図面 (/)

技術 光学デバイス及び光学デバイスの製造方法

出願人 セイコーインスツル株式会社
発明者 林恵一郎
出願日 2012年12月18日 (5年11ヶ月経過) 出願番号 2012-275215
公開日 2014年6月30日 (4年4ヶ月経過) 公開番号 2014-120635
状態 特許登録済
技術分野 受光素子1(共通事項、放射線検出) 発光ダイオード 半導体容器とその封止 LED素子のパッケージ
主要キーワード 耐温度性 金属接合材 貴金属ペースト 光学活性領域 卑金属ペースト 高気密性 表面外周 ベース蓋
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2014年6月30日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (7)

課題

気密性が高く、耐湿性耐海水性等の耐候性に優れた光学デバイス1を低コストで提供することができる。

解決手段

光学デバイス1は、ベース基板2と、ベース基板2に実装され、ベース基板2とは反対側の表面に光学活性領域4を有する光学チップ3と、凹部5を有し、凹部5に光学チップ3を収容してベース基板2に金属接合材10を介して陽極接合金属間接合半田接合等により接合される透光性を有する蓋体6と、を備えるようにした。

概要

背景

フォトダイオード発光ダイオードを用いた光学デバイスが実用化されている。例えば、照明装置自動点灯制御、液晶ディスプレイバックライトの明るさの制御、携帯電話キーパッドバックライト制御監視カメラ暗視野切り替え制御等の分野で光検知の手段とし使用されている。また、発光素子と組み合わせて近接センサを構成し、物体の有無や距離の測定にも使用されている。

図5は、この種の光学デバイスのパッケージ構造30を示す断面模式図である(特許文献1の図3)。ベースとなるセラミック基板31には固体撮像素子32が搭載される。セラミック基板31は3層又はそれ以上の多層構造をなし、層間に所定本数導電膜33aがパターン形成される。各々の導電膜33aの一端はセラミック基板31上の固体撮像素子32の周辺部に近接配置され、そこに固体撮像素子32の電極部から引き出されたボンディングワイヤ34が接続される。一方、各々の導電膜33aの他端はセラミック基板31の外側面に露出しており、その露出部分に側面導電膜33bが形成される。そして、各々の側面導電膜33bにリード端子35がセラミック基板31の裏側方向に垂直に伸びるようにろう付けされる。さらに、セラミック基板31の上端部にはシールガラス36が接合され、シールガラス36によって固体撮像素子32が気密封止される。

図6は、他の光学デバイスのパッケージ構造を示す断面模式図である(特許文献1の図2)。固体撮像装置41は、主にベース基板42、固体撮像素子43、樹脂枠44及び透明板45から構成される。ベース基板42はセラミック基板からなる平板構造を成す。固体撮像素子43はCCD素子からなりベース基板42の中央部に実装される。ベース基板42の両側は平面視半円状の凹部46が所定の間隔で形成される。ベース基板42の上には各々の凹部46面を経由して断面コの字形厚膜導電材料からなる導電膜47が形成される。導電膜47の一端部47aは固体撮像素子43の周辺部に近接配置され、導電膜47の他端部47bはベース基板42の素子実装面とは反対側の面に延出し、その延出部分基板表面に露出させて外部接続用の電極部とする。固体撮像素子43の上面周縁部には複数の電極部が形成され、この電極部と一端部47aはボンディングワイヤ48により接続される。樹脂枠44はベース基板42上の固体撮像素子43を取り囲むように形成される。透明板45はベース基板42の素子実装面との間に所定の空間を確保した状態で、樹脂枠44の上端部に接合される。これにより、従来の中空パッケージ構造に比較して製造工程が大幅に簡略化されることが記載されている。

概要

気密性が高く、耐湿性耐海水性等の耐候性に優れた光学デバイス1を低コストで提供することができる。光学デバイス1は、ベース基板2と、ベース基板2に実装され、ベース基板2とは反対側の表面に光学活性領域4を有する光学チップ3と、凹部5を有し、凹部5に光学チップ3を収容してベース基板2に金属接合材10を介して陽極接合金属間接合半田接合等により接合される透光性を有する蓋体6と、を備えるようにした。

目的

本発明は上記課題に鑑みてなされたものであり、フィルター機能を有する透明板を使用することができ、簡単な工程で製造することができ、高気密性を有する光学デバイス及びその製造方法を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

ベース基板と、前記ベース基板に実装され、前記ベース基板とは反対側の表面に光学活性領域を有する光学チップと、凹部を有し、前記凹部に前記光学チップを収容して前記ベース基板に金属接合材を介して接合される透光性蓋体と、を備える光学デバイス

請求項2

前記金属接合材は、前記ベース基板の側に形成される第一金属膜と前記蓋体の側に形成される第二金属膜を含み、前記第一又は第二金属膜は、下地層がCr、Ni、Ta、Al、Cuのいずれかを含む層からなり、表面層がAu、Snのいずれかを含む層からなる積層構造を有する請求項1に記載の光学デバイス。

請求項3

前記金属接合材は、前記ベース基板の側に形成される第一金属膜と前記蓋体の側に形成される第二金属膜を含み、前記第一又は第二金属膜はナノ銀粒子から形成される請求項1に記載の光学デバイス。

請求項4

前記第一金属膜と前記第二金属膜とは超音波接合又は半田接合により接合される請求項1〜3のいずれか一項に記載の光学デバイス。

請求項5

前記金属接合材は導電膜を含み、前記ベース基板と前記蓋体6とが陽極接合により接合される請求項1に記載の光学デバイス。

請求項6

前記蓋体は特定の光の波長を透過するフィルター機能を有する請求項1〜5のいずれか一項に記載の光学デバイス。

請求項7

表面から反対側の裏面に貫通する貫通電極を備えるベース基板を準備するベース基板準備工程と、表面に光学活性領域を有する光学チップを前記ベース基板の表面に実装する光学チップ実装工程と、凹部が形成される蓋体を準備する蓋体準備工程と、前記光学チップを前記凹部に収納して前記蓋体を前記ベース基板に設置する蓋体設置工程と、前記凹部を形成する側壁の上面と前記ベース基板の表面とを金属接合材を介在させて接合する接合工程と、を備える光学デバイスの製造方法。

請求項8

前記ベース基板準備工程は、前記ベース基板の前記蓋体が接合される領域の表面に第一金属膜を形成する工程と、前記蓋体準備工程は、前記側壁の上面に第二金属膜を形成する工程と、を含む請求項7に記載の光学デバイスの製造方法。

請求項9

前記接合工程は、前記第一金属膜と前記第二金属膜とを超音波接合又は半田接合により接合する請求項8に記載の光学デバイスの製造方法。

請求項10

前記接合工程は、前記蓋体と前記ベース基板とを陽極接合により接合する請求項7に記載の光学デバイスの製造方法。

請求項11

前記光学チップ実装工程は、前記ベース基板に複数の前記光学チップを実装する工程であり、前記蓋体準備工程は、前記蓋体に複数の凹部を形成する工程を含み、前記蓋体設置工程は、複数の前記光学チップを複数の前記凹部にそれぞれに収納して前記蓋体を前記ベース基板に設置する工程であり、前記接合工程の後に、個々の光学デバイスに分離する分離工程を備える請求項7〜10のいずれか一項に記載の光学デバイスの製造方法。

技術分野

0001

本発明は、可視光の光を発光し又は検出する光学デバイス及びその製造方法に関する。

背景技術

0002

フォトダイオード発光ダイオードを用いた光学デバイスが実用化されている。例えば、照明装置自動点灯制御、液晶ディスプレイバックライトの明るさの制御、携帯電話キーパッドバックライト制御監視カメラ暗視野切り替え制御等の分野で光検知の手段とし使用されている。また、発光素子と組み合わせて近接センサを構成し、物体の有無や距離の測定にも使用されている。

0003

図5は、この種の光学デバイスのパッケージ構造30を示す断面模式図である(特許文献1の図3)。ベースとなるセラミック基板31には固体撮像素子32が搭載される。セラミック基板31は3層又はそれ以上の多層構造をなし、層間に所定本数導電膜33aがパターン形成される。各々の導電膜33aの一端はセラミック基板31上の固体撮像素子32の周辺部に近接配置され、そこに固体撮像素子32の電極部から引き出されたボンディングワイヤ34が接続される。一方、各々の導電膜33aの他端はセラミック基板31の外側面に露出しており、その露出部分に側面導電膜33bが形成される。そして、各々の側面導電膜33bにリード端子35がセラミック基板31の裏側方向に垂直に伸びるようにろう付けされる。さらに、セラミック基板31の上端部にはシールガラス36が接合され、シールガラス36によって固体撮像素子32が気密封止される。

0004

図6は、他の光学デバイスのパッケージ構造を示す断面模式図である(特許文献1の図2)。固体撮像装置41は、主にベース基板42、固体撮像素子43、樹脂枠44及び透明板45から構成される。ベース基板42はセラミック基板からなる平板構造を成す。固体撮像素子43はCCD素子からなりベース基板42の中央部に実装される。ベース基板42の両側は平面視半円状の凹部46が所定の間隔で形成される。ベース基板42の上には各々の凹部46面を経由して断面コの字形厚膜導電材料からなる導電膜47が形成される。導電膜47の一端部47aは固体撮像素子43の周辺部に近接配置され、導電膜47の他端部47bはベース基板42の素子実装面とは反対側の面に延出し、その延出部分基板表面に露出させて外部接続用の電極部とする。固体撮像素子43の上面周縁部には複数の電極部が形成され、この電極部と一端部47aはボンディングワイヤ48により接続される。樹脂枠44はベース基板42上の固体撮像素子43を取り囲むように形成される。透明板45はベース基板42の素子実装面との間に所定の空間を確保した状態で、樹脂枠44の上端部に接合される。これにより、従来の中空パッケージ構造に比較して製造工程が大幅に簡略化されることが記載されている。

先行技術

0005

特開平10−144898号公報

発明が解決しようとする課題

0006

図5に示される光学デバイスのパッケージ構造30では、多層構造のセラミック基板に階段状の凹部を形成し、その凹部の底面に固体撮像素子32を実装して気密封止用の空間を確保している。そのため、セラミック基板31の製造工程が煩雑になり、セラミック基板31の材料費加工費が高くなる、という課題があった。

0007

また、図6に示される固体撮像装置41のパッケージ構造では、樹脂枠44の上端部を平坦に形成し、透明板45とベース基板42との間に形成される中空部を気密封止するのは難しい。つまり、透明板45をベース基板42側に押圧しながら加熱すると、樹脂枠44は軟化して所定の高さの中空部を形成することが困難となる。また、樹脂枠44として熱硬化型樹脂に代えて紫外線硬化型樹脂を使用すると、紫外線カットするフィルター機能を有する透明板45を使用することができなくなる。

0008

本発明は上記課題に鑑みてなされたものであり、フィルター機能を有する透明板を使用することができ、簡単な工程で製造することができ、高気密性を有する光学デバイス及びその製造方法を提供することを目的とする。

課題を解決するための手段

0009

本発明の光学デバイスは、ベース基板と、前記ベース基板に実装され、前記ベース基板とは反対側の表面に光学活性領域を有する光学チップと、凹部を有し、前記凹部に前記光学チップを収容して前記ベース基板に金属接合材を介して接合される透光性蓋体と、を備えることとした。

0010

また、前記金属接合材は、前記ベース基板の側に形成される第一金属膜と前記蓋体の側に形成される第二金属膜を含み、前記第一又は第二金属膜は、下地層がCr、Ni、Ta、Al、Cuのいずれかを含む層からなり、表面層がAu、Snのいずれかを含む層からなる積層構造を有することとした。

0011

また、前記金属接合材は、前記ベース基板の側に形成される第一金属膜と前記蓋体の側に形成される第二金属膜を含み、前記第一又は第二金属膜はナノ銀粒子から形成されることとした。

0012

また、前記第一金属膜と前記第二金属膜とは超音波接合又は半田接合により接合されることとした。

0013

前記金属接合材は導電膜を含み、前記ベース基板と前記蓋体6とが陽極接合により接合されることとした。

0014

また、前記蓋体は特定の光の波長を透過するフィルター機能を有することとした。

0015

本発明の光学デバイスの製造方法は、表面から反対側の裏面に貫通する貫通電極を備えるベース基板を準備するベース基板準備工程と、表面に光学活性領域を有する光学チップを前記表面とは反対側の裏面を前記ベース基板の表面に向けて実装する光学チップ実装工程と、凹部が形成される蓋体を準備する蓋体準備工程と、前記光学チップを前記凹部に収納して前記蓋体を前記ベース基板に設置する蓋体設置工程と、前記凹部を形成する側壁の上面と前記ベース基板の表面とを金属接合材を介在させて接合する接合工程と、を備えることとした。

0016

また、前記ベース基板準備工程は、前記ベース基板の前記蓋体が接合される領域の表面に第一金属膜を形成する工程と、前記蓋体準備工程は、前記側壁の上面に第二金属膜を形成する工程と、を含むこととした。

0017

また、前記接合工程は、前記第一金属膜と前記第二金属膜とを超音波接合又は半田接合により接合することとした。

0018

また、前記接合工程は、前記蓋体と前記ベース基板とを陽極接合により接合することとした。

0019

また、前記光学チップ実装工程は、前記ベース基板に複数の前記光学チップを実装する工程であり、前記蓋体準備工程は、前記蓋体に複数の凹部を形成する工程を含み、前記蓋体設置工程は、複数の前記光学チップを複数の前記凹部にそれぞれに収納して前記蓋体を前記ベース基板に設置する工程であり、前記接合工程の後に、個々の光学デバイスに分離する分離工程を備えることとした。

発明の効果

0020

本発明の光学デバイスは、ベース基板と、ベース基板に実装され、ベース基板とは反対側の表面に光学活性領域を有する光学チップと、凹部を有し、凹部に光学チップを収容してベース基板に金属接合材を介して接合される透光性の蓋体と、を備える。これにより、光学チップを収納する高気密性の空間を確実に形成することができ、構造が簡素なので低コストで光学デバイスを提供することができる。

図面の簡単な説明

0021

本発明の第一実施形態に係る光学デバイスの断面模式図である。
本発明の第二実施形態に係る光学デバイスの製造方法を表す工程図である。
本発明の第二実施形態に係る光学デバイスの製造工程の説明図である。
本発明の第二実施形態に係る光学デバイスの製造工程の説明図である。
従来公知の光学デバイスのパッケージ構造を示す断面模式図である。
従来公知の光学デバイスのパッケージ構造を示す断面模式図である。

実施例

0022

(第一実施形態)
図1は、本発明の第一実施形態に係る光学デバイス1の断面模式図である。光学デバイス1は、ベース基板2と、ベース基板2の上に実装される光学チップ3と、光学チップ3を収納しベース基板2に金属接合材10を介して接合される透光性の蓋体6とを備える。光学チップ3はベース基板2とは反対側の表面に光学活性領域4を有する。蓋体6は凹部5を有し、凹部5に光学チップ3を収容する。

0023

具体的に説明する。ベース基板2は、ガラス材料ソーダ石灰ガラス硬質ガラスアルミナガラス等)、石英セラミックスプラスチック材料ガラスエポキシ樹脂エポキシ系樹脂アクリル系樹脂ポリイミド系樹脂アラミド不織布等)を使用することができる。蓋体6は透光性の材料を使用することができる。例えば、ガラス材料、石英、セラミックス、プラスチック材料を使用することができる。蓋体6として、特定の光の波長を透過するフィルター機能を有する材料を使用することができる。例えば、粉砕したリン酸塩ガラス混入して視感度特性に近い分光特性を付与したガラス材料や透光性プラスチック材料を使用することができる。また、表面に光干渉膜を形成してフィルター機能を付与してもよい。光学チップ3として、フォトダイオード、発光素子等の光学チップを使用することができる。

0024

ベース基板2は、板厚方向に貫通する貫通電極11と、貫通電極11に電気的に接続し、ベース基板2の表面に形成される内部電極9と、表面とは反対側の裏面に形成される外部電極8とを備える。貫通電極11は、Ag、Au系の貴金属ペーストや、Cu、Ni系の卑金属ペースト等の圧膜導電体材料により、また、Cuの電解メッキ又は無電解メッキにより形成することができる。また、コバールステンレス等の金属線材から形成することができる。内部電極9は、単層の金属膜の他に、Au/Ni/Cuの積層構造としてもよい。

0025

ベース基板2と蓋体6とは金属接合材10を介して陽極接合、超音波接合、又は半田接合により接合される。陽極接合の場合は、例えば、ベース基板2と蓋体6にソーダ石灰ガラスを使用し、金属接合材10としてベース基板2又は蓋体6のいずれかの接合領域にアルミニウム膜シリコン膜等からなる導電膜を形成する。そして、ベース蓋体6を基板2に加圧しながら300℃〜450℃に加熱し、接合部に数100Vの高電圧印加して行うことができる。

0026

また、超音波接合の場合は、ベース基板2と蓋体6にガラス材料、セラミックス、プラスチック材料を使用し、ベース基板2の表面外周に金属接合材10としての第一金属膜10aを形成し、蓋体6の凹部5を形成する側壁の上面に金属接合材10としての第二金属膜10bを形成する。そして、ベース基板2に蓋体6を載置し第一金属膜10aと第二金属膜10bを密着させて、加熱及び加圧しながら超音波を印加して接合することができる。ここで、第一金属膜10aや第二金属膜10bとして、例えばAg、Cu、Ni、Au、Cr、Al等の単体層、或いはこれらの積層構成を用いることができる。また、第一金属膜10aや第二金属膜10bは、下地のベース基板2又は蓋体6に対して密着性の良い材料からなる下地層と、金属間接合の容易な表面層とからなる積層構造とすることができる。下地層は、例えばCr、Ni、Ta、Al、Cuのいずれかを含み、表面層は、例えばAu、Snのいずれかを含むようにする。例えば、下地層としてCuを約2wt%含むAlとすれば、下地に対する密着性を向上させることができる。また、第一又は第二金属膜10a、10bとして、或いは第一及び第二金属膜10a、10bとしてナノ銀粒子からなる層を形成することができる。ナノ銀粒子は直径が1nm〜10nmの銀粒子からなり、温度100℃〜200℃の比較的低い温度で高い反応性を有する。従って、ベース基板2と蓋体6とを比較的低温で接合することができる。

0027

このように、光学チップ3が実装されるベース基板2に蓋体6を被せる構造なので、温度設定や加圧の大きさによって内部空間が潰れることがなく、光学チップ3を確実に収納することができる。また、簡素な構造なので低コストで製造することができる。更に、ベース基板2と蓋体6とを金属接合材10を用いて接合するので、気密性が高く耐湿性耐海水性耐温度性等の耐候性に優れた光学デバイス1を提供することができる。

0028

また、母材たるベース基板2と蓋体6とを金属接合材10を用いて接合するため、母材の融点温度よりも低い温度で接合できることとなり、高精度な製品出来上がり寸法を実現することができる。さらに、母材たるベース基板2と蓋体6とを金属接合材10を用いて接合するため、母材の融点温度よりも低い温度で接合できることとなり、例えば、非常に薄い厚さの蓋体6を適用することもできる。また、金属接合材10が、ベース基板2と蓋体6の間に浸透するため、気密性が高いとともに、接合面が複雑な形状であっても接合することができる。

0029

(第二実施形態)
図2は、本発明の第二実施形態に係る光学デバイスの製造方法を表す工程図である。図3及び図4は、本発明の第二実施形態に係る光学デバイスの製造工程の説明図である。同一の部分又は同一の機能を有する部分には同一の符号を付している。

0030

まず、ベース基板準備工程S1において、表面から反対側の裏面に貫通する貫通電極11を備えるベース基板2を準備する。次に、光学チップ実装工程S2において、表面に光学活性領域4を有する光学チップ3をベース基板2の表面に実装する。また、蓋体準備工程S3において、凹部5が形成される蓋体6を準備する。次に、蓋体設置工程S4において、光学チップ3を凹部5に収納して蓋体6をベース基板2に設置する。次に、接合工程S5において、凹部5を形成する側壁の上面とベース基板2の表面とを金属接合材10を介在させて接合する。接合は、陽極接合、超音波接合又は半田接合により行うことができる。次に、外部電極形成工程S6において、ベース基板2の裏面に、貫通電極11と電気的に接続する外部電極8を形成する。

0031

このように、凹部5が形成される蓋体6を、光学チップ3を実装したベース基板2に、金属接合材10を介して接合する。そのため、構造が簡素であり、光学チップ3を確実に収納することができ、気密性が高く、耐候性に優れた光学デバイス1を低コストで製造することができる。なお、ベース基板2、蓋体6、金属接合材10、ベース基板2のそれぞれの材料については第一実施形態において説明したと同様なので説明を省略する。また、外部電極形成工程S6は、ベース基板準備工程S1の際に形成しておくことができるので、本発明の必須要件でない。また、S1〜S6は必ずしも製造工程の順番を表すものではなく、蓋体準備工程S3は蓋体設置工程S4の前であればよく、外部電極形成工程S6はどの段階で実施してもよい。

0032

以下、図3及び図4を参照して具体的に説明する。以下、ベース基板2としてソーダ石灰ガラスを使用し、蓋体6として粉砕したリン酸塩ガラスが混入するソーダ石灰ガラスを使用する。また、光学チップ3としてフォトダイオードを使用し、ベース基板2と蓋体6との間を超音波接合による封止する例である。

0033

図3(S1)は、ベース基板準備工程S1におけるベース基板2の断面模式図である。まず、型成形法によりベース基板2を軟化させて貫通孔を形成する。次に、貫通孔に貫通電極11を挿入して貫通電極11とベース基板2とを熱溶着する。貫通電極11は、金属材料、例えばコバール、ステンレス、42アロイ等を使用することができる。次に、ベース基板2を研削又は研磨して、少なくとも蓋体6を接合する側の表面を平坦化する。次に、内部電極9を貫通電極11と重なるように形成して貫通電極11に導通させる。内部電極9は、金属等からなる導電体蒸着法、スパッタリング法ディスペンス法或いは印刷法により形成することができる。更に、ベース基板2の蓋体6が接合される領域の表面に第一金属膜10aを形成する。

0034

第一金属膜10aは、光学チップ3や貫通電極11が形成される領域を取り囲むように形成する。蒸着法、スパッタリング法等により金属膜をベース基板2の表面に堆積し、フォトリソグラフィ及びエッチング法により第一金属膜10aのパターンを形成することができる。また、ディスペンス法や印刷法によりナノ銀粒子膜のパターンを形成し、乾燥・焼成してナノ銀粒子から第一金属膜10aを形成することができる。なお、第一金属膜10aを形成する工程で同時に内部電極9を形成してもよい。

0035

第一金属膜10aは、ベース基板2側に形成する下地層と、その上面に形成する表面層との積層構造とする。例えば、表面層としてAu、Snなどの比較的低温で接合可能な材料を使用し、下地層としてCr、Ni、Ta、Al,Cuのいずれかを含み、下地に対する密着性の高い材料を使用する。第一金属膜10aを、例えば、表面側からAu/Ni/Crの積層構造とすることができる。また、下地層としてCuを約2wt%を含むAl層を約1000Å形成すれば、ガラスに対して密着性を高めることができる。

0036

図3(S2)は、光学チップ実装工程S2におけるベース基板2及び光学チップ3の断面模式図である。表面に光学活性領域4を有する光学チップ3を光学活性領域4が形成される表面とは反対側の裏面をベース基板2の表面に向けて実装する。本実施形態においては、光学チップ3としてフォトダイオードチップを用い、光学活性領域4が受光面となる。光学チップ3の表面の光学活性領域4より外側には電極パッド12が形成され、この電極パッド12とベース基板2の表面に形成される内部電極9との間をワイヤーボンディングにより金線などからなるワイヤー7を接続する。これにより、光学チップ3と貫通電極11とが電気的に接続される。

0037

図3(S3)は、蓋体準備工程S3における蓋体6の断面模式図である。ガラス板軟化点以上に加熱し型成形により中央部に凹部5を形成する。次に、凹部5を形成する側壁の上面を研削又は研磨して平坦化する。次に、スパッタリング法又は蒸着法により金属膜を堆積し、パターニングを行って凹部5を形成する側壁の上面に第二金属膜10bを形成する。また、ナノ銀粒子が分散する溶液をディスペンス法やインクジェット印刷法により側壁上面に塗布し、乾燥・焼成を行ってナノ銀粒子による第二金属膜10bを形成することができる。

0038

第二金属膜10bは、蓋体6側に形成する下地層と、その上面に形成する表面層との積層構造とする。例えば、表面層としてAu、Snなどの比較的低温で接合可能な材料を使用し、下地層としてCr、Ni、Ta、Al,Cuのいずれかを含み、下地に対する密着性の高い材料を使用する。また、下地層としてCuを約2wt%を含むAl層を約1000Å形成すれば、ガラスに対して高い密着性を確保することができる。

0039

図3(S4)は、蓋体設置工程S4における蓋体6とベース基板2の断面模式図である。光学チップ3を凹部5に収納して蓋体6をベース基板2に設置する。このとき、ベース基板2に形成した第一金属膜10aと蓋体6の凹部5を形成する側壁の上面に形成した第二金属膜10bとを密着させる。

0040

図4(S5)は、接合工程S5を説明するための図である。蓋体6を設置したベース基板2をステージ16に設置し、蓋体6側を加圧ヘッド15により加圧し、温度250℃〜300℃に昇温する。そして、ステージ16又は加圧ヘッド15に超音波を印加して第一及び第二金属膜10a、10bに超音波振動を伝達する。これにより、蓋体6の凹部5を形成する側壁の上面とベース基板2の表面とを第一金属膜10a及び第二金属膜10bからなる金属接合材10を介在させて超音波接合する。これにより第一金属膜10aの表面層と第二金属膜10bの表面層とが金属間接合する。なお、超音波接合に代えて表面層どうしを熱溶着させることにより接合してもよいし、第一金属膜10aの表面層と第二金属膜10bの表面層とを半田により接合してもよい。また、ナノ銀粒子により第一又は第二金属膜10a、10b、或いは第一及び第二金属膜10a、10bを形成し、加熱圧着することにより溶着することができる。ナノ銀粒子は反応性が高いので、100℃〜200℃の比較的低温度で接合することができる。

0041

図4(S6)は、外部電極形成工程S6における蓋体6とベース基板2の断面模式図である。ベース基板2の外表面に貫通電極11と電気的に接続する外部電極8を形成する。外部電極8は、蒸着法やスパッタリング法により金属膜を堆積し、これをパターニングして形成してもよいし、印刷法により外部電極8のパターンを印刷し、焼成して形成してもよい。

0042

以上の通り、ベース基板2と蓋体6とを金属接合材10を介在させて接合したので、気密性の高い高信頼性の光学デバイス1を簡便な製造プロセスにより低コストで製造することができる。

0043

なお、上記実施形態では金属接合材10としてベース基板2に形成した第一金属膜10aと蓋体6に形成した第二金属膜10bとを、超音波接合や半田接合による例について説明したが、本発明はこれに限定されない。金属接合材10として、ベース基板2に形成する第一金属膜10aのみ、又は蓋体6に形成する第二金属膜10bのみとし、金属接合材10を形成した側を陽極に、金属接合材10を形成しない側を陰極にして陽極接合することができる。陽極接合は、接合面を350℃〜450℃に加熱、及び加圧し、400V〜600Vの電圧を印加して行う。金属接合材10として、Al、シリコン等の導電膜を使用することができる。

0044

また、上記実施形態は、一個の光学デバイス1を製造する例について説明したが、多数個同時に形成する多数個取りの製造工程とすることができる。即ち、光学チップ実装工程S2は、ベース基板2に複数の光学チップ3を実装する。蓋体準備工程S3は、蓋体6に複数の凹部5を形成する。蓋体設置工程S4は、複数の光学チップ3を複数の凹部5にそれぞれ収納して蓋体6をベース基板2に設置する。そして、接合工程S5の後に、個々の光学デバイス1に分離する分離工程を備える。これにより、多数個の光学デバイス1を同時に製造することができる。

0045

また、上記実施形態において、ベース基板2及び蓋体6としてガラス材料を用いる例について説明したが、本発明はこれに限定されず、ベース基板2及び蓋体6としてガラスエポキシ樹脂やプラスチック材料等を使用することができる。

0046

1光学デバイス
2ベース基板
3光学チップ
4光学活性領域
5 凹部
6蓋体
7ワイヤー
8外部電極
9内部電極
10金属接合材、10a 第一金属膜、10b 第二金属膜
11貫通電極
12 電極パッド

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

新着 最近 公開された関連が強い 技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する挑戦したい社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ