図面 (/)

技術 レーザ光整形装置およびレーザ光整形方法ならびにレーザ処理装置およびレーザ処理方法

出願人 株式会社日本製鋼所
発明者 小林直之
出願日 2012年7月4日 (7年0ヶ月経過) 出願番号 2012-150682
公開日 2014年1月23日 (5年5ヶ月経過) 公開番号 2014-013833
状態 未査定
技術分野 アニール 機械的光走査系 その他の光学系・装置、色の干渉・色の制御
主要キーワード 分割光線 複数次 mJ未満 パルス発振レーザ光 対向面間距離 fθレンズ 照射態様 被処理領域
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2014年1月23日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (2)

課題

レーザ光導波する導波管内で発生する干渉を軽減して、トップフラット強度分布を有するレーザ光を被処理体照射することができるレーザ光整形装置およびレーザ光整形方法ならびにレーザ処理装置およびレーザ処理方法を提供する。

解決手段

レーザ光L0を複数のレーザ光L1〜LNに分割するとともに、複数のレーザ光L1〜LNの間に光路差を与え、互いに空間コヒーレント長を超える光路差を有する複数のレーザ光L1〜LNとするレーザ光分割部3と、空間コヒーレント長を超える光路差を有する複数のレーザ光L1〜LNが導波され、レーザ光のビーム形状の整形がなされる光ファイバ5と、光ファイバ5から出射されるレーザ光LSを被処理体10に照射するため導く照射光学系6と、を有する。

概要

背景

半導体装置の製造プロセスでは、イオン注入などにより不純物が導入された半導体ウエハに対して、不純物の活性化や結晶ダメージ回復を目的とする熱処理が行われている。このような熱処理の方法としては、加熱炉内で半導体ウエハを加熱する炉アニールのほか、レーザ光を半導体ウエハに照射して加熱するレーザアニールが知られている。

レーザアニールなどのレーザ光を被処理体に照射するレーザ処理において、レーザ光は、被処理体上における照射位置トップフラット強度分布を有するものであることが望ましい。トップフラットの強度分布をレーザ光が有することにより、被処理体に対して均一にレーザ処理を施すことが可能になる。

例えば、特許文献1には、レーザ光により薄膜を結晶化する結晶化膜形成方法として、所定の拡がり角を有する光線束としてのレーザ光を射出するレーザ光源に対し、複数のシリンドリカルレンズからなる第1のアレイレンズ、複数のシリンドリカルレンズからなる第2のアレイレンズ、光路差を与える複数のブロック部を備える光路差生起部材集光レンズ及び被照射面を順次に配置して、レーザ光を被照射面に照射するものが記載されている。この方法では、レーザ光源から射出されるレーザ光を、第1のアレイレンズに透過させ、第1のアレイレンズの幅を有する隣接するシリンドリカルレンズの個数に応じた複数の縮小させた分割光線を得、該分割光線を、第2のアレイレンズの対応するシリンドリカルレンズに個別に透過させて第1のアレイレンズのシリンドリカルレンズの幅よりも狭幅に縮小させた複数の縮小分割光線を得る。その後、各縮小分割光線を、光路差生起部材の対応するブロック部を分割面側での反射を低減させて個別に透過させ、コヒーレント性を調節するように縮小分割光線相互に光路差を生起させた後、各縮小分割光線を集光レンズによって重畳して被照射面に照射させる。この方法によれば、縮小分割光線相互に光路差を生起させることでコヒーレンス性を低減して縮小分割光線同士の干渉を良好に防止することができ、干渉縞のない均一なトップフラットの強度分布を有するレーザ光を被照射面に照射することが可能になる。

また、特許文献2には、縦マルチモードレーザ光などの光ビームコヒーレンスを低減する方法として、複数の互いに異なる波長発振した光ビームを複数に分岐し、分岐されたこれらの複数の光ビームの間に一定の光路長差を与えた後、前記複数の光ビームを単一の光束又は集合光束とするものが記載されている。

概要

レーザ光を導波する導波管内で発生する干渉を軽減して、トップフラットの強度分布を有するレーザ光を被処理体に照射することができるレーザ光整形装置およびレーザ光整形方法ならびにレーザ処理装置およびレーザ処理方法を提供する。レーザ光L0を複数のレーザ光L1〜LNに分割するとともに、複数のレーザ光L1〜LNの間に光路差を与え、互いに空間コヒーレント長を超える光路差を有する複数のレーザ光L1〜LNとするレーザ光分割部3と、空間コヒーレント長を超える光路差を有する複数のレーザ光L1〜LNが導波され、レーザ光のビーム形状の整形がなされる光ファイバ5と、光ファイバ5から出射されるレーザ光LSを被処理体10に照射するため導く照射光学系6と、を有する。

目的

半導体装置の製造プロセスでは、イオン注入などにより不純物が導入された半導体ウエハに対して、不純物の活性化や結晶のダメージ回復を目的とする

効果

実績

技術文献被引用数
1件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

被処理体加熱処理のため照射されるレーザ光を整形する装置であって、レーザ光を複数のレーザ光に分割するレーザ光分割部と、前記複数のレーザ光の間に光路差を与え、互いに空間コヒーレント長を超える光路差を有する複数のレーザ光とするレーザ光光路差付与部と、前記空間コヒーレント長を超える光路差を有する前記複数のレーザ光が導波され、前記レーザ光のビーム形状の整形がなされる導波管と、を有することを特徴とするレーザ光整形装置

請求項2

前記レーザ光光路差付与部から取り出される前記複数のレーザ光を前記導波管の一端に集光して導く集光光学系を有することを特徴とする請求項1記載のレーザ光整形装置。

請求項3

前記レーザ光分割部は、前記複数のレーザ光に前記光路差を与えるレーザ光光路差付与部としての機能を有することを特徴とする請求項1または2に記載のレーザ光整形装置。

請求項4

前記レーザ光分割部が、レーザ光の一部を反射し、残部を透過させる半透過板と、前記半透過板の反射側に間隔を置いて対向配置されて前記半透過板で反射されたレーザ光を反射する反射板とを有し、前記半透過板および前記反射板は、分割前の前記レーザ光の光路に対し板面が傾斜し、かつ前記光路上に前記半透過板の板面の一部が位置して配置されていることを特徴とする請求項1〜3のいずれかに記載のレーザ光整形装置。

請求項5

前記半透過板と前記反射板との対向面間距離をd、前記レーザ光の前記半透過板に対する入射角をθとして、2d・cosθが前記空間コヒーレント長を超える長さに設定されていることを特徴とする請求項4記載のレーザ光整形装置。

請求項6

前記導波管が、光ファイバまたはカライドスコープであることを特徴とする請求項1〜5のいずれかに記載のレーザ光整形装置。

請求項7

請求項1〜6のいずれかに記載のレーザ光整形装置と、前記レーザ光整形装置に含まれる導波管から出射されるレーザ光を被処理体に照射するため導く照射光学系と、を有することを特徴とするレーザ処理装置

請求項8

前記照射光学系が、前記被処理体に対する前記レーザ光の照射方向を連続的または間欠的に変えて前記被処理体上で前記レーザ光の照射位置を移動させる走査部を有することを特徴とする請求項7に記載のレーザ処理装置。

請求項9

前記走査部が、ガルバノミラーfθレンズとを有することを特徴とする請求項8記載のレーザ処理装置。

請求項10

被処理体の加熱処理のため照射されるレーザ光を整形する方法であって、レーザ光を複数のレーザ光に分割し、分割された前記複数のレーザ光に互いに空間コヒーレント長を超える光路差を与え、前記光路差が与えられた前記複数のレーザ光を、導波管の一端に導入し、該導波管内を導波させて前記レーザ光のビーム形状を整形することを特徴とするレーザ光整形方法。

請求項11

請求項10記載のレーザ光整形方法によって整形されたレーザ光を被処理体に照射することを特徴とするレーザ処理方法

請求項12

前記レーザ光整形方法によって整形されたレーザ光を走査しつつ前記被処理体に照射することを特徴とする請求項11記載のレーザ処理方法。

技術分野

0001

本発明は、レーザ光整形装置およびレーザ光整形方法、ならびに被処理体レーザ光照射して所定の処理を行うレーザ処理装置およびレーザ処理方法に関するものである。

背景技術

0002

半導体装置の製造プロセスでは、イオン注入などにより不純物が導入された半導体ウエハに対して、不純物の活性化や結晶ダメージ回復を目的とする熱処理が行われている。このような熱処理の方法としては、加熱炉内で半導体ウエハを加熱する炉アニールのほか、レーザ光を半導体ウエハに照射して加熱するレーザアニールが知られている。

0003

レーザアニールなどのレーザ光を被処理体に照射するレーザ処理において、レーザ光は、被処理体上における照射位置トップフラット強度分布を有するものであることが望ましい。トップフラットの強度分布をレーザ光が有することにより、被処理体に対して均一にレーザ処理を施すことが可能になる。

0004

例えば、特許文献1には、レーザ光により薄膜を結晶化する結晶化膜形成方法として、所定の拡がり角を有する光線束としてのレーザ光を射出するレーザ光源に対し、複数のシリンドリカルレンズからなる第1のアレイレンズ、複数のシリンドリカルレンズからなる第2のアレイレンズ、光路差を与える複数のブロック部を備える光路差生起部材集光レンズ及び被照射面を順次に配置して、レーザ光を被照射面に照射するものが記載されている。この方法では、レーザ光源から射出されるレーザ光を、第1のアレイレンズに透過させ、第1のアレイレンズの幅を有する隣接するシリンドリカルレンズの個数に応じた複数の縮小させた分割光線を得、該分割光線を、第2のアレイレンズの対応するシリンドリカルレンズに個別に透過させて第1のアレイレンズのシリンドリカルレンズの幅よりも狭幅に縮小させた複数の縮小分割光線を得る。その後、各縮小分割光線を、光路差生起部材の対応するブロック部を分割面側での反射を低減させて個別に透過させ、コヒーレント性を調節するように縮小分割光線相互に光路差を生起させた後、各縮小分割光線を集光レンズによって重畳して被照射面に照射させる。この方法によれば、縮小分割光線相互に光路差を生起させることでコヒーレンス性を低減して縮小分割光線同士の干渉を良好に防止することができ、干渉縞のない均一なトップフラットの強度分布を有するレーザ光を被照射面に照射することが可能になる。

0005

また、特許文献2には、縦マルチモードレーザ光などの光ビームコヒーレンスを低減する方法として、複数の互いに異なる波長発振した光ビームを複数に分岐し、分岐されたこれらの複数の光ビームの間に一定の光路長差を与えた後、前記複数の光ビームを単一の光束又は集合光束とするものが記載されている。

先行技術

0006

特許4291230号公報
特開平11−326827号公報

発明が解決しようとする課題

0007

しかし、上記特許文献1に記載される従来の方法では、被処理体に照射するレーザ光のビームサイズを、例えば1mm角以下のように小さくすることが困難であるという問題がある。すなわち、特許文献1に記載される従来の方法では、ビームサイズを小さくするためには、複数のシリンドリカルレンズからなるアレイレンズおよび光路差生起部材を小さくする必要があるが、例えば1mm角以下の小さなビームサイズを実現可能な大きさでこれらの光学素子を作製することは容易ではない。

0008

被処理体にレーザ光を照射する際に、被処理体へのレーザ光照射前に、光ファイバカライドスコープなどの導波管にレーザ光を導波させることが考えられる。これにより、特別な光学素子を必要とすることなく、トップフラットの強度を有し、かつ所望の大きさ、形状のビームを得ることができる。しかしながら、導波管を用いる場合、導波管内反射角の異なるレーザ光が互いに重なり合い、導波管内で干渉が生じ、導波管から出射されるレーザ光に干渉縞が発生するという問題がある。
また、上記特許文献2に記載される従来の方法は、レーザ光などの光ビームのコヒーレンスを低減することができるが、トップフラットの強度分布を得ることは困難であり、特許文献2には、レーザ光について、トップフラットの強度分布を得る方法は記載されていない。

0009

本発明は、上記事情を背景としてなされたものであり、干渉が少なく、トップフラットの強度分布を有するレーザ光を得るレーザ光整形装置、レーザ光整形方法ならびに前記レーザ光を用いるレーザ処理装置およびレーザ処理方法を提供することを目的とする。

課題を解決するための手段

0010

すなわち、本発明のレーザ光整形装置のうち、第1の本発明は、被処理体の加熱処理のため照射されるレーザ光を整形する装置であって、
レーザ光を複数のレーザ光に分割するレーザ光分割部と、
前記複数のレーザ光の間に光路差を与え、互いに空間コヒーレント長を超える光路差を有する複数のレーザ光とするレーザ光光路差付与部と、
前記空間コヒーレント長を超える光路差を有する前記複数のレーザ光が導波され、前記レーザ光のビーム形状の整形がなされる導波管と、を有することを特徴とする。

0011

第2の本発明のレーザ光整形装置は、前記第1の本発明において、前記レーザ光光路差付与部から取り出される前記複数のレーザ光を前記導波管の一端に集光して導く集光光学系を有することを特徴とする。

0012

第3の本発明のレーザ光整形装置は、前記第1または第2の本発明において、前記レーザ光分割部は、前記複数のレーザ光に前記光路差を与えるレーザ光光路差付与部としての機能を有することを特徴とする。

0013

第4の本発明のレーザ光整形装置は、前記第1〜第3の本発明のいずれかにおいて、前記レーザ光分割部が、レーザ光の一部を反射し、残部を透過させる半透過板と、前記半透過板の反射側に間隔を置いて対向配置されて前記半透過板で反射されたレーザ光を反射する反射板とを有し、
前記半透過板および前記反射板は、分割前の前記レーザ光の光路に対し板面が傾斜し、かつ前記光路上に前記半透過板の板面の一部が位置して配置されていることを特徴とする。

0014

第5の本発明のレーザ光整形装置は、前記第4の本発明において、前記半透過板と前記反射板との対向面間距離をd、前記レーザ光の前記半透過板に対する入射角をθとして、2d・cosθが前記空間コヒーレント長を超える長さに設定されていることを特徴とする。

0015

第6の本発明のレーザ光整形装置は、前記第1〜第5の本発明のいずれかにおいて、前記導波管が、光ファイバまたはカライドスコープであることを特徴とする。

0016

第7の本発明のレーザ処理装置は、前記第1〜第6の発明のいずれかのレーザ光整形装置と、
前記レーザ光整形装置に含まれる導波管から出射されるレーザ光を被処理体に照射するため導く照射光学系と、を有することを特徴とする。

0017

第8の本発明のレーザ処理装置は、前記第7の発明において、前記照射光学系が、前記被処理体に対する前記レーザ光の照射方向を連続的または間欠的に変えて前記被処理体上で前記レーザ光の照射位置を移動させる走査部を有することを特徴とする。

0018

第9の本発明のレーザ処理装置は、前記第8の発明において、前記走査部が、ガルバノミラーfθレンズとを有することを特徴とする。

0019

第10の本発明のレーザ光整形方法は、被処理体の加熱処理のため照射されるレーザ光を整形する方法であって、レーザ光を複数のレーザ光に分割し、分割された前記複数のレーザ光に互いに空間コヒーレント長を超える光路差を与え、前記光路差が与えられた前記複数のレーザ光を、導波管の一端に導入し、該導波管内を導波させて前記レーザ光のビーム形状を整形することを特徴とする。

0020

第11の本発明のレーザ処理方法は、前記第10の本発明のレーザ光整形方法によって整形されたレーザ光を被処理体に照射することを特徴とする。

0021

第12の本発明のレーザ処理方法は、前記第11の本発明において、前記レーザ光整形方法によって整形されたレーザ光を走査しつつ前記被処理体に照射することを特徴とする。

0022

本発明によれば、分割された複数のレーザ光が互いに空間コヒーレント長を超える光路差を有して導波管の一端に導入されるため、レーザ光のビーム形状が導波管によって整形されるとともに、レーザ光が出射される導波管の他端で発生する干渉縞を十分に低減することができる。したがって干渉の少ないトップフラットの強度分布を有するレーザ光を得ることができる。トップフラットの強度分布を有するレーザ光を被処理体に照射することで、被処理体に対して均一なレーザ処理を施すことができる。

0023

本発明におけるレーザ処理は、レーザ光を被処理体に照射して被処理体を例えば熱処理するものである。レーザ処理の対象となる被処理体は特に限定されるものではないが、被処理体としては、例えば、半導体ウエハ、ガラス基板などの基板上に形成された半導体層などを挙げることができる。例えば、被処理体として、イオン注入などにより不純物が導入されたSiウエハSiCウエハその他の半導体ウエハを挙げることができ、この場合のレーザ処理は、半導体ウエハにレーザ光を照射することにより熱処理して、半導体ウエハに導入された不純物を活性化するものである。

0024

複数のレーザ光に分割されるレーザ光としては、パルス発振レーザ光が用いられるが、これに限定されることはなく、連続発振レーザ光や、連続発振レーザ光をパルス状にしたものなどを用いることができる。また、これらレーザ光が出力されるレーザ光源は、特に限定されるものではなく、レーザ処理の内容に応じて適宜選択することができ、レーザ発振媒質が限定されるものではない。例えば、レーザ光源としては、固体レーザ半導体レーザガス励起レーザなどを用いることができる。

0025

レーザ光分割部としては、レーザ光を複数のレーザ光に分割することができるものであれば、その構成が特に限定されるものではなく、各種のビームスプリッタなどを用いることができる。また、例えば、レーザ光の一部を反射し、残部を透過させる半透過板と、半透過板の反射側に間隔を置いて対向配置された反射板とを用いることができる。このように半透過板と反射板とを有するレーザ光分割部では、半透過板でのレーザ光の一部反射および残部透過と、反射板でのレーザ光の反射とを繰り返すことにより、複数のレーザ光を半透過板の透過側から出射することができ、この際に、レーザ光の分割とともに、分割されたレーザ光間に光路差を設けることができる。

0026

また、レーザ光光路差付与部としては、複数のレーザ光に互いに空間コヒーレント長を超える光路差が与えられるものであれば、その構成が特に限定されるものではない。レーザ光光路差付与部は、例えば、複数のレーザ光が異なる光路を経たり、異なる光学部材を通過することで光路差を与えることができる。レーザ光光路差付与部は、レーザ光の光路差を与えるのみの機能を有するものであってもよく、また、レーザ光分割部と共用されるものであってもよい。すなわち、レーザ光分割部に、レーザ光光路差付与部としての機能を有するものを用いるものであってもよい。レーザ光光路差付与部は複数を備え、複数の組み合わせによって最終的に複数のレーザ光に互いに空間コヒーレント長を超える光路差が与えるものであってもよい。
なお、空間コヒーレント長は、2つに分けた光束が干渉し得る光路差と定義できる。

0027

なお、前記半透過板と反射板を用いて、光路に傾斜して配置した場合、半透過板と反射板との対向面距離をd、レーザ光の半透過板に対する入射角をθとして、2d・cosθを空間コヒーレント長を超える長さに設定すればよい。

0028

導波管は、上記空間コヒーレント長を超える光路差を有する複数のレーザ光が導波され、導波断面形状に従ってレーザ光のビーム形状の整形を行うことができる。導波管として、例えば、光ファイバ、カライドスコープなどを用いることができ、また、これらを適宜組み合わせて用いることもできる。導波管は、整形すべきビーム形状に応じて、所定の導波断面形状を有するものとすることができ、例えば方形状、円形状、楕円形状などの導波断面形状を有するものとすることができる。

0029

なお、レーザ光光路差付与部に対しては、レーザ光光路差付与部から取り出される複数のレーザ光を上記導波管の一端に集光して導く集光光学系を設けることができる。集光光学系としては、特に限定されるものではないが、例えば、集光レンズを有するものとすることができる。

0030

照射光学系は、上記導波管の他端から出射されるレーザ光を被処理体に照射するため導くものである。照射光学系は、被処理体にレーザ光を照射する照射態様に応じて適宜選択することができる。
例えば、照射光学系は、被処理体に対するレーザ光の照射方向を連続的または間欠的に変えて被処理体上でレーザ光の照射位置を移動させる走査部を有するものとすることができる。走査部としては、例えば、レーザ光の照射方向を連続的または間欠的に変化させるガルバノミラーと、ガルバノミラーにより照射方向が変えられたレーザ光を被処理体上で集光しつつ等速度で移動させるfθレンズとを有するもので構成することができる。走査部により、導波管の他端から出射されたレーザ光を走査しつつ被処理体に照射することができる。

発明の効果

0031

以上のとおり、本発明によれば、レーザ光の導波管内での干渉を軽減して、トップフラットの強度分布を有するレーザ光を得ることができる。

図面の簡単な説明

0032

本発明の一実施形態のレーザ処理装置を示す概略図である。

実施例

0033

本発明の一実施形態のレーザ光整形装置を備えるレーザ処理装置を図1に基づいて説明する。
図示するように、レーザ処理装置1は、レーザ光源2と、レーザ光分割部3と、集光光学系4と、光ファイバ5と、照射光学系6と、ステージ7およびステージ移動装置8と、制御部9とを有している。レーザ光分割部3と、集光光学系4と、光ファイバ5とは、レーザ光整形装置を構成する。

0034

レーザ光源2は、レーザ光L0を出力するものであり、レーザ処理の内容に応じて選択することが可能である。レーザ光源2としては、例えば、パルス発振の2倍波YAGレーザ(波長532nm)を用いることができる。

0035

レーザ光源2のレーザ光出力端側には、レーザ光分割部3が配置されている。レーザ光分割部3は、レーザ光源2より出力されたレーザ光L0を複数N本(Nは2以上の整数)のレーザ光L1〜LNに分割するとともに、複数のレーザ光L1〜LNの間に空間コヒーレント長を超える光路差を与える。このため、レーザ光分割部3は、レーザ光光路差付与部としての機能を有している。レーザ光分割部3は、レーザ光源2から出力されるレーザ光L0の光路上に傾斜配置された半透過板31と、半透過板31の反射側に対向配置された反射板32とを有している。半透過板31と反射板32とは、対向面が平行に位置し、対向面間距離dを有して配置されている。

0036

また、半透過板31および反射板32は、半透過板31の一端側にレーザ光L0が入射角θ入射するように板面が傾斜して配置されている。入射角θは適宜選定することができるが、半透過板31を透過する隣接する複数次透過光間の距離がレーザ光L0のビームサイズになるように入射角θを設定するのが望ましい。入射角θは例えば5〜10°の範囲で好適に選定することができる。
反射板32は、その一端側が半透過板31よりも光路から離れて位置している。これにより、半透過板31の一端側の板面の一部が、反射板32に遮られることなくレーザ光L0の光路上に位置し、レーザ光L0の半透過板31への入射光路が確保される。
半透過板31としては、透過率Tが例えば5〜20%のものを用いることができ、例えば半透過ミラーなどを用いることができる。また、反射板32としては、例えば全反射ミラーを用いることができる。

0037

レーザ光分割部3では、後述するように、半透過板31でのレーザ光の一部反射および残部透過と、反射板32でのレーザ光の反射とが繰り返されることにより、レーザ光L0が複数のレーザ光L1〜LNに分割されて半透過板31の透過側から出射されることになる。複数のレーザ光L1〜LNにおける隣接するレーザ光間の光路差は、半透過板31と反射板32との対向面間距離d、レーザ光L0の半透過板31に対する入射角θを用いて、2d・cosθで表される。対向面間距離dおよび入射角θは、光路差2d・cosθが、レーザ光源2から出力されたレーザ光L0の空間コヒーレント長を超えるように設定されている。

0038

なお、半透過板31およびこれに対向配置された反射板32は、レーザ光L0に対する傾斜角度を調整可能に設置することができる。この場合、半透過板31および反射板32の傾斜角度を適宜変更することで、レーザ光L0の入射角θを適宜変更することができる。
レーザ光分割部3で分割するレーザ光の数(N)は本発明としては特に限定されるものではない。レーザ光の一部透過・残部反射を繰り返すと次第にレーザ光強度が小さくなるため、所定強度以下の分割されたレーザ光を使用しないように、N次を過ぎたレーザ光は除外してもよく、また、N次目のレーザ光の全てを進行させるようにしてもよい。

0039

また、半透過板31の透過側には、集光光学系4が配置されている。集光光学系4は、集光レンズ41により構成されている。集光レンズ41は、後述するように半透過板31を透過して互いに並行する複数のレーザ光L1〜LNを集光するように複数のレーザ光L1〜LNの光路に対して垂直に配置されている。
集光レンズ41の集光位置には光ファイバ5の一端が配置され、集光レンズ41により集光された複数のレーザ光L1〜LNが光ファイバ5の一端側に導かれるようになっている。
なお、この実施形態では、集光光学系4を配置しているが、集光光学系を用いることなく導波管に複数のレーザ光を導き、集合光束として導波管内を導波させるものであってもよい。

0040

光ファイバ5は、本発明の導波管に相当し、レーザ光を整形すべきビーム形状に応じて例えば方形状などの所定の導波断面形状を有している。光ファイバ5は、その一端に導かれた複数のレーザ光L1〜LNを導波して所定のビーム形状に整形し、ビーム形状が整形された複数のレーザ光L1〜LNの合成レーザ光であるレーザ光LSをその他端から出射するものである。
光ファイバ5としては、レーザ処理の内容に応じて適宜選択することができ、特に限定されるものではない。一本または複数本束ねたものを用いることができる。

0041

光ファイバ5の他端側には、照射光学系6が配置されている。照射光学系6は、光ファイバ5の他端から出射されたレーザ光LSをステージ7上の被処理体10に導いて照射するものである。
照射光学系6は、光ファイバ5の他端より出射されたレーザ光LSの光路上に配置された結像レンズ61と、結像レンズ61の透過方向に配置されたガルバノミラー62と、ガルバノミラー62の反射方向に配置されたfθレンズ63とを有している。
ガルバノミラー62は、反射面を所定の角度範囲揺動させることができ、これにより、ガルバノミラー62に入射するレーザ光の反射方向を変えることができる。ガルバノミラー62により被処理体10上で移動するレーザ光の移動速度は、特に限定されるものではないが、例えば、100〜500mm/秒の範囲を例示することができる。

0042

fθレンズ63の透過方向には、半導体ウエハなどの被処理体10を保持するステージ7が配置されている。ステージ7は、ステージ7をX、Y方向に移動可能なステージ移動装置8上に設けられている。ステージ移動装置8によるステージ7の移動速度は、特に限定されるものではないが、例えば、2〜10mm/秒の範囲を例示することができる。例えば、レーザ光をガルバノミラー62によりX方向に走査し、ステージ7をステージ移動装置8によってY方向に走査して処理を行うことができる。

0043

制御部9は、レーザ処理装置1全体を制御するものであり、CPUとこれを動作させるプログラムとを主にして構成されている。具体的には、制御部9は、ステージ移動装置8の移動を制御し、さらにガルバノミラー62の揺動を制御する。また、制御部9は、レーザ光源2の出力を制御する。また、制御部9は、半透過板31および反射板32がレーザ光L0に対する傾斜角度を調整可能に設置されている場合、半透過板31および反射板32の傾斜角度を所定の角度に制御することができる。

0044

次に、レーザ処理装置1の動作について説明する。
ステージ7上には、半導体ウエハなどの被処理体10が載置されて保持される。
レーザ光源2から出力されたレーザ光L0は、半透過板31に入射角θで入射する。半透過板31では、レーザ光L0が、反射角θで一部反射されるとともに、透過率Tで残部が透過される。レーザ光L0の強度をFとすると、透過したレーザ光L1の強度はF・Tである。また、反射されたレーザ光の強度は、F・(1−T)となる。

0045

上記半透過板31で反射された強度F・(1−T)のレーザ光は、反射板32に入射角θで入射する。反射板32では、入射した強度F・(1−T)のレーザ光が、反射角θで反射される。なお、反射板32での反射は必ずしも全反射である必要はなく、例えば90〜99%の高反射率の反射でもよい。

0046

反射板32で反射された強度F・(1−T)のレーザ光は、半透過板31に入射角θで入射する。半透過板31では、入射した強度F・(1−T)のレーザ光が、反射角θで一部反射されるとともに、透過率Tで残部が透過される。透過したレーザ光L2の強度は、F・T・(1−T)である。また、反射されたレーザ光の強度は、F・(1−T)2である。
レーザ光L1とレーザ光L2との間には、半透過板31での反射されたレーザ光が反射板32で反射された後、進行方向において半透過板31で反射された位置と同じ位置に到達するまでの光路長が光路差として与えられる。すなわち、レーザ光L1とレーザ光L2との間には、光路差2d・cosθが与えられる。

0047

以後、上記と同様にして、半透過板31での一部反射および残部透過と、反射板32での全反射とが繰り返されることにより、複数のレーザ光L1〜LNが半透過板31の透過側から出射される。こうして得られるレーザ光LNの強度は、F・T・(1−T)N−1である。また、隣接するレーザ光間には、全てにおいて、互いに、光路差2d・cosθが与えられている。

0048

半透過板31の透過側から出射された複数のレーザ光L1〜LNは、集光レンズ41で光ファイバ5の一端に集光されて導かれる。光ファイバ5では、複数のレーザ光L1〜LNが導波されて所定のビーム形状に整形され、複数のレーザ光L1〜LNの合成レーザ光であり、トップフライトの強度分布を有するレーザ光LSが光ファイバ5の他端から出射される。
複数のレーザ光L1〜LNのレーザ光間には、互いに空間コヒーレント長を超える光路差が存在するため、各レーザ光の互いの干渉が回避される。
なお、複数のレーザ光L1〜LNにおける各レーザ光自体は、分割されていないため光ファイバ5内で位相差による干渉が生じる。各レーザ光は、ファイバ5内での反射角が異なるため、干渉において異なる干渉パターンを有している。このため、光ファイバ5内を複数のレーザ光L1〜LNが導波されることで強度が平均化され、干渉が大幅に軽減されたレーザ光LSが得られる。

0049

例えば、レーザ光源2より、強度Fが10mJ、波長が532nm、発振周波数が10kHz、Mスクエアが20、空間コヒーレント長が5mm、ビーム径が2mmのレーザ光L0を出力し、半透過板31に対するレーザ光L0の入射角θを5.74°とし、透過率Tが10%の半透過板31を用い、半透過板31と反射板32との間隔dを10mmとした場合、具体的には次のとおりとなる。
まず、複数のレーザ光L1、L2、……、LNの強度は、それぞれ1mJ、0.9mJ、……、1×0.9N−1mJとなり、N=22で0.11mJ程度となる。

0050

また、複数のレーザ光L1〜LNにおける隣接するレーザ光間の光路差は、19.9mmであり、空間コヒーレント長の5mmよりも十分に長くなっている。
また、隣接するレーザ光間の間隔は、2d・sinθ=2mmであり、ビーム径と一致する。また、レーザ光L1〜L22の全22本の総ビームサイズは44mmとなる。なお、N=23以上のレーザ光L23以降では、強度が0.1mJ未満になるため、無視することができる。

0051

さらに、上記のように分割された複数のレーザ光L1〜LNを、焦点距離fが20mmの集光レンズ41を用い、開口数NAが0.22、導波断面形状が600μm×600μmの矩形状である光ファイバ5に入射する場合、光ファイバ5に入射するレーザ光を集光するビームのNAは、レーザ光L0のビーム径が2mmであるため、NA=2mm/2/20mm=0.05で、光ファイバ5の開口数NAより小さいため、レーザ光源2より出力されたレーザ光L0のほとんどを光ファイバ5に入射することができる。
なお、分割された複数のレーザ光L1〜LNにおける各レーザ光の集光ビーム径は、(2λ/π)×(1/NA)×(Mスクエア)で近似でき、Mスクエアが20であるため、集光ビーム径は135μmであり、光ファイバ5のファイバ径と比べて十分に小さい。

0052

上記のようにして光ファイバ5の他端から出射されたレーザ光LSは、結像レンズ61を介してガルバノミラー62に入射する。レーザ光LSは、揺動するガルバノミラー62により反射方向を変えつつ反射される。ガルバノミラー62で反射されたレーザ光LSは、fθレンズ63により被処理体10上に集光されるとともに、被処理体10上を等速度で移動する。ガルバノミラー62の揺動は、連続的、間欠的のいずれであってもよい。
また、上記ガルバノミラー62の揺動に加えて、ステージ移動装置8によりステージ7を移動させることにより、被処理体10上でのレーザ光LSの照射位置を広範囲に移動させることが可能となり、被処理体10の被処理領域全面にわたってレーザ光LSを照射することができる。ステージ移動装置8によるステージ7の移動は、連続的、間欠的のいずれであってもよい。
なお、ガルバノミラー62によりレーザ光LSを被処理体10上で比較的高速に走査し、ステージ移動装置8によりステージ7を比較的低速で移動させることにより、ステージ移動装置8の負担を軽減することができ、また、ステージ移動装置8の動作による振動の発生などを極力小さくすることができる。

0053

トップフラットの強度分布を有するレーザ光LSは被処理体10に走査されつつ照射されて、被処理体10に対して均一なレーザ処理が施される。

0054

なお、上記実施形態では、レーザ光を導波して整形する導波管として光ファイバ5を用いたものについて説明したが、導波管として、光ファイバのほか、カライドスコープなどを用いることもできる。

0055

また、上記実施形態では、レーザ光分割部3が、本発明のレーザ光光路差付与部としての機能をも有するものについて説明したが、レーザ光分割部とレーザ光光路差付与部とは互いに別個独立のものとして構成してもよい。

0056

以上、本発明について上記実施形態に基づいて説明を行ったが、本発明としては、上記説明の内容に限定されるものではなく、本発明の範囲を逸脱しない限りは適宜の変更が可能である。

0057

1レーザ処理装置
2レーザ光源
3レーザ光分割部
31半透過板
32反射板
4集光光学系
41集光レンズ
5光ファイバ
6照射光学系
61結像レンズ
62ガルバノミラー
63fθレンズ
7ステージ
8ステージ移動装置
9 制御部
10被処理体
L0 レーザ光
L1〜LN 複数のレーザ光
LS レーザ光

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ