図面 (/)

技術 酸素を含む水素吸収膜を用いた水素ガスセンサ

出願人 木村光照
発明者 木村光照
出願日 2013年1月6日 (7年11ヶ月経過) 出願番号 2013-000276
公開日 2014年7月17日 (6年5ヶ月経過) 公開番号 2014-132232
状態 特許登録済
技術分野 熱的手段による材料の調査、分析 電気的手段による材料の調査、分析
主要キーワード IC化 参照用センサ 出力程度 解離水 温度差センサ 水素ガス濃度計 絶対温度センサ 低濃度水
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2014年7月17日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (8)

課題

小型で、低温度で動作し、大量生産性があり、安価で、ガス選択性が高く、高感度かつ高精度で、水素ガス計測濃度範囲が広い水素ガスセンサを提供する

解決手段

基板から熱分離した薄膜ヒータ温度センサおよび水素吸収膜とその表面近傍酸素を予め導入して、雰囲気ガス中水素の吸収時の発熱に伴う温度上昇の他に、水素吸収膜の表面近傍での還元反応発熱反応による合算された大きな温度上昇分を得て、特に極低水素濃度高感度化できるようにした。ヒータの加熱により水素吸収膜から水素を放出させ、ヒータの加熱を停止させた後、ヒータの水素が存在していないときの薄膜の熱時定数以上の時間経過時点での温度センサの出力を利用し、その雰囲気ガス中での水素ガス濃度を求める。また、必要に応じて、水素吸収膜を有しない熱伝導型センサも備え、水素ガス濃度の計測範囲を広げる。

概要

背景

水素ガスが空気中に4.0から75.0%(体積%)の非常に広い存在範囲爆発の危険性があることが分かっている。従って、4.0%の爆発下限以下での低濃度水素ガス濃度計測が重要になる。従来、ガスセンサには、ヒータによりPtなどの触媒の温度を上げて、この触媒作用と組み合わせてヒータ加熱中に計測する接触燃焼式水素ガス検知センサ(特許文献1参照)などがあった。

また、半導体ガスセンサとして還元性ガス吸着による半導体表面のキャリア密度変化を利用して、ヒータ加熱中に電気抵抗の変化を用いるものもあった。しかし、水素ガス以外の還元性ガスであれば、何でも反応するために水素に対する選択性の無さが問題になっていた。

また、水素などの特定ガスの吸収や透過を利用してガスの選択性を高めたセンサもあった。例えば、水素吸蔵合金を利用して水素を検出する装置として、基板の一方の面に水素吸蔵合金を固着し、他方の面に歪ゲージを取り付けて、水素を吸収するときに水素吸蔵合金が体積膨張して、そのとき生じる基板の歪みを歪ゲージで検出し、検出した歪の大きさに基づいて水素吸収量を検知する水素検出装置(特許文献2参照)が知られている。

水素の選択性が高い水素吸蔵合金を利用し、水素吸蔵合金を一定温度に保持しながら水素を吸収した際の状態変化重量変化)を検出して、気体中に含まれる水素ガスの濃度を検出するための水素検出装置(特許文献3参照)も提案されている。

従来、温度センサとして、絶対温度を測定できる絶対温度センサと、温度差のみが測定できる温度差センサとがある。絶対温度を測定できる絶対温度センサとして、サーミスタや、本出願人が発明したトランジスタをサーミスタとして使用するトランジスタサーミスタ(特許文献4、特許第3366590号)及びダイオードをサーミスタとして使用するダイオードサーミスタ(特許文献5、特許第3583704号)があり、さらに、温度がダイオードの順電圧やトランジスタのエミッターベース間電圧直線関係にあるIC温度センサなどがある。また、温度差のみ測定できる温度差センサとして、熱電対やこれを直列接続出力電圧を増大化させたサーモパイルがある。

従来、水素吸蔵合金の粉末粒子金属膜被膜するマイクロカプセル手段と、熱電対による温度検出端手段と、マイクロカプセル手段の被膜した水素吸蔵合金の粉末と温度検出端手段の熱電対とをキャップ内に収納させた一体化手段と、電源を含む電子制御部による電子制御手段とで構成したことを主要な特徴とする水素センサが提案されていた(特許文献6)。

また、本発明者は、先に、「ガスセンサ素子およびこれを用いたガス濃度測定装置」(特許文献7参照)を発明して、基板から熱分離した薄膜に、1個または複数個の温度センサと被検出ガスを吸収するガス吸収物質とを具備し、被検出ガスの吸収や放出時の吸熱発熱に伴う温度変化を前記温度センサにより計測できるように配置形成した水素ガスの濃度計測を意図したガスセンサ素子とガス濃度測定装置を提案した。その後、さらに、本発明者は、「特定ガス濃度センサ」(PCT/JP2011/070427)を発明し、水素吸収膜を備えた超小型のカンチレバ状薄膜を用いて、ヒータ加熱停止後の熱時定数の数倍時間経過後に温度計測して水素ガス濃度を計測する1秒以内の高速応答水素ガスセンサを提案し、更に、3%以上の高濃度域の水素ガス濃度計測では、熱伝導型も併用できるようにした水素ガスセンサを提案した。その後、種々の実験と改良を重ね、特に、水素(H2)ガスの1ppm程度の極低濃度域高感度化するための最良の形態を求めた結果が本願発明である。

概要

小型で、低温度で動作し、大量生産性があり、安価で、ガスの選択性が高く、高感度かつ高精度で、水素ガス計測濃度範囲が広い水素ガスセンサを提供する基板から熱分離した薄膜をヒータと温度センサおよび水素吸収膜とその表面近傍酸素を予め導入して、雰囲気ガス中の水素の吸収時の発熱に伴う温度上昇の他に、水素吸収膜の表面近傍での還元反応発熱反応による合算された大きな温度上昇分を得て、特に極低水素濃度で高感度化できるようにした。ヒータの加熱により水素吸収膜から水素を放出させ、ヒータの加熱を停止させた後、ヒータの水素が存在していないときの薄膜の熱時定数以上の時間経過時点での温度センサの出力を利用し、その雰囲気ガス中での水素ガス濃度を求める。また、必要に応じて、水素吸収膜を有しない熱伝導型センサも備え、水素ガス濃度の計測範囲を広げる。

目的

本発明は、上述の問題点を鑑みてなされたもので、特に、本発明者の先の発明である「特定ガス濃度センサ」(PCT/JP2011/070427)の水素ガスセンサを1%程度の低濃度域でも水素ガスを検出できるように高感度化させて改良したものであり、ヒータ加熱停止後での水素吸収膜での熱反応に基づく温度変化を利用した小型で、低温度で動作し、大量生産性があり、安価で、ガスの選択性が高く、高感度、かつ高精度で、しかも水素ガス計測濃度範囲が広くなり得る水素ガスセンサを提供する

効果

実績

技術文献被引用数
0件
牽制数
1件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

水素ガスセンサ素子基板(1)から熱分離した薄膜(10)に、ヒータ(25)と温度センサ(20)および水素吸収膜(5)とを備え、ヒータ(25)で薄膜(10)を加熱と冷却の繰り返しを行い、冷却過程に水素吸収膜(5)に吸収した水素を、加熱過程で放出させるようにすると共に、冷却過程における水素吸収膜(5)での発熱作用による温度上昇を温度センサ(20)の出力を利用して、その雰囲気ガス中水素ガス濃度を求めるようにした水素ガスセンサにおいて、水素吸収膜(5)の少なくとも表面近傍に、酸素を含有させるようにしたことを特徴とする水素ガスセンサ。

請求項2

水素吸収膜(5)として、パラジウム膜とした請求項1に記載の水素ガスセンサ。

請求項3

水素吸収膜(5)の堆積過程で酸素を導入して、水素吸収膜(5)の少なくとも表面近傍に、酸素を含有させるようにした請求項1もしくは2のいずれかに記載の水素ガスセンサ。

請求項4

酸素を含有する雰囲気ガス中でのスパッタリング堆積により水素吸収膜(5)を堆積させて、酸素を導入した請求項3に記載の水素ガスセンサ。

請求項5

水素吸収膜(5)の堆積過程に、金属酸化物をも同時堆積させて、酸素を導入した請求項3に記載の水素ガスセンサ。

請求項6

同一の基板(1)から熱分離すると共に、薄膜(10)とは独立した薄膜(11)を備え、該薄膜(11)には、ヒータ(26)と温度センサ(21)とを備えるが、水素吸収膜(5)は備えていない形態にしてあり、ヒータ(26)を所定の電力電圧もしくは電流の下で加熱し、前記ヒータ(26)の加熱による雰囲気ガス中の水素ガス濃度による熱伝導率の違いに基づく温度センサ(21)の出力を利用して、少なくとも1%以上で100%までの水素ガスの濃度も計測できるようにした熱伝導型センサとしての水素ガスセンサ素子をも備えた請求項1から5のいずれかに記載の水素ガスセンサ。

請求項7

薄膜(10)をカンチレバ形状にした請求項1から5のいずれかに記載の水素ガスセンサ。

請求項8

温度センサ(20、21)を温度差センサとした請求項1から6のいずれかに記載の水素ガスセンサ。

請求項9

前記温度センサ(20、21)に電流を流して前記ヒータ(25、26)としても利用するようにした請求項1から8のいずれかに記載の水素ガスセンサ。

請求項10

基板(1)に、雰囲気ガス温度計測用として絶対温度センサを設けた請求項1から9のいずれかに記載の水素ガスセンサ。

請求項11

基板(1)を半導体基板とし、該基板(1)の上方に重ねて形成した犠牲層を介して形成した薄膜(10)や薄膜(11)を形成してあり、犠牲層をエッチング除去して空洞を形成してあり、必要に応じて、前記基板(1)に水素ガスセンサに係る電子回路を形成できるようにした請求項1から10のいずれかに記載の水素ガスセンサ。

請求項12

ヒータ(25、26)を所定のサイクルで加熱できるように、少なくとも電子回路を備え、雰囲気ガス中の水素ガス濃度を計測するようにした請求項1から11のいずれかに記載の水素ガスセンサ。

請求項13

雰囲気ガス中の水素ガス濃度に応じて、水素吸収膜(5)を備えた薄膜(10)を用いて反応熱を利用した水素ガスセンサと薄膜(11)を用いた熱伝導型の水素ガスセンサとを切り替えることができるようにした請求項1から12のいずれかに記載の水素ガスセンサ。

請求項14

水素ガスセンサ素子を、メッシュ構造を有するキャップで覆うことにより、気流遮り防爆型とした請求項1から13のいずれかに記載の水素ガスセンサ。

技術分野

0001

本発明は、水素ガスセンサに関し、水素吸収膜が水素ガス(H2)を吸収するときの発熱反応による温度上昇温度センサ計測して水素ガス濃度換算する水素ガスセンサで、更に低水素濃度域での高感度化のために、水素による水素吸収膜に導入した酸素との発熱を伴う還元反応に基づく発熱も利用するようにした水素ガスセンサに関するものである。

背景技術

0002

水素ガスが空気中に4.0から75.0%(体積%)の非常に広い存在範囲爆発の危険性があることが分かっている。従って、4.0%の爆発下限以下での低濃度水素ガス濃度計測が重要になる。従来、ガスセンサには、ヒータによりPtなどの触媒の温度を上げて、この触媒作用と組み合わせてヒータ加熱中に計測する接触燃焼式水素ガス検知センサ(特許文献1参照)などがあった。

0003

また、半導体ガスセンサとして還元性ガス吸着による半導体表面のキャリア密度変化を利用して、ヒータ加熱中に電気抵抗の変化を用いるものもあった。しかし、水素ガス以外の還元性ガスであれば、何でも反応するために水素に対する選択性の無さが問題になっていた。

0004

また、水素などの特定ガスの吸収や透過を利用してガスの選択性を高めたセンサもあった。例えば、水素吸蔵合金を利用して水素を検出する装置として、基板の一方の面に水素吸蔵合金を固着し、他方の面に歪ゲージを取り付けて、水素を吸収するときに水素吸蔵合金が体積膨張して、そのとき生じる基板の歪みを歪ゲージで検出し、検出した歪の大きさに基づいて水素吸収量を検知する水素検出装置(特許文献2参照)が知られている。

0005

水素の選択性が高い水素吸蔵合金を利用し、水素吸蔵合金を一定温度に保持しながら水素を吸収した際の状態変化重量変化)を検出して、気体中に含まれる水素ガスの濃度を検出するための水素検出装置(特許文献3参照)も提案されている。

0006

従来、温度センサとして、絶対温度を測定できる絶対温度センサと、温度差のみが測定できる温度差センサとがある。絶対温度を測定できる絶対温度センサとして、サーミスタや、本出願人が発明したトランジスタをサーミスタとして使用するトランジスタサーミスタ(特許文献4、特許第3366590号)及びダイオードをサーミスタとして使用するダイオードサーミスタ(特許文献5、特許第3583704号)があり、さらに、温度がダイオードの順電圧やトランジスタのエミッターベース間電圧直線関係にあるIC温度センサなどがある。また、温度差のみ測定できる温度差センサとして、熱電対やこれを直列接続出力電圧を増大化させたサーモパイルがある。

0007

従来、水素吸蔵合金の粉末粒子金属膜被膜するマイクロカプセル手段と、熱電対による温度検出端手段と、マイクロカプセル手段の被膜した水素吸蔵合金の粉末と温度検出端手段の熱電対とをキャップ内に収納させた一体化手段と、電源を含む電子制御部による電子制御手段とで構成したことを主要な特徴とする水素センサが提案されていた(特許文献6)。

0008

また、本発明者は、先に、「ガスセンサ素子およびこれを用いたガス濃度測定装置」(特許文献7参照)を発明して、基板から熱分離した薄膜に、1個または複数個の温度センサと被検出ガスを吸収するガス吸収物質とを具備し、被検出ガスの吸収や放出時の吸熱や発熱に伴う温度変化を前記温度センサにより計測できるように配置形成した水素ガスの濃度計測を意図したガスセンサ素子とガス濃度測定装置を提案した。その後、さらに、本発明者は、「特定ガス濃度センサ」(PCT/JP2011/070427)を発明し、水素吸収膜を備えた超小型のカンチレバ状薄膜を用いて、ヒータ加熱停止後の熱時定数の数倍時間経過後に温度計測して水素ガス濃度を計測する1秒以内の高速応答の水素ガスセンサを提案し、更に、3%以上の高濃度域の水素ガス濃度計測では、熱伝導型も併用できるようにした水素ガスセンサを提案した。その後、種々の実験と改良を重ね、特に、水素(H2)ガスの1ppm程度の極低濃度域で高感度化するための最良の形態を求めた結果が本願発明である。

先行技術

0009

特開2006−201100号公報
特開平10−73530号公報
特開2005−249405号公報
特許第3366590号公報
特許第3583704号公報
特開2004−233097号公報
特開2008−111822号公報

発明が解決しようとする課題

0010

特許文献1に示される接触燃焼式の水素ガス検知センサでは、ヒータで加熱し、Ptなどの微粒子酸化物担持させるなどして触媒として比較的低温燃焼できるようにし、そのときの反応熱を利用するものであり、可燃性ガスであれば、そのガスと反応してしまうと言う、ガスの選択性が乏しく、また、触媒による低温と言っても100℃以上の温度を必要とすると共に、燃焼という作用を利用するので、大気中の酸素の存在が欠かすことができなかった。特に、微量の水素ガス濃度をヒータの加熱中に計測するので、安定になるようにヒータ加熱温度を制御する必要があり、また、高温の中での微小温度上昇分を計測することになるので、その制御回路検出回路の精度の問題が露呈していた。また、可能な限り低温で燃焼させるために触媒反応を利用するが、触媒反応では、その触媒の表面状態が重要で、表面積を大きくするために多孔性にしたり、酸化物の中に白金(Pt)の微粒子を分散させて触媒を形成するために、加熱・冷却を繰り返すことにより、触媒の表面状態が経時変化したり、白金(Pt)の微粒子径が変化したりして、触媒特性が変化してしまうと言う問題もあった。従って、経時変化が無視できて、触媒を用いない低温で動作する安定な水素ガスセンサが求められていた。

0011

また、従来、半導体表面のガス吸着を利用する半導体ガスセンサもあるが、還元性ガスであれば何でも反応してしまうという問題があった。また、特許文献2に示される水素吸蔵合金を用い、水素を吸収するときの歪の大きさから水素ガス濃度を検出するセンサにおいては、高濃度の水素を検出するには適しているが、低濃度から高濃度までの幅広い範囲のガス濃度を検出することには不向きであると共に、物理的変形を利用するので疲労の問題もあり、特許文献3に示されるセンサにおいては、ペルチェ素子高電力消費の問題及びどうしてもセンサ自体が大型化してしまうという問題、特許文献6に示されるセンサにおいては、水素吸蔵合金の粉末粒子を金属膜で被膜するというマイクロカプセル手段が必要であること、大量生産化に不向きであり、熱容量が大きく、水素ガス濃度の検出に要する時間が、数分以上掛かるセンサになるという問題があり、高速応答が求められていた。

0012

また、特許文献7に示される本発明者が提案した水素ガスセンサでは、発熱による温度上昇分からだけでは、水素ガス濃度を決定することができなくなり、異なるメカニズムを利用した温度上昇などの計測が必要になり、これを解決するために、本発明者は、「特定ガス濃度センサ」(PCT/JP2011/070427)を発明し、3%以下の低濃度水素ガス域で計測する水素吸収膜を備えた超小型のカンチレバ状薄膜を用いて、ヒータ加熱停止後の熱時定数の数倍時間経過後に温度計測して水素ガス濃度を計測する1秒以内の高速応答の水素ガスセンサを提案し、さらに、3%以上の高濃度域の水素ガス濃度計測では、熱伝導型も併用できるようにした水素ガスセンサを提案した。しかし、水素(H2)ガスの1ppm程度またはそれ以下の低濃度域での水素ガス感度が小さく、低濃度水素ガス検出および計測可能な高感度化した水素ガスセンサが求められていた。

0013

本発明は、上述の問題点を鑑みてなされたもので、特に、本発明者の先の発明である「特定ガス濃度センサ」(PCT/JP2011/070427)の水素ガスセンサを1%程度の低濃度域でも水素ガスを検出できるように高感度化させて改良したものであり、ヒータ加熱停止後での水素吸収膜での熱反応に基づく温度変化を利用した小型で、低温度で動作し、大量生産性があり、安価で、ガスの選択性が高く、高感度、かつ高精度で、しかも水素ガス計測濃度範囲が広くなり得る水素ガスセンサを提供することを目的としている。

課題を解決するための手段

0014

上記の目的を達成するために、本発明の請求項1に係わる水素ガスセンサは、水素ガスセンサ素子の基板1から熱分離した薄膜10に、ヒータ25と温度センサ20および水素吸収膜5とを備え、ヒータ25で薄膜10を加熱と冷却の繰り返しを行い、冷却過程に水素吸収膜5に吸収した水素を、加熱過程で放出させるようにすると共に、冷却過程における水素吸収膜5での発熱作用による温度上昇を温度センサ20の出力を利用して、その雰囲気ガス中の水素ガス濃度を求めるようにした水素ガスセンサにおいて、水素吸収膜5の少なくとも表面近傍に、酸素を含有させるようにしたことを特徴とするものである。

0015

金属には、水素と結合するときの反応に、発熱反応と吸熱反応があり、パラジウム(Pd)やニオブ(Nb)のように、水素と発熱反応によって、やや不安定な金属間化合物的水化物を形成する金属と、ニッケル(Ni)、銀(Ag)、銅(Cu)や金(Au)のように、吸熱反応によって水素が主として固溶体を形成する金属があり、水素吸収膜5として発熱反応を利用する場合は、これらの金属の単体合金で、全体として発熱反応になるようにする必要がある。水素吸蔵合金と呼ばれる金属、有機材料セラミックスなどは、一般に、水素を吸収(吸蔵や吸着を含む)するときの反応が発熱反応になるようにしている。例えば、LaNi5の水素吸蔵合金の反応熱は、水素1モル当り、約7kcalであり、水素1g当り、約0.048kcalという大きな値である。また、逆に金属水素化合物を加熱して温度を上昇させると(このとき、吸熱反応が起こる)、水素を放出して元の水素吸蔵合金に戻る。このように水素吸収膜5は、可逆的に水素を吸収したり放出したりして、これに伴い多量の熱の出入りがあることが知られている。

0016

水素吸収膜5としてのパラジウム(Pd)膜上では、水素ガス分子(H2)は、分子吸着状態と解離吸着状態の両方が存在し、水素ガス分子の水素吸収膜への解離吸着状態を介して、解離水素原子が水素吸収膜へ吸収され、更に、温度上昇により、解離水素原子が再び水素吸収膜から水素ガス分子(H2)として放出できることが知られている。これに対して、白金(Pt)は、解離吸着状態のみ存在することが知られている。従って、水素吸収膜5として白金(Pt)膜を使用した場合は、パラジウム(Pd)膜のようにスムーズな水素の吸脱反応が困難であることも知られている。

0017

水素吸収膜5に導入された酸素(O)は、一般に、負のイオン化状態であり、雰囲気ガス中の水素ガスの解離吸着を助長するように働く。そして、パラジウム(Pd)膜などの水素吸収膜5に酸素(O)が、例えば、PdOなどの状態で存在すると、解離吸着した水素が反応性に富み、水素吸収膜5の酸素(O)と結合して、これを還元する。この時に更に発熱反応が生じるので、この発熱反応熱と、水素吸収膜5への水素ガスの解離吸着後の水素吸収膜5に吸収される時の発熱反応熱とが合算されて、発熱量が増加する。従って、この増大した発熱量を温度センサで検出することにより、特に超低濃度水素ガスの高感度水素ガス検出ができるようになる。特に、水素ガス分子を吸収させるために必要な解離吸着状態と、解離水素原子を再び水素ガス分子(H2)として放出できる分子吸着状態とを兼ね備えたパラジウム(Pd)膜を水素吸収膜5に使用した場合、ここに酸素(O)を導入しておくと、他の還元性ガスでは見られない極めて低温度の室温付近でも水素による還元反応が起こり発熱して、水素ガスの選択性が維持される。

0018

水素吸収膜5の水素吸収は、低温の方が高温よりも吸収されやすく、高温にすることにより吸収している水素を放出する。一方、酸素の存在の下での還元反応は、やはり高温の方が反応しやすい。従って、これらの両方の発熱反応は、最適な温度が存在し、その温度で最大の発熱量が得られる。水素の吸収過程でのこれらの合算した発熱反応を計測するのに、水素吸収膜5付近に設けた温度センサ20により計測するが、ヒータ25を停止させた後の冷却過程で、本来(水素ガスが存在しない時)、室温に戻っているはずの時間帯で計測することが、最適温度水素ガス選択性の観点、およびヒータ加熱時の電気的雑音の観点からも好適である。

0019

水素吸収膜5を空気中で加熱すると、酸化し難いパラジウム(Pd)表面にも酸素(O)の解離吸着やPdOのような酸化膜が薄く形成される。水素ガス(H2)が空気中に存在すると、これらの解離吸着された酸素原子と解離吸着された状態(水素吸収膜5内部から放出される水素原子と雰囲気ガス中から導入された解離吸着水素原子)の水素原子とが結合して、発熱反応を生じると共に水素吸収膜5が還元される。ヒータ加熱温度と、空気中の酸素ガスの量と空気中の水素ガスの量のバランスにより、水素吸収膜5の還元され方が変化することになる。すなわち、同一のヒータ加熱温度の下で、空気中の水素ガスの量が相対的に多いと、水素吸収膜5の表面近傍が還元されて、酸素量が少なくなり、その分、還元反応による発熱量が少なくなり、水素検出感度が小さくなる。このことの防止のためには、空気中の酸素量が少なくとも、水素吸収膜5の表面近傍に初めから酸素を導入することが、感度の劣化の防止になる。このようなことで、少なくとも水素吸収膜5の表面近傍に、水素吸収膜5の堆積工程の中で酸素(O)を導入しておくことが本発明の主眼である。もちろん、水素吸収膜5の上に、他の酸化物や金属膜等が存在しても、多孔性などで水素吸収膜5への水素の吸収が損なわれないようであれば、その存在を許すものである。

0020

水素吸収膜5を薄膜状に形成すると、スパッタリングイオンプレーティング電子ビーム蒸着等で容易に形成できること、酸素の導入が容易なこと、水素ガスに触れる表面積が大きくなること、熱容量が小さく高速応答性があること、その厚みの制御で、水素ガスの吸収完了までの時間が調整できること、従って、加熱中止後の発熱反応による昇温時間調整ができること、必ずしも多孔質や微粒子にする必要が無く平坦な薄膜で良いことなどから好都合である。

0021

水素吸収膜5が搭載されている薄膜10の加熱停止後、この薄膜10の水素ガスが存在しない時の熱時定数τの4倍程度の時間経過後において、室温を基準にして、水素による発熱反応に基づく温度上昇分ΔTの計測を行った方が、そのままゼロ位法が使用できるので、好適であり、高感度で高精度の水素ガス濃度計測ができる。しかしながら、上述のように基板やビーム(梁)部に対してスリットなどを設けることで熱抵抗を大きくして温度上昇を大きくさせると、その分、薄膜10の熱時定数τが大きくなり、水素ガスセンサとしての応答速度が遅くなるという結果になる。一般に、宙に浮いた薄膜10の熱時定数τは、同一の材料で、厚みが同じであるならば、その長さの2乗に比例することが分かっている。このようなことで、薄膜10の長さを短くして、高速応答になるようにすることが重要である。このことは、上述の温度センサ20の温度がピークになる水素ガス濃度(ピーク水素ガス濃度)以下の水素ガス濃度範囲での水素が、水素吸収膜5に冷却過程でゆっくり吸収されて行く過程での温度差検出において、薄膜10の熱時定数τが小さくなれば、加熱停止後の熱時定数τの4倍程度の時間経過後での時間も短くて済む。同一の水素ガス濃度では、その吸収速度は変わらないので、その分、大きな温度差が得られ、高感度、高精度で、かつ高速応答になるという利点にも繋がる。例えば、SOI層製作した長さ200マイクロメートル(μm)程度のカンチレバの熱時定数τは、その厚みにも依るが、空気中で2ミリ秒程度であり、5倍のτで計測しても、10ミリ秒程度で計測されることになり、高速応答と言える。

0022

ヒータ25の加熱を停止させた後、ヒータ25の水素が存在していないときの薄膜10の熱時定数τ以上の時間経過時点での前記温度センサの出力を利用して、その雰囲気ガス中での水素ガス濃度を求めるにあたり、ヒータ25の加熱を停止させた後の熱時定数τの時間経過後では、ヒータ25の加熱停止時点での温度のほぼ2.718分の1(約3分の1)程度のヒータ加熱時の温度があり、その影響が残っている。また、熱時定数τの4倍から5倍程度経過した時点では、残留温度(室温からのずれた温度)は、ほぼゼロとみなすことができるから、実際には、この熱時定数τの4倍から5倍程度経過した時点で、そのままゼロ位法が使用して水素ガス濃度を計測した方がよい。

0023

本発明の請求項2に係わる水素ガスセンサは水素吸収膜5として、パラジウム膜とした場合である。

0024

上記したように、水素吸収膜5としてのパラジウム(Pd)膜は、白金(Pt)膜とは異なり、水素吸収過程は、発熱反応であり、さらに、水素ガス分子(H2)は、分子吸着状態と解離吸着状態の両方が存在し、水素ガス分子の水素吸収膜への解離吸着状態を介して、解離水素原子が水素吸収膜へ吸収され、更に、温度上昇により、解離水素原子が再び水素吸収膜から水素ガス分子(H2)として放出できる。従って、水素吸収膜5としてスムーズな水素の吸脱反応(吸収と放出)が得られる。また、パラジウム(Pd)は、酸化がされ難く、酸化されても還元もされやすいという性質があるので、水素吸収膜5として好適である。また、上記したように、パラジウム(Pd)膜に導入された活性化された酸素と、解離吸着された水素とは、室温でも発熱反応を起こし、水素選択性にも優れた効果を示す。また、水素吸収膜5としてのパラジウム(Pd)膜をスパッタリング等の堆積中に、容易に酸素を導入することができる。

0025

本発明の請求項3に係わる水素ガスセンサは、水素吸収膜5の堆積過程で酸素を導入して、水素吸収膜5の少なくとも表面近傍に、酸素を含有させるようにした場合である。

0026

水素吸収膜5の少なくとも表面近傍に、酸素を含有させるようにすることにより、酸化または酸素を吸着した状態の水素吸収膜5の酸素と、解離吸着している水素を用いて発熱反応させるもので、この反応熱も利用して、特に低濃度域の水素ガスの検出感度を高めるものである。上述のように、パラジウム(Pd)膜を水素吸収膜5とした場合は、もちろんのこと、他の水素吸蔵合金のような水素吸収膜5を用いた場合も、水素吸収膜5を堆積させると同時に、例えば、コスパッタリングのような形で、酸素を導入することが容易にできる。

0027

本発明の請求項4に係わる水素ガスセンサは、酸素を含有する雰囲気ガス中でのスパッタリング堆積により水素吸収膜5を堆積させて、酸素を導入した場合である。

0028

水素吸収膜5の堆積は、スパッタリング堆積や真空蒸着(電子ビーム蒸着やイオンプレーティングも含む)などがあり、ここでは、スパッタリング堆積時の酸素を導入の場合であり、スパッタリング雰囲気ガスのアルゴンガス(Ar)ガスに少量の酸素ガス(O2ガス)を混入させて、堆積させるとパラジウム(Pd)などの水素吸収膜5は、酸素と反応して酸化パラジウム(PdO)などの酸化物も堆積される。酸素ガスの混入量の大きさによりパラジウム(Pd)膜の酸化状態を制御することも可能である。もちろん、真空蒸着においても微量の酸素ガスの雰囲気中での反応性蒸着でも同様に水素吸収膜5の堆積中に酸素の導入ができる。なお、薄膜10と水素吸収膜5との密着性を向上させるのに、チタン(Ti)などの活性な金属を極めて薄く、これらの間に挿入させる方が良い。また、水素吸収膜5の堆積は、Pdなどの水素吸収膜5を1マイクロメートル程度の厚さで堆積させた後、その表面近傍に、酸素の導入により酸化パラジウム(PdO)層を0.01マイクロメートル程度の厚さで導入しておくと良い。もちろん、更に、この上に、純粋のパラジウム(Pd)膜を、例えば、0.01マイクロメートル程度の厚さで堆積させておいても良い。

0029

本発明の請求項5に係わる水素ガスセンサは、水素吸収膜5の堆積過程に、金属酸化物をも同時堆積させて、酸素を導入した場合である。

0030

水素吸収膜5は、水素の吸収による水素脆化のために体積膨張や微粉化したりする問題があり、これを防止するために、銀(Ag)や銅(Cu)などを、水素吸収膜5としてのパラジウム(Pd)などに10%程度混合する(合金化も含む)ことが知られている。ここでは、水素脆化の問題を防止するための銀(Ag)や銅(Cu)などをスパッタリングなどで堆積させる際に、その一部に銀(Ag)や銅(Cu)などの酸化物も同時にスパッタリング堆積させるような場合である。そして、その酸化物の導入は、堆積された水素吸収膜5の表面近傍(付近)に堆積させるようにした場合である。

0031

本発明の請求項6に係わる水素ガスセンサは、同一の基板1から熱分離すると共に、薄膜10とは独立した薄膜11を備え、該薄膜11には、ヒータ26と温度センサ21とを備えるが、水素吸収膜5は備えていない形態にしてあり、ヒータ26を所定の電力電圧もしくは電流の下で加熱し、ヒータ26の加熱による雰囲気ガス中の水素ガス濃度による熱伝導率の違いに基づく温度センサ21の出力を利用して、少なくとも1%以上で100%までの水素ガスの濃度も計測できるようにした熱伝導型センサとしての水素ガスセンサ素子をも備えた場合である。

0032

上述の水素ガスセンサは、薄膜10にヒータ25と温度センサ20および酸素含有層を有する水素吸収膜5とを備えてあり、ほぼ5%程度以下の水素ガスの濃度を、加熱後の冷却過程の中で水素吸収膜5に水素ガスを吸収と還元反応により、その発熱に基づく温度上昇分を計測して水素ガス濃度を計測するようにしたメカニズムであったが、このメカニズムとは異なるメカニズムである水素ガスセンサの併用、すなわち、加熱された薄膜11の水素ガス濃度による放熱の違いを利用する、所謂、熱伝導型センサとしての水素ガスセンサをも併用できるようにした水素ガスセンサであり、水素ガス濃度を少なくとも1%から100%までの幅広く検出できるようにしたものである。

0033

加熱による水素ガスの燃焼熱に基づく温度上昇分や上述の加熱停止後の冷却時の水素ガスの水素吸収膜5での吸収に基づく緩慢な冷却過程による本来の熱時定数τの時間経過後の温度計測による水素ガス濃度だけでは、水素ガスの熱伝導率の大きさのために、水素ガス濃度と水素吸収膜5付近の計測温度との特性にピークが存在(ピーク水素ガス濃度の存在で、水素ガス濃度が5%付近に存在する)する。従って、このピークの両側の水素ガス濃度で同一の温度上昇分が存在することになり、加熱停止後の1回の温度上昇分の測定だけでは、広範囲の水素ガス濃度の同定が不可能であった。このために、熱伝導型センサのようなメカニズムの異なる水素ガス濃度計測法の併用が必要であった。

0034

水素ガスは、気体中で最も熱伝導率が大きいので、水素ガスに他の気体を混入させると、純粋な水素ガス(水素ガス濃度が100%)よりも熱伝導率が小さくなるために、宙に浮いた薄膜11を加熱・冷却するときの熱時定数はその分大きくなることが分かっている。従って、逆に、純粋な空気や窒素ガスなどの雰囲気ガスに水素ガスを混入させてゆくときで、燃焼などの発熱反応が無視できるときには、同一の供給電力の下でのヒータ26による薄膜11の加熱では、水素ガス濃度にほぼ比例して薄膜11からの放熱も大きくなり、薄膜11の到達温度が低下して行くことが分かっている。また、加熱後の冷却過程でも、水素ガス濃度にほぼ比例して薄膜11からの放熱も大きくなるから速く冷えることになり、熱時定数が小さくなる。このように、薄膜11では、水素吸収膜5での水素ガスの吸収に基づく発熱反応が無いから、水素ガス濃度に応じてヒータ26による薄膜11の加熱中の飽和温度の値、加熱直後や加熱後の冷却過程での所定の時間経過後や所定の温度に到達する時間経過などの計測により、少なくとも1%以上の水素ガス濃度を正確に計測することができる。しかし、ピーク水素ガス濃度(5%程度)以下の水素ガス濃度範囲では、正確に加熱中止直後からの所定の時間経過時における冷却時の温度計測から水素ガス濃度を計測できるので、少なくとも1%以上の水素ガス濃度の計測が可能であれば十分で、これらの水素吸収膜5の水素による発熱反応による5%程度以下の低水素ガス濃度の計測と少なくとも1%以上100%までの高水素ガス濃度の計測で、1個の水素ガスセンサ素子を用いて広範囲な水素ガス濃度を計測できる。更に、本発明のよる水素吸収膜5の表面近傍への酸素(O)の導入により、高感度化させて、1ppm以下の超低濃度水素ガスの計測も1個の水素ガスセンサ素子を用いて可能になる。なお、自然界の空気中の水素濃度は0.5ppmと言われている。

0035

本発明の請求項7に係わる水素ガスセンサは、薄膜10をカンチレバ形状にした場合である。

0036

ヒータ25、水素吸収膜5と温度センサ20とをカンチレバ状の薄膜10に形成すると、最も温度変化の激しい薄膜10の先端部に温度センサを形成することができる。したがって、高感度の水素ガスセンサが提供できるという利点がある。

0037

本発明の請求項8に係わる水素ガスセンサは、温度センサ20、21を温度差センサとした場合である。

0038

温度センサ20をサーモパイルや熱電対などの温度差のみ検出できる温度差センサを用いると、水素吸収膜5を形成していない参照用センサを必ずしも必要とせずに、水素吸収膜5と温度センサ20とを形成した1個のカンチレバ状の薄膜10だけで、水素ガスの存在していないときの温度を基準として、「ピーク水素ガス濃度」以下の濃度の水素ガス濃度を計測できる。また、基板1を冷接点とし、薄膜10のうち水素吸収膜5が設けられている領域やその近傍の領域に温接点とする熱電対やサーモパイルである温度差センサを用いた場合には、本質的に室温と水素吸収膜5との温度差がそのまま出力として取出せるので、そのまま差動増幅させて、ゼロ位法が適用できるから極めて好都合である。これらの温度センサは、小型で、大量生産性があるので、安価となる。薄膜11に形成した温度センサ21も同様の効果を有する。

0039

本発明の請求項9に係わる水素ガスセンサは、温度センサ20、21に電流を流して前記ヒータ25、26としても利用するようにした場合である。

0040

これらの温度センサと独立にヒータ25を設けず、それぞれ温度センサ20、21兼ヒータ25、26として、これに通電することによりジュール加熱して、マイクロヒータとしても利用するものである。

0041

本発明の請求項10に係わる水素ガスセンサは、基板1に、雰囲気ガスの温度計測用として絶対温度センサを設けた場合である。

0042

水素ガスの水素吸収膜5への吸収量やそれに伴う発熱量は、雰囲気ガス温度に依存する。一般には、雰囲気ガス温度が低いほど、水素の吸収量が多く、これに伴う発熱用も多い。また、100℃程度になると水素ガスの接触燃焼に基づく発熱も発生し、雰囲気ガス温度を知る必要がある。また、水素ガスセンサとして、熱伝導型センサとして利用する場合も、雰囲気ガス温度(周囲温度)の大きさによって、雰囲気ガスの熱伝導度が変化するため大きな影響を受ける。雰囲気ガスの温度計測用の温度センサが必要で、基板1は、雰囲気ガス温度に長く晒されていること、前記温度センサ20、21を温度差センサとした場合は、基板にその冷接点を形成するなど、基準温度とすることが多いので、雰囲気ガスの温度計測用の絶対温度センサを基板1に設けた方が好適である。絶対温度センサには、上述のように、白金や半導体抵抗、ダイオードやトランジスタなどがある。

0043

本発明の請求項11に係わる水素ガスセンサは、基板1を半導体基板とし、該基板1の上方に重ねて形成した犠牲層を介して形成した薄膜10や薄膜11を形成してあり、犠牲層をエッチング除去して空洞を形成してあり、必要に応じて、基板1に水素ガスセンサに係る電子回路を形成できるようにした場合である。

0044

基板1として半導体基板を用いると、成熟した半導体IC化技術により、OPアンプメモリ回路演算回路ヒータ駆動回路表示回路などの各種電子回路を、ここに形成することができる。基板に、異方性エッチング技術などを利用するMEMS技術で基板自体に立体的に加工を施すと、これらのIC化電子回路を形成するスペースが足りなくなり、基板が大型化する傾向になるし、更に、工程上、IC化電子回路を形成した後に異方性エッチングなどを行うことになるので、これらの異方性エッチングの薬品にIC化電子回路の配線などが耐えられないことも起こる。このような場合には、犠牲層エッチング技術を用いて、本発明のように、基板の上に重ねる形で、積み上げた形の宙に浮いた形で、基板から熱分離した薄膜10や薄膜11を形成し、ここに温度センサ20,21やヒータ25、水素吸収膜5の薄膜を形成して、この下部に当たる基板(例えば、単結晶シリコン基板)にも、IC化電子回路を形成すると、面積的にも有効になり、コンパクトな水素ガスセンサを提供することができる。また、薄膜10や薄膜11は、ポリシリコンで形成すると、酸化膜などの絶縁も容易に施せること、温度差センサとしての熱電対のように形成できること、この温度センサをヒータとしても活用できること、水素吸収膜5として、パラジウム(Pd)もスパッタリングなどで容易に形成できること、など、公知のMEMS技術によるドライプロセスなどで容易に形成できるものである。

0045

本発明の請求項12に係わる水素ガスセンサは、ヒータ25、26を所定のサイクルで加熱できるように、少なくとも電子回路を備え、雰囲気ガス中の水素ガス濃度を計測するようにした場合である。

0046

本発明の水素ガスセンサとして、増幅回路、演算回路、メモリ回路などの電子回路を備えて、クロックパルス発生やトランジスタなどで所定のプログラムに沿うようにしてヒータ25、26を所定のサイクルで加熱できるようにしてあるモジュール化した水素ガスセンサを含み、さらに、このモジュール化した水素ガスセンサの本体を搭載して、水素ガス濃度をも表示できるように、電源、演算回路、表示回路をも搭載することができる水素ガスセンサを指すものである。電子回路は、基板として半導体基板を採用して、基板に設けても良いし、水素ガスセンサ素子に近接して設けて、モジュール化しても良い。なお、所定のサイクルとは、必ずしも、一定周期のサイクルとは限らず、繰り返されれば良いものとする。

0047

本発明の水素ガスセンサは、基板から宙に浮かした薄膜10に水素吸収膜5を形成してあるので、その応答速度としての熱時定数τは、薄膜10の寸法にもよるが、数ミリ秒程度の高速動作となる。したがって、水素吸収膜5も薄膜状であるから、ヒータ加熱による水素ガスの放出過程も、この場合、10ミリ秒もあれば済む。また、このような冷却過程の場合、やはり、10ミリ秒もあれば済むことになり、加熱・冷却過程を含めても、30ミリ秒程度あれば十分で、従来にない高速動作の水素ガスセンサが提供できることになる。

0048

ヒータ加熱も、所定の定常温度に薄膜10を加熱して置き、この温度を基準にして、更に所定の温度まで、周期的に所定のサイクルで薄膜10や薄膜11をヒータで加熱しても良い。いずれにしても、水素ガスセンサに形成された水素吸収膜5が、雰囲気ガスの温度である室温、または、ある所定の温度から更に所定の電力などで加熱し、加熱を停止し、冷却されるようにする場合であり、そのときの水素ガスの水素吸収膜5での吸脱過程に基づく温度変化と水素吸収膜5の表面近傍の酸素との発熱反応による温度変化の合算した温度変化、特に、温度上昇分、温度の時間的変化やこれに伴う熱時定数の等価的な変化などを計測して、水素ガス濃度を検出するものである。水素ガス濃度が大きいと同一のヒータ加熱であっても、一般には、その分、水素吸収膜5での反応熱が大きくなり、水素吸収膜5が形成されている薄膜10の温度上昇が大きくなる。しかし、水素ガス濃度が5%程度以上であると、水素ガスの熱伝導率の大きいことに基づく放熱による冷却効果も考慮しなければならない。また、水素吸収膜5の厚みにも依るが、その内部にまで水素ガスが入り込むとなかなか、ヒータ加熱でも水素ガスの脱離(放出)が困難になり、等価的な熱時定数が大きく見える傾向にある。

0049

このように、本発明は、薄膜10をヒータ25で加熱をすることにより、水素吸収膜5からの水素ガスの脱離を促進して、初期状態に戻させるような作用を期待するものである。また、雰囲気ガスの温度である室温は、その環境により測定ごとに異なるので、この温度を計測しておくことが必要である。特に、防爆型などでキャップを被せ場合は、そのキャップない温度が外気温とは異なり数十℃となることがある。従って、基板1の温度もこの温度となり、ここを温度差センサである温度センサ20の冷接点の基準となる室温と言うことになる。水素ガスの吸蔵や吸着を含む吸収は、低い温度の方が大きいが、初期状態または初期条件を一定にするために、敢えて、通常測定する場所の周囲温度よりも少し高めの所定の温度(例えば、30℃)に薄膜10をヒータ25で加熱しておいても良い。

0050

本発明の請求項13に係わる水素ガスセンサは、雰囲気ガス中の水素ガス濃度に応じて、水素吸収膜5を備えた薄膜10を用いて反応熱を利用した水素ガスセンサと薄膜11を用いた熱伝導型の水素ガスセンサとを切り替えることができるようにした場合である。

0051

本発明の水素ガスセンサは、1ppm以下の超低水素濃度域から5%程度までの低水素濃度域から、1%程度以上の100%の高水素濃度域まで、1個の水素ガスセンサ素子を用いて検出または計測するが、高水素濃度域と超・低水素濃度域とを計測するのに異なる原理的メカニズムによるものである。従って、これらを計測するのに、例えば、先ずは、薄膜11を用いた熱伝導型の水素ガスセンサを駆動しておき、この出力結果を踏まえて、1%程度以下の水素ガス濃度であると判定した時には、酸素含有層をもつ水素吸収膜5を備えた薄膜10を用いて反応熱を利用した水素ガスセンサに切り替えるようにすることができる。また、その水素ガス濃度に応じて、ヒータの駆動電圧(結局は、加熱電力)をも切り替えるようにすると良い。また、常に水素吸収膜5を備えた薄膜10を用いて反応熱を利用した水素ガスセンサと薄膜11を用いた熱伝導型の水素ガスセンサとを動作させておき、感度精度を考慮して、水素ガス濃度表示をどちらの水素ガスセンサからの信号で表示するかを決定させるようにすることもできる。ただ、水素吸収膜5を高温で加熱中に、高濃度の水素ガスに晒すと水脆化が促進されたり、還元反応が進み、感度劣化を引き起こすことが問題になる。このような問題を克服するには、水素吸収膜5を備えた薄膜10を用いて反応熱を利用した水素ガスセンサでのヒータ加熱温度は、少なくとも所定の小さな電力で加熱し、その出力程度を考慮し、高感度化が必要な場合は、高感度化できる所定の最適な更に高い加熱温度になるように、ヒータ25の印加電圧を切り替えて調節するようにすると良い。

0052

本発明の請求項14に係わる水素ガスセンサは、水素ガスセンサ素子を、メッシュ構造を有するキャップで覆うことにより、気流遮り、防爆型とした場合である。

0053

上述のように、空気中の水素ガスの濃度が、4.0−75.0%の広い範囲で、爆発性があることが分かっている。本発明では、ヒータ25により水素ガスを水素吸収膜5から放出させたり、熱伝導型センサとしてヒータ加熱したりするので、これらの水素ガス濃度範囲の計測が欠かせない。従って、本発明の水素ガスセンサは、防爆型にする必要がある。防爆型の構造は、従来技術が適用できる。すなわち、金属などのメッシュ構造が好適であり、本発明の水素ガスセンサでは、宙に浮いた薄膜の温度計測をするので、気流の影響を極度嫌うものである。従って、気流を遮るが水素ガスには、スムーズに検出部に到達して貰う必要がある。このような目的にも、気流を遮る金属などの多孔性となるメッシュ構造のキャップが好適である。

発明の効果

0054

本発明の水素ガスセンサでは、基板から熱分離した薄膜10に、温度センサ20と水素ガスを吸収するパラジウムPdなどの水素吸収膜5とを備えてあり、しかも水素吸収膜5の表面近傍に酸素を予め導入しているので、微量の水素濃度であっても、水素ガスの吸収時における発熱反応に加え、水素吸収膜5の還元反応による発熱反応も加わるので、温度変化が大きくなり、超低水素濃度に対しても高感度で高精度の水素ガスセンサが提供できると共に、濃度の高い水素ガスの下でも、水素吸収膜5の表面近傍の酸素が無くなり難いので、安定な水素ガスセンサが提供できると言う利点がある。

0055

本発明の水素ガスセンサでは、パラジウムPdなどの水素吸収膜5をスパッタリングなどで形成する過程で酸素を導入できるので、簡単に水素吸収膜5の表面近傍に酸素を導入できるという利点がある。

0056

本発明の水素ガスセンサでは、簡単に水素吸収膜5の表面近傍に酸素を導入しても水素吸収膜5を薄膜状に形成することができるので、水素ガスに触れる表面積が大きくなること、熱容量が小さく高速応答性があること、雰囲気ガス中の水素ガスが水素吸収膜5に吸収・放出の速度が速いのでやはり高速応答となるという利点がある。また、水素吸収膜5は、必ずしも多孔性である必要がなく、平坦で良いから、経時変化が少ない水素ガスセンサが提供できると言う利点がある。

0057

本発明の水素ガスセンサでは、ヒータ加熱して水素吸収膜5から水素を放出させた後の冷却過程での水素の吸収の基づく発熱反応熱と、この冷却過程での酸素を含有する水素吸収膜5の還元反応によるによる発熱反応熱との合算に基づく薄膜10の温度上昇を、水素が存在しない時の本来の熱時定数τ以降の所定の時間経過後に計測することができるので、高感度の水素センサとなり、S/Nが大きくなると共に、極めて高精度になり得るゼロ位法が適用できるから、超低濃度の水素ガスの検出および計測が可能である。

0058

本発明の水素ガスセンサでは、少なくとも1%から100%までの広範囲の水素ガス濃度を計測するための熱伝導型の水素ガスセンサも併用できるようにしてあるので、1個の水素ガスセンサ素子で1ppm以下から100%までの極めて広範囲水素ガス濃度で、高精度で計測することができるという利点がある。

0059

本発明の水素ガスセンサでは、ヒータ25、水素吸収膜5と温度センサ20とをカンチレバ状の薄膜10に形成すると、最も温度変化の激しい薄膜10の先端部に温度センサを形成することができる。したがって、高感度の水素ガスセンサが提供できるという利点がある。特に、温度センサ20をサーモパイルや熱電対などの温度差のみ検出できるセンサを用いると、水素吸収膜5を形成していない参照用センサを必ずしも必要とせずに、水素吸収膜5と温度センサとを形成した1個のカンチレバ状の薄膜10だけで、水素ガスの存在していないときの温度を基準として、低濃度の水素ガス濃度を計測できると言う利点がある。なお、このときには、ヒータ25として、温度センサ20をジュール加熱してヒータ兼温度センサとしても利用できるという利点がある。特に、温度センサ20を熱電対としたときには、これをヒータ25として利用して加熱した後、冷却過程では、温度センサを温度差センサとして利用するので、そのまま、ゼロ位法が適用できるので、好都合である。

0060

本発明の水素ガスセンサでは、絶対温度センサを、雰囲気ガス中に常に晒し、この雰囲気ガスの温度である室温とほぼ同一の温度になっている基板に備えるので、この基板の温度を基準の温度である室温として利用することができる。特に、温度センサとして、熱電対などの温度差センサを使用したときには、基板を冷接点の基準温度として利用し、この温度からの温度上昇分のみを正確に計測ができる。また、水素ガスの水素吸収膜5に吸収される量や速度などは、この雰囲気ガスの温度に影響されるので、水素ガス濃度の計測における補正に、この基準温度の測定値が必要で、この基準温度の測定値を利用することにより、高精度の水素ガスセンサが提供できる。特に、基板を半導体で形成すると、ダイオードやその他の半導体の温度センサが成熟したIC化技術で形成できるという利点がある。

0061

本発明の水素ガスセンサでは、宙に浮いているカンチレバ状の薄膜10を、これに搭載している薄膜のヒータ25で加熱するので、低消費電力でかつ高速に加熱、冷却ができるという利点があり、また、薄膜状の水素吸収膜5を用いているので、加熱による水素の完全放出も容易で、しかも高速で行うことができるという利点がある。

0062

本発明の水素ガスセンサでは、基板1を半導体基板とし、この基板1の上方に重ねて形成した犠牲層を介して形成した薄膜10や薄膜11を用いることができ、この犠牲層はエッチング除去して空洞を形成してあり、必要に応じて、基板1に電子回路を形成できるので、小さな半導体基板でも電子回路を有効に形成できて、コンパクトな水素ガスセンサが提供できるという利点がある。

0063

本発明の水素ガスセンサでは、水素ガスセンサ素子が、例えば、1mm角程度の小型に形成できる、MEMS技術により大量生産化できるから、多孔質であるメッシュ構造の極めて小型のキャップを取り付けて、防爆型の安価な水素ガスセンサが提供できるという利点がある。

図面の簡単な説明

0064

本発明の水素ガスセンサの特徴となる水素ガスセンサ素子100部の一実施例を示す平面概略図である。(実施例1)
図1のX−X線における断面概略図である。(実施例1)
本発明の水素ガスセンサの特徴となる水素ガスセンサ素子100部の他の一実施例を示す平面概略図である。(実施例2)
本発明の水素ガスセンサの特徴となる水素ガスセンサ素子100部の他の一実施例を示す断面概略図である。(実施例3)
本発明の水素ガスセンサを防爆型とした水素ガスセンサパッケージの一実施例を示す断面概略図である。(実施例4)
本発明の水素ガスセンサの一実施例を示したブロック図である。(実施例5)
本発明の水素ガスセンサの他の一実施例を示したブロック図である。(実施例6)

0065

本発明の水素ガスセンサの基本となる水素ガスセンサ素子は、成熟した半導体集積化技術とMEMS技術を用いて、ICも形成できるシリコン(Si)基板で形成できる。この水素ガスセンサ素子をシリコン(Si)基板を用いて製作した場合について、図面を参照しながら実施例に基づき、以下に詳細に説明する。また、本発明の水素ガスセンサをモジュール化した場合や、このモジュールを利用して水素ガス濃度計として利用する水素ガスセンサについては、そのブロック図を用いて説明する。

0066

図1は、本発明の水素ガスセンサの特徴となるシリコン単結晶を利用して製作したチップ状の水素ガスセンサ素子100の一実施例を示す平面概略図で、図2は、そのX−X断面における断面概略図である。ここでは、基板1としてSOI基板を用いて実施した場合であり、基板1からの熱分離のために宙に浮いた構造の一方の薄膜10と、他方の薄膜としての薄膜11とは、基板1からカンチレバ7として同等に形成してある場合である。一方の薄膜10には、ヒータ25と温度センサ20および水素吸収膜5を備えてあり、図2に示すように、水素吸収膜5の表面には、酸素を導入した水素吸収膜5の酸素含有層6が形成されている。ここでは、ヒータ25と温度センサ20とを兼用にさせた温度差センサである熱電対を形成して、この熱電対に電流を流すことによりジュール発熱させてヒータとしても利用できるようにした場合を示している。なお、この熱電対は、カンチレバ7を構成する低抵抗n型半導体のSOI層12が一方の熱電対導体120aであり、SOI層12の表面を熱酸化して形成した電気絶縁性シリコン酸化膜50を介してスパッタリング形成したニッケルなどの金属層が他方の熱電対導体120bである。水素吸収膜5として、パラジウム(Pd)を、ほぼ1マイクロメートルの厚みにスパッタリング堆積させて、その後、水素吸収膜5の酸素含有層6として、パラジウム(Pd)をスパッタリング堆積時に、真空アルゴン(Ar)雰囲気中に、少量の酸素ガス(O2ガス)を導入して放電させて、反応性スパッタリング堆積で、0.1マイクロメートル程度の厚みに堆積させている。従って、水素吸収膜5として、下部層に純粋のパラジウム(Pd)が形成されてあり、その上に極薄い酸化パラジウム(PdO)を含むパラジウム(Pd)である酸素含有層6が、水素吸収膜5の表面近傍に形成された構造になっている。

0067

他方の薄膜11には、ヒータ26と温度センサ21とは、上述の薄膜10の場合と同様にして形成されている。しかし、この薄膜11には、後述の熱伝導型の水素ガスセンサとして使用するので、水素吸収膜5を形成していない。ただ、必要に応じて、薄膜10を水素ガスセンサとして使用する場合、薄膜11を参照用センサとして利用できるように、水素吸収膜5を除いて、同等な形状にし、水素ガスが無い雰囲気ガス中では、ほぼ同一の熱時定数τになるように調整してある。水素吸収膜5としてパラジウム(Pd)の薄膜を形成している場合である。なお、これらの温度センサに電流を流しジュール加熱をさせて、200℃程度に昇温できるようにしている。その後、ヒータ加熱を停止した後の冷却過程では、本来の温度センサとしての作用を利用するものである。温度センサ20、21は、白金抵抗pn接合ダイオードなどの絶対温度センサでも良いが、ここでは、ゼロ位法がそのまま利用できる熱電対としての温度差センサを使用した場合であり、高精度の水素ガス濃度の計測が可能となる。温度差センサの基準温度を雰囲気ガスの温度である室温と同等と考えられる基板1として、ここに温度差センサである熱電対の冷接点となるように熱電対の電極パッド70,71と熱電対の共通電極パッド75を設けている。また、基準温度である基板1の温度を計測するために絶対温度センサ23を基板に設けた例である。ここでは、絶対温度センサ23は、pn接合ダイオードとした場合である。

0068

水素ガスセンサの動作を説明すると次のようである。薄膜10と薄膜11の長さを300マイクロメートル(μm)程度で、SOI層12の厚みを10μm程度であると、このカンチレバ7の薄膜10と薄膜11の熱時定数τが5ミリ秒(mSec)程度になる。また、SOI層をn型で、0.01Ωcm程度の抵抗率を利用した場合は、熱電対120の抵抗値が100Ω程度であり、加熱電力が100ミリワット程度で200℃程度に加熱される。先ず、水素ガス(H2ガス)を含む雰囲気ガス中、例えば、空気中で、薄膜10と薄膜11とを同時に加熱する。このときの端子は、どちらにも共通電極パッド75と薄膜10のSOI層12からの電極パッド70間に電圧を印加し、温度センサ20をヒータとして作用させて、約150℃程度の室温からの温度上昇をさせて、酸素含有層6を表面付近に備えた水素吸収膜5に吸収されていた水素を放出させる。

0069

次に、加熱用の印加電圧をゼロにしてヒータ加熱を停止させて、温度センサ20としての電極パッド70と共通電極パッド75間のゼーベック起電力を計測する。加熱を停止後、熱時定数τの4から5倍程度の時点では、水素ガスが存在していないと熱電対である温度センサ20のゼーベック起電力の出力電圧はゼロになるが、薄膜10は、水素吸収膜5を有しているので、冷却時に水素ガスの吸収に基づく発熱反応と水素吸収膜5の表面近傍に存在している酸素含有層6での還元反応に基づく発熱反応のために、昇温が見られ、電極パッド70と共通電極パッド75との間の出力電圧(温度センサ20のゼーベック起電力)が観測される。この値は、上述のピーク水素ガス濃度までの低い水素ガス濃度範囲では、単調関数として観測されており、事前に用意した、加熱停止後の特定の時間経過時間での雰囲気ガス中の水素ガス濃度と出力電圧との関係データ校正用データ)を利用して、水素ガス濃度を求めることができる。この場合、水素ガス濃度が0%であれば、温度センサ20のゼーベック起電力の出力電圧は、加熱を停止後、熱時定数τの4から5倍程度の時点では、本質的にゼロになるはずであり、ゼロ位法が適用できるので、特に低水素ガス濃度領域での水素ガス濃度計測に好適である。

0070

水素吸収膜5を備えた薄膜10のみで水素ガス濃度を計測した時には、水素ガス濃が5%程度で最大感度となるが、それよりも水素ガス濃度が高いと、水素ガスの熱伝導率の効果により、むしろ水素ガス濃度が高いと、同一の電力でヒータ25を駆動しても、薄膜10の温度が下がり出すという現象が生じることが分かっている。このように、水素ガス濃度にピーク感度の水素ガス濃度が存在するので、薄膜10と薄膜11とを同時に加熱し、加熱停止した直後の薄膜11の到達温度を、温度センサ20と温度センサ21とでそれらの出力電圧を計測して、この時点での水素ガス濃度と所定の電力で加熱したときの到達温度との関係データを事前に取得しておき、薄膜11の熱伝導型水素ガスセンサを基準にして、雰囲気ガス中の広範囲の水素ガス濃度の大まかな値を求めるようにすると良い。

0071

ヒータ加熱時間中は、水素ガスの水素吸収膜5からの放出と接触燃焼による温度上昇があるが、この加熱期間も所定の時間と定めておき、その下で、水素ガス濃度と所定の電力で加熱したときの到達温度との関係データ(校正用データ)を事前に取得しておく必要がある。この加熱時間も薄膜10の熱時定数τの数倍、例えば、4から5倍にしておく方が安定で再現性の良いデータが得られる。また、この加熱したときの水素ガスの燃焼に基づく温度上昇の出力情報も、水素ガスのピーク水素ガス濃度より多い濃度領域や低い濃度領域での確認情報として利用することもできる。

0072

図1および図2に示した本発明の水素ガスセンサにおける基板1の加工の製作工程の概要を説明すると、次のようである。基板1のSOI層12がn型を用いた場合、温度センサ20、21及びヒータ25として、熱電対120を用いているので、公知の半導体微細加工技術により良好なオーム性接触を得るためにオーム性電極60の箇所には、n型熱拡散領域を形成すると良い。また、基板1に設けてある絶対温度センサ23としてpn接合ダイオードを形成しているが、公知の拡散技術で容易に形成することができる。熱電対の金属の熱電対導体120bとしては、差動増幅をするので、ゼーベック効果を考慮し、すべて配線や電極パッドは同一の金属にする必要がある。ニクロムやニッケル(Ni)系の金属は、強アルカリ系エッチャント耐性があるので、好適である。ドライエッチングなどで強アルカリ系エッチャントに晒されない時にはアルミニウム(Al)系の金属を用いて、そのスパッタリング薄膜形成とフォトリソグラフィにより、オーム性電極や配線110と電極パッドを形成すると良い。Pdの水素吸収膜5のパターンニングは、専用のエッチャントがあり、必要に応じてドライエッチングをする。基板1に形成する空洞40やスリット41は、その裏面からエッチャントやDRIEにより形成して貫通させる。なお、ここでは、薄膜10と薄膜11に形成してある温度センサ20と温度センサ21の熱電対の基板側の冷接点となるn型SOI層12側の端子は、1個の共通電極パッド75としている。

0073

図1図2に示す水素ガスセンサは、同一の基板1から熱分離すると共に、薄膜10とは独立した薄膜11を備えており、この薄膜11には、ヒータ26と温度センサ21とを備えるが、水素吸収膜5は備えていない形態にしてあり、ヒータ26を所定の電力、電圧もしくは電流の下で加熱し、ヒータ26の加熱による雰囲気ガス中の水素ガス濃度による熱伝導率の違いに基づく温度センサ21の出力を利用して、0から100%までの水素ガスの濃度も計測ができるが、少なくとも実質的に1%以上で100%までの水素ガスの濃度が計測できるようにした熱伝導型センサとして動作させることができる。これは、ヒータ26を所定の電力、例えば、200ミリワットで駆動して、その時の加熱中の薄膜11の温度または、加熱後の所定の経過時間後の温度などを温度センサ21の出力を利用して雰囲気ガス中の水素ガス濃度を計測するもので、水素ガス濃度が大きいほど、同一のヒータ電力の下では、薄膜11の温度上昇が小さいという原理に基づくものである。水素ガスは、気体中で最も熱伝導率が大きいので、1%程度の微量の水素濃度でも計測でき、0%から100%濃度まで、所定のヒータ電力の下では単調な温度変化を示すので、安定な水素ガス濃度センサとして動作できる。

0074

図3は、本発明の水素ガスセンサの特徴的な水素ガスセンサ素子100の他の一実施例を示す平面概略図である。実施例1の図1及び図2に示した水素ガスセンサ素子100との大きな違いは、図1図2では、薄膜10,11がカンチレバ構造であったのに対し、図3では、架橋構造3で両端支持の梁18で構成されている点である。このようにすることにより、基板1への熱伝導が大きくなり易く、水素吸収による発熱が同一でも温度上昇が小さくなると言う問題もあるが、その分、応答速度が大きくなり、薄膜10,11が強度的に強くなると言う利点があり、温度センサ20,21も実施例1の図1図2の場合と同様に基板1の片側にその電極パッド70,71および共通電極パッド75を設けている例である。しかし、ヒータ25,26と温度センサ20,21とを分離するために複雑な配線が必要な場合など、必要に応じて、基板1のうち、架橋構造3で両端支持部の両側にこれらの電極パッドを形成には好適である。ここでも、薄膜10,11のそれぞれにヒータ25,26と温度センサ20,21が形成されているが、これらもヒータ兼温度差センサとしての役割をさせた場合である。なお、水素ガス濃度の計測法は、実施例1の場合と同様であるので、ここでは説明を省略する。

0075

薄膜10や薄膜11が架橋構造3でありながら微少の発熱でも大きな温度上昇分を得るには、架橋構造3の梁18の長さが長い方が良い。また、基板1にシリコン単結晶からなるSOI基板を使用する場合は、MEMS技術で基板1にエッチャントで空洞40やスリット41を形成するなど立体的加工を施すには、結晶方位が重要である。なぜなら、結晶の(111)面のエッチング速度が、他の方位よりも極端に遅いことを利用して、エッチストップをかけるなど、高精度の空洞40などを形成するのに結晶方位を利用するからである。幅の狭い空洞40部に、長い架橋構造3の梁18を形成するには、架橋構造3の梁18の結晶方位に対する角度と幅を考慮して、可能な限り短時間に結晶シリコンがエッチングされて、長い架橋構造3の梁18が形成されるようにする必要がある。ここでの実施例では、基板1の(100)結晶面の表面に対し、(110)方向の空洞40の長さ方向に対し、45度の角度を有するように、長い架橋構造3の梁18を形成した場合で、両端支持部に対して架橋構造3の梁18は、全体としてカンチレバのようになっていると考えることもできる。カンチレバの先端部でもあり、架橋構造3の梁18の中央部でもある領域に、薄膜10では、酸素含有層6を表面近傍に備えた水素吸収膜5を設けてあり、薄膜11には、水素吸収膜5を設けないようにしている。温度センサ20,21は、この場合も温度差センサである熱電対を使用したもので、ヒータ25、26も兼用に用いることができるようにしてある。なお、これらの熱電対は、熱電対導体120aとしてのn型SOI層12と、熱電対導体120bとしてのニッケルやニクロムなどの金属膜からなる場合である。熱電対導体120aとしてのn型SOI層12の端子は、温度センサ20,21とも共通にしてあり、同一箇所のオーム性電極60を介した共通電極パッド75である。

0076

図3の水素ガスセンサ素子100の製作工程は、公知のMEMS技術により前述の実施例1の場合と同様で、容易であるので、ここでは詳細な説明は省略する。また、水素ガス濃度計測は、前述の実施例1とほぼ同様である。なお、ここでの図3の図面では、基板1の絶対温度を知るための絶対温度センサ23も省略している。

0077

図4には、本発明の水素ガスセンサの特徴的な水素ガスセンサ素子100の他の一実施例を示す断面概略図を示す。前述の実施例では、水素ガスセンサ素子100に設けてある薄膜10や薄膜11は、シリコンなどの基板1自体を立体的に加工して、下部に空洞40を有するようにして、基板1から熱分離していた。ここでの実施例は、MEMS技術で公知である犠牲層エッチング技術で、犠牲層膜(ここでは示していない。空洞40の箇所に埋め込められていたが、空洞形成時にエッチング除去されている)の上に重ねてカンチレバや架橋構造3の梁18となる薄膜を形成しておき、その後、犠牲層をエッチング除去して基板1の上に、空洞40部を作成して、薄膜10や薄膜11(図4では、見えない)を、カンチレバ7形状や架橋構造3に形成して、基板1からの熱分離を図るものである。このような基板1の上に薄膜10や薄膜11を形成するようにした場合は、それらの下部に当たる基板1に、水素ガスセンサとして動作させるための各種のIC化電子回路600、例えば、OPアンプ、各種増幅回路、ヒータ25,26の駆動回路、演算回路、メモリ回路、制御回路、表示回路などを事前に作成しておき、その後に、薄膜10や薄膜11を形成する。このようにすると、水素ガスセンサ素子の形状がコンパクトになり、電子回路も一体化した、水素ガスセンサが提供できる。薄膜10や薄膜11の主体をポリシリコンにすれば、ヒータ25,26や熱電対なども作りやすく、好適である。図4の実施例では、n型低抵抗のポリシリコン薄膜で薄膜10や薄膜11を形成してあり(ここでは、熱電対導体120aとして利用されており、ヒータ25の一部にもなっている)、犠牲層エッチングの結果、空洞40が形成され、アンカー部360で、シリコン単結晶の基板1に固定されて、自立した基板1から熱分離した構造体となっている様子を示している。酸素含有層6を表面近傍に備えた水素吸収膜5もパラジウム(Pd)を用いてあり、スパッタリングで前述の実施例と同様に形成できる。水素ガスセンサとしての動作も、基板1自体を加工して形成した薄膜10や薄膜11を用いた前述の実施例と同様であるので、ここではその説明を省略する。

0078

図5には、本発明の水素ガスセンサの特徴的な上述の実施例で述べた水素ガスセンサ素子100を、メッシュ構造を有するキャップ200で覆うことにより、気流を遮り、防爆型とした水素ガスセンサパッケージの一実施例を示す断面概略図である。アルミナ基板難燃性プラスチック基板などからなる素子ホルダ500に水素ガスセンサ素子100を接合してあり、リード300を備えた電気絶縁性のリードホルダ350が接合されて、電気的にリード接合部310を介してリード300と水素ガスセンサ素子100の各電極パッドとが接合されるようにしている。また、リード300を通して、外部と水素ガスセンサ素子100との電源供給電気信号入出力が行われるようにしてある。更に、水素ガスセンサ素子100の薄膜10や薄膜11が設けられている空洞40部付近に、多孔性であるメッシュ構造部210が来るように、メッシュ構造を有するキャップ200を接合している。また、必要に応じて、素子ホルダ500にもメッシュ構造部210を備えるとより効果的である。本実施例では、素子ホルダ500にもメッシュ構造部210を備えた場合を示している。

0079

図6には、本発明の水素ガスセンサの他の一実施例を示したブロック図であり、特徴的な水素ガスセンサ素子100を組み込んだ水素ガスセンサパッケージと電子回路とを一体化させてモジュール化した場合である。本実施例では、電子回路としてのヒータ駆動回路、増幅回路及び演算回路としている。ここでは、外部から電源を得るようにしてあり、更に水素ガス濃度に関係する信号を外部に取出せるようにした出力信号端子も備えた場合である。

0080

図7には、本発明の水素ガスセンサの他の一実施例を示したブロック図であり、実施例7に示している水素ガスセンサパッケージと電子回路とを一体化してモジュール化した水素ガスセンサを、更に、水素ガス濃度計として提供できるようにした水素ガスセンサであり、電源回路、制御回路および水素ガス濃度などを表示できる表示回路をも組み込み装置化したものである。更に、外部に水素ガス濃度の信号を出力できるようにした出力信号端子も備えた場合である。

0081

上述では、n型SOI層12を用いた場合の水素ガスセンサ素子であったが、もちろん、p型のSOI層12を利用しても、同様のセンサが達成できる。

実施例

0082

本発明の水素ガスセンサは、本実施例に限定されることはなく、本発明の主旨、作用および効果が同一でありながら、当然、種々の変形がありうる。

0083

本発明の水素ガスセンサは、雰囲気ガス中の水素ガスの濃度を、宙に浮いた薄膜10に形成した水素吸収膜5での吸収による発熱反応と水素吸収膜5の表面近傍に形成した酸素含有層6の水素還元に基づく発熱反応との合算による温度上昇分を、そこに形成してある温度差センサである温度センサ20で計測して、極めて微量の1ppm程度の水素濃度も検出できるようにした高感度で、しかも高精度で計測するための熱型センサである。そして、更に、少なくとも1%から100%までの高濃度水素ガス域も、同一基板1に薄膜10とは同様であるが水素吸収膜5を有しない独立に形成した薄膜11を利用して、熱伝導型水素ガスセンサとして併用できるようにしたものである。例えば、本発明の水素ガスセンサを大気中の水素ガスの濃度の計測用に適用した場合、宙に浮いた薄膜に温度差のみを高感度で、しかも高精度で検出する、超小型の熱電対を使用し、ヒータ加熱停止後の所定の時間以降で温度差センサのゼーベック起電力を計測するとゼロ位法適用できるので、特に、空気中での爆発限界の4%以下の低水素濃度や1ppm程度の超低水素濃度を、極めて高精度で水素ガス濃度を計測できる。このようにして、自然界に存在する水素ガス濃度である0.5ppmから100%までの広範囲な水素ガス濃度を1個の水素ガスセンサ素子で検出、計測できるので、その産業への応用は広い。

0084

1基板
3架橋構造
5水素吸収膜
6酸素含有層
7カンチレバ
10、11薄膜
12SOI層
13BOX層
18 梁「
20、21温度センサ
23絶対温度センサ
25、26ヒータ
40 空洞
41スリット
50シリコン酸化膜
51電気絶縁膜
60オーム性電極
70,71電極パッド
75共通電極パッド
100水素ガスセンサ素子
110配線
120a, 120b熱電対導体
200キャップ
210メッシュ構造部
300リード
310 リード接合部
350リードホルダ
360アンカー部
400 空隙
500素子ホルダ
600IC化電子回路

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ