血糖値計測機能といった各種機能を実現するための各種プログラム、データ等を記憶する。また、各種処理の処理中データ、処理結果などを一時的に記憶するワークエリアを有する。

0072

2−2.作用効果
血糖値計測装置3において、光学装置5は、光源10と、光変換部20と、直線偏光純度向上器1Bと、偏光部60と、光検出部70と、信号処理部80とを有して構成される。直線偏光純度向上器1Bの円偏光部40は、光源10から出射される計測光の波長に応じた複数種類の1/4波長板42を取り替え可能に構成されており、複数の計測波長それぞれについて、当該計測波長に応じた最適な1/4波長板42を用いて計測対象物Sの旋光度を計測可能に構成されている。

0073

直線偏光純度向上器1Bから出力される高純度の直線偏光を計測対象物Sに透過させ、その透過光を偏光部60で偏光して光検出部70で検出する。そして、光検出部70の検出結果を信号処理部80で信号処理し、その処理結果を用いて旋光度を算出することで、計測対象物Sの旋光度を高精度に計測することができる。そして、複数の計測波長それぞれについて得られた旋光度を用いて、例えば式(7)の演算式に従ってグルコースの濃度を算出することで、被検者の血糖値を高精度に計測することが可能となる。

0074

3.変形例
本発明を適用可能な実施例は、上記の実施例に限定されることなく、本発明の趣旨を逸脱しない範囲で適宜変更可能であることは勿論である。以下、変形例について説明する。なお、上記実施形態と同一の構成については同一の符号を付して再度の説明を省略する。

0075

3−1.直線偏光純度向上装置
上記の実施形態の直線偏光純度向上器1の応用例として、以下説明する直線偏光純度向上装置2を構成することとしてもよい。

0076

図6は、直線偏光純度向上装置2の一例である直線偏光純度向上装置2Aの構成を示す図である。
直線偏光純度向上装置2Aは、直線偏光純度向上器1A(1)及び1A(2)を有して構成される。直線偏光純度向上器1Aを直列2段に具備した構成である。各段の直線偏光純度向上器1Aの円偏光部40は、1/4波長板を有して構成される。また、1段目の直線純度向上器1A(1)の直線偏光部50(1)が有する直線偏光子の光軸方向と、2段目の直線偏光純度向上器1A(2)の円偏光部40(2)が有する1/4波長板の光軸方向との成す角度が45°に構成されている。

0077

直線偏光部50は、透過軸方向以外の方向にも僅かながら光を透過させるため、完全な直線偏光を得ることは難しい。しかし、直線偏光純度向上装置2Aでは、直線偏光純度向上器1Aが2段になっており、計測光の円偏光化と直線偏光化とが2回繰り返される。円偏光が直線偏光部50を通過するときには、直線偏光部50の透過軸方向を透過する光に対し、透過直交軸を透過する光の光量は消光比倍されて小さくなる。このため、円偏光化と直線偏光化とを繰り返すことで、より高純度の直線偏光を得ることが可能となる。

0078

図7は、直線偏光純度向上装置2の別例である直線偏光純度向上装置2Bの構成を示す図である。
直線偏光純度向上装置2Bは、前段直線偏光部30と、直線偏光純度向上器1A(1)及び1A(2)とを有して構成される。つまり、直線偏光純度向上器1Aを2段に具備し、初段の直線偏光純度向上器1Aの前段に、当該初段の直線偏光純度向上器1Aの円偏光部40に入射する光を直線偏光化する前段直線偏光部30を追加した構成である。

0079

前段直線偏光部30が有する直線偏光子の光軸方向と、1段目の直線偏光純度向上器1A(1)の円偏光部40(1)が有する1/4波長板の光軸方向との成す角度が45°に構成されている。また、1段目の直線偏光純度向上器1A(1)の直線偏光部50(1)が有する直線偏光子の光軸方向と、2段目の直線偏光純度向上器1A(2)の円偏光部40(2)が有する1/4波長板の光軸方向との成す角度が45°に構成されている。

0080

直線偏光純度向上装置2Bでは、入射光を前段直線偏光部30によって直線偏光化した後に、円偏光化と直線偏光化とを2回繰り返すため、図6の直線偏光純度向上装置2Aと比べて、より一層高純度の直線偏光を得ることができる。

0081

なお、図6及び図7では、2段の直線偏光純度向上器1Aを有する直線偏光純度向上装置2として直線偏光純度向上装置2A,2Bを例に挙げて説明したが、3段以上の直線偏光純度向上器1Aを有する直線偏光純度向上装置2を構成することとしてもよいことは勿論である。

0082

3−2.光計測装置
上記の第2実施形態では、計測対象物の旋光度を計測する光計測装置として、図2の直線偏光純度向上器1Bを具備する光計測装置を例に挙げて説明した。しかし、直線偏光純度向上器1Bに代えて、図1の直線偏光純度向上器1Aを光計測装置に具備させることとしてもよい。また、図6の直線偏光純度向上装置2Aや図7の直線偏光純度向上装置2Bを光計測装置に具備させることとしてもよい。

0083

また、光計測装置は、何も計測対象物の旋光度を計測する装置に限られるわけではない。例えば、吸光性を有する物質の吸光度を計測する吸光計測装置や、偏光偏波面を分析する偏光偏波面分析装置といった各種の光計測を行う装置とすることが可能である。

0084

また、上記の実施形態の血糖値計測装置に限らず、例えば、計測対象物を果物として旋光度を計測する光計測装置と、当該光計測装置により計測された旋光度を用いて果物の糖度を計測する糖度計測部とを備えた糖度計測装置を構成することも可能である。

0085

3−3.計測対象物
第2実施形態では、計測対象物を生体の耳たぶや指先、指の表皮部といった生体の透過性を有する所定部位としたが、計測対象物を当該生体の体液としてもよい。この場合の体液は血液に限らず、リンパ液間質液体腔液等としてもよい。計測対象物を体液とする場合は、体液をキュベット等の試料容器封入し、この試料容器の直線偏光を入射させて、上記の実施形態と同様の手順で血液の旋光度の計測を行えばよい。

0086

3−4.医療機器
また、第2実施形態では、医療機器として、血液に含有されているグルコースの濃度を計測する血糖値計測装置の実施形態について説明したが、医療機器はこれに限られないことは勿論である。例えば、血中に含まれるヘモグロビンの濃度を計測する医療機器を構成することも可能である。また、体液を間質液とする場合は、間質液に含まれるタンパク質アミノ酸脂肪酸等の成分の濃度を計測する医療機器を構成することも可能である。

0087

3−5.光源
上記の実施形態の直線偏光純度向上器1や直線偏光純度向上装置2を光源に内蔵させて、高純度の直線偏光を生成して出射する光源を構成することも可能である。

0088

図8は、この場合における光源12の構成例を示す図である。
光源12は、光生成部14と、直線偏光純度向上器1Aとを備えて構成される。出射光の出力段に直線偏光純度向上器1Aを具備した構成である。

0089

光生成部14は、所定波長レーザー光を生成する生成装置であり、例えばレーザー発振器を有して構成される。光生成部14で生成されたレーザー光は直線偏光純度向上器1Aに入射する。

0090

直線偏光純度向上器1Aは、光生成部14から射出されるレーザー光を入射光として、上記の原理に従って高純度の直線偏光を生成する。つまり、光生成部14から射出されて円偏光部40に入射した入射光を、当該入射光よりも高い直線偏光純度の直線偏光で直線偏光部50から射出する。

0091

この光源12は、例えば上記の実施形態で説明した血糖値計測装置等の光計測装置に具備させることができる。この場合は、光源12からの出射光を計測対象物に直接照射するように光計測装置を構成すればよい。

0092

なお、直線偏光純度向上器1Aの代わりに、図2の直線偏光純度向上器1Bや、図6の直線偏光純度向上装置2A、図7の直線偏光純度向上装置2Bを光源12に具備させることとしてもよいのは勿論である。

0093

3−6.偏光用光学素子
上記の実施形態では、前段直線偏光部30や直線偏光部50が、例えばグラントムソンプリズムを有して構成されるものとして説明したが、これ以外の偏光用光学素子を有する構成としてもよいことは勿論である。例えば、同じグランタイプの偏光用光学素子であるグランテーラープリズムを有する構成としてもよい。

0094

また、上記の実施形態では、偏光部60が、例えばウォラストンプリズムを有して構成されるものとして説明したが、偏光部60を構成する偏光用光学素子も適宜変更可能である。例えば、グランレーザープリズムやローションプリズムといった直交分離機能を有する偏光用光学素子を有する構成としてもよい。

0095

1直線偏光純度向上器、 2 直線偏光純度向上装置、 3血糖値計測装置、 5光学装置、 10,12光源、 14光生成部、 20光変換部、 30前段直線偏光部、 40円偏光部、 50 直線偏光部、 60偏光部、 70光検出部、 80信号処理部、 100 制御部、 200 操作部、 300 表示部、 400音出力部、 500通信部、 600 記憶部

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 住友化学株式会社の「 偏光板」が 公開されました。( 2020/09/24)

    【課題】リワークに際して偏光板の剥離を良好に行えるとともに、画像表示装置等に組み込まれて使用される過程では良好な密着性を発揮できる偏光板を提供する。【解決手段】偏光板は、粘着剤層、第1保護フィルム、偏... 詳細

  • 日本碍子株式会社の「 セラミックス焼成体の特性推定方法」が 公開されました。( 2020/09/24)

    【課題】重量測定に依拠することなく、非破壊的にセラミックス焼成体の特性を推定する方法を提供する。【解決手段】坏土成形体を焼成してセラミックス焼成体を作製する工程と、当該セラミックス焼成体の色を測定する... 詳細

  • セイコーエプソン株式会社の「 印刷装置及び印刷装置の測色制御方法」が 公開されました。( 2020/09/24)

    【課題】 パッチ面積を増加させることなく、測色精度を向上させる。【解決手段】 印刷装置は、走査方向に移動可能な印刷部13a,13bと、印刷部13a,13bと共に走査方向に移動可能に構成され、パッチ... 詳細

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ