図面 (/)

技術 ジオメトリック分割されたスーパブロックをビデオ符号化およびビデオ復号する方法および装置

出願人 トムソンライセンシング
発明者 オスカーディボラエスコーダインペン
出願日 2014年4月14日 (4年9ヶ月経過) 出願番号 2014-083043
公開日 2014年7月17日 (4年5ヶ月経過) 公開番号 2014-132792
状態 特許登録済
技術分野 TV信号の圧縮,符号化方式
主要キーワード コーナブロック コンピュータ読取り媒体 導出規則 水平座標軸 予測構成 符号化手続 スーパブロック 規格変換
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2014年7月17日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (14)

課題

ジオメトリック分割されたスーパブロックビデオ符号化およびビデオ復号する方法および装置を提供すること。

解決手段

装置は、ピクチャの少なくとも部分について画像データを符号化するエンコーダ(300)を含む。画像データは、ジオメトリックパーティションピクチャブロックパーティションに適用するジオメトリック分割によって形成される。ピクチャブロックパーティションは、トップダウン分割およびボトムアップツリー結合の少なくとも一方から取得される。

概要

背景

本出願は、2007年10月16日に出願された米国特許仮出願第60/980,297号明細書の利益を主張し、同出願は、その全体が参照により本明細書に組み込まれる。

現行ビデオ符号化規格のいくつかでは、ツリー構造マクロブロック分割(tree−structured macroblock partitioning)が採用されている。ITU−T(国際電気通信連合電気通信部門)H.261勧告(これ以降「H.261勧告」)、ISO/IEC国際標準化機構国際電気標準会議ムービングピクチャエキスパートグループ(Moving Picture Experts Group)−1規格(これ以降「MPEG−1規格」)、およびISO/IECムービングピクチャエキスパートグループ−2規格/ITU−T H.262勧告(これ以降「MPEG−2規格」)は、16×16マクロブロック(MB)パーティションのみをサポートする。ISO/IECムービングピクチャエキスパートグループ−4パートシンプルプロファイル(simple profile)またはITU−T H.263(+)勧告は、16×16マクロブロックに対して、16×16パーティションおよび8×8パーティションの両方をサポートする。ISO/IECムービングピクチャエキスパートグループ−4 パート10アドバンスビデオ符号化(Advanced Video Coding)規格/ITU−T H.264勧告(これ以降「MPEG−4 AVC規格」)は、ツリー構造階層マクロブロックパーティションをサポートする。16×16マクロブロックは、サイズが16×8、8×16、または8×8のマクロブロックパーティションに分割することができる。8×8パーティションは、サブマクロブロックとしても知られる。サブマクロブロックは、サイズが8×4、4×8、および4×4のサブマクロブロックパーティションにさらに分解することができる。

P(予測(predictive))フレームが符号化されるか、それともB(双予測(bi−predictive))フレームが符号化されるかに応じて、異なる予測構成が、ツリーベースパーティションを使用して可能である。これらの予測構成は、MPEG−4 AVC規格のエンコーダおよび/またはデコーダにおいて利用可能な符号化モードを定義する。Pフレームは、参照フレームからなる第1のリストから前方時間予測を可能にし、一方、Bフレームは、ブロックパーティションにおける後方予測/前方予測/双予測のために、参照フレームからなるリストを最大2つ使用することを可能にする。例えば、PフレームおよびBフレームのためのこれらの符号化モードの例は、以下を含み、
Pフレーム:

Bフレーム:

ここで、「FWD」は、前方予測リストからの予測を示し、「BKW」は、後方予測リストからの予測を示し、「BI」は、前方リストおよび後方リストの両方からの双予測を示し、「FWD−FWD」は、前方予測リストからの2つの予測を示し、「FWD−BKW」は、前方予測リストからの第1の予測と、後方予測リストからの第2の予測を示す。

また、イントラフレームは、16×16ブロック、8×8ブロック、および/または4×4ブロックにおける予測符号化モードを可能にし、対応するマクロブロック符号化モードは、INTRA4x4、INTRA16x16、およびINTRA8x8である。

MPEG−4 AVC規格におけるフレームパーティションは、MPEG−2規格などのより旧式のビデオ符号化規格において一般に使用される、単純な一様ブロックパーティションよりも効率的である。しかし、ツリーベースのフレーム分割は、2D(2次元)データのジオメトリック構造を獲得できないために、いくつかの符号化シナリオにおいては非効率的であるので、不足点がないわけではない。そのような制限を解決するため、その2次元ジオメトリを考慮することによって、2次元ビデオデータをより良く表現し、符号化する従来技術の方法(これ以降「従来技術方法」)が導入された。従来技術方法は、インター予測(INTER16x16GEO、INTER8x8GEO)およびイントラ予測(INTRA16x16GEO、INTRA8x8GEO)の両方のための新しい1組のモードにおいて、ウェッジパーティション(wedge partition)(すなわち、ブロックを任意の直線または曲線によって分離された2つの領域に分けるパーティション)を利用する。

従来技術方法の一実施では、ジオメトリックパーティションモード(geometric partition mode)を具体化するための基礎として、MPEG−4 AVC規格が使用される。ブロック内でのジオメトリックパーティションは、直線の陰関数表示の公式(implicit formulation of a line)によってモデル化される。図1を参照すると、画像ブロックの例示的なジオメトリック分割が、全体として参照番号100によって示されている。全体的な画像ブロックは、全体として参照番号120によって示され、画像ブロック120の2つのパーティションは、斜線150のそれぞれの側に配置され、全体としてそれぞれ参照番号130および140によって示されている。

したがって、パーティションは、以下のように定義され、
f(x,y)=xcosθ+ysinθ−ρ
ここで、ρ、θは、それぞれ以下のものを、表す。
f(x,y)と直角をなす方向における原点から境界線f(x,y)までの距離
f(x,y)と直角をなす方向と水平座標軸xがなす角度
その公式からの直接的な展開として、より高次のジオメトリックパラメータを有するf(x,y)についてのより込み入ったモデルも考えられる。

ブロックピクセル(x,y)は、以下のように分類される。

符号化の目的で、可能なパーティション(またはジオメトリックモード)のディクショナリ事前定義される。これは、形式的に以下のように定義することができ、

および

ここで、ΔρおよびΔθは、選択された量子化(パラメータ解像度)ステップである。θおよびρの量子化インデックスは、エッジを符号化するために送られる情報である。しかし、符号化手順において、モード16×8およびモード8×16が使用される場合、ρ=0のケースでは、角度0および90は、可能なエッジの組から除去することができる。

従来技術方法では、ジオメトリ適応動き補償モード(geometry−adaptive motion compensation mode)の場合、最良の構成を見出すために、各パーティションについて、θおよびρ、ならびに動きベクトル(motion vector)の探索が実行される。θおよびρのすべてのペアに対して、完全探索戦略が2つの段階を踏んで行われ、最良の動きベクトルが探索される。ジオメトリ適応イントラ予測モード(geometry−adaptive intra prediction mode)では、最良の構成を見出すために、各パーティションについて、θおよびρ、ならびに最良の説明変数(predictor)(方向予測または統計など)の探索が実行される。

図2を参照すると、ジオメトリ適応直線を用いて分割された例示的なINTER−P画像ブロックが、全体として参照番号200によって示されている。全体的な画像ブロックは、全体として参照番号220によって示され、画像ブロック220の2つのパーティションは、全体としてそれぞれ参照番号230および240によって示されている。

ブロックの予測補償は、Pモードの場合、以下のように表すことができる。

ここで

は、現在の予測を表し、

および

は、それぞれパーティションP2およびP1のためのブロック動き補償された参照である。各MASKp(x,y)は、各パーティションの各ピクセル(x,y)のための寄与重み(contribution weight)を含む。パーティション境界にないピクセルは一般に、いかなる操作も必要としない。実際のところ、マスク値は、1または0である。パーティション境界付近のピクセルだけが、両参照からの予測値を組み合わせる必要があることがある。

したがって、ジオメトリ適応ブロック分割を使用するビデオ符号化および画像符号化は、ビデオ符号化の効率を改善するための有望な方向であると認められている。ジオメトリ適応ブロック分割は、より正確なピクチャ予測を可能にし、インター予測および/またはイントラ予測などの局所予測モデルをピクチャの構造に従って適合させることができる。しかし、HD(高精細度ビデオおよび画像の符号化利得は、依然として高める必要がある。

例えば、インターフレーム予測におけるジオメトリ適応ブロック分割は、低解像度から中解像度ビデオコンテンツに対しては、優れた符号化効率の改善を示す。一例として、ジオメトリック分割されたブロックは、動きエッジ(motion edge)が存在するブロックの予測を高めるうえで特に優れている。しかし、高精細度ビデオコンテンツの場合、ジオメトリックモードによって達成される利得には限界があり、ジオメトリックモードが必要とする複雑さと均衡がとれていない。1つのあり得る理由は、高精細度コンテンツは、より大きな信号構造を有するが、既存のビデオ符号化規格において使用されるマクロブロック(MB)サイズは、16×16サイズに固定されている(高精細度の増加したオブジェクトサイズに合わせて適切に拡大しない)ことである。

したがって、マクロブロックのジオメトリ適応分割は、符号化される高精細度コンテンツの少なくとも多くのタイプについては、高精細度符号化において大きな相違を生み出すことができていない。実際に、信号のはるかに大きな領域と比較して十分な情報を圧縮することができない。例えば、レート−歪み(rate−distortion)の観点からは、僅かなパーセンテージのブロックだけしか、低減されたR−Dコストを有さないので、ジオメトリック分割されるすべてのインターブロックによって導入される符号化利得は、「一様の」動きを有するはるかに大量のブロックによって平均化される。

HDビデオ符号化のための拡大されたブロックサイズ
MPEG−4 AVC規格の限界を克服するために、高精細度コンテンツ圧縮に対して、様々な研究努力がなされてきた。これの明白な例は、マクロブロックサイズを増加させる研究である。成果として、16×16よりも大きいマクロブロックサイズを可能にしたことの利点が得られている。MPEG−4 AVC規格ビデオコーデック補足するために、32×32、32×16、および16×32などの拡張されたパーティションブロックモードが使用された。拡大マクロブロックサイズを使用した場合、相対的に大きな利得を示すそのような拡張パーティションブロックモードの使用に向けられた効率性の成果を達成することができる。

概要

ジオメトリック分割されたスーパブロックをビデオ符号化およびビデオ復号する方法および装置を提供すること。装置は、ピクチャの少なくとも部分について画像データを符号化するエンコーダ(300)を含む。画像データは、ジオメトリックパーティションをピクチャブロックパーティションに適用するジオメトリック分割によって形成される。ピクチャブロックパーティションは、トップダウン分割およびボトムアップツリー結合の少なくとも一方から取得される。

目的

図に示される様々な要素の機能は、専用ハードウェア、および適切なソフトウェアに関連付けられたソフトウェア実行可能ハードウェアの使用を通して提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

ピクチャの少なくとも部分について画像データを符号化するエンコーダであって、前記画像データは、ジオメトリックパーティションピクチャブロックパーティションに適用するジオメトリック分割によって形成され、前記ピクチャブロックパーティションは、トップダウン分割およびボトムアップツリー結合の少なくとも一方から取得されるエンコーダを備えたことを特徴とする装置。

請求項2

前記ジオメトリック分割は、前記画像データを符号化するために使用される与えられたビデオ符号化規格またはビデオ符号化勧告ベース分割サイズよりも大きいパーティションサイズで使用するために使用可能にされることを特徴とする請求項1に記載の装置。

請求項3

前記エンコーダは、前記ベース分割サイズよりも大きいパーティションサイズを有する前記ジオメトリックパーティションの少なくとも1つを、前記ベース分割サイズを有するベースパーティションと組み合わせ、前記ベースパーティションは、前記ピクチャブロックパーティションのうちの少なくとも1つの少なくとも部分に対応することを特徴とする請求項1に記載の装置。

請求項4

前記エンコーダは、前記部分のためのエッジ情報および動き情報の少なくとも一方について、暗黙的符号化および明示的符号化の少なくとも一方を行うことを特徴とする請求項1に記載の装置。

請求項5

少なくとも前記部分に対応する残差は、パーティション境界横断することを許可された少なくとも1つの可変サイズ変換を使用して符号化されることを特徴とする請求項1に記載の装置。

請求項6

前記ジオメトリック分割を考慮してデブロッキングフィルタリングを実行するデブロッキングフィルタをさらに備えたことを特徴とする請求項1に記載の装置。

請求項7

前記エンコーダは、高レベルシンタックスベルシーケンスレベル、ピクチャレベル、スライスレベルおよびブロックレベルの少なくとも1つにおける前記ジオメトリックパーティションの使用を通知することを特徴とする請求項1に記載の装置。

請求項8

前記エンコーダは、暗黙的データおよび明示的データの少なくとも一方を使用して、前記ピクチャブロックパーティションの少なくとも1つのための局所スーパブロック関連情報を通知することを特徴とする請求項1に記載の装置。

請求項9

ピクチャの少なくとも部分について画像データを符号化するステップであって、前記画像データは、ジオメトリックパーティションをピクチャブロックパーティションに適用するジオメトリック分割によって形成され、前記ピクチャブロックパーティションは、トップダウン分割およびボトムアップツリー結合の少なくとも一方から取得されるステップを備えることを特徴とする方法。

請求項10

前記ジオメトリック分割は、前記画像データを符号化するために使用される与えられたビデオ符号化規格またはビデオ符号化勧告のベース分割サイズよりも大きいパーティションサイズで使用するために使用可能にされることを特徴とする請求項9に記載の方法。

請求項11

前記符号化ステップは、前記ベース分割サイズよりも大きいパーティションサイズを有する前記ジオメトリックパーティションの少なくとも1つを、前記ベース分割サイズを有するベースパーティションと組み合わせるステップであって、前記ベースパーティションは、前記ピクチャブロックパーティションのうちの少なくとも1つの少なくとも部分に対応するステップを含むことを特徴とする請求項10に記載の方法。

請求項12

前記部分のためのエッジ情報および動き情報の少なくとも一方は、暗黙的符号化および明示的符号化の少なくとも一方を施されることを特徴とする請求項9に記載の方法。

請求項13

少なくとも前記部分に対応する残差は、パーティション境界を横断することを許可された少なくとも1つの可変サイズ変換を使用して符号化されることを特徴とする請求項9に記載の方法。

請求項14

前記ジオメトリック分割を考慮してデブロッキングフィルタリングを実行するステップをさらに含むことを特徴とする請求項9に記載の方法。

請求項15

高レベルシンタックスレベル、シーケンスレベル、ピクチャレベル、スライスレベルおよびブロックレベルの少なくとも1つにおける前記ジオメトリックパーティションの使用を通知するステップをさらに含むことを特徴とする請求項9に記載の方法。

請求項16

暗黙的データおよび明示的データの少なくとも一方を使用して、前記ピクチャブロックパーティションの少なくとも1つのための局所スーパブロック関連情報を通知するステップをさらに含むことを特徴とする請求項9に記載の方法。

請求項17

ピクチャの少なくとも部分について画像データを復号するデコーダであって、前記画像データは、ジオメトリックパーティションをピクチャブロックパーティションに適用するジオメトリック分割によって形成され、前記ピクチャブロックパーティションは、トップダウン分割およびボトムアップツリー結合の少なくとも一方から取得されるデコーダを備えたことを特徴とする装置。

請求項18

前記ジオメトリック分割は、前記画像データを復号するために使用される与えられたビデオ符号化規格またはビデオ符号化勧告のベース分割サイズよりも大きいパーティションサイズで使用するために使用可能にされることを特徴とする請求項17に記載の装置。

請求項19

前記デコーダは、前記ベース分割サイズよりも大きいパーティションサイズを有する前記ジオメトリックパーティションの少なくとも1つを、前記ベース分割サイズを有するベースパーティションと組み合わせ、前記ベースパーティションは、前記ピクチャブロックパーティションのうちの少なくとも1つの少なくとも部分に対応することを特徴とする請求項18に記載の装置。

請求項20

前記デコーダは、前記部分のためのエッジ情報および動き情報の少なくとも一方について、暗黙的復号および明示的復号の少なくとも一方を行うことを特徴とする請求項17に記載の装置。

請求項21

少なくとも前記部分に対応する残差は、パーティション境界を横断することを許可された少なくとも1つの可変サイズ変換を使用して復号されることを特徴とする請求項17に記載の装置。

請求項22

前記ジオメトリック分割を考慮してデブロッキングフィルタリングを実行するデブロッキングフィルタをさらに備えたことを特徴とする請求項17に記載の装置。

請求項23

前記デコーダは、高レベルシンタックスレベル、シーケンスレベル、ピクチャレベル、スライスレベルおよびブロックレベルの少なくとも1つから前記ジオメトリックパーティションの使用を決定することを特徴とする請求項17に記載の装置。

請求項24

前記デコーダは、暗黙的データおよび明示的データの少なくとも一方を使用して、前記ピクチャブロックパーティションの少なくとも1つのための局所スーパブロック関連情報を通知することを特徴とする請求項17に記載の装置。

請求項25

ピクチャの少なくとも部分について画像データを復号するステップであって、前記画像データは、ジオメトリックパーティションをピクチャブロックパーティションに適用するジオメトリック分割によって形成され、前記ピクチャブロックパーティションは、トップダウン分割およびボトムアップツリー結合の少なくとも一方から取得されるステップを備えることを特徴とする方法。

請求項26

前記ジオメトリック分割は、前記画像データを符号化するために使用される与えられたビデオ符号化規格またはビデオ符号化勧告のベース分割サイズよりも大きいパーティションサイズで使用するために使用可能にされることを特徴とする請求項25に記載の方法。

請求項27

前記復号ステップは、前記ベース分割サイズよりも大きいパーティションサイズを有する前記ジオメトリックパーティションの少なくとも1つを、前記ベース分割サイズを有するベースパーティションと組み合わせるステップであって、前記ベースパーティションは、前記ピクチャブロックパーティションのうちの少なくとも1つの少なくとも部分に対応するステップを含むことを特徴とする請求項26に記載の方法。

請求項28

前記部分のためのエッジ情報および動き情報の少なくとも一方は、暗黙的復号および明示的復号の少なくとも一方を施されることを特徴とする請求項25に記載の方法。

請求項29

少なくとも前記部分に対応する残差は、パーティション境界を横断することを許可された少なくとも1つの可変サイズ変換を使用して符号化されることを特徴とする請求項25に記載の方法。

請求項30

前記ジオメトリック分割を考慮してデブロッキングフィルタリングを実行するステップをさらに含むことを特徴とする請求項25に記載の方法。

請求項31

高レベルシンタックスレベル、シーケンスレベル、ピクチャレベル、スライスレベル、およびブロックレベルの少なくとも1つから前記ジオメトリックパーティションの使用を決定するステップをさらに含むことを特徴とする請求項25に記載の方法。

請求項32

暗黙的データおよび明示的データの少なくとも一方を使用して、前記ピクチャブロックパーティションの少なくとも1つのための局所スーパブロック関連情報を決定するステップをさらに含むことを特徴とする請求項25に記載の方法。

請求項33

ピクチャの少なくとも部分について符号化された画像データであって、ジオメトリックパーティションをピクチャブロックパーティションに適用するジオメトリック分割によって形成され、前記ピクチャブロックパーティションは、トップダウン分割およびボトムアップツリー結合の少なくとも一方から取得される画像データを備えたことを特徴とするビデオ符号化のためのビデオ信号構造。

技術分野

0001

本発明の原理は、一般に、ビデオ符号化およびビデオ復号に関する。より詳細には、ジオメトリック分割されたスーパブロック(geometrically partitioned super block)をビデオ符号化およびビデオ復号する方法および装置に関する。

背景技術

0002

本出願は、2007年10月16日に出願された米国特許仮出願第60/980,297号明細書の利益を主張し、同出願は、その全体が参照により本明細書に組み込まれる。

0003

現行ビデオ符号化規格のいくつかでは、ツリー構造マクロブロック分割(tree−structured macroblock partitioning)が採用されている。ITU−T(国際電気通信連合電気通信部門)H.261勧告(これ以降「H.261勧告」)、ISO/IEC国際標準化機構国際電気標準会議ムービングピクチャエキスパートグループ(Moving Picture Experts Group)−1規格(これ以降「MPEG−1規格」)、およびISO/IECムービングピクチャエキスパートグループ−2規格/ITU−T H.262勧告(これ以降「MPEG−2規格」)は、16×16マクロブロック(MB)パーティションのみをサポートする。ISO/IECムービングピクチャエキスパートグループ−4パートシンプルプロファイル(simple profile)またはITU−T H.263(+)勧告は、16×16マクロブロックに対して、16×16パーティションおよび8×8パーティションの両方をサポートする。ISO/IECムービングピクチャエキスパートグループ−4 パート10アドバンストビデオ符号化(Advanced Video Coding)規格/ITU−T H.264勧告(これ以降「MPEG−4 AVC規格」)は、ツリー構造階層マクロブロックパーティションをサポートする。16×16マクロブロックは、サイズが16×8、8×16、または8×8のマクロブロックパーティションに分割することができる。8×8パーティションは、サブマクロブロックとしても知られる。サブマクロブロックは、サイズが8×4、4×8、および4×4のサブマクロブロックパーティションにさらに分解することができる。

0004

P(予測(predictive))フレームが符号化されるか、それともB(双予測(bi−predictive))フレームが符号化されるかに応じて、異なる予測構成が、ツリーベースパーティションを使用して可能である。これらの予測構成は、MPEG−4 AVC規格のエンコーダおよび/またはデコーダにおいて利用可能な符号化モードを定義する。Pフレームは、参照フレームからなる第1のリストから前方時間予測を可能にし、一方、Bフレームは、ブロックパーティションにおける後方予測/前方予測/双予測のために、参照フレームからなるリストを最大2つ使用することを可能にする。例えば、PフレームおよびBフレームのためのこれらの符号化モードの例は、以下を含み、
Pフレーム:

0005

0006

Bフレーム:

0007

0008

ここで、「FWD」は、前方予測リストからの予測を示し、「BKW」は、後方予測リストからの予測を示し、「BI」は、前方リストおよび後方リストの両方からの双予測を示し、「FWD−FWD」は、前方予測リストからの2つの予測を示し、「FWD−BKW」は、前方予測リストからの第1の予測と、後方予測リストからの第2の予測を示す。

0009

また、イントラフレームは、16×16ブロック、8×8ブロック、および/または4×4ブロックにおける予測符号化モードを可能にし、対応するマクロブロック符号化モードは、INTRA4x4、INTRA16x16、およびINTRA8x8である。

0010

MPEG−4 AVC規格におけるフレームパーティションは、MPEG−2規格などのより旧式のビデオ符号化規格において一般に使用される、単純な一様ブロックパーティションよりも効率的である。しかし、ツリーベースのフレーム分割は、2D(2次元)データのジオメトリック構造を獲得できないために、いくつかの符号化シナリオにおいては非効率的であるので、不足点がないわけではない。そのような制限を解決するため、その2次元ジオメトリを考慮することによって、2次元ビデオデータをより良く表現し、符号化する従来技術の方法(これ以降「従来技術方法」)が導入された。従来技術方法は、インター予測(INTER16x16GEO、INTER8x8GEO)およびイントラ予測(INTRA16x16GEO、INTRA8x8GEO)の両方のための新しい1組のモードにおいて、ウェッジパーティション(wedge partition)(すなわち、ブロックを任意の直線または曲線によって分離された2つの領域に分けるパーティション)を利用する。

0011

従来技術方法の一実施では、ジオメトリックパーティションモード(geometric partition mode)を具体化するための基礎として、MPEG−4 AVC規格が使用される。ブロック内でのジオメトリックパーティションは、直線の陰関数表示の公式(implicit formulation of a line)によってモデル化される。図1を参照すると、画像ブロックの例示的なジオメトリック分割が、全体として参照番号100によって示されている。全体的な画像ブロックは、全体として参照番号120によって示され、画像ブロック120の2つのパーティションは、斜線150のそれぞれの側に配置され、全体としてそれぞれ参照番号130および140によって示されている。

0012

したがって、パーティションは、以下のように定義され、
f(x,y)=xcosθ+ysinθ−ρ
ここで、ρ、θは、それぞれ以下のものを、表す。
f(x,y)と直角をなす方向における原点から境界線f(x,y)までの距離
f(x,y)と直角をなす方向と水平座標軸xがなす角度
その公式からの直接的な展開として、より高次のジオメトリックパラメータを有するf(x,y)についてのより込み入ったモデルも考えられる。

0013

ブロックピクセル(x,y)は、以下のように分類される。

0014

0015

符号化の目的で、可能なパーティション(またはジオメトリックモード)のディクショナリ事前定義される。これは、形式的に以下のように定義することができ、

0016

0017

および

0018

0019

ここで、ΔρおよびΔθは、選択された量子化(パラメータ解像度)ステップである。θおよびρの量子化インデックスは、エッジを符号化するために送られる情報である。しかし、符号化手順において、モード16×8およびモード8×16が使用される場合、ρ=0のケースでは、角度0および90は、可能なエッジの組から除去することができる。

0020

従来技術方法では、ジオメトリ適応動き補償モード(geometry−adaptive motion compensation mode)の場合、最良の構成を見出すために、各パーティションについて、θおよびρ、ならびに動きベクトル(motion vector)の探索が実行される。θおよびρのすべてのペアに対して、完全探索戦略が2つの段階を踏んで行われ、最良の動きベクトルが探索される。ジオメトリ適応イントラ予測モード(geometry−adaptive intra prediction mode)では、最良の構成を見出すために、各パーティションについて、θおよびρ、ならびに最良の説明変数(predictor)(方向予測または統計など)の探索が実行される。

0021

図2を参照すると、ジオメトリ適応直線を用いて分割された例示的なINTER−P画像ブロックが、全体として参照番号200によって示されている。全体的な画像ブロックは、全体として参照番号220によって示され、画像ブロック220の2つのパーティションは、全体としてそれぞれ参照番号230および240によって示されている。

0022

ブロックの予測補償は、Pモードの場合、以下のように表すことができる。

0023

0024

ここで

0025

0026

は、現在の予測を表し、

0027

0028

および

0029

0030

は、それぞれパーティションP2およびP1のためのブロック動き補償された参照である。各MASKp(x,y)は、各パーティションの各ピクセル(x,y)のための寄与重み(contribution weight)を含む。パーティション境界にないピクセルは一般に、いかなる操作も必要としない。実際のところ、マスク値は、1または0である。パーティション境界付近のピクセルだけが、両参照からの予測値を組み合わせる必要があることがある。

0031

したがって、ジオメトリ適応ブロック分割を使用するビデオ符号化および画像符号化は、ビデオ符号化の効率を改善するための有望な方向であると認められている。ジオメトリ適応ブロック分割は、より正確なピクチャ予測を可能にし、インター予測および/またはイントラ予測などの局所予測モデルをピクチャの構造に従って適合させることができる。しかし、HD(高精細度)ビデオおよび画像の符号化利得は、依然として高める必要がある。

0032

例えば、インターフレーム予測におけるジオメトリ適応ブロック分割は、低解像度から中解像度ビデオコンテンツに対しては、優れた符号化効率の改善を示す。一例として、ジオメトリック分割されたブロックは、動きエッジ(motion edge)が存在するブロックの予測を高めるうえで特に優れている。しかし、高精細度ビデオコンテンツの場合、ジオメトリックモードによって達成される利得には限界があり、ジオメトリックモードが必要とする複雑さと均衡がとれていない。1つのあり得る理由は、高精細度コンテンツは、より大きな信号構造を有するが、既存のビデオ符号化規格において使用されるマクロブロック(MB)サイズは、16×16サイズに固定されている(高精細度の増加したオブジェクトサイズに合わせて適切に拡大しない)ことである。

0033

したがって、マクロブロックのジオメトリ適応分割は、符号化される高精細度コンテンツの少なくとも多くのタイプについては、高精細度符号化において大きな相違を生み出すことができていない。実際に、信号のはるかに大きな領域と比較して十分な情報を圧縮することができない。例えば、レート−歪み(rate−distortion)の観点からは、僅かなパーセンテージのブロックだけしか、低減されたR−Dコストを有さないので、ジオメトリック分割されるすべてのインターブロックによって導入される符号化利得は、「一様の」動きを有するはるかに大量のブロックによって平均化される。

0034

HDビデオ符号化のための拡大されたブロックサイズ
MPEG−4 AVC規格の限界を克服するために、高精細度コンテンツ圧縮に対して、様々な研究努力がなされてきた。これの明白な例は、マクロブロックサイズを増加させる研究である。成果として、16×16よりも大きいマクロブロックサイズを可能にしたことの利点が得られている。MPEG−4 AVC規格ビデオコーデック補足するために、32×32、32×16、および16×32などの拡張されたパーティションブロックモードが使用された。拡大マクロブロックサイズを使用した場合、相対的に大きな利得を示すそのような拡張パーティションブロックモードの使用に向けられた効率性の成果を達成することができる。

発明が解決しようとする課題

0035

しかしながら、これまでのところ、拡大ブロックサイズの使用に関連した研究は、単純な一様の4分木パーティション(quad−tree partition)を具体化しただけである。4分木分割は、高精細度コンテンツに対して、より低い解像度コンテンツの場合と同じ限界を示す。4分木分割は、2D(2次元)ビデオデータおよび/または画像データのジオメトリック構造を獲得することができない。

課題を解決するための手段

0036

従来技術の上記および他の難点および不都合が、本発明の原理によって対処され、本発明の原理は、ジオメトリック分割されたスーパブロックをビデオ符号化およびビデオ復号するための方法および装置に関する。

0037

本発明の原理の一態様によれば、装置の発明が提供される。その装置は、ピクチャの少なくとも部分について画像データを符号化するエンコーダを含む。画像データは、ジオメトリックパーティションをピクチャブロックパーティションに適用するジオメトリック分割によって形成される。ピクチャブロックパーティションは、トップダウン分割(top−down partitioning)およびボトムアップツリー結合(bottom−up tree joining)の少なくとも一方から取得される。

0038

本発明の原理の別の態様によれば、方法の発明が提供される。その方法は、ピクチャの少なくとも部分について画像データを符号化するステップを含む。画像データは、ジオメトリックパーティションをピクチャブロックパーティションに適用するジオメトリック分割によって形成される。ピクチャブロックパーティションは、トップダウン分割およびボトムアップツリー結合の少なくとも一方から取得される。

0039

本発明の原理のまた別の態様によれば、装置の発明が提供される。その装置は、ピクチャの少なくとも部分について画像データを復号するデコーダを含む。画像データは、ジオメトリックパーティションをピクチャブロックパーティションに適用するジオメトリック分割によって形成される。ピクチャブロックパーティションは、トップダウン分割およびボトムアップツリー結合の少なくとも一方から取得される。

0040

本発明の原理のさらに別の態様によれば、方法の発明が提供される。その方法は、ピクチャの少なくとも部分について画像データを復号するステップを含む。画像データは、ジオメトリックパーティションをピクチャブロックパーティションに適用するジオメトリック分割によって形成される。ピクチャブロックパーティションは、トップダウン分割およびボトムアップツリー結合の少なくとも一方から取得される。

0041

本発明の原理の上記および他の態様、特徴および利点は、添付の図面と併せて読まれる、例示的な実施形態についての以下の詳細な説明から明らかとなろう。

図面の簡単な説明

0042

画像ブロックの例示的なジオメトリック分割についての図である。
ジオメトリック適応直線を用いて分割された例示的なINTER−P画像ブロックについての図である。
本発明の原理の一実施形態による、本発明の原理が適用できる例示的なエンコーダについてのブロック図である。
本発明の原理の一実施形態による、本発明の原理が適用できる例示的なデコーダについてのブロック図である。
本発明の原理の一実施形態による、多数のマクロブロックをもたらすボトムアップおよびトップダウン手法を使用する例示的な複合スーパブロックおよびサブブロックツリーベースフレーム分割についての図である。
本発明の原理の一実施形態による、図5Aのツリーベース分割から形成された例示的なスーパブロックおよびサブブロックについての図である。
本発明の原理の一実施形態による、マクロブロックの合併から形成された例示的なスーパブロックについての図である。
本発明の原理の一実施形態による、スーパブロックのデブロッキング領域を管理するための例示的な手法についての図である。
本発明の原理の一実施形態による、スーパブロックのデブロッキング領域を管理するための別の例示的な手法についての図である。
MPEG−4 AVC規格によるラスタスキャン順序付けの一例と、本発明の原理の一実施形態によるジグザグスキャン順序付けの一例についての図である。
本発明の原理の一実施形態による、ピクチャの例示的なパーティションについての図である。
本発明の原理の一実施形態による、ビデオ符号化のための例示的な方法についてのフローチャートである。
本発明の原理の一実施形態による、ビデオ復号のための例示的な方法についてのフローチャートである。

実施例

0043

本発明の原理は、ジオメトリック分割されたスーパブロックをビデオ符号化およびビデオ復号するための方法および装置に関する。

0044

本説明は、本発明の原理を説明する。したがって、本明細書において明示的に説明されずまたは示されなくても、本発明の原理を具体化し、本発明の主旨および範囲内に含まれる様々な構成を、当業者考案できることが理解される。

0045

本明細書で言及されるすべての例および条件的な説明は、教育的な目的で、本発明の原理と、発明者が貢献した当技術分野発展させる概念とについての読者の理解を助けることを意図しており、そのような具体的に言及された例および条件に限定されるものではないと解釈されたい。

0046

さらに、本発明の原理、本発明の原理の態様および実施形態について言及する本明細書のすべての言明、ならびに本発明の原理の具体的な例は、本発明の原理の構造的な均等物および機能的な均等物の両方を包含することを意図している。加えて、そのような均等物は、現在知られている均等物および将来開発される均等物の両方、すなわち、構造に関わりなく同じ機能を実行する任意の開発された要素を含むことが意図されている。

0047

したがって、例えば、本明細書で提示されるブロック図は、本発明の原理を具体かする例示的な回路の概念図を表すことが当業者によって理解される。同様に、フローチャート、フロー図、状態遷移図、および疑似コードなどは、コンピュータ読取り媒体内に実質的に表現され得る様々な処理である。コンピュータまたはプロセッサが明示的に示されているかどうかに関わらず、そのようなコンピュータまたはプロセッサによって、表現されたように実行され得る様々な処理を表すことが理解される。

0048

図に示される様々な要素の機能は、専用ハードウェア、および適切なソフトウェアに関連付けられたソフトウェア実行可能ハードウェアの使用を通して提供することができる。プロセッサによって提供される場合、機能は、単一の専用プロセッサによって、単一の共用プロセッサによって、またはそのいくつかが共用されてもよい複数の個別プロセッサによって提供することができる。さらに、「プロセッサ」または「コントローラ」という用語の明示的な使用は、ソフトウェアを実行可能なハードウェアを排他的に指すと解釈されるべきではなく、限定することなく、DSP(「デジタル信号プロセッサ」)ハードウェア、ソフトウェアを保存するためのROM(「リードオンリメモリ」)、RAM(「ランダムアクセスメモリ」)、および不揮発性ストレージ暗黙的に含むことができる。

0049

従来のおよび/またはカスタマイズされた他のハードウェアを含むこともできる。同様に、図に示されたスイッチはいずれも、概念的なものにすぎない。それらの機能は、プログラムロジックの動作を通して、専用ロジックを通して、プログラムコントロールと専用ロジックの対話を通して、または文脈からより具体的に理解されるような、実装者によって選択可能な人手を介した特定の技法でさえも、実施することができる。

0050

本発明の特許請求の範囲において、指定された機能を実行するための手段として表される任意の要素は、例えば、a)その機能を実行する回路要素の組み合わせ、またはb)任意の形態の、したがって、ファームウェアもしくはマイクロコードなどを含むソフトウェアであって、機能を実行するために、そのソフトウェアを実行するための適切な回路と組み合わされるソフトウェアを含む、その機能を実行する任意の方法を包含することが意図されている。そのような請求項によって確定される本発明の原理は、言及される様々な手段によって提供される機能が、請求項が要請する方式で組み合わされ、一体化されるという事実の中に存在する。したがって、それらの機能を提供できる任意の手段は、本明細書で示される手段の均等物であると見なされる。

0051

本明細書における、本発明の原理の「一実施形態(one embodiment)」または「一実施形態(an embodiment)」についての言及は、その実施形態に関連して説明された特定の機能、構造および特徴などが、本発明の原理の少なくとも1つの実施形態に含まれることを意味する。したがって、「一実施形態では(in one embodiment)」または「一実施形態では(in an embodiment)」という出現が、本明細書の様々な箇所において見られるが、必ずしもすべてが、同じ実施形態に言及しているわけではない。さらに、「別の実施形態では(in anotherembodiment)」という句は、説明された実施形態の主題を、全体的または部分的に、別の実施形態と組み合わせることを排除しない。

0052

「および/または」および「少なくとも一方」という語句の使用は、例えば、「Aおよび/またはB」および「AおよびBの少なくとも一方」のケースでは、第1の列挙選択肢(A)のみの選択、または第2の列挙選択肢(B)のみの選択、または両方の選択肢(AおよびB)の選択を包含することが意図されていることを理解されたい。さらなる例として、「A、B、および/またはC」および「A、B、およびCの少なくとも1つ」のケースでは、そのような句は、第1の列挙選択肢(A)のみの選択、または第2の列挙選択肢(B)のみの選択、または第3の列挙選択肢(C)のみの選択、または第1および第2の列挙選択肢(AおよびB)のみの選択、または第1および第3の列挙選択肢(AおよびC)のみの選択、または第2および第3の列挙選択肢(BおよびC)のみの選択、または3つすべての列挙選択肢(AおよびBおよびC)の選択を包含することを意図している。これは、当技術分野および関連技術分野の当業者に容易に明らかなように、多くの項目が列挙される場合に拡張することができる。

0053

さらに、本発明の原理の1つまたは複数の実施形態は、本明細書ではMPEG−4 AVC規格に関して説明されるが、本発明の原理は、この規格のみに限定されない。したがって、本発明の原理の主旨を維持しながら、他のビデオ符号化規格、勧告、およびMPEG−4 AVC規格の拡張を含む、それらの拡張に関して利用できることを理解されたい。

0054

加えて、本明細書で使用される「スーパブロック」という用語は、例えば、MPEG−2規格では8よりも大きいブロックサイズを有し、MPEG−4 AVC規格では4よりも大きいブロックサイズを有するブロックのことを指す。もちろん、本発明の原理は、これらの規格のみに限定されず、したがって、本明細書で提供される本発明の原理の教示を与えられた場合、当技術分野および関連技術分野の当業者は、他のビデオ符号化規格および勧告に関するスーパブロックに関係し得る異なるブロックサイズを理解し、容易に確認するであろうことを理解されたい。

0055

さらに、本明細書で使用される「ベース分割サイズ(base partitioning size)」という用語は一般に、MPEG−4 AVC規格において定義されるマクロブロックのことを指す。もちろん、上で言及されたように、本発明の原理は、MPEG−4 AVC規格のみに限定されず、したがって、「ベース分割サイズ」は、当技術分野および関連技術分野の当業者に容易に明らかなように、本発明の原理の主旨を維持しながらも、他のビデオ符号化規格および勧告においては異なることができる。

0056

さらに、本明細書で説明されるデブロッキングフィルタリングは、本発明の原理の主旨を維持しながら、符号化ループおよび/または復号ループの内側または外側で実行できることを理解されたい。

0057

図3を参照すると、MPEG−4 AVC規格に従ってビデオ符号化を実行することが可能なビデオエンコーダが、全体として参照番号300によって示されている。

0058

ビデオエンコーダ300は、合成器385の非反転入力に対して信号伝達を行う出力を有するフレーム配列バッファ310を含む。合成器385の出力は、ジオメトリックおよびスーパブロック拡張を伴う変換器および量子化器325の第1の入力に対して信号伝達(signal communication)を行うように接続される。ジオメトリック拡張およびスーパブロック拡張を伴う変換器および量子化器325の出力は、ジオメトリック拡張およびスーパブロック拡張を伴うエントロピコーダ345の第1の入力と、ジオメトリック拡張を伴う逆変換器および逆量子化器350の第1の入力とに対して信号伝達を行うように接続される。ジオメトリック拡張およびスーパブロック拡張を伴うエントロピコーダ345の出力は、合成器390の第1の非反転入力に対して信号伝達を行うように接続される。合成器390の出力は、出力バッファ335の第1の入力に対して信号伝達を行うように接続される。

0059

ジオメトリック拡張およびスーパブロック拡張を伴うエンコーダコントローラ305の第1の出力は、フレーム配列バッファ310の第2の入力と、ジオメトリック拡張およびスーパブロック拡張を伴う逆変換器および逆量子化器350の第2の入力と、ピクチャタイプ決定モジュール315の入力と、ジオメトリック拡張およびスーパブロック拡張を伴うマクロブロックタイプ(MBタイプ)決定モジュール320の第1の入力と、ジオメトリック拡張およびスーパブロック拡張を伴うイントラ予測モジュール360の第2の入力と、ジオメトリック拡張およびスーパブロック拡張を伴うデブロッキングフィルタ365の第2の入力と、ジオメトリック拡張およびスーパブロック拡張を伴う動き補償器370の第1の入力と、ジオメトリック拡張およびスーパブロック拡張を伴う動き推定器375の第1の入力と、参照ピクチャバッファ380の第2の入力とに対して信号伝達を行うように接続される。

0060

ジオメトリック拡張およびスーパブロック拡張を伴うエンコーダコントローラ305の第2の出力は、SEI(Supplemental Enhancement Information)挿入器330の第1の入力と、ジオメトリック拡張およびスーパブロック拡張を伴う変換器および量子化器325の第2の入力と、ジオメトリック拡張およびスーパブロック拡張を伴うエントロピコーダ345の第2の入力と、出力バッファ335の第2の入力と、SPS(Sequence Parameter Set)およびPPS(Picture Parameter Set)挿入器340の入力とに対して信号伝達を行うように接続される。

0061

SEI挿入器330の出力は、合成器390の第2の非反転入力に対して信号伝達を行うように接続される。

0062

ピクチャタイプ決定モジュール315の第1の出力は、フレーム配列バッファ310の第3の入力に対して信号伝達を行うように接続される。ピクチャタイプ決定モジュール315の第2の出力は、ジオメトリック拡張およびスーパブロック拡張を伴うマクロブロックタイプ決定モジュール320の第2の入力に対して信号伝達を行うように接続される。

0063

SPS(Sequence Parameter Set)およびPPS(Picture Parameter Set)挿入器340の出力は、合成器390の第3の非反転入力に対して信号伝達を行うように接続される。

0064

ジオメトリック拡張およびスーパブロック拡張を伴う逆量子化器および逆変換器350の出力は、合成器319の第1の非反転入力に対して信号伝達を行うように接続される。合成器319の出力は、ジオメトリック拡張およびスーパブロック拡張を伴うイントラ予測モジュール360の第1の入力と、ジオメトリック拡張およびスーパブロック拡張を伴うデブロッキングフィルタ365の第1の入力とに対して信号伝達を行うように接続される。ジオメトリック拡張およびスーパブロック拡張を伴うデブロッキングフィルタ365の出力は、参照ピクチャバッファ380の第1の入力に対して信号伝達を行うように接続される。参照ピクチャバッファ380の出力は、ジオメトリック拡張およびスーパブロック拡張を伴う動き推定器375の第2の入力と、ジオメトリック拡張およびスーパブロック拡張を伴う動き補償器370の第3の入力とに対して信号伝達を行うように接続される。ジオメトリック拡張およびスーパブロック拡張を伴う動き推定器375の第1の出力は、ジオメトリック拡張およびスーパブロック拡張を伴う動き補償器370の第2の入力に対して信号伝達を行うように接続される。ジオメトリック拡張およびスーパブロック拡張を伴う動き推定器375の第2の出力は、ジオメトリック拡張およびスーパブロック拡張を伴うエントロピコーダ345の第3の入力に対して信号伝達を行うように接続される。

0065

ジオメトリック拡張およびスーパブロック拡張を伴う動き補償器370の出力は、スイッチ397の第1の入力に対して信号伝達を行うように接続される。ジオメトリック拡張およびスーパブロック拡張を伴うイントラ予測モジュール360の出力は、スイッチ397の第2の入力に対して信号伝達を行うように接続される。ジオメトリック拡張およびスーパブロック拡張を伴うマクロブロックタイプ決定モジュール320の出力は、スイッチ397の第3の入力に対して信号伝達を行うように接続される。スイッチ397の第3の入力は、スイッチの(制御入力すなわち第3の入力との対比で)「データ」入力が、ジオメトリック拡張およびスーパブロック拡張を伴う動き補償器370によって提供されるか、それともジオメトリック拡張およびスーパブロック拡張を伴うイントラ予測モジュール360によって提供されるかを決定する。スイッチ397の出力は、合成器319の第2の非反転入力と、合成器385の反転入力と対して信号伝達を行うように接続される。

0066

フレーム配列バッファ310の第1の入力と、ジオメトリック拡張およびスーパブロック拡張を伴うエンコーダコントローラ305の入力は、入力ピクチャを受け取るための、エンコーダ300の入力として利用可能である。さらに、SEI(Supplemental Enhancement Information)挿入器330の第2の入力は、メタデータを受け取るための、エンコーダ300の入力として利用可能である。出力バッファ335の出力は、ビットストリームを出力するための、エンコーダ300の出力として利用可能である。

0067

図4を参照すると、MPEG−4 AVC規格に従ってビデオ復号を実行することが可能なビデオデコーダが、全体として参照番号400によって示されている。

0068

ビデオデコーダ400は、ジオメトリック拡張およびスーパブロック拡張を伴うエントロピデコーダ445の第1の入力に対して信号伝達を行うように接続される出力を有する入力バッファ410を含む。ジオメトリック拡張およびスーパブロック拡張を伴うエントロピデコーダ445の第1の出力は、ジオメトリック拡張およびスーパブロック拡張を伴う逆変換器および逆量子化器450の第1の入力に対して信号伝達を行うように接続される。ジオメトリック拡張およびスーパブロック拡張を伴う逆変換器および逆量子化器450の出力は、合成器425の第2の非反転入力に対して信号伝達を行うように接続される。合成器425の出力は、ジオメトリック拡張およびスーパブロック拡張を伴うデブロッキングフィルタ465の第2の入力と、ジオメトリック拡張およびスーパブロック拡張を伴うイントラ予測モジュール460の第1の入力とに対して信号伝達を行うように接続される。ジオメトリック拡張およびスーパブロック拡張を伴うデブロッキングフィルタ465の第2の出力は、参照ピクチャバッファ480の第1の入力に対して信号伝達を行うように接続される。参照ピクチャバッファ480の出力は、ジオメトリック拡張およびスーパブロック拡張を伴う動き補償器470の第2の入力に対して信号伝達を行うように接続される。

0069

ジオメトリック拡張およびスーパブロック拡張を伴うエントロピデコーダ445の第2の出力は、ジオメトリック拡張およびスーパブロック拡張を伴う動き補償器470の第3の入力と、ジオメトリック拡張およびスーパブロック拡張を伴うデブロッキングフィルタ465の第1の入力とに対して信号伝達を行うように接続される。ジオメトリック拡張およびスーパブロック拡張を伴うエントロピデコーダ445の第3の出力は、ジオメトリック拡張およびスーパブロック拡張を伴うデコーダコントローラ405の入力に対して信号伝達を行うように接続される。ジオメトリック拡張およびスーパブロック拡張を伴うデコーダコントローラ405の第1の出力は、ジオメトリック拡張およびスーパブロック拡張を伴うエントロピデコーダ445の第2の入力に対して信号伝達を行うように接続される。ジオメトリック拡張およびスーパブロック拡張を伴うデコーダコントローラ405の第2の出力は、ジオメトリック拡張およびスーパブロック拡張を伴う逆変換器および逆量子化器450の第2の入力に対して信号伝達を行うように接続される。ジオメトリック拡張およびスーパブロック拡張を伴うデコーダコントローラ405の第3の出力は、ジオメトリック拡張およびスーパブロック拡張を伴うデブロッキングフィルタ465の第3の入力に対して信号伝達を行うように接続される。ジオメトリック拡張を伴うデコーダコントローラ405の第4の出力は、ジオメトリック拡張を伴うイントラ予測モジュール460の第2の入力と、ジオメトリック拡張およびスーパブロック拡張を伴う動き補償器470の第1の入力と、参照ピクチャバッファ480の第2の入力とに対して信号伝達を行うように接続される。

0070

ジオメトリック拡張およびスーパブロック拡張を伴う動き補償器470の出力は、スイッチ497の第1の入力に対して信号伝達を行うように接続される。ジオメトリック拡張およびスーパブロック拡張を伴うイントラ予測モジュール460の出力は、スイッチ497の第2の入力に対して信号伝達を行うように接続される。スイッチ497の出力は、合成器425の第1の非反転入力に対して信号伝達を行うように接続される。

0071

入力バッファ410の入力は、入力ビットストリームを受け取るための、デコーダ400の入力として利用可能である。ジオメトリック拡張を伴うデブロッキングフィルタ465の第1の出力は、出力ピクチャを出力するための、デコーダ400の出力として利用可能である。

0072

上で言及されたように、本発明の原理は、ジオメトリック分割されたスーパブロックをビデオ符号化およびビデオ復号する方法および装置に関する。

0073

一実施形態では、より大きなブロックサイズまたはスーパブロックの分割に基づいた新しいジオメトリ適応分割フレームワークが提案される。特に、これは、より大きなフォーマットサイズのコンテンツを有するピクチャ内冗長性を利用するようにより良く適合される。その結果、コンテンツ解像度が増加した場合の、ジオメトリック分割されたブロックの性能の低下を小さくする、ブロックパーティションを提供することによって、HD(高精細度)ビデオコンテンツの符号化効率を改善することができる。

0074

一実施形態では、32×32および64×64などのスーパマクロブロックサイズ(例えば、図5A図5B、および図6を参照)において、ジオメトリック分割が導入される。

0075

図5Aを参照すると、多数のマクロブロックをもたらすボトムアップおよびトップダウン手法を使用する例示的な複合スーパブロックおよびサブブロックツリーベースフレーム分割が、全体として参照番号500によって示されている。マクロブロックは、全体として参照番号510によって示されている。図5Bを参照すると、図5Aのツリーベース分割500から形成された例示的なスーパブロックおよびサブブロックが、全体としてそれぞれ参照番号550および560によって示されている。図6を参照すると、例示的なスーパブロックが、全体として参照番号600によって示されている。スーパブロック600は、マクロブロック510の合併から形成される。(スーパブロック600内の)左上のマクロブロックが、全体として参照番号610によって示されている。

0076

スーパマクロブロックジオメトリック分割は、独立して(すなわちそれ単独で)使用することができ、または4分木分割に基づいたスーパマクロブロックの他の単純な分割の使用と組み合わせることができる。例えば、一実施形態では、Inter32x32GEOモード、Inter32x32モード、Inter32x16モード、およびInter16x32モードを、インター予測用の通常のMPEG−4 AVC規格符号化モードの他のもの(the rest)と一緒に使用することができる。先に挙げたパーティションサイズおよび符号化モードは、例示的なものにすぎない。したがって、本明細書で提供される本発明の原理の教示を与えられた場合、当技術分野および関連技術分野の当業者は、本発明の原理の主旨を維持しながら、上記および他の様々なパーティションサイズおよび符号化モード、ならびに符号化および復号に関する他の変形を企図するであろうことを理解されたい。例えば、当技術分野および関連技術分野の当業者は、より大きなコンテンツサイズに対するジオメトリック分割を使用してイントラコーディングモード一般化する同様の手法が、本発明の原理の主旨の範囲内に明らかに含まれることを容易に理解できるであろう。

0077

したがって、本明細書で説明される1つまたは複数の実施形態は、32×32という特定のスーパブロックサイズに関して、またMPEG−4 AVC規格に関して説明されるが、本発明の原理は、そのようなサイズおよび規格に限定されない。本発明の原理の主旨を維持しながら、他のスーパブロックサイズおよび他のビデオ符号化規格、勧告ならびにそれらの拡張に関して使用することができる。

0078

したがって、一実施形態では、表1に示されるモードに加えて、新しいスーパブロックモードであるINTER32x32GEOが追加される。

0079

0080

INTER32x32GEOの場合、ジオメトリック分割されるより小さなサイズのブロックと同様に、パーティションエッジを記述するのに必要な情報を送る必要がある。一実施形態では、分割エッジは、1対のパラメータ(θおよびρ)によって決定することができる。各パーティションについて、適切な説明変数が符号化される。すなわち、Pフレームの場合、2つの動きベクトル(スーパブロックの各パーティションについて1つ)が符号化される。Bフレームの場合、前方予測、後方予測、または双予測など、各パーティションのための予測モードが符号化される。この情報は、符号化モードとは別個にまたは一緒に符号化することができる。Bフレームの場合、すべてのジオメトリックパーティションにおいて使用される予測モードに応じて、(予測リストの1つからの)1つの動きベクトル、または2つの動きベクトルが、符号化ブロックの情報の残りと一緒に符号化される。エッジ情報および/または動き情報は、関連情報を明示的に送ることによって、または関連情報をエンコーダ/デコーダにおいて暗黙的に導出することによって、符号化できることに留意されたい。実際、一実施形態では、与えられたブロックのエッジ情報が、すでに符号化/復号された利用可能なデータから導出されるように、および/または少なくとも1つのパーティションの動き情報が、すでに符号化/復号された利用可能なデータから導出されるように、暗黙的導出規則(implicit derivation rules)を定義することができる。

0081

整列した(in formation)動きの効率的な明示的符号化は、すでに符号化/復号された利用可能なデータを使用する予測モデルに基づいた動き予測の使用を必要とする。スーパマクロブロック上でのジオメトリック分割符号化モードのための動きベクトル予測の場合、INTER16x16GEOと同様の手法を使用することができる。すなわち、パーティション内の動きベクトルは、各パーティションの利用可能な4×4動き隣接サブブロック(sub−block motion neighbor)から、パーティションの形状に応じた各リストについて予測される。エッジパーティションが横断する隣接4×4サブブロックを与えられた場合、検討される動きベクトルは、4×4サブブロックと最も大きく重なり合うパーティションからの動きベクトルである。

0082

残差符号化
ジオメトリック分割ブロックモードを使用する予測の後に残る残差信号(residual signal)は、変換され、量子化され、エントロピ符号化される。MPEG−4 AVC規格のフレームワークでは、符号化マクロブロック毎に、サイズ8×8およびサイズ4×4の変換を選択することができる。ジオメトリック分割されたスーパマクロブロックにも同じことを適用することができる。しかし、一実施形態では、スーパマクロブロックにおいてより効率的なジオメトリ適応符号化モードを用いて達成されたより平滑な残差をより良く処理するために、より大きな変換を使用する可能性を具体化することができる。スーパマクロブロック毎、スーパマクロブロック内のマクロブロックパーティション毎、およびスーパマクロブロック内のマクロブロックパーティション内のサブマクロブロックパーティション毎の少なくとも1つについて、変換のサイズを選択する可能性を可能にすることができる。一実施形態では、選択できる可能な変換は、4×4、8×8、および16×16である。最終的には、別の実施形態において、32×32変換さえも検討できよう。別の例では、4×4変換および8×8変換をサポートする、MPEG−4 AVC規格における既存のシンタックスを再利用することができる。しかし、1組の可能な変換を、4×4変換および8×8変換の代わりに、すなわちシンタックスのセマンティクスを変更することによって、8×8変換および16×16変換に変更することができる。具体的には、MPEG−4 AVC規格では、以下のシンタックスセマンティクスが説明されている。

0083

transform_size_8x8_flagは、1に等しい場合、現在のマクロブロックについて、変換係数復号プロセスおよびピクチャ構成プロセスが、残差8×8ブロックのためのデブロッキングフィルタプロセスに先立って、輝度サンプルのために起動されることを規定(specify)する。transform_size_8x8_flagは、0に等しい場合、現在のマクロブロックについて、変換係数復号プロセスおよびピクチャ構成プロセスが、残差4×4ブロックのためのデブロッキングフィルタプロセスに先立って、輝度サンプルのために起動されることを規定する。transform_size_8x8_flagがビットストリーム内に存在しない場合、それは0に等しいと推測される。

0084

セマンティクスを、以下のように変更することができる。

0085

transform_size_8x8_flagは、1に等しい場合、現在のマクロブロックについて、変換係数復号プロセスおよびピクチャ構成プロセスが、残差8×8ブロックのためのデブロッキングフィルタプロセスに先立って、輝度サンプルのために起動されることを指定する。transform_size_8x8_flagは、0に等しい場合、現在のマクロブロックについて、変換係数復号プロセスおよびピクチャ構成プロセスが、残差16×16ブロックのためのデブロッキングフィルタプロセスに先立って、輝度サンプルのために起動されることを指定する。transform_size_8x8_flagがビットストリーム内に存在しない場合、それは1に等しいと推測される。

0086

デブロッキングフィルタリング
インループデブロッキングフィルタリング(in−loop de−blocking filtering)は、予測のブロック構造によって、および残差符号化MPEG−4 AVC規格変換によって導入されるブロッキングアーチファクトを低減させる。インループデブロッキングフィルタリングは、符号化ビデオデータと、ブロック境界で隔てられたピクセル間の局所強度差とに基づいて、フィルタリング強度を適合させる。一実施形態では、スーパマクロブロックがジオメトリック分割される場合、INTER32x32GEO符号化モード(すなわち4つの16×16マクロブロックの合併のジオメトリックパーティション)を有することができ、残差信号をコード化するために異なる変換サイズを使用することができる。一実施形態では、デブロッキングフィルタリングは、ジオメトリック分割されるスーパマクロブロックにおいて使用するために適合される。実際、マクロブロック境界の代わりに、スーパマクロブロック境界が、濃淡むらアーチファクト(blocky artifact)を示す可能性を有する位置であると見なされる。同時に、変換境界は、ブロッキングアーチファクトが出現し得る位置である。したがって、(16×16変換など)より大きなサイズの変換が使用される場合、すべての4×4ブロック境界および/または8×8ブロック境界の代わりに、16×16ブロック変換境界が、ブロッキングアーチファクトを示し得る。

0087

例示的な一実施形態では、インループデブロッキングフィルタモジュールが、フィルタ強度決定のプロセスをINTER32x32GEOモードおよび他のモード用に適合させることによって拡張される。このプロセスは今では、内部スーパブロックパーティションの特定の形状を考慮して、フィルタ強度を決定できるべきである。フィルタリングするスーパブロック境界の部分に応じて、フィルタ強度決定のプロセスは、他のMPEG−4 AVCモードによって行われるように4×4ブロックに従うことなく、(図7に示されるような)パーティション形状に従って、適切な動きベクトルおよび参照フレームを取得する。図7を参照すると、スーパブロックのデブロッキング領域を管理するための例示的な手法が、全体として参照番号700によって示されている。動きベクトルMVP0およびP0からの参照フレームを用いて計算されたデブロッキング強度が、全体として参照番号710によって示されている。動きベクトルMVP1およびP1からの参照フレームを用いて計算されたデブロッキング強度が、全体として参照番号720によって示されている。スーパブロック730は、ジオメトリックパーティション(INTER32x32GEOモード)を使用して、4つのマクロブロック731、732、733、734から形成される。

0088

特定のピクチャ位置におけるデブロッキング強度を設定する際、予測情報(例えば動きベクトルおよび/または参照フレームなど)が考慮される。位置を与えられると、フィルタリングされる変換ブロックサイドと最も大きく重なり合うパーティションを選択することによって、予測情報が抽出される。しかし、コーナブロックにおける計算を簡略化する第2の代替的方法は、変換ブロック全体を検討して、フィルタリングが施される両ブロック境界の最大部分を含むパーティションから動き情報および参照フレーム情報を得ることを含む。

0089

デブロッキングインループフィルタリングをジオメトリック分割によるスーパブロック分割の使用と組み合わせるための方法の別の例は、INTER32x32GEOモードおよび他のモードなどの符号化モードのために、スーパブロック境界を通したある程度のフィルタリングを常に可能にすることである。同時に、スーパマクロブロックの境界に配置されていない変換ブロック(例えば図8を参照)には、スーパブロックジオメトリックモードにおいて、デブロッキングフィルタリングを適用しても良いし、または適用しなくても良い。図8を参照すると、スーパブロックのデブロッキング領域を管理するための別の例示的な手法が、全体として参照番号800によって示されている。図8の例は、INTER32x32GEOスーパマクロブロックモードに関し、スーパマクロブロック810がそれから形成されるマクロブロック810と、残差についての変換ブロック820の位置を示している。さらに、領域830および840は、それぞれ1に等しいデブロッキングフィルタリング強度および0に等しいデブロッキングフィルタリング強度に対応する。予測パーティションの間のジオメトリック境界が、参照番号860によって示されている。

0090

符号化モードシグナリング
ジオメトリック分割されたスーパマクロブロック符号化モードは、他の符号化モードに対して弁別的(distinctive)なシグナリングを必要とする。一例では、INTER32x32GEOの一般的使用は、新しい高レベルシンタックス要素(例えば、inter32x32geo_enable)を追加することによって、可能にされ、および/または不可にされる。このシンタックス要素は、限定することなく、例えば、スライスレベル、ピクチャレベルシーケンスレベルで、および/またはSEI(Supplemental Enhancement Information)メッセージで送ることができる。デコーダでは、inter32x32geo_enableが1に等しい場合、ジオメトリック分割されるスーパマクロブロックの使用が可能にされる。そうではなく、inter32x32geo_enableが0に等しい場合、ジオメトリック分割されたスーパマクロブロックの使用は不可とされる。

0091

ジオメトリックパーティションを有するスーパマクロブロックの使用が可能にされるケースに関する一実施形態では、マクロブロック内でのスキャニング順序は、INTER32x32GEOスーパマクロブロックモードにより良く適合するように、単純なラスタスキャン順序からジグザグ順序に変更される。図9を参照すると、MPEG−4 AVC規格によるラスタスキャン順序付けの一例と、本発明の原理の一実施形態によるジグザグスキャン順序付けの一例が、全体としてそれぞれ参照番号900および950によって示されている。マクロブロックは、参照番号910によって示されている。ラスタスキャン順序からジグザグスキャン順序へのスキャニング順序のこの変更は、通常のINTER16x16GEOおよび他のMPEG−4 AVC規格符号化モード(マクロブロックレベルおよびサブマクロブロックレベルに存在する符号化モード)と併用されるINTER32x32GEO(スーパマクロブロックレベルに存在する符号化モード)の適応的な使用をより良く適合させる。図10を参照すると、ピクチャの例示的なパーティションが、全体として参照番号1000によって示されている。パーティション1000に関して、ジオメトリック分割されたスーパマクロブロック(例えば、INTER32x32GEO)1010が使用して、従来のマクロブロック構造を使用してピクチャのいくつかの領域が符号化されるのと同時に、16×16マクロブロックの合併(unions)(例えば、INTER16x16マクロブロック1030とINTER16x16マクロブロック1040)を符号化する。図10では、最下行のブロックは、従来のマクロブロック構造に対応している。

0092

inter32x32geo_enableが0に等しい場合、表1に列挙されたモードだけが、ラスタスキャニング順序を使用するマクロブロックを基礎とした符号化のために検討される。

0093

一般性を失うことなく、inter32x32geo_flagのための他の多くの名前を考えることができ、それらは、本発明の原理の主旨の中に包含される。

0094

スーパマクロブロックジオメトリックパーティションをいつどこで使用すべきかをデコーダに伝達するために、本発明の原理によれば、付加的な情報および/またはシンタックスを作成し、生成し、例えばスライスデータ内に挿入することができる。

0095

一実施形態では、スーパマクロブロック分割が実行されるにも関わらず、マクロブロックシグナリング構造が維持される。これは、MPEG−4 AVC規格からのものなど、既存のマクロブロックタイプ符号化モードと、INTER16x16GEO、INTER8x8GEO、INTRA16x16GEO、およびINTRA8x8GEOの少なくとも1つが、選択可能モードとして、MPEG−4 AVC規格によって使用されるモードのリスト(例えば表1を参照)に追加された、ジオメトリ適応ブロック分割を用いる最終的な拡張のための任意の符号化モードとを再利用することを可能にする。これは、既存の従来のコーデックの一部を再利用できるので、新しいコーデックの構成を簡略化する。

0096

上述のようなマクロブロックベースシグナリングフレームワークと、マクロブロックスキャニング順序の変更(図9を参照)を与えられた場合、本発明の一実施形態では、ジオメトリック分割されたスーパマクロブロックが、スライスおよび/またはピクチャの与えられた位置で使用されることを、マクロブロックレベルにおけるフラグ(例えば、inter32x32geo_flag)の追加によって通知することができる。このフラグの使用によって、モードINTER16x16GEOを有するマクロブロックに制限することができる。これは、このフラグを使用して単純に1または0を通知することによって、導入された符号化モードINTER32x32GEOを通知するための、そのようなモード符号化構造の再利用を可能にする。さらに、スーパマクロブロックは、マクロブロックパーティションに対して階層的に構成され、この例では、スーパマクロブロックは、2×2マクロブロックから成るので、xが偶数であり、yも偶数である(x,y)座標を有する位置に配置されたマクロブロックだけが、inter32x32geo_flagフラグを保有する必要がある。このため、スライス内の左上隅のマクロブロックは、(0,0)マクロブロックであると仮定する。

0097

これに基づいて、偶数−偶数の(x,y)座標(例えば、(2,2))を有するマクロブロックが、INTER16x16GEOタイプであり、1に等しく設定されたinter32x32geo_flagを有する場合、そのようなケースは、マクロブロック(2,2)、(2,3)、(3,2)、および(3,3)が、ジオメトリックパーティションを有するスーパマクロブロック内にグループ化されることを示す。そのようなケースでは、(ジオメトリックパーティションの角度または位置などの)ジオメトリック情報に関するマクロブロック(2,2)のシンタックスが再利用されて、スーパマクロブロックのジオメトリック情報を送ることができる。最終的に、一実施形態では、ジオメトリックパラメータがコード化される解像度は、可能な限り最良の符号化効率を達成するように、inter32x32geo_flagに応じて変更することができる。同じことが、動き情報およびスーパマクロブロック予測にも適用される。このことの結果、(2,2)マクロブロックは、符号化モードと、スーパマクロブロックデータの予測とを決定するのに必要なすべての情報を含むので、マクロブロック(2,3)、(3,2)、(3,3)においては、モード情報も、予測情報も送る必要はない。本発明の一実施形態では、そのようなマクロブロックにおいては、残差だけが送られれば良い。しかし、残差データがすべて、マクロブロック(2,2)のマクロブロックデータ構造内で送られるように方式を変更することができ、それも本発明の原理の範囲内に依然として包含されることは、当業者であれば理解されよう。inter32x32geo_flagに応じて、マクロブロックレベルにおける残差符号化の構造を変更することが単に必要なだけである。inter32x32geo_flagが1に等しい場合、残差スーパブロックが符号化される(すなわち32×32残差)。そうではなく、inter32x32geo_flagが0に等しい場合、単一のマクロブロック残差が符号化される。

0098

本発明の一実施形態では、inter32x32geo_flagに応じて、例えば8×8または16×16など、残差変換のサイズも変更することができる。また、本発明の一実施形態では、inter32x32geo_flagに応じて、transform_size_8x8_flagのセマンティクスを変更することができる。例えば、inter32x32geo_flag=1である場合に、transform_size_8x8_flag=1である場合、8×8変換が使用され、そうではなく、transform_size_8x8_flag=0である場合、16×16変換が使用される。

0099

本発明の別の実施形態では、ジオメトリックスーパマクロブロックモード(例えば、INTER32x32GEO)が使用される場合であっても、依然としてマクロブロック毎に変換サイズを変更することができる。

0100

本明細書における上記の定義および説明に基づいて、当業者は、ジオメトリックスーパマクロブロックモードが使用されるかどうかに応じて、CBP(MPEG−4 AVC規格の符号化ブロックパターン(coded block pattern))および/または変換サイズなど、残差関連のシンタックスおよびセマンティクスの様々な異なる実施を予見することができる。これの一例では、スーパマクロブロックレベルにおいてCBPの新しい定義を実施し、単一のビットを使用したスーパマクロブロックレベルにおける全ゼロ残差(full zero residual)のシグナリングを可能にすることができる。本明細書で提供される本発明の原理の教示を与えられた場合、CBPに関する先に挙げた変形は、本発明の原理の主旨を維持しながら、当技術分野および関連技術分野の当業者が考え出し得る、多くの実施の1つにすぎないことを理解されたい。

0101

inter32x32geo_flagが0に等しい場合、マクロブロック(2,2)は、INTER16x16GEOマクロブロックのために定義されたように通常通り符号化される。マクロブロック(2,3)、(3,2)、(3,3)も、通常通り符号化され、一実施形態では表1で定義されたものとすることができる、すべてのマクロブロックレベルモードのための事前確立された定義に従う。

0102

偶数−偶数位置のマクロブロックが、INTER16x16GEO符号語を使用して符号化されない場合、inter32x32geo_flagは、データ内に挿入されず、上記の例に関して、マクロブロック(2,2)、(2,3)、(3,2)、および(3,3)は、一実施形態では表1で定義されたような通常の符号化モードを使用して、マクロブロックレベルにおいて別々に符号化される。

0103

一実施形態では、例示的なエンコーダは、スーパマクロブロックINTER32x32GEOの符号化効率コストを、スーパマクロブロックの同じ位置に埋め込まれた4つの16×16マクロブロックの合計の符号化効率コストと比較し、その後、エンコーダは、コストが最低の符号化戦略を、すなわち、INTER32x32GEO符号化モードか、それとも4つのマクロブロックの符号化モードか、どちらかより低い符号化コストを有するほうを選択する。

0104

表2は、マクロブロックレイヤのためのMPEG−4規格シンタックス要素を示している。表3は、ジオメトリック分割されたマクロブロックおよびスーパマクロブロックをサポートすることが可能な例示的な修正マクロブロックレイヤ構造を示している。一実施形態では、ジオメトリック情報は、符号化手続きmb_pred(mb_type)内で処理される。この例示的な修正マクロブロック構造は、inter32x32geo_enableが1に等しいと仮定する。一実施形態では、各スーパマクロブロックグループを復号する前に、スライスレベルで、シンタックス要素isMacroblockInGEOSuperMacroblockを0に初期化することができる。

0105

0106

0107

図11を参照すると、ビデオ符号化のための例示的な方法が、全体として参照番号1100によって示されている。方法1100は、スーパマクロブロック上のジオメトリ適応パーティションを、マクロブロックサイズ符号化モードと組み合わせる。

0108

方法1100は、開始ブロック1105を含み、開始ブロック1105は、制御をループ端ブロック1110に渡す。ループ端ブロック1110は、すべてのスーパブロックiに関するループを開始し、制御をループ端ブロック1115に渡す。ループ端ブロック1115は、スーパブロックi内のすべてのマクロブロックjに関するループを開始し、制御を機能ブロック1120に渡す。機能ブロック1120は、最良のマクロブロック符号化モードを見出し、制御を機能ブロック1125に渡す。機能ブロック1125は、最良の符号化モードおよびその符号化コストを保存し、制御をループ端ブロック1130に渡す。ループ端ブロック1130は、スーパブロックi内のすべてのマクロブロックjに関するループを終了し、制御を機能ブロック1135に渡す。機能ブロック1135は、GEOスーパブロックモード(例えば、INTER32x32GEO)をテストし、制御を機能ブロック1140に渡す。機能ブロック1140は、GEOスーパブロックモードの符号化コストを保存し、制御を判定ブロック1145に渡す。判定ブロック1145は、GEOスーパブロックモードの符号化コストが、スーパブロックグループ内のすべてのマクロブロックのコストの和よりも小さいかどうかを決定する。小さい場合、制御は機能ブロック1150に渡される。それ以外の場合、制御はループ端ブロック1160に渡される。

0109

機能ブロック1150は、スーパブロックグループをGEOスーパブロックとして符号化し、制御をループ端ブロック1155に渡す。ループ端ブロック1155は、すべてのスーパブロックiに関するループを終了し、制御を終了ブロック1199に渡す。

0110

ループ端ブロック1160は、スーパブロックi内のすべてのマクロブロックjに関するループを開始し、制御を機能ブロック1165に渡す。機能ブロック1165は、最良の符号化モードに従って現在のマクロブロックjを符号化し、制御をループ端ブロック1170に渡す。ループ端ブロック1170は、スーパブロックi内のすべてのマクロブロックjに関するループを終了し、制御をループ端ブロック1155に渡す。

0111

図12を参照すると、ビデオ復号のための例示的な方法が、全体として参照番号1200によって示されている。方法1200は、スーパマクロブロック上のジオメトリ適応パーティションを、マクロブロックサイズ符号化モードと組み合わせる。

0112

方法1200は、開始ブロック1205を含み、開始ブロック1205は、制御をループ端ブロック1210に渡す。ループ端ブロック1210は、すべてのスーパブロックグループiに関するループを開始し、制御をループ端ブロック1215に渡す。ループ端ブロック1215は、スーパブロックグループi内のすべてのマクロブロックjに関するループを開始し、制御を判定ブロック1220に渡す。判定ブロック1220は、これがGEO符号化スーパブロックであるかどうかを決定する。GEO符号化スーパブロックである場合、制御は機能ブロック1125に渡される。それ以外の場合、制御はループ端ブロック1235に渡される。

0113

機能ブロック1125は、スーパブロックグループをGEOスーパブロックとして復号し、制御をループ端ブロック1230に渡す。ループ端ブロック1230は、すべてのスーパブロックiに関するループを終了し、制御を終了ブロック1299に渡す。

0114

ループ端ブロック1235は、スーパブロックi内のすべてのマクロブロックjに関するループを開始し、制御を機能ブロック1240に渡す。機能ブロック1240は、現在のマクロブロックjを復号し、制御をループ端ブロック1245に渡す。ループ端ブロック1245は、スーパブロックi内のすべてのマクロブロックjに関するループを終了し、制御をループ端ブロック1230に渡す。

0115

本発明の多くの付随する利点/特徴のいくつかについての説明が今から与えられるが、そのいくつかは、上で言及されている。例えば、1つの利点/特徴は、ピクチャの少なくとも部分について画像データを符号化するエンコーダを有する装置である。画像データは、ジオメトリックパーティションをピクチャブロックパーティションに適用するジオメトリック分割によって形成される。ピクチャブロックパーティションは、トップダウン分割およびボトムアップツリー結合の少なくとも一方から取得される。

0116

別の利点/特徴は、上で説明されたようなエンコーダを有する装置であり、ジオメトリック分割が、画像データを符号化するために使用される与えられたビデオ符号化規格またはビデオ符号化勧告のベース分割サイズよりも大きいパーティションサイズで使用するために使用可能にされる。

0117

また別の利点/特徴は、上で説明されたようなエンコーダを有する装置であり、エンコーダは、ベース分割サイズよりも大きいパーティションサイズを有するジオメトリックパーティションの少なくとも1つを、ベース分割サイズを有するベースパーティションと組み合わせる。ベースパーティションは、ピクチャブロックパーティションのうちの少なくとも1つの少なくとも部分に対応する。

0118

さらに別の利点/特徴は、上で説明されたようなエンコーダを有する装置であり、エンコーダは、部分のためのエッジ情報および動き情報の少なくとも一方について、暗黙的コード化および明示的コード化の少なくとも一方を行う。

0119

さらに、別の利点/特徴は、上で説明されたようなエンコーダを有する装置であり、少なくとも部分に対応する残差が、パーティション境界を横断することを許可された少なくとも1つの可変サイズ変換を使用して符号化される。

0120

さらに、別の利点/特徴は、上で説明されたようなエンコーダを有する装置であり、ジオメトリック分割を考慮してデブロッキングフィルタリングを実行するためのデブロッキングフィルタをさらに含む。

0121

また、別の利点/特徴は、上で説明されたようなエンコーダを有する装置であり、エンコーダは、高レベルシンタックスレベル、シーケンスレベル、ピクチャレベル、スライスレベル、およびブロックレベルの少なくとも1つにおけるジオメトリックパーティションの使用を通知する。

0122

加えて、別の利点/特徴は、上で説明されたようなエンコーダを有する装置であり、エンコーダは、暗黙的データおよび明示的データの少なくとも一方を使用して、ピクチャブロックパーティションの少なくとも1つのための局所スーパブロックに関連した情報を通知する。

0123

本発明の原理の上記および他の特徴および利点は、本明細書の教示に基づいて、当業者によって容易に確認することができる。本発明の原理の教示は、ハードウェア、ソフトウェア、ファームウェア、専用プロセッサまたはそれらの組み合わせといった様々な形態で実施できることを理解されたい。

0124

最も好ましくは、本発明の原理の教示は、ハードウェアとソフトウェアの組み合わせとして実施される。さらに、ソフトウェアは、プログラム記憶ユニット上に有形に具現されるアプリケーションプログラムとして実施することができる。アプリケーションプログラムは、任意の適切なアーキテクチャを備えたマシーンアップロードし、マシーンによって実行することができる。好ましくは、機械は、1つまたは複数の「CPU」(中央処理装置)、「RAM」(ランダムアクセスメモリ)、および「I/O」(入出力インタフェースなどのハードウェアを有するコンピュータプラットフォーム上で実施される。コンピュータプラットフォームは、オペレーティングシステムおよびマイクロ命令コードも含むことができる。本明細書で説明された様々なプロセスおよび機能は、マイクロ命令コードの一部もしくはアプリケーションプログラムの一部、またはそれらの任意の組み合わせとすることができ、それらは、CPUによって実行することができる。加えて、追加的なデータ記憶ユニットおよび印刷ユニットなどの様々な他の周辺ユニットを、コンピュータプラットフォームに接続することができる。

0125

添付の図面に示された構成システムコンポーネントおよび方法のいくつかは、好ましくはソフトウェアで実施されるので、システムコンポーネント間またはプロセス機能ブロック間の実際の接続は、本発明の原理がプログラムされる仕方に応じて異なり得ることをさらに理解されたい。本明細書の教示を与えられた場合、当業者は、本発明の原理の上記および同様の実施または構成を企図することができる。

0126

本明細書では添付の図面を参照して例示的な実施形態が説明されたが、本発明の原理は説明通りの実施形態に限定されず、本発明の原理の範囲または主旨から逸脱することなく、本発明の原理に対する様々な変更および修正が当業者によって達成できることを理解されたい。そのような変更および修正はすべて、添付の特許請求の範囲において説明される本発明の原理の範囲内に含まれることが意図されている。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

新着 最近 公開された関連が強い 技術

  • 日本電信電話株式会社の「 映像符号化装置」が 公開されました。( 2018/11/15)

    【課題】符号化効率の高い符号化構造を低演算量で求めること。【解決手段】入力映像情報から取得されるフレーム群から、予め定められる3枚以上の枚数の連続するフレームを含む参照グループを生成し、生成する参照グ... 詳細

  • 日本電信電話株式会社の「 映像符号化装置」が 公開されました。( 2018/11/15)

    【課題】符号化効率の高い符号化構造を低演算量で求めること。【解決手段】入力映像情報から取得されるフレーム群から、予め定められる3枚以上の枚数の連続するフレームを含む参照グループを生成し、生成する参照グ... 詳細

  • 日本電信電話株式会社の「 動きベクトル予測装置及びコンピュータプログラム」が 公開されました。( 2018/11/15)

    【課題】カメラが移動しながら撮影した映像から深度情報を用いずに、動きベクトルの向きと大きさをより精度良く予測すること。【解決手段】符号化済みブロックから予測動きベクトルノルムを取得する予測動きベクトル... 詳細

この 技術と関連性が強い 技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する挑戦したい社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ