図面 (/)

技術 照射方法、処理装置

出願人 株式会社アルバック
発明者 中尾裕利楠本淑郎佐藤誠一横尾秀和
出願日 2012年5月1日 (7年4ヶ月経過) 出願番号 2012-104587
公開日 2013年11月14日 (5年10ヶ月経過) 公開番号 2013-232363
状態 特許登録済
技術分野 荷電粒子線装置 アニール
主要キーワード 振動移動 移動角度θ 水平方向速度 渦巻曲線 合計照射量 半平面 半径方向速度 水平方向加速度
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2013年11月14日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (16)

課題

照射線照射面の外側にはみ出させることが不要になり、かつ照射対象物駆動動力を低減できる照射方法処理装置を提供する。

解決手段

照射対象物12の照射線が照射される照射面17のうち、照射面17よりも狭い照射領域41内に、基準面11上に配置された照射装置から照射線を照射し、照射対象物12と照射領域41とを相対的に移動させ、照射面17に照射線を照射する照射方法であって、照射領域41を基準面11に対して静止させた状態で照射対象物12を照射領域41に対して移動させることで、照射領域41を、照射対象物12上に設定された渦巻42に沿って移動させる。

概要

背景

従来のイオン注入装置では、例えば下記特許文献1に開示されているように、イオンビーム経路上に偏向マグネットが配置されており、イオンビームを電磁的に偏向させることにより、照射対象物を基準面に対して静止させながら、イオンビームの照射領域を基準面に対して移動させ、照射面上を二次元的に走査させていた。

また、下記特許文献2では、イオンビームを電磁的に一方向に偏向させながら、それに直交する方向に照射対象物を機械的に移動させることにより、照射領域を照射面上で二次元的に移動させる構成が開示されている。

しかしながら、イオンビームを電磁的に移動させる上述のビームスキャン方式では、イオンビームの経路長を長く延ばして偏向マグネットを設置する必要があり、装置ボリュウムが大型化するという不都合があった。

そこで近年では、照射領域を基準面に対して静止させながら、照射対象物を照射領域に対して機械的に移動させるメカニカル・スキャン方式が提案され、装置の小型化に寄与することが確認されている。

さて、ビーム・スキャン方式では従来、ラスター状のスキャン方法が用いられてきた。ラスター状のスキャン方法とは、図15を参照し、水平方向にスキャンし、鉛直方向に1ピッチ分移動し、次段を水平方向にスキャンする工程を順に繰り返す方法である。符号142は照射領域の中心の移動経路を示している。

ビーム・スキャン方式で用いられてきたラスター状のスキャン方法を、メカニカル・スキャン方式に転用したときには、慣性の影響を考慮する必要があった。
つまり、イオン注入密度を均一化するために、照射対象物112の照射面117内を等速(一定値の速度)でスキャンするには、照射領域が完全に照射面117の外側に外れてしまう加速区間150を必要とし、タクトタイムが長くかかるという不都合があった。

また、加速区間150を短くするには加速区間150における加速度を大きくする必要があり、大きな駆動力を必要とし、結果、装置が大型化して高コストであった。また急加減速エネルギー損失が大きいという不都合があった。さらに、急加減速の際には、照射対象物に振動が発生するおそれがあった。

概要

照射線を照射面の外側にはみ出させることが不要になり、かつ照射対象物の駆動動力を低減できる照射方法処理装置を提供する。 照射対象物12の照射線が照射される照射面17のうち、照射面17よりも狭い照射領域41内に、基準面11上に配置された照射装置から照射線を照射し、照射対象物12と照射領域41とを相対的に移動させ、照射面17に照射線を照射する照射方法であって、照射領域41を基準面11に対して静止させた状態で照射対象物12を照射領域41に対して移動させることで、照射領域41を、照射対象物12上に設定された渦巻42に沿って移動させる。

目的

本発明は上記従来技術の不都合を解決するために創作されたものであり、その目的は、照射線を照射面の外側にはみ出させることが不要になり、かつ照射対象物の駆動動力を低減できる照射方法、処理装置を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

所定の基準面上に配置された照射装置から照射線射出し、照射対象物照射面に含まれ、前記照射面よりも狭い範囲の照射領域内に、ビーム状の前記照射線を照射して前記照射線が照射されている照射点を形成し、前記照射対象物と前記照射領域とを相対的に移動させ、前記照射面に前記照射線を照射する照射方法であって、前記照射領域を前記基準面に対して静止した状態で、前記照射領域の中心が、前記基準面に設定された第一の渦巻上を移動するように、前記照射対象物を前記照射領域に対して移動させる第一の移動工程を有する照射方法。

請求項2

前記第一の移動工程では、前記第一の渦巻の中心と前記照射領域の中心とを結ぶ線分である第一渦巻半径の長さを前記照射領域の移動に伴って変化させる照射方法であって、移動に伴って前記第一渦巻半径の長さが変化する変化量の絶対値を、移動に伴って前記第一渦巻半径が回転した回転角度の絶対値に比例させる請求項1記載の照射方法。

請求項3

前記照射領域を前記基準面に対して静止した状態で、前記照射領域の中心が、前記基準面に設定された第二の渦巻上を移動するように、前記照射対象物を前記照射領域に対して移動させる第二の移動工程を有し、前記第二の移動工程では、前記第二の渦巻の中心と前記照射領域の中心とを結ぶ線分である第二渦巻半径の長さを前記照射領域の移動に伴って変化させる照射方法であって、移動に伴って前記第二渦巻半径の長さが変化する変化量の絶対値を、移動に伴って前記第二渦巻半径が回転した回転角度の絶対値に比例させる請求項2記載の照射方法。

請求項4

前記第一の移動工程では、前記照射領域の中心が、前記第一の渦巻上を外周から内周に向けて移動するように、前記照射対象物を前記照射領域に対して移動させ、前記第二の移動工程では、前記照射領域の中心が、前記第二の渦巻上を内周から外周に向けて移動するように、前記照射対象物を前記照射領域に対して移動させる請求項3記載の照射方法。

請求項5

前記第一の移動工程で移動した前記照射領域の中心の移動軌跡と、前記第二の工程で移動した前記照射領域の中心の移動軌跡とは、交差しないようにする請求項4記載の照射方法。

請求項6

前記照射線は、荷電粒子線である請求項1乃至請求項5のいずれか1項記載の照射方法。

請求項7

前記照射点を、前記照射領域内で、前記照射領域に対して移動させる請求項1乃至請求項6のいずれか1項記載の照射方法。

請求項8

前記照射点は振動移動させる請求項7記載の照射方法。

請求項9

前記振動移動の方向は、前記照射対象物の移動方向と垂直にする請求項8記載の照射方法。

請求項10

前記第一の移動工程では、前記照射領域の中心を前記第一の渦巻上で等速で移動させる請求項1乃至請求項9のいずれか1項記載の照射方法。

請求項11

予め基準長さを設定しておき、前記第一の移動工程では、前記第一渦巻半径の長さが前記基準長さよりも小さいときの前記照射領域の中心の移動速度は、前記第一渦巻半径の長さが前記基準長さよりも大きいときの移動速度よりも小さくする請求項1乃至請求項9のいずれか1項記載の照射方法。

請求項12

前記照射領域の中心の移動方向とは垂直な方向の前記照射領域の長さの半分の値が、前記基準長さにされた請求項11記載の照射方法。

請求項13

前記照射対象物を、前記照射線のビーム軸に対して直角な第一の移動方向に沿って往復移動させる第一の移動装置と、前記ビーム軸に対して直角で前記第一の移動方向と交差する第二の移動方向に沿って往復移動させる第二の移動装置とを用いて、前記照射対象物を移動させる請求項1乃至請求項11のいずれか1項記載の照射方法。

請求項14

前記照射領域内に前記照射線を照射して前記照射点を形成する照射装置と、前記照射対象物を、前記照射線のビーム軸に対して直角な第一の移動方向に沿って往復移動させる第一の移動装置と、前記ビーム軸に対して直角で前記第一の移動方向と交差する第二の移動方向に沿って往復移動させる第二の移動装置と、前記第一、第二の移動装置を制御して、前記照射対象物を移動させる制御装置と、を有し、請求項1乃至請求項12のいずれか1項記載の照射方法によって、前記照射対象物に前記照射線を照射する処理装置

請求項15

前記制御装置は、前記照射領域の中心が前記照射面内で移動する経路を記憶する記憶装置を有する請求項14記載の処理装置。

請求項16

基準面上に配置され、照射対象物の照射線が照射される照射面のうち、前記照射面よりも狭い照射領域内に前記照射線を照射して照射点を形成する照射装置と、前記照射対象物と前記照射領域とを相対的に移動させ、前記照射面に前記照射線を照射させる移動装置と、を有する処理装置であって、前記移動装置は、前記照射領域を前記基準面に対して静止させた状態で前記照射対象物を前記照射領域に対して移動させるように構成され、前記移動装置を動作させ、前記照射領域の中心が、前記照射面に設定された渦巻上を移動するように、前記照射対象物を移動させる制御装置が設けられた処理装置。

請求項17

前記制御装置は、前記渦巻の中心と前記照射領域の中心とを結ぶ線分である渦巻半径の長さを前記照射領域の移動に伴って変化させるように構成された処理装置であって、前記制御装置は、移動に伴う前記渦巻半径の長さの変化量の絶対値が、移動に伴う前記渦巻半径の回転角度の絶対値に比例させるように構成された請求項16記載の処理装置。

請求項18

前記移動装置は、前記照射対象物を、前記照射線のビーム軸に対して直角な第一の移動方向に沿って往復移動させる第一の移動装置と、前記ビーム軸に対して直角で前記第一の方向と交差する第二の移動方向に沿って往復移動させる第二の移動装置とを備える請求項16又は請求項17のいずれか1項記載の処理装置。

請求項19

前記照射線は、荷電粒子線である請求項16乃至請求項18のいずれか1項記載の処理装置。

請求項20

前記制御装置は、前記移動装置を動作させ、前記照射領域の中心が前記渦巻上で等速で移動するように、前記処理対象物を移動させるように構成された請求項16乃至請求項19のいずれか1項記載の処理装置。

請求項21

前記制御装置には、予め、基準長さと、前記渦巻の形状と位置とが設定され、前記照射領域の中心が前記渦巻上を移動する際に、前記渦巻の中心と前記照射領域の中心とを結ぶ線分である渦巻半径の長さが求められ、前記渦巻半径の長さが前記基準長さよりも小さいときの前記照射領域の中心の移動速度は、前記渦巻半径の長さが前記基準長さよりも大きいときの移動速度よりも小さくされる請求項16乃至請求項19のいずれか1項記載の処理装置。

請求項22

前記照射領域の中心の移動方向とは垂直な方向の前記照射領域の長さの半分の値が、前記基準長さにされた請求項21記載の処理装置。

技術分野

0001

本発明は、照射方法処理装置に関する。

背景技術

0002

従来のイオン注入装置では、例えば下記特許文献1に開示されているように、イオンビーム経路上に偏向マグネットが配置されており、イオンビームを電磁的に偏向させることにより、照射対象物を基準面に対して静止させながら、イオンビームの照射領域を基準面に対して移動させ、照射面上を二次元的に走査させていた。

0003

また、下記特許文献2では、イオンビームを電磁的に一方向に偏向させながら、それに直交する方向に照射対象物を機械的に移動させることにより、照射領域を照射面上で二次元的に移動させる構成が開示されている。

0004

しかしながら、イオンビームを電磁的に移動させる上述のビームスキャン方式では、イオンビームの経路長を長く延ばして偏向マグネットを設置する必要があり、装置ボリュウムが大型化するという不都合があった。

0005

そこで近年では、照射領域を基準面に対して静止させながら、照射対象物を照射領域に対して機械的に移動させるメカニカル・スキャン方式が提案され、装置の小型化に寄与することが確認されている。

0006

さて、ビーム・スキャン方式では従来、ラスター状のスキャン方法が用いられてきた。ラスター状のスキャン方法とは、図15を参照し、水平方向にスキャンし、鉛直方向に1ピッチ分移動し、次段を水平方向にスキャンする工程を順に繰り返す方法である。符号142は照射領域の中心の移動経路を示している。

0007

ビーム・スキャン方式で用いられてきたラスター状のスキャン方法を、メカニカル・スキャン方式に転用したときには、慣性の影響を考慮する必要があった。
つまり、イオン注入密度を均一化するために、照射対象物112の照射面117内を等速(一定値の速度)でスキャンするには、照射領域が完全に照射面117の外側に外れてしまう加速区間150を必要とし、タクトタイムが長くかかるという不都合があった。

0008

また、加速区間150を短くするには加速区間150における加速度を大きくする必要があり、大きな駆動力を必要とし、結果、装置が大型化して高コストであった。また急加減速エネルギー損失が大きいという不都合があった。さらに、急加減速の際には、照射対象物に振動が発生するおそれがあった。

先行技術

0009

特開2007−220550号公報
特開平11−354064号公報

発明が解決しようとする課題

0010

本発明は上記従来技術の不都合を解決するために創作されたものであり、その目的は、照射線を照射面の外側にはみ出させることが不要になり、かつ照射対象物の駆動動力を低減できる照射方法、処理装置を提供することにある。

課題を解決するための手段

0011

上記課題を解決するために本発明は、所定の基準面上に配置された照射装置から照射線を射出し、照射対象物の照射面に含まれ、前記照射面よりも狭い範囲の照射領域内に、ビーム状の前記照射線を照射して前記照射線が照射されている照射点を形成し、前記照射対象物と前記照射領域とを相対的に移動させ、前記照射面に前記照射線を照射する照射方法であって、前記照射領域を前記基準面に対して静止した状態で、前記照射領域の中心が、前記基準面に設定された第一の渦巻上を移動するように、前記照射対象物を前記照射領域に対して移動させる第一の移動工程を有する照射方法である。
本発明は照射方法であって、前記第一の移動工程では、前記第一の渦巻の中心と前記照射領域の中心とを結ぶ線分である第一渦巻半径の長さを前記照射領域の移動に伴って変化させる照射方法であって、移動に伴って前記第一渦巻半径の長さが変化する変化量の絶対値を、移動に伴って前記第一渦巻半径が回転した回転角度の絶対値に比例させる照射方法である。
本発明は照射方法であって、前記照射領域を前記基準面に対して静止した状態で、前記照射領域の中心が、前記基準面に設定された第二の渦巻上を移動するように、前記照射対象物を前記照射領域に対して移動させる第二の移動工程を有し、前記第二の移動工程では、前記第二の渦巻の中心と前記照射領域の中心とを結ぶ線分である第二渦巻半径の長さを前記照射領域の移動に伴って変化させる照射方法であって、移動に伴って前記第二渦巻半径の長さが変化する変化量の絶対値を、移動に伴って前記第二渦巻半径が回転した回転角度の絶対値に比例させる照射方法である。
本発明は照射方法であって、前記第一の移動工程では、前記照射領域の中心が、前記第一の渦巻上を外周から内周に向けて移動するように、前記照射対象物を前記照射領域に対して移動させ、前記第二の移動工程では、前記照射領域の中心が、前記第二の渦巻上を内周から外周に向けて移動するように、前記照射対象物を前記照射領域に対して移動させる照射方法である。
本発明は照射方法であって、前記第一の移動工程で移動した前記照射領域の中心の移動軌跡と、前記第二の工程で移動した前記照射領域の中心の移動軌跡とは、交差しないようにする照射方法である。
本発明は、照射方法であって、前記照射線は、荷電粒子線である照射方法である。
本発明は照射方法であって、前記照射点を、前記照射領域内で、前記照射領域に対して移動させる照射方法である。
本発明は照射方法であって、前記照射点は振動移動させる照射方法である。
本発明は照射方法であって、前記振動移動の方向は、前記照射対象物の移動方向と垂直にする照射方法である。
本発明は照射方法であって、前記第一の移動工程では、前記照射領域の中心を前記第一の渦巻上で等速で移動させる照射方法である。
本発明は照射方法であって、予め基準長さを設定しておき、前記第一の移動工程では、前記第一渦巻半径の長さが前記基準長さよりも小さいときの前記照射領域の中心の移動速度は、前記第一渦巻半径の長さが前記基準長さよりも大きいときの移動速度よりも小さくする照射方法である。
本発明は照射方法であって、前記照射領域の中心の移動方向とは垂直な方向の前記照射領域の長さの半分の値が、前記基準長さにされた照射方法である。
本発明は照射方法であって、前記照射対象物を、前記照射線のビーム軸に対して直角な第一の移動方向に沿って往復移動させる第一の移動装置と、前記ビーム軸に対して直角で前記第一の移動方向と交差する第二の移動方向に沿って往復移動させる第二の移動装置とを用いて、前記照射対象物を移動させる照射方法である。
本発明は、前記照射領域内に前記照射線を照射して前記照射点を形成する照射装置と、前記照射対象物を、前記照射線のビーム軸に対して直角な第一の移動方向に沿って往復移動させる第一の移動装置と、前記ビーム軸に対して直角で前記第一の移動方向と交差する第二の移動方向に沿って往復移動させる第二の移動装置と、前記第一、第二の移動装置を制御して、前記照射対象物を移動させる制御装置と、を有し、前記いずれかの照射方法によって、前記照射対象物に前記照射線を照射する処理装置である。
本発明は処理装置であって、前記制御装置は、前記照射領域の中心が前記照射面内で移動する経路を記憶する記憶装置を有する処理装置である。
本発明は、基準面上に配置され、照射対象物の照射線が照射される照射面のうち、前記照射面よりも狭い照射領域内に前記照射線を照射して照射点を形成する照射装置と、前記照射対象物と前記照射領域とを相対的に移動させ、前記照射面に前記照射線を照射させる移動装置と、を有する処理装置であって、前記移動装置は、前記照射領域を前記基準面に対して静止させた状態で前記照射対象物を前記照射領域に対して移動させるように構成され、前記移動装置を動作させ、前記照射領域の中心が、前記照射面に設定された渦巻上を移動するように、前記照射対象物を移動させる制御装置が設けられた処理装置である。
本発明は処理装置であって、前記制御装置は、前記渦巻の中心と前記照射領域の中心とを結ぶ線分である渦巻半径の長さを前記照射領域の移動に伴って変化させるように構成された処理装置であって、前記制御装置は、移動に伴う前記渦巻半径の長さの変化量の絶対値が、移動に伴う前記渦巻半径の回転角度の絶対値に比例させるように構成された処理装置である。
本発明は処理装置であって、前記移動装置は、前記照射対象物を、前記照射線のビーム軸に対して直角な第一の移動方向に沿って往復移動させる第一の移動装置と、前記ビーム軸に対して直角で前記第一の方向と交差する第二の移動方向に沿って往復移動させる第二の移動装置とを備える処理装置である。
本発明は処理装置であって、前記照射線は、荷電粒子線である処理装置である。
本発明は処理装置であって、前記制御装置は、前記移動装置を動作させ、前記照射領域の中心が前記渦巻上で等速で移動するように、前記処理対象物を移動させるように構成された処理装置である。
本発明は処理装置であって、前記制御装置には、予め、基準長さと、前記渦巻の形状と位置とが設定され、前記照射領域の中心が前記渦巻上を移動する際に、前記渦巻の中心と前記照射領域の中心とを結ぶ線分である渦巻半径の長さが求められ、前記渦巻半径の長さが前記基準長さよりも小さいときの前記照射領域の中心の移動速度は、前記渦巻半径の長さが前記基準長さよりも大きいときの移動速度よりも小さくされる処理装置である。
本発明は処理装置であって、前記照射領域の中心の移動方向とは垂直な方向の前記照射領域の長さの半分の値が、前記基準長さにされた処理装置である。

0012

原理
照射面よりも小面積の照射領域の中心(又は中心点)が渦巻(又は螺旋)上を移動するときの基本原理を説明する。

0013

先ず、渦巻の線間ピッチが一定である、いわゆるアルキメデススパイラルを定義する。
一平面上に半直線である基準線が位置しているものとし、基準線の始点を中心点とすると、その一平面内で移動点渦巻曲線に含まれる中心点を中心とした渦巻曲線上を移動する場合を考える。

0014

移動点と中心点を結ぶ線分を渦巻半径、その長さを半径距離Rとし、移動点が中心点に位置する状態では、半径距離Rはゼロである。
その状態から、半径距離Rが漸増するように、移動点が渦巻上を外周に向けて移動したとき渦巻半径は移動に伴って回転する。

0015

基準線を含む直線によって一平面を二個の半平面に分けた場合、移動点が中心点から移動を開始するとき、移動点はどちらの半平面に向かっても進行できるが、渦巻半径が回転した角度を移動角度θとし、移動開始直後に、一方の半平面の内部に移動点が位置するときを0≦移動角度θ、他方の半平面の内部に位置するときを移動角度θ≦0と定義すると、どちらの場合でも、移動角度θと半径距離Rとが、下記数式(1)を満足すると、その渦巻曲線は、アルキメデス・スパイラルと呼ばれる(0≦半径距離R)、

0016

0017

同じ半直線を基準線とする場合は、0≦移動角度θのアルキメデス・スパイラルと、移動角度θ≦0のアルキメデス・スパイラルとは、基準線を含む直線に対して対称になる。

0018

いずれのアルキメデス・スパイラルについても、中心点を通る直線は、アルキメデス・スパイラルと交差して交点を形成するが、中心点も交点に含むものとすると、一つのアルキメデス・スパイラルの交点のうち、隣接する交点間の距離は互いに等しくなる。これを「等ピッチ」と呼び、アルキメデス・スパイラルの特徴の一つである。

0019

基準線の位置やaの値が予め定められたアルキメデス・スパイラル上を移動点が移動する場合は、外周方向に移動するときは移動角度θの絶対値が増加し、内周方向に移動するときは絶対値は減少する。

0020

同一のアルキメデス・スパイラル上の始点と終点の二点間を移動点が移動するとき、半径距離Rの変化量のΔRは、移動角度θの変化量の絶対値|Δθ|に比例する。逆に、移動点が移動してその関係が成り立つ渦巻曲線は、アルキメデス・スパイラルになる。

0021

次に、アルキメデス・スパイラルの線上を、移動点が速度v(t)で移動する場合の、半径方向速度と角速度を求める。ここでは、0≦θの場合を考えるが、移動方向については、移動角度θが増加する場合と、減少する場合の両方が含まれる。
数式(1)を展開すると、半径方向速度は下記数式(2)、角速度は下記数式(3)で表される。

0022

0023

0024

ここで、半径距離R(t)は、下記数式(4)より、下記数式(5)として算出すればよい。

0025

0026

0027

また、移動角度θ(t)も同様に、下記数式(6)より、下記数式(7)として算出すればよい。

0028

0029

0030

なお、各々の初期値は任意に定めることができる。
以上によって算出された極座標軌道直交座標系に展開すれば、2直動軸で駆動することができる。例えば、下記数式(8)、(9)として各直動軸に分配する。

0031

0032

0033

2直動軸で駆動する駆動機構負荷の大きさを検討する。
渦巻経路上を等速(vsp)で移動させる場合を、一方軸について検討する。なお、直交軸はπ/2だけ位相が異なるのみである。

0034

移動装置によって照射対象物が一定値の半径R0の円周上を回転移動をすることで、照射領域が照射対象物上を半径R0の円周上を回転移動をしているものとすると、渦巻経路の小径部分における回転移動の水平方向成分は下記数式(10)で示される。

0035

0036

ここでωは小径部分での角速度であり、下記数式(11)で示される。

0037

0038

上記数式(10)、(11)より、小径部分における水平方向速度水平方向加速度はそれぞれ下記数式(12)、(13)で示すことができる。

0039

0040

0041

よって、最大速度はvspで与えられ、最大加速度はvsp2/R0で与えられる。

発明の効果

0042

照射領域の中心が、渦巻上を渦巻に沿って移動することにより、照射線を照射面の外側にはみ出させることが不要になり、タクトタイムが短縮される。
軽負荷容量の駆動装置を用いることができるので安価に構成することができる。

0043

ラスタースキャンに比べて、照射対象物の加減速が緩やかであり、大きな駆動力が不要になる。移動装置の負荷が軽減することにより、装置寿命延長される。
照射領域を基準面に対して静止させておくので、照射線が荷電粒子線の場合には、照射線の経路長を長く延ばして偏向マグネットを設置することが不要となり、装置ボリュウムを削減することができ、コスト低減になる。

図面の簡単な説明

0044

本発明の処理装置の内部構成図
移動装置の概略正面図
(a)(b):照射面の法線をビーム軸に対して傾斜させた構成を説明するための図
第一、第四例の照射方法での照射面の拡大図
第一例の照射方法を説明するための図
第二例の照射方法での照射面の拡大図
第二例の照射方法を説明するための図(その1)
第二例の照射方法を説明するための図(その2)
第三例の照射方法での照射面の拡大図
第三例の照射方法を説明するための図(その1)
第三例の照射方法を説明するための図(その2)
第三例の照射方法を説明するための図(その3)
第三例の照射方法の説明するための図(その4)
第四例の照射方法を説明するための図
従来のラスタースキャン方式を説明するための図

実施例

0045

<処理装置の構造>
本発明の処理装置の構造を説明する。
図1は本発明の処理装置10の内部構成図である。

0046

本発明の処理装置10は、真空槽16と、照射装置20とを有している。
照射装置20は、荷電粒子電磁波を真空槽16内に射出する照射装置であり、ここでは、照射装置20は、荷電粒子線(イオンビーム)を照射線として射出するイオン照射装置であり、照射装置20は、イオンを発生するイオン源21と、イオン源21からイオンを引き出す引出電極27と、引出電極27で引き出されたイオンの中から所望の種類のイオンを取り出す質量分析部22と、質量分析部22で取り出されたイオンをビーム状に整形すレンズ部26とを有している。

0047

質量分析部22は、互いに対向して配置された第一、第二の電磁石22a、22bと、第一の電磁石22aと第二の電磁石22bとの間に配置された真空配管22cとを有してる。
真空配管22cの中心軸線は第一、第二の電磁石22a、22bの表面と平行な一の平面内でなりに曲げられており、一端と他端には第一、第二の補助真空配管23、25がそれぞれ接続されている。
第一の補助真空配管23はイオン源21に接続され、引出電極27は第一の補助真空配管23の内側に配置されている。レンズ部26は第二の補助真空配管25の内側に配置されている。

0048

イオン源21には不図示のガス導入部が接続されている。真空槽16内と照射装置20内とが、真空槽16に接続された真空排気部15によって所定圧力に真空排気された後、ガス導入部からイオン源21内に原料ガスが導入され、不図示の電源からイオン源21内に電力が供給されると、導入された原料ガスは電離されてプラズマが生成される。

0049

不図示の電源から引出電極27に電圧印加され、イオン源21と引出電極27との間に電界が形成されると、プラズマ中のイオンはイオン源21から引出電極27に向かって加速されて、第一の補助真空配管23内に引き出され、引出電極27を通過して、質量分析部22に入射する。

0050

不図示の電源から質量分析部22の第一、第二の電磁石22a、22bに電流が流されると、第一の電磁石22aと第二の電磁石22bとの間に磁界が形成され、真空配管22c内を飛行するイオンはローレンツ力を受けて軌道が曲げられる。第一、第二の電磁石22a、22bに流す電流量を調整すると、磁界の大きさが調整され、所望のイオンだけが真空配管22cを通過して、第二の補助真空配管25内に放出される。

0051

レンズ部26は四重極電磁石であり、不図示の電源からレンズ部26に電流が流されると、レンズ部26の内側に磁界が形成され、質量分析部22から放出されたイオンはレンズ部26が形成する磁界により収束され、ビーム状に整形され、第二の補助真空配管25の端部である放出口28から外側に放出される。

0052

放出口28は真空槽16に接続されており、真空排気部15は継続して動作されており、真空槽16内は真空排気され、真空雰囲気が形成されている。
放出口28から放出された照射線(イオンビーム)は、真空排気された真空槽16内を、ここでは集束されながら直進する。符号19は照射線の中心軸線であるビーム軸を示している。

0053

真空槽16の内部には、基板保持装置40が配置されている。
例えば処理装置10が配置された建築物の床面等、基準となる平面を基準面11とすると、照射装置20と真空槽16とは、基準面11に対して静止されている。基板保持装置40の一部は基準面11に対して静止され、他の部分は、基準面11に対して移動するように構成されている。なお、基準面11は、ここでは照射装置20の底面が位置する一の平面であるが、照射装置20に対して静止した一の平面であれば、これに限定されない。

0054

真空槽16内には移動装置30が配置されており、移動装置30には、腕部材14の一端が取り付けられている。腕部材14の他端には、チャック13が取り付けられており、チャック13は、その表面に、照射線の照射対象である照射対象物が配置されるように構成されている。

0055

チャック13の内部には、吸着電極が配置されており、照射対象物が配置された状態で、吸着電源から吸着電極に電圧が印加されると、チャック13の表面に電界が形成され、照射対象物はチャック13の表面に吸着される。例えば静電吸着である。符号12は、チャック13に保持された照射対象物を示している。

0056

照射対象物12の表面のうち、照射線が照射される面を照射面17とすると、照射面17は放出口28に向けられており、照射線は照射面17に照射される。照射線が照射される際に、照射線が同時に照射対象物12に照射される範囲を照射点と呼ぶと、照射点は照射面17に形成されるが、ここでは、照射線は広がった状態から集束され、焦点が照射面17上に結ばれるようになっているので、焦点の大きさが照射点の大きさになっている。

0057

真空槽16の内部には、予め決められた位置に、照射位置49が設定されている。
照射位置49は、基準面11に対して静止した位置であり、移動装置30が照射対象物12を移動させる際に、移動装置30は、照射位置49が照射面17に位置するように照射対象物12を移動させる。

0058

照射線の照射面17に対する入射角は、ゼロ度に限定されるものではないが、ゼロ度でも、照射線が傾いて照射面17に入射する場合であっても、移動装置30が照射対象物12を移動させる際には、入射角が変化せず、また、照射位置49が照射面17に位置するように照射対象物12を移動させる。

0059

ビーム軸19は、基準面11に対して静止している場合と、移動する場合の両方がある。
照射線のビーム軸19が基準面11に対して静止している場合は、照射点の中心を照射位置49と一致させるために、ビーム軸が照射位置49を通るように照射線が照射される。

0060

レンズ部26が磁界を変化させる等の方法により、ビーム軸19が基準面11に対して移動し、照射点が照射面17内を移動する場合は、照射点は、照射点よりも大きく、照射面17よりも狭い一定範囲の照射領域内で移動するようにされている。

0061

ここでは、照射対象物12が基準面11に対して移動される際に、照射面17は、照射位置49を含む一の平面内で移動するようにされている。照射領域は、基準面17内の照射位置49を中心とする照射面17内の領域であり、照射領域は基準面11に対して静止していることになる。

0062

照射点が移動する場合、例えば、後述する照射対象物12の移動速度よりも速い速度で照射位置49を中心に振動されており、照射点の直径に振動の振幅加算された範囲に照射線がほぼ同時に照射されるので、照射領域の振動方向の長さは、照射点の直径に照射点の中心の振動の振幅が加算された大きさになり、振動領域は照射点よりも広い面積になる。

0063

なお、振動の方向は変化させることができ、照射位置を中心として、例えば、照射対象物12の移動方向に対して垂直方向に照射点を振動させることができる。移動方向に対して垂直に振動させる場合は、渦巻と振動方向とが交差する点に於いて、振動方向は渦巻に対して直角になる。

0064

照射点が振動する場合と照射点が基準面11に対して静止する場合のどちらでも、照射領域は、照射面17上で照射位置49を中心とした一定面積の範囲内に形成されており、移動装置30は、基準面11や照射位置49に対して照射対象物12を移動させることで、照射領域と照射面17とを相対的に移動させる。本実施例では、移動装置30により、照射領域が、照射面17の照射線が照射されるべき有効領域内を隈無く移動するようにされている。

0065

図2は基板保持装置40の概略正面図である。
本実施形態では、基板保持装置40に設けられた移動装置30は、照射対象物12を、照射線(イオンビーム)のビーム軸19に対して直角な第一の移動方向45に沿って往復移動させる第一の移動装置31と、ビーム軸19に対して直角で第一の移動方向45と交差する第二の移動方向46に沿って往復移動させる第二の移動装置32とを有している。
ここでは第二の移動方向46は第一の移動方向45に対して直角に向けられており、第二の移動方向46は鉛直の向きにされている。

0066

第一、第二の移動装置31、32は、ここではリニアモータであり、直線状の第一、第二のレール31a、32aと、第一、第二のレール31a、32aに沿って移動する第一、第二の可動部材31b、32bとを有している。
第一、第二のレール31a、32aには、長手方向に沿って複数の電磁石(不図示)が並んで設けられており、第一、第二の可動部材31b、32bには固定磁石(不図示)が設けられている。

0067

第一のレール31aは、長手方向を第一の移動方向45と平行になるように向けられ、基準面11に対して静止して配置されており、第一の可動部材31bは第一のレール31a上に配置されている。第二のレール32aは長手方向を第二の移動方向46と平行に向けられて、第一の可動部材31bに固定され、第二の可動部材32bは第二のレール32a上に配置されている。

0068

第一、第二のレール31a、32aに設けられた電磁石の磁極を長手方向に沿って交互に変化させると、電磁石と固定磁石との間に発生する磁力により、第一、第二の可動部材31b、32bは第一、第二のレール31a、32a上を第一、第二の移動方向45、46に沿ってそれぞれ往復移動する。

0069

腕部材14は、細長で、第一の移動方向45に沿って伸ばされており、一端が第二の可動部材32bに取り付けられている。
腕部材14の他端に取り付けられたチャック13はここでは静電チャックであり、内部に不図示の吸着用電極埋設されている。チャック13上に照射対象物12が配置された状態で、吸着用電極に電圧が印加されると、チャック13と照射対象物12との間に静電力が発生して、照射対象物12はチャック13に静電吸着され、保持される。
照射対象物12をチャック13に静電吸着させた状態で、第一、第二の移動装置31、32をそれぞれ動作させると、照射対象物12は第一、第二の移動方向45、46に沿って往復移動する。

0070

なお、第一、第二の移動装置31、32は、照射対象物12を第一、第二の移動方向45、46に沿って往復移動できるならば、上述のリニアモータに限定されず、例えばラック・アンドピニオン、又はボールネジであってもよい。

0071

図1を参照し、チャック13上の照射対象物12の照射面17を放出口28と対向させると、放出口28から放出された照射線は、照射面17のうち、照射面17よりも狭い照射領域内に照射される。図2の符号41は照射領域を示しており、照射点や照射位置49については省略してある。

0072

照射領域41を基準面11に対して静止させた状態で、移動装置30を動作させると、照射対象物12は照射領域41に対して移動する。そのため、照射領域41を基準面11に対して移動させるために照射線の経路長を長く延ばして偏向マグネットを設置することが不要となり、処理装置10を小型化することが可能となる。

0073

本実施形態では、チャック13には不図示のヒーターが設けられている。ヒーターに電流が流されると、ヒーターは発熱して、チャック13に保持された照射対象物12は加熱される。
なお、チャック13をチャック13の表面に対して直角な回転軸線を中心に回転させる回転移動手段は設けられていない。そのため、チャック13には回転体給電するための回転給電手段(スリップリング)が不要であり、吸着用電極とヒーターとに十分な電力を供給することが容易になっている。また、チャック13の重量が軽減し、移動装置30にかかる負荷が低減している。

0074

移動装置30は、制御装置18に接続されている。
制御装置18には、記憶装置が設けられており、記憶装置内には、チャック13の移動方向、移動速度及び、照射線に対する傾きが記憶されている。この傾きは、後述する入射角度φに等しい。

0075

制御装置18は、記憶内容に基づいて、移動装置30に制御信号を出力し、移動装置30を制御して、第一、第二の移動装置31、32に、照射領域41が、照射対象物12の照射面17上で、記憶された渦巻42に沿って移動させる。この移動中も、照射位置49は照射面17に位置するようになっている。

0076

渦巻42の中心と渦巻き42上の点との間の結ぶ線分である半径線43の長さを半径距離Rとすると、半径距離Rは、渦巻42の中心を通る基準線と線分43との間の角度である移動角度θに比例し、R=aθ(aはゼロ以外の定数、0≦R)の式で示される関係にある。

0077

本発明で「基準線」とは、渦巻42の中心における接線のうち、渦巻42の中心を始点する半直線であり、移動角度θが360°×n(nは自然数)の値のときに渦巻42と交差する半直線である。

0078

渦巻には、左回り右回り、又は、時計回り反時計回りがあり、一方を0≦θ、他方をθ≦0とする。どちらの場合も、移動角度θの絶対値が増加すると、半径距離Rは増加し、移動角度θの絶対値が減少すると、半径距離Rは減少する。渦巻42上の二点間を、照射領域41の中心が相対的に移動するとき、半径距離Rの変化量が移動角度θの変化量に比例するとき、照射領域41の中心が移動する渦巻42の形状は、線間ピッチが一定なアルキメデス・スパイラルになる。「線間ピッチ」とは、渦巻42の中心を始点として放射方向に延びる半直線と渦巻42とが交差する交点のうち、半直線上で隣り合う二つの交点の間の距離をいう。

0079

照射領域41の直径を渦巻42の線間ピッチと同じ長さにすると、照射領域41の中心が渦巻42上を、渦巻42に沿って移動することにより、照射面17内に隙間無く一様に照射線が照射される。
照射領域41の中心が、渦巻42上を渦巻き42に沿って移動させられることにより、照射線を照射面17の外側にはみ出させることが不要になり、タクトタイムが短縮される。

0080

また、第一、第二の移動装置31、32を動作させて、照射領域41を渦巻42に沿って移動させることにより、ラスタースキャン方式に比べて、照射対象物12の第一、第二の移動方向45、46に沿った最大加速度が低減され、第一、第二の移動装置31、32にかかる負荷が低減する。そのため、第一、第二の移動装置31、32の発熱量が減少し、第一、第二の移動装置31、32を真空槽16内に配置することが可能となる。また、第一、第二の移動装置31、32に必要な駆動力が低減し、第一、第二の移動装置31、32には小型で低コストのものを使用できる。

0081

なお、移動装置30は、照射領域41を、照射対象物12上に設定された渦巻42に沿って移動させるように構成されていればよく、第一、第二の移動装置31、32を備える構成に限定されるものではない。例えば、渦巻42と同じ形状の案内溝が形成された静止部材と、案内溝に挿入された移動部材とを真空槽16内に配置し、静止部材は基準面11に対して静止させ、チャック13は移動部材に固定して、チャック13を案内溝に沿って移動させる間、チャック13に保持された照射対象物12の照射面17に照射位置49が位置するようにすると、チャック13を案内溝に沿って移動させると、照射領域41が、照射面17上を渦巻42に沿って相対的に移動する。
ただし、第一、第二の移動装置31、32を備える構成の方が、イオンの種類や照射面17の大きさに応じて渦巻42の形状を変更することが容易であり、好ましい。

0082

本実施形態では、制御装置18は、記憶内容に基づいて、移動装置30に制御信号を送信し、照射領域41が、記憶された渦巻42に沿って等速で移動させるように構成されている。ここでは照射線はイオンビームであるから、照射対象物12に対する照射線の照射合計量は、照射対象物12に流れた電流の合計量によって検出することができ、単位時間当たりの電流の合計量(以下、電流量とする)を一定に維持すると、照射領域41が渦巻42に沿って等速で移動することにより、照射面17内でのイオン注入密度ムラが低減する。

0083

この例では、照射線の照射による電流量を一定値にし、照射領域41を照射面17上で等速で移動させ、密度が均一になるようにしたが、制御装置18は、照射対象物12の移動速度を変化させ、照射領域41の照射面17上での移動速度を変更するように構成されているので、制御装置18が照射線の電流量を測定し、測定値に応じて照射領域41の移動速度を変化させて照射面17内で照射線の単位面積当たり合計照射量(照射密度)が均一になるようにしてもよい。

0084

例えば、照射線の電流量が増加すると、増加量に応じた増加速度を照射領域41の移動速度に加算し、照射線の電流量が減少すると、減少量に応じた減少速度を照射領域41の移動速度から減じればよい。

0085

次に、照射線の中心軸線(光であれば光軸)と、照射面17への入射角について説明する。
図3(a)、(b)を参照し、符号19は、照射線の中心軸線であるビーム軸であり、移動装置30に、チャック13の向きを制御し、チャック13上の照射対象物12の照射面17の法線29のうち、照射領域の中心を通る法線とビーム軸19とが成す入射角度φを変更できるように構成してもよい。この場合、照射線がイオンビームであり、イオンビーム中のイオンが照射面17から照射対象物12内に注入される場合は、入射角度φを変更すると、イオンの注入深さが変更される。

0086

ビーム軸19に対して垂直で照射領域の中心を含む平面を移動平面とし、照射面17の法線のうち、照射領域の中心を通る法線とビーム軸19とを含む平面を傾き平面とし、入射角度φがゼロでは無い場合には、移動平面と傾き平面とは異なる平面になる。そして、照射対象物12が移動平面内で移動するものとすると、照射領域の基準面11に対する位置は、ビーム軸19に沿って移動する。

0087

照射対象物12の移動量は、移動平面内で、移動平面と傾き平面の交線伸びる方向の移動成分と、それと直角な方向の移動成分とに分解することができ、照射領域は、照射対象物12の移動に伴って、基準面11及び照射位置49に対してビーム軸19と平行な方向に移動する。その移動は、交線が伸びる方向の移動成分の量×tan(入射角度φ)の大きさである。

0088

それでは、照射対象物12の移動前には照射位置49が照射面17に位置していても、照射対象物12が移動すると照射位置49は照射面17から離間し、焦点位置に照射面17が位置しないことになってしまう。

0089

移動装置30には、照射対象物12をビーム軸19と平行な方向に移動(往動と復動)させる補助移動装置が設けられており、照射対象物12を基準面11に対して、ビーム軸19と平行な方向に往動、復動させるように構成されており、制御装置は、照射対象物12を傾ける際に、傾き方向や入射角度φを求め、照射対象物12の交線に沿った方向の移動量を求め、その値にtanφを乗算し、照射位置49が照射面17に位置するように、照射対象物12を、ビーム軸19に沿って移動させるようになっている。

0090

ここでは照射対象物12の傾き方向は、移動平面と傾き平面の交線が鉛直になるようにされており、従って、交線は、第二の移動方向46と平行であるから、補助移動装置は、照射対象物12を、第二の移動方向46の移動量Δにtanφを乗算した移動量を打ち消すように移動させれば、照射位置49が照射面17に位置した状態は維持される。

0091

照射位置49を照射面17に位置させた状態で、照射対象物12を第一、第二の移動方向45、46に移動させながら、照射対象物12をビーム軸19と平行な方向にtanφの割合で移動させると、照射線の焦点は照射面17上に維持され、イオンの注入効率の低下や、注入分布の不均一を防ぐことができる。
なお、照射線の径が一定であり、照射位置49が照射面17から離間しても、照射領域の面積が変化しない場合は、補助移動装置を動作させなくてもよい。

0092

本実施形態では、制御装置18は、移動装置30に制御信号を送信して、後述する照射方法の移動工程のうち、いずれか一つ又は二つ以上の工程を行うように構成されている。

0093

<第一例の照射方法>
本発明の第一例の照射方法を、上述の処理装置10を用いて説明する。
準備工程
図1を参照し、真空排気部15を動作させ、真空槽16内を真空排気し、真空雰囲気を形成する。このとき、照射装置20内も放出口28から真空排気され、真空雰囲気が形成される。以後、真空排気部15の動作を継続して、真空槽16内と照射装置20内の真空雰囲気を維持する。

0094

真空槽16内の真空雰囲気を維持しながら真空槽16内に照射対象物12を搬入し、チャック13上に配置する。照射対象物12はここでは円盤状のSiC基板又はSi基板である。
チャック13に設けられた吸着用電極に電圧を印加して、照射対象物12をチャック13に静電吸着させる。チャック13に設けられたヒーターを発熱させて、照射対象物12を加熱する。

0095

第一、第二の移動装置31、32を動作させて、チャック13に静電吸着された照射対象物12を基準面11に対して移動させ、照射対象物12の照射面17を照射装置20の放出口28と対向させる。

0096

照射装置20を動作させ、放出口28から真空槽16内に照射線を放出させる。放出された照射線は真空槽16内を直線状に飛行して、図2を参照し、照射対象物12の照射面17のうち、照射面17よりも狭い照射領域41内に入射する。

0097

(移動工程)
図4は照射対象物12の照射面17の拡大図であり、符号421は照射対象物12上に設定された第一の渦巻を示している。本実施形態では第一の渦巻421は、線間ピッチが一定なアルキメデス・スパイラルである。第一の渦巻421上の一点と第一の渦巻421の中心とを結ぶ線分の長さRと、その線分と第一の渦巻421の中心を通る基準線441との間の移動角度θとは、上述したように、R=aθ(aはゼロ以外の定数)の式で示される関係にある。
ここでは、照射領域41の直径と第一の渦巻421の線間ピッチとを等しくしておく。第一の渦巻421の線間ピッチを、照射領域41の直径よりも狭くしてもよい。

0098

照射領域41を基準面11に対して静止させた状態で照射対象物12を照射領域41に対して移動させることで、照射領域41を、照射対象物12上に設定された第一の渦巻421に沿って移動させる(第一の移動工程)。

0099

本実施形態では、図5を参照し、第一の渦巻421の中心と照射領域41の中心とを結ぶ第一の線分431の長さである第一の半径距離R1の変化量を、第一の渦巻421の中心を通る第一の基準線441と、第一の線分431との間の角度である第一の移動角度θ1の変化量に比例させ、第一の移動角度θ1の変化量が増加すると減少させる。符号45は、照射領域41の移動方向を示している。

0100

第一の移動角度θ1の変化量が増加するに従って、照射領域41の中心の移動軌跡が長くなり、照射面17のうち照射線が照射された部分の面積が増加する。
照射領域41の直径と第一の渦巻421の線間ピッチとは等しくされており、照射面17には隙間無く一様に照射線が照射される。

0101

第一の移動工程を終了するときの第一の半径距離R1の値(ゼロを含む)を予め決めておき、第一の半径距離R1が予め決めておいた値になるまで、照射領域41の第一の渦巻421に沿った移動を継続する。
第一の半径距離R1が予め決めておいた値になったら、移動装置30の動作を停止し、照射装置20を停止して、照射面17に対する照射線の照射を終了する。

0102

(終了工程)
チャック13のヒーターの発熱を停止し、吸着用電極への電圧印加を停止する。チャック13と照射対象物12との間の静電吸着力が解消したら、真空槽16内の真空雰囲気を維持しながら、照射対象物12を真空槽16から搬出する。

0103

<第二例の照射方法>
本発明の第二例の照射方法を、上述の処理装置10を用いて説明する。
第二例の照射方法のうち、準備工程と終了工程とは第一例の照射方法と同じであり、以下では第二例の照射方法の移動工程を説明し、準備工程と終了工程の説明は省略する。

0104

(移動工程)
図6は照射対象物12の照射面17の拡大図であり、符号421、422は照射対象物12上に設定された第一、第二の渦巻を示している。

0105

本実施形態では第一、第二の渦巻421、422はアルキメデス・スパイラルであり、第一の渦巻421の線間ピッチと、第二の渦巻422の線間ピッチとは同一である。
第一の渦巻421上の一点と第一の渦巻421の中心とを結ぶ線分の長さRと、その線分と第一の渦巻421の中心を通る第一の基準線441との間の角度θとは、R=aθ(aはゼロ以外の定数)の式で示される関係にある。また、第二の渦巻422上の一点と第二の渦巻422の中心とを結ぶ線分の長さRと、その線分と第二の渦巻422の中心を通る第二の基準線442との間の角度θとは、R=aθの式で示される関係にある。

0106

第一の渦巻421の中心と第二の渦巻422の中心とは一致され、第一の渦巻421の中心を通る第一の基準線441と第二の渦巻422の中心を通る第二の基準線442とは互いに逆方向に向けて延ばされている。すなわち、第一の基準線441と第二の基準線442との間の角度は180°であり、第一の基準線441と第二の基準線442とは同一直線上に位置している。

0107

第一の渦巻421と第二の渦巻422とは互いに交差しておらず、第一、第二の渦巻421、422の中心を始点として放射方向に延びる半直線と、第一、第二の渦巻421、422との交点である第一、第二の交点に関しては、第一の交点が内側に位置するときの第一の交点と第二の交点との間の間隔と、第二の交点が内側に位置するときの第一の交点と第二の交点との間の間隔とが同一になっている。
ここでは、照射領域41の直径と、第一の渦巻421と第二の渦巻422との間の間隔とを等しくしておく。

0108

まず、図7を参照し、照射領域41を基準面11に対して静止させた状態で照射対象物12を照射領域41に対して移動させ、照射領域41の中心を、照射対象物12上に設定された第一の渦巻421に沿って移動させる(第一の移動工程)。

0109

本実施形態では、第一の渦巻421の中心と照射領域41の中心とを結ぶ第一の線分431の長さである第一の半径距離R1の変化量を、第一の渦巻421の中心を通る第一の基準線441と、第一の線分431との間の角度である第一の移動角度θ1の変化量に比例させ、第一の移動角度θ1の変化量が増加すると減少させる。
第一の移動角度θ1の変化量が増加するに従って、照射領域41の中心の移動軌跡が長くなり、照射面17のうち照射線が照射された部分の面積が増加する。

0110

照射領域41の直径と、第一の渦巻421と第二の渦巻422との間の間隔とは等しくされており、照射面17のうち照射線が照射された部分には、幅の長さが照射領域41の直径と等しい渦巻状の隙間が生じる。
第一の移動工程を終了するときの第一の半径距離R1の値を予めゼロに決めておき、第一の半径距離R1がゼロになるまで、照射領域41の第一の渦巻421に沿った移動を継続する。

0111

第一の半径距離R1がゼロになったら、図8を参照し、照射領域41を基準面11に対して静止させた状態で照射対象物12を照射領域41に対して移動させ、照射領域41の中心を、照射対象物12上に設定された第二の渦巻422に沿って移動させる(第二の移動工程)。

0112

本実施形態では、第二の渦巻422の中心と照射領域41の中心とを結ぶ第二の線分432の長さである第二の半径距離R2の変化量を、第二の渦巻422の中心を通る第二の基準線442と、第二の線分432との間の角度である第二の移動角度θ2の変化量に比例させ、第二の移動角度θ2の変化量が増加すると増加させる。
第二の移動角度θ2の変化量が増加するに従って、照射領域41の中心の移動軌跡が長くなり、照射面17のうち照射線が照射された部分の面積が増加する。

0113

照射領域41の直径と、第一の渦巻421と第二の渦巻422との間の間隔とは等しくされており、照射面17のうち第一の移動工程で生じた渦巻状の隙間に照射線が照射される。そのため、第一、第二の移動工程により、照射面17には隙間無く一様に照射線が照射される。

0114

第二の移動工程を終了するときの第二の半径距離R2の値を予め決めておき、第二の半径距離R2が予め決めておいた値になるまで、照射領域41の第二の渦巻422に沿った移動を継続する。
第二の半径距離R2が予め決めておいた値になったら、移動装置30の動作を停止し、照射装置20を停止して、照射面17に対する照射線の照射を終了する。

0115

なお、上述の説明では、照射領域41の直径と、第一の渦巻421と第二の渦巻422との間の間隔とを等しくしていたが、照射領域41の直径と、第一の渦巻421(又は第二の渦巻422)の線間ピッチとを等しくしておき、第一の移動工程で照射面17に隙間無く一様に照射線を照射した後、第二の移動工程では第一の移動工程で照射された上に重ねて、隙間無く一様に照射線を照射してもよい。

0116

<第三例の照射方法>
本発明の第三例の照射方法を、上述の処理装置10を用いて説明する。
第三例の照射方法のうち、準備工程と終了工程とは第一例の照射方法と同じであり、以下では第三例の照射方法の移動工程を説明し、準備工程と終了工程の説明は省略する。

0117

(移動工程)
図9は照射対象物12の照射面17の拡大図であり、符号421、422は照射対象物12上に設定された第一、第二の渦巻421、422を示している。

0118

本実施形態では第一、第二の渦巻421、422はアルキメデス・スパイラルであり、第一の渦巻421の線間ピッチと、第二の渦巻422の線間ピッチとは同一である。
第一の渦巻421上の一点と第一の渦巻421の中心とを結ぶ線分の長さRと、その線分と第一の渦巻421の中心を通る第一の基準線441との間の角度θとは、R=aθ(aはゼロ以外の定数)の式で示される関係にある。また、第二の渦巻422上の一点と第二の渦巻422の中心とを結ぶ線分の長さRと、その線分と第二の渦巻422の中心を通る第二の基準線442との間の移動角度θとは、移動角度θが負なので、R=bθ(b=−a)の式で示される関係にある。

0119

渦巻には、左巻き右巻きとがあり、その一方を0≦θ、他方をθ≦0とすると、0≦θ,R=aθの渦巻と、θ≦0,R=−aθの渦巻とは、基準線が同じ渦巻では、その基準線を含む直線に関して線対称になる。
第一の渦巻421の中心と第二の渦巻422の中心とは一致されている。

0120

第一の渦巻421の中心に近い方の第一の端点と、第二の渦巻422の中心に近い方の第二の端点とは、それぞれ第一、第二の渦巻421、422の中心から回転半径rだけ離間して位置し、第一の端点と第二の端点との間は回転半径rを半径とする円弧47で接続されている。円弧47の中心は第一、第二の渦巻421、422の中心と一致されている。
ここでは、照射領域41の直径と、第一の渦巻421(又は第二の渦巻422)の線間ピッチとを等しくしておく。

0121

まず、図10を参照し、照射領域41を基準面11に対して静止させた状態で照射対象物12を照射領域41に対して移動させ、照射領域41の中心に、照射対象物12上に設定された第一の渦巻421上を第一の渦巻421に沿って移動させる(第一の移動工程)。

0122

本実施形態では、第一の渦巻421の中心と照射領域41の中心とを結ぶ第一の線分431の長さである第一の半径距離R1の変化量を、第一の渦巻421の中心を通る第一の基準線441と、第一の線分431との間の角度である第一の移動角度θ1の変化量に比例させ、第一の移動角度θ1の変化量が増加すると減少させる。

0123

第一の移動角度θ1の変化量が増加するに従って、照射領域41の中心の移動軌跡が長くなり、照射面17のうち照射線が照射された部分の面積が増加する。
照射領域41の直径と、第一の渦巻421の線間ピッチとは等しくされており、照射面17には隙間無く一様に照射線が照射される。

0124

第一の移動工程を終了するときの第一の半径距離R1の値を予め円弧47の半径と同じ値に決めておき、第一の半径距離R1が予め決めておいた値になるまで、照射領域41の中心の第一の渦巻421上の移動を継続する。
第一の半径距離R1が予め決めておいた値になったら、図11を参照し、照射領域41の中心に、円弧47上を円弧47に沿って移動させる。

0125

照射領域41の中心が第二の渦巻422の第二の端点に到達したら、図12を参照し、照射領域41を基準面11に対して静止させた状態で照射対象物12を照射領域41に対して移動させ、照射領域41の中心に、照射対象物12上に設定された第二の渦巻422上を第二の渦巻422に沿って移動させる(第二の移動工程)。

0126

本実施形態では、第二の渦巻422の中心と照射領域41の中心とを結ぶ第二の線分432の長さである第二の半径距離R2の変化量を、第二の渦巻422の中心を通る第二の基準線442と、第二の線分432との間の角度である第二の移動角度θ2の変化量に比例させ、第二の移動角度θ2の変化量が増加すると増加させる。

0127

第二の移動角度θ2の変化量が増加するに従って、照射領域41の中心の移動軌跡が長くなり、照射面17のうち照射線が照射された部分の面積が増加する。
照射領域41の直径と、第二の渦巻422の線間ピッチとは等しくされており、照射面17には、第一の移動工程で照射された上に重ねて、隙間無く一様に照射線が照射される。

0128

第二の移動工程を終了するときの第二の半径距離R2の値を予め決めておき、第二の半径距離R2が予め決めておいた値になるまで、照射領域41の第二の渦巻422に沿った移動を継続する。
第二の半径距離R2が予め決めておいた値になったら、移動装置30の動作を停止し、照射装置20を停止して、照射面17に対する照射線の照射を終了する。

0129

本実施形態では、渦巻42の中心を回避して照射領域41を移動させるため、渦巻42の中心で照射対象物12に大きな加速度を与える必要がない。
なお、図13を参照し、第二の半径距離R2が予め決めておいた値になった後に、移動装置30の動作を停止しないで、上述の移動工程を複数サイクル繰り返してもよい。図13の符号42’は照射領域41の中心の移動軌跡を示している。上述の移動工程を複数サイクル繰り返すことにより、イオンの注入密度を照射面17内で一様に増加できる。

0130

<第四例の照射方法>
本発明の第四例の照射方法を、上述の処理装置10を用いて説明する。
第四例の照射方法のうち、準備工程と終了工程とは第一例の照射方法と同じであり、以下では第四例の照射方法の移動工程を説明し、準備工程と終了工程の説明は省略する。

0131

(移動工程)
図4は照射対象物12の照射面17の拡大図であり、符号421は照射対象物12上に設定された第一の渦巻を示している。本実施形態では第一の渦巻421は、第一例の照射方法と同じ、線間ピッチが一定なアルキメデス・スパイラルである。第一の渦巻421上の一点と第一の渦巻421の中心とを結ぶ線分の長さRと、その線分と第一の渦巻421の中心を通る基準線441との間の角度θとは、R=aθ(aはゼロ以外の定数)の式で示される関係にある。
ここでは、照射領域41の直径と第一の渦巻421の線間ピッチとを等しくしておく。

0132

照射領域41を基準面11に対して静止させた状態で照射対象物12を照射領域41に対して移動させることで、照射領域41の中心に、照射対象物12上に設定された第一の渦巻421上を第一の渦巻421に沿って移動させる(第一の移動工程)。

0133

本実施形態では、図14を参照し、第一の渦巻421の中心と照射領域41の中心とを結ぶ第一の線分431の長さである第一の半径距離R1の変化量を、第一の渦巻421の中心を通る第一の基準線441と、第一の線分431との間の角度である第一の移動角度θ1の変化量に比例させ、第一の移動角度θ1の変化量が増加すると増加させる。

0134

第一の移動角度θ1の変化量が増加するに従って、照射領域41の中心の移動軌跡が長くなり、照射面17のうち照射線が照射された部分の面積が増加する。
照射領域41の直径と第一の渦巻421の線間ピッチとは等しくされており、照射面17には隙間無く一様に照射線が照射される。

0135

第一の移動工程を終了するときの第一の半径距離R1の値を予め決めておき、第一の半径距離R1が予め決めておいた値になるまで、照射領域41の第一の渦巻421に沿った移動を継続する。
第一の半径距離R1が予め決めておいた値になったら、移動装置30の動作を停止し、照射装置20を停止して、照射面17に対する照射線の照射を終了する。

0136

なお、上述の説明では、照射線はイオンビームであったが、荷電粒子線であればイオンビームに限定されず、電子線であってもよい。
更に、照射線は荷電粒子線に限定されず、例えばレーザー光線紫外線X線であってもよい。荷電粒子線の場合には、処理装置10から偏向マグネットを省略することが可能となり、装置ボリュウムを小型化できるという利点がある。

0137

また、上述の第一、第二の移動装置31、32は、リニアモータであったが、第一、第二の移動装置31、32に、真空槽16の外部に配置されたモータを設け、このモータの駆動力によって、第一、第二の可動部材31b、32bを第一、第二のレール31a、32aに沿って往復移動させるように構成してもよい。

0138

また、上記例では、制御装置18は、渦巻きの式を記憶し、照射領域の中心が渦巻き上を移動するように移動装置30を制御していたが、渦巻きの各点の位置の座標移動順序とを記憶し、照射領域の中心が座標間を移動することで、渦巻き上を移動するようにしてもよい。

0139

なお、上記例では、移動装置30は、照射領域41の中心が渦巻42、421、422上で等速移動するように、照射対象物12を移動させたが、本発明はそれに限定されるものではない。
例えば、照射領域41の中心に渦巻42、421、422上を移動させる際に、中心が渦巻42、421、422の中心に近い位置では遅く、それよりも遠い位置では、近い位置よりも速く移動させることができる。

0140

このとき、移動装置30を制御する制御装置18の記憶装置に基準となる半径距離Riを記憶させておき、制御装置18が現在時刻の半径距離R(t)を求め、現在時刻の半径距離R(t)と基準となる半径距離Riとを比較し、R(t)≦Riのときは、Ri<R(t)のときの移動速度Vaよりも小さい移動速度V(t)にすることができる。例えば、移動速度V(t)は、半径距離R(t)の大きさに比例した速度にすることができる。

0141

基準となる半径距離Riについては、照射点が振動しておらず、照射領域と照射点とが等しい場合や、照射点が、移動方向と垂直な方向に一定振幅で振動する場合は、基準の半径距離Riに、移動方向と垂直な方向の照射領域の長さの1/2の長さを設定し、R(t)≦Riのときには、V(t)<Vaにすることができる。

0142

上記例では、照射点は、レンズ部によって振動させたが、レンズ部では振動させず、真空槽内に振動装置を設け、照射線が通過する位置に形成する磁界又は電界のいずれか一方又は両方によって、照射線に振動力を加えて照射点を振動させるようにしてもよい。

0143

10……処理装置
11……基準面
12……照射対象物
17……照射面
18……制御装置
19……ビーム軸
20……照射装置
30……移動装置
31……第一の移動装置
32……第二の移動装置
41……照射領域
42……渦巻
421、422……第一、第二の渦巻
43……線分
431、432……第一、第二の線分
441、442……第一、第二の基準線
45……第一の移動方向
46……第二の移動方向

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ