図面 (/)

技術 決定プログラム、決定装置、および決定方法

出願人 富士通株式会社
発明者 松浦東佐藤博之
出願日 2012年3月29日 (8年8ヶ月経過) 出願番号 2012-078437
公開日 2013年10月7日 (7年2ヶ月経過) 公開番号 2013-206445
状態 特許登録済
技術分野 特定用途計算機
主要キーワード 分子構造モデル 密度行列 結合次数 電子密度ρ 座標フィールド 構造探索 静電相互作用エネルギー 軌道係数
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2013年10月7日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (16)

課題

原子間の結合種の決定精度の向上を図ること。

解決手段

決定装置101は、エチレン分子から選択された第1の原子と第1の原子とは異なる第2の原子との間の電子密度を算出する。続けて、決定装置101は、結合種で結合する原子間の電子密度に関する条件を参照して、算出された電子密度に基づき、第1の原子と第2の原子との間の結合種を決定する。たとえば、決定装置101は、C_(1_1)とH_(1_2)との電子密度ρが、単結合で結合する原子間の電子密度に関する条件となる1.5未満を満たすため、C_(1_1)とH_(1_2)との結合種を単結合に決定する。また、決定装置101は、C_(1_1)とC_(1_3)との電子密度ρ’が、二重結合で結合する原子間の電子密度に関する条件となる1.5以上を満たすため、C_(1_1)とC_(1_3)との結合種を二重結合に決定する。

概要

背景

従来、分子について分子構造を決定する技術がある。関連する技術として、たとえば、分子の結合形態の判定において、結合次数から予測される結合形態の選択により、分子構造を表示する技術がある。また、分子シミュレーションに関して、アモルファス網状高分子モデリングを行う際、適切な分子構造モデルが迅速に得られるように試行構造を生成する技術がある。

また、分子内の2つの原子結合状態の違いによる原子種と2つの原子を結びつける結合の種別を表す結合種を決定する方法について、原子の原子価を用いて決定する技術がある。また、分子構造を有する分子に分子力場割り当てる分子力場割当方法において、分子軌道法という量子科学計算によって計算された原子間の結合距離が所定の閾値を超えるか否かによって、結合種を決定する技術がある。(たとえば、下記特許文献1〜3、非特許文献1、2を参照。)

概要

原子間の結合種の決定精度の向上をること。決定装置101は、エチレン分子から選択された第1の原子と第1の原子とは異なる第2の原子との間の電子密度を算出する。続けて、決定装置101は、結合種で結合する原子間の電子密度に関する条件を参照して、算出された電子密度に基づき、第1の原子と第2の原子との間の結合種を決定する。たとえば、決定装置101は、C_(1_1)とH_(1_2)との電子密度ρが、単結合で結合する原子間の電子密度に関する条件となる1.5未満を満たすため、C_(1_1)とH_(1_2)との結合種を単結合に決定する。また、決定装置101は、C_(1_1)とC_(1_3)との電子密度ρ’が、二重結合で結合する原子間の電子密度に関する条件となる1.5以上を満たすため、C_(1_1)とC_(1_3)との結合種を二重結合に決定する。

目的

本発明は、上述した従来技術による問題点を解消するため、原子間の結合種の決定精度の向上を図る決定プログラム、決定装置、および決定方法を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

コンピュータに、構造的に安定な状態における分子内の各原子に属する電子電子密度と前記分子内の原子間の原子軌道の重なりの度合いとを記憶する第1の記憶部を参照して、前記分子から選択された第1の原子と前記第1の原子とは異なる第2の原子との間の電子密度を算出し、原子間の結合の種別を表す結合種と前記結合種で結合する原子間の電子密度に関する条件とを対応付けて記憶する第2の記憶部を参照して、算出した電子密度に基づいて、前記第1の原子と前記第2の原子との間の結合種を決定し、決定した前記第1の原子と前記第2の原子との間の結合種を出力する、処理を実行させることを特徴とする決定プログラム

請求項2

前記第2の記憶部は、原子間の結合の種別を表す単結合に対応付けて前記単結合で結合する原子間の電子密度に関する第1の条件を記憶し、原子間の結合の種別を表す二重結合に対応付けて記二重結合で結合する原子間の電子密度に関する第2の条件を記憶し、原子間の結合の種別を表す三重結合に対応付けて記三重結合で結合する原子間の電子密度に関する第3の条件を記憶しており、前記コンピュータは、前記算出した電子密度が前記第2の記憶部に記憶された前記第1の条件と前記第2の条件と前記第3の条件とのうちいずれかの条件を満たすか否かを判定する処理を実行させ、前記決定する処理は、前記いずれかの条件を満たすと判定した場合、前記第1の原子と前記第2の原子との間の結合の種別を、前記算出した電子密度が満たすと判定した条件に対応付けられた原子間の結合の種別に決定することを特徴とする請求項1に記載の決定プログラム。

請求項3

前記第2の記憶部は、原子間の結合の種別を表す配位結合に対応付けて前記配位結合で結合する原子間の電子密度に関する第4の条件を記憶し、前記配位結合に対応付けて前記配位結合で結合する原子の種別の組合せに関する第5の条件を記憶しており、前記コンピュータに、前記算出した電子密度が前記第2の記憶部に記憶された前記第4の条件を満たすか否かを判定し、前記第1の原子の種別および前記第2の原子の種別の組合せが前記第2の記憶部に記憶された前記第5の条件を満たすか否かを判定する処理を実行させ、前記決定する処理は、前記第4の条件および前記第5の条件を満たすと判定した場合、前記第1の原子と前記第2の原子との間の結合の種別を前記配位結合に決定する処理を実行する請求項1または2に記載の決定プログラム。

請求項4

前記第2の記憶部は、さらに、原子間の結合の種別を表す芳香族結合に対応付けて前記芳香族結合で結合して環を形成可能な原子の種別に関する第6の条件を記憶しており、前記コンピュータに、前記分子に環を形成する原子群があるか否かを判定し、前記分子に環を形成する原子群があると判定した場合、前記原子群の各々の原子の種別が前記第2の記憶部に記憶された前記第6の条件を満たすか否かを判定し、前記第6の条件を満たすと判定した場合、前記分子に環を形成する原子群の各々の原子間の結合の種別を前記芳香族結合に決定する、処理を実行させることを特徴とする請求項1〜3のいずれか一つに記載の決定プログラム。

請求項5

前記第2の記憶部は、さらに、前記芳香族結合に対応付けて前記芳香族結合で結合する原子間が結合して形成される環と前記環に結合する原子との間の結合の種別に関する第7の条件を記憶しており、前記コンピュータに、前記第1の原子と前記第2の原子との間の結合種を決定し、かつ、前記分子に環を形成する原子群があると判定した場合、前記分子内の環に結合する原子があるか否かを判定し、前記分子内の環に結合する原子があると判定した場合、前記分子内の環と前記分子内の環に結合する原子との間の結合の種別が前記第2の記憶部に記憶された前記第7の条件を満たすか否かを判定し、前記第7の条件を満たすと判定した場合、前記分子内の環を形成する原子群の各々の原子間の結合の種別を前記芳香族結合に決定する、処理を実行させることを特徴とする請求項4に記載の決定プログラム。

請求項6

前記コンピュータに、前記第1の原子と前記第2の原子との間の結合の種別が前記二重結合であると決定した場合、前記分子のうちの前記第1の原子および前記第2の原子を除く残余の原子群の中から、原子間の結合の種別が前記二重結合となり、かつ、原子の種別の組合せが前記第1の原子の種別および前記第2の原子の種別の組合せに一致する第3の原子および第4の原子を抽出し、前記第1の原子と前記第2の原子との間の電子密度と、前記第3の原子と前記第4の原子との間の電子密度と、が同一であるか否かを判断し、前記第1の原子と前記第2の原子との間の電子密度と、前記第3の原子と前記第4の原子との間の電子密度と、が同一でないと判断した場合、前記第1の原子と前記第2の原子との間の電子密度および前記第3の原子と前記第4の原子との間の電子密度のうちの低い電子密度となる原子間の結合の種別を前記単結合に決定すると共に、前記結合の種別を単結合に決定した2つの原子のいずれか一方の原子をアニオン性原子に決定する、処理を実行させることを特徴とする請求項2〜5のいずれか一つに記載の決定プログラム。

請求項7

構造的に安定な状態における分子内の各原子に属する電子の電子密度と前記分子内の原子間の原子軌道の重なりの度合いとを記憶する第1の記憶部を参照して、前記分子から選択された第1の原子と前記第1の原子とは異なる第2の原子との間の電子密度を算出する算出部と、原子間の結合の種別を表す結合種と前記結合種で結合する原子間の電子密度に関する条件とを対応付けて記憶する第2の記憶部を参照して、前記算出部によって算出された電子密度に基づいて、前記第1の原子と前記第2の原子との間の結合種を決定する決定部と、前記決定部によって決定された前記第1の原子と前記第2の原子との間の結合種を出力する出力部と、を有することを特徴とする決定装置

請求項8

コンピュータが、構造的に安定な状態における分子内の各原子に属する電子の電子密度と前記分子内の原子間の原子軌道の重なりの度合いとを記憶する第1の記憶部を参照して、前記分子から選択された第1の原子と前記第1の原子とは異なる第2の原子との間の電子密度を算出し、原子間の結合の種別を表す結合種と前記結合種で結合する原子間の電子密度に関する条件とを対応付けて記憶する第2の記憶部を参照して、算出した電子密度に基づいて、前記第1の原子と前記第2の原子との間の結合種を決定し、決定した前記第1の原子と前記第2の原子との間の結合種を出力する、処理を実行することを特徴とする決定方法

技術分野

0001

本発明は、決定プログラム決定装置、および決定方法に関する。

背景技術

0002

従来、分子について分子構造を決定する技術がある。関連する技術として、たとえば、分子の結合形態の判定において、結合次数から予測される結合形態の選択により、分子構造を表示する技術がある。また、分子シミュレーションに関して、アモルファス網状高分子モデリングを行う際、適切な分子構造モデルが迅速に得られるように試行構造を生成する技術がある。

0003

また、分子内の2つの原子結合状態の違いによる原子種と2つの原子を結びつける結合の種別を表す結合種を決定する方法について、原子の原子価を用いて決定する技術がある。また、分子構造を有する分子に分子力場割り当てる分子力場割当方法において、分子軌道法という量子科学計算によって計算された原子間の結合距離が所定の閾値を超えるか否かによって、結合種を決定する技術がある。(たとえば、下記特許文献1〜3、非特許文献1、2を参照。)

0004

特開平07−282096号公報
特開2006−282929号公報
国際公開第2008/041304号

先行技術

0005

Junmei Wang、他3名、「Automatic atom type and bond type perception in molecular mechanical calculations」、Journal of Molecular Graphics and Modelling、Vol.25、2006、p.247−260
Hideaki Fujitani、他2名、「Massively parallel computation of absolute binding free energy with well−equilibrated states」、Physical Review E、Vol.79、2009、021914

発明が解決しようとする課題

0006

しかしながら、上述した従来技術において、原子間の結合距離は量子科学計算の様々な計算方法で得られ、結合距離の計算結果は計算方法の違いによりばらつく。このため、原子間の結合距離を用いて原子間の結合種を決定すると、原子間の結合種の決定精度が悪化する場合がある。

0007

本発明は、上述した従来技術による問題点を解消するため、原子間の結合種の決定精度の向上を図る決定プログラム、決定装置、および決定方法を提供することを目的とする。

課題を解決するための手段

0008

上述した課題を解決し、目的を達成するため、本発明の一側面によれば、構造的に安定な状態における分子内の各原子に属する電子電子密度と分子内の原子間の原子軌道の重なりの度合いとを記憶する第1の記憶部を参照して、分子から選択された第1の原子と第1の原子とは異なる第2の原子との間の電子密度を算出し、原子間の結合の種別を表す結合種と結合種で結合する原子間の電子密度に関する条件とを対応付けて記憶する第2の記憶部を参照して、算出した電子密度に基づいて、第1の原子と第2の原子との間の結合種を決定し、決定した第1の原子と第2の原子との間の結合種を出力する決定プログラム、決定装置、および決定方法が提案される。

発明の効果

0009

本発明の一側面によれば、原子間の結合種の決定精度の向上を図ることができるという効果を奏する。

図面の簡単な説明

0010

図1は、本実施の形態にかかる決定装置の動作例を示す説明図である。
図2は、決定装置のハードウェア構成例を示すブロック図である。
図3は、決定装置の機能構成例を示すブロック図である。
図4は、結合種決定条件テーブル記憶内容の一例を示す説明図である。
図5は、分子構造テーブルの記憶内容の一例を示す説明図である。
図6は、モデリングソフトによる分子構造初期値の生成例を示す説明図である。
図7は、電子密度を用いた原子種の決定方法の一例を示す説明図である。
図8は、電子密度を用いた芳香族結合の決定方法の一例を示す説明図である。
図9は、電子密度を用いた電荷を有する結合種の決定方法の一例を示す説明図である。
図10は、原子種の決定結果の一例を示す説明図である。
図11は、電子密度の算出結果および結合距離の算出結果の比較の一例を示す説明図である。
図12は、力場割当処理手順の一例を示すフローチャートである。
図13は、結合種決定処理手順の一例を示すフローチャートである。
図14は、芳香族結合決処理手順の一例を示すフローチャートである。
図15は、アニオン性単結合決定処理手順の一例を示すフローチャートである。

実施例

0011

以下に添付図面を参照して、開示の決定プログラム、決定装置、および決定方法の実施の形態を詳細に説明する。

0012

図1は、本実施の形態にかかる決定装置の動作例を示す説明図である。図1では、結合種を決定し、分子力場を割り当てる決定装置101の動作例について説明する。決定装置101は、新しい分子や分子集合体シミュレーションを行う場合、どのような分子力場を、分子に含まれる原子または原子間の結合に割り当てるべきかを支援する処理を行う。分子力場の割当が適当でない場合、シミュレーション結果の精度は落ち現実とはかけ離れた結果となってしまう。分子力場は、原子間の結合の種別により一意に特定できるため、本実施の形態にかかる決定装置101では、適切な結合種を決定することにより、適切な分子力場が割り当てられるようにする。

0013

また、分子力場には、たとえば、静電相互作用エネルギーに関する力場があり、静電相互作用エネルギーに関する力場が定義する結合種の分類は、たとえば、単結合、二重結合三重結合、芳香族結合、配位結合、非局在結合がある。より詳細な定義については、下記参考文献1に記載されている。また、以下、静電相互作用エネルギーに関する力場を、「AM1BCC電荷」と称する。
(参考文献1:ARAZ JAKALIAN、他2名、「Fast, Efficient Generation of High−Quality Atomic Charge.AM1−BCC Model:II. Parameterization and Validation」、2002、Journal of Computational Chemistry、Vol.23、p.1623−1641)

0014

また、AM1BCC電荷以外の力場として、たとえば、GAFF(General Amber Force Field)力場がある。GAFF力場では、原子種が決まれば一意に分子力場を割り当てることができる、原子種の決定には、AM1BCC電荷と同様に結合種を決定することになる。GAFF力場については、下記参考文献2に記載されている。また、GAFF原子種に応じた力場については、下記参考文献3に記載されている。
(参考文献2:JUNMEIWANG、他4名、「Development and Testing of a General Amber Force Field」、Journal of Computational Chemistry、Vol 25、2004、p.1157−1174)
(参考文献3:Wendy D.Cornell、他9名、「A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules」、Journals − American Chemical Society、Vol 117、1995、p.5179−5197)

0015

図1では、GAFFの割当手法を、化学式がC2H4であるエチレン分子を例に説明する。また、以下、図1図15括弧に囲まれた符号付きで表示した原子について、「原子_(符号)」にて示す。たとえば、図面上、水素原子「H」に符号「(1)」が付与されていた場合、H_(1)として示す。また、図1図15にて、原子種を、[]に括られた文字にて示す。

0016

初めに、図1の(1)にて示すように、決定装置101は、エチレン分子の3次元構造が与えられたとする。3次元構造は、分子軌道法、密度汎関数法原子価結合法などといった量子科学計算にて算出された、エネルギー的に安定な構造であるとする。

0017

次に、図1の(2)にて示すように、決定装置101は、エチレン分子から選択された第1の原子と第1の原子とは異なる第2の原子との間の電子密度を算出する。第1の原子と第2の原子は、どのような組合せでもよいが、たとえば、共有結合半径イオン半径ファンデルワールス半径といった距離内にある原子を選択してもよい。また、2つの原子の間の電子密度とは、2つの原子間の単位体積当たりの電子の分布量を示す。なお、本実施の形態において、電子密度の代わりに、電荷密度を用いてもよい。また、算出方法として、決定装置101は、量子科学計算の計算結果の一部である、エチレン分子内の各原子に属する電子の電子密度とエチレン分子内の原子間の原子軌道の重なりの度合いを用いて算出する。

0018

続けて、決定装置101は、結合種で結合する原子間の電子密度に関する条件を参照して、算出された電子密度に基づき、第1の原子と第2の原子との間の結合種を決定する。たとえば、決定装置101は、C_(1_1)とH_(1_2)との電子密度ρが、単結合で結合する原子間の電子密度に関する条件となる1.5未満を満たすため、C_(1_1)とH_(1_2)との結合種を単結合に決定する。また、決定装置101は、C_(1_1)とC_(1_3)との電子密度ρ’が、二重結合で結合する原子間の電子密度に関する条件となる1.5以上を満たすため、C_(1_1)とC_(1_3)との結合種を二重結合に決定する。

0019

続けて、決定装置101は、C_(1_1)とH_(1_4)との結合種と、C_(1_3)とH_(1_5)との結合種と、C_(1_3)とH_(1_6)との結合種と、を単結合に決定する。結合種の決定後の様子を、図1の(3)にて示す。

0020

次に、図1の(4)にて示すように、決定装置101は、結合種が決定されたことにより、結合種から原子種を決定する。決定装置101は、C_(1_1)およびC_(1_3)の原子種を、[c2](sp2 carbon)に決定する。また、決定装置101は、H_(1_2)、H_(1_4)、H_(1_5)、およびH_(1_6)の原子種を、[ha](hydrogen on aromatic carbon)に決定する。以上より、原子種を決定できれば、決定装置101は、分子力場のデータベースと照合して、該当する分子力場を抽出して、分子に割り当てることができる。

0021

このように、決定装置101は、量子科学計算のどの計算方法で求めても計算方法間でばらつきが小さい原子の電子密度から原子間の電子密度を算出して原子間の結合種を判断する。これにより、決定装置101は、判断基準統一して計算方法の違いによる精度劣化を防ぐ。複数の計算方法については、図11にて後述する。以下、図2図15を用いて決定装置101について詳細に記述する。

0022

(決定装置101のハードウェア
図2は、決定装置のハードウェア構成例を示すブロック図である。図2において、決定装置101は、CPU(Central Processing Unit)201と、ROM(Read‐Only Memory)202と、RAM(Random Access Memory)203と、を含む。

0023

また、記憶装置として決定装置101は、磁気ディスクドライブ204と、磁気ディスク205と、光ディスクドライブ206と、光ディスク207と、を含む。また、ユーザやその他の機器との入出力装置として決定装置101は、ディスプレイ208と、I/F(Interface)209と、キーボード210と、マウス211と、を含む。また、各部はバス212によってそれぞれ接続されている。

0024

ここで、CPU201は、決定装置101の全体の制御を司る演算処理装置である。ROM202は、ブートプログラムなどのプログラムを記憶している不揮発性メモリである。RAM203は、CPU201のワークエリアとして使用される揮発性メモリである。磁気ディスクドライブ204は、CPU201の制御にしたがって磁気ディスク205に対するデータのリードライトを制御する制御装置である。磁気ディスク205は、磁気ディスクドライブ204の制御で書き込まれたデータを記憶する不揮発性メモリである。

0025

光ディスクドライブ206は、CPU201の制御にしたがって光ディスク207に対するデータのリード/ライトを制御する制御装置である。光ディスク207は、光ディスクドライブ206の制御で書き込まれたデータを記憶する不揮発性メモリである。また、光ディスク207は、光ディスク207に記憶されたデータをコンピュータに読み取らせたりする。なお、ROM202、磁気ディスク205、光ディスク207のいずれかの記憶装置に、本実施の形態にかかる決定プログラムが格納されていてもよい。

0026

ディスプレイ208は、カーソルアイコンあるいはツールボックスをはじめ、文書、画像、機能情報などのデータを表示する表示装置である。たとえば、ディスプレイ208は、CRTTFT液晶ディスプレイプラズマディスプレイなどを採用することができる。

0027

I/F209は、ネットワーク213と内部のインターフェースを司り、外部装置からのデータの入出力を制御する制御装置である。I/F209は、通信回線を通じてLAN(Local Area Network)、WAN(Wide Area Network)、インターネットなどのネットワーク213に接続され、ネットワーク213を介して他の装置に接続される。I/F209は、たとえば、モデムLANアダプタなどを採用することができる。

0028

キーボード210は、文字、数字、各種指示などの入力のためのキーを有し、データの入力を行う装置である。また、キーボード210は、タッチパネル式入力パッドテンキーなどであってもよい。マウス211は、カーソルの移動や範囲選択、あるいはウィンドウの移動やサイズの変更などを行う装置である。また、決定装置101は、マウス211の代わりとして、ポインティングデバイスとして同様に機能を有するものであれば、トラックボールジョイスティックなどを有していてもよい。

0029

(決定装置101の機能構成
次に、決定装置101の機能構成について説明する。図3は、決定装置の機能構成例を示すブロック図である。決定装置101は、選択部301と、算出部302と、判定部303と、決定部304と、抽出部305と、判断部306と、出力部307と、を含む。制御部となる選択部301〜出力部307は、記憶装置に記憶されたプログラムをCPU201が実行することにより、選択部301〜出力部307の機能を実現する。記憶装置とは、具体的には、たとえば、図2に示したROM202、RAM203、磁気ディスク205、光ディスク207などである。または、I/F209を経由して他のCPUが実行することにより、選択部301〜出力部307の機能を実現してもよい。

0030

また、決定装置101は、第1の記憶部となる量子科学計算結果311と、第2の記憶部となる結合種決定条件テーブル312にアクセス可能である。量子科学計算結果311と、結合種決定条件テーブル312は、RAM203、磁気ディスク205、光ディスク207といった記憶装置に格納されている。

0031

量子科学計算結果311は、構造的に安定な状態における分子内の各原子に属する電子の電子密度と分子内の原子間の原子軌道の重なりの度合いとを記憶する。構造的に安定な状態における分子内の各原子に属する電子の電子密度は、たとえば、電子の密度行列である。また、分子内の原子間の原子軌道の重なりの度合いは、たとえば、重なり積分行列である。電子の密度行列、重なり積分行列については、図6にて後述する。

0032

結合種決定条件テーブル312は、原子間の結合の種別を表す結合種と結合種で結合する原子間の電子密度に関する条件とを対応付けて記憶する。また、結合種決定条件テーブル312は、原子間の結合の種別を表す単結合に対応付けて単結合で結合する原子間の電子密度に関する第1の条件を記憶していてもよい。また、結合種決定条件テーブル312は、原子間の結合の種別を表す二重結合に対応付けて二重結合で結合する原子間の電子密度に関する第2の条件を記憶していてもよい。また、結合種決定条件テーブル312は、原子間の結合の種別を表す三重結合に対応付けて三重結合で結合する原子間の電子密度に関する第3の条件を記憶していてもよい。第1の条件〜第3の条件の具体的な内容については、図4にて説明する。

0033

また、結合種決定条件テーブル312は、原子間の結合の種別を表す配位結合に対応付けて配位結合で結合する原子間の電子密度に関する第4の条件を記憶していてもよい。さらに、結合種決定条件テーブル312は、配位結合に対応付けて配位結合で結合する原子の種別の組合せに関する第5の条件を記憶していてもよい。第4の条件と第5の条件の具体的な内容については、図4にて説明する。また、原子の種別とは、元素のことである。さらに、原子の種別に、カチオン性中性、アニオン性という電荷の状態を含めてもよい。以下、電荷の状態を記載しない場合、中性であるとする。

0034

また、結合種決定条件テーブル312は、さらに、原子間の結合の種別を表す芳香族結合に対応付けて芳香族結合で結合して環を形成可能な原子の種別に関する第6の条件を記憶していてもよい。第6の条件の具体的な内容については、図4にて説明する。

0035

また、結合種決定条件テーブル312は、さらに、芳香族結合に対応付けて芳香族結合で結合する原子間が結合して形成される環と環に結合する原子との間の結合の種別に関する第7の条件を記憶していてもよい。第7の条件の具体的な内容については、図4にて説明する。

0036

選択部301は、分子から第1の原子と第1の原子とは異なる第2の原子とを選択する。図1を例にすると、選択部301は、エチレン分子からC_(1_1)と、H_(1_2)を選択する。なお、選択されたデータは、RAM203、磁気ディスク205、光ディスク207などの記憶領域に記憶される。

0037

算出部302は、量子科学計算結果311を参照して、分子から選択部301によって選択された第1の原子と第2の原子との間の電子密度を算出する。また、第1の原子と第2の原子は、利用者の操作によって選択された分子内の任意の2つの原子でもよい。たとえば、算出部302は、MullikenやLoewdinによる方法を用いて、第1の原子と第2の原子との間の電子密度を算出する。また、算出部302は、電子密度として、ボンドオーダーを用いてもよい。たとえば、算出部302は、Mayerによるボンドオーダーや、Coulsonによるボンドオーダーを用いてもよい。Mayerのボンドオーダーについては、下記参考文献4に詳細に記載されている。
(参考文献4:I Mayer、「Charge,Bond Order and Valence in the ab Initio SCF Theory」、Chemical Physics Letters、Vol 97、1983、p.270−274,)

0038

Mayerのボンドオーダーは、結合の種別が単結合、共役結合、二重結合、三重結合の場合、それぞれ、1、1.5、2、3程度の値を示す。また、結合がない場合、Mayerのボンドオーダーは、ほぼ0を示す。詳細には、下記参考文献5に詳細に記載されている。
(参考文献5:Jaroslaw A.Kalinowski、他4名、「Class IV Charge Model for the Self−Consistent Charge Density−Functional Tight−Binding Method」、Journal of Physical Chemistry A、Vol.108、2004、p.2545−2549)

0039

以下、Mayerのボンドオーダーを用いた場合について、説明を行う。たとえば、算出部302は、C_(1_1)と、H_(1_2)の間の電子密度を、1.01と算出する。なお、算出されたデータは、RAM203、磁気ディスク205、光ディスク207などの記憶領域に記憶される。

0040

判定部303は、算出部302によって算出された算出した電子密度が結合種決定条件テーブル312に記憶された第1の条件と第2の条件と第3の条件とのうちのいずれかの条件を満たすか否かを判定する。たとえば、算出された電子密度が1.01であったとする。さらに、第1の条件が、電子密度<1.5であり、第2の条件が1.5≦電子密度<2.5であり、第3の条件が、2.5≦電子密度である場合、判定部303は、算出された電子密度が第1の条件を満たすと判定する。

0041

また、判定部303は、算出部302によって算出された電子密度が結合種決定条件テーブル312に記憶された第4の条件を満たすか否かを判定してもよい。たとえば、算出された電子密度が1.01であったとする。さらに、第4の条件が、電子密度<1.5である場合、判定部303は、第4の条件を満たすと判定する。

0042

また、判定部303は、第1の原子の種別および第2の原子の種別の組合せが結合種決定条件テーブル312に記憶された第5の条件を満たすか否かを判定してもよい。たとえば、第1の原子の種別が窒素原子であり、第2の原子の種別が酸素原子であるとする。さらに、第5の条件が、窒素原子と酸素原子である場合、判定部303は、第1の原子の種別および第2の原子の種別の組合せが第5の条件を満たすと判定する。

0043

また、判定部303は、分子に環を形成する原子群があるか否かを判定してもよい。環は、結合している原子群が輪の形状となる構造である。環を形成する原子数が3であれば3員環、原子数が5であれば、5員環、というようになる。また、原子が結合している状態を特定する方法の一例は、第1の原子と第2の原子との間の電子密度が0の近傍にならず、一定値以上の値がある場合に、結合していると特定する方法である。また、原子が結合している状態を特定する方法の他の例は、第1の原子と第2の原子との間の距離が、共有結合半径やイオン半径、ファンデルワールス半径といった距離内にある場合、結合しているとして特定する方法である。たとえば、判定部303は、分子に6員環を形成する6つの炭素原子があることを判定する。

0044

また、判定部303は、環を形成する原子群があると判定した場合、原子群の各々の原子の種別が結合種決定条件テーブル312に記憶された第6の条件を満たすか否かを判定してもよい。たとえば、分子に6員環を形成する6つの炭素原子があるとする。また、第6の条件が、6員環を形成する原子の種別が炭素原子、窒素原子、…、ジカチオン硫黄原子のいずれかであったとする。このとき、判定部303は、6員環を形成する原子群の各々の種別が、第6の条件を満たすと判定する。

0045

また、判定部303は、決定部304が第1の原子と第2の原子との間の結合種を決定し、かつ、分子に環を形成する原子群があると判定した場合、分子内の環に結合する原子があるか否かを判定してもよい。たとえば、酸素原子と炭素原子の間の結合種が単結合であると決定したとする。さらに、分子に6員環があり、単結合で結合されると決定された炭素原子が6員環に含まれるとする。このとき、判定部303は、6員環に結合する原子として、酸素原子があることを判定する。

0046

また、判定部303は、分子内の環に結合する原子があると判定した場合、分子内の環と分子内の環に結合する原子との間の結合の種別が結合種決定条件テーブル312に記憶された第7の条件を満たすか否かを判定してもよい。たとえば、分子に6員環を形成する6つの炭素原子があるとする。また、6員環を形成する6つの炭素原子に結合する原子の結合の種別が全て単結合であったとする。さらに、第7の条件が、環と環に結合する原子との間の結合の種別が単結合または配位結合であるとする。このとき、判定部303は、6員環と6員環に結合する原子との間の結合の種別が第7の条件を満たすと判定する。なお、判定されたデータは、RAM203、磁気ディスク205、光ディスク207などの記憶領域に記憶される。

0047

決定部304は、結合種決定条件テーブル312を参照して、算出した電子密度に基づいて、第1の原子と第2の原子との間の結合種を決定する。たとえば、決定部304は、結合種決定条件の各レコードの条件を満たした場合に、該当のレコードの結合種を、第1の原子と第2の原子との間の結合種に決定する。また、決定部304は、判定部303が第1の条件〜第3の条件のうちのいずれかの条件を満たすと判定した場合、第1の原子と第2の原子との間の結合の種別を、算出した電子密度が満たすと判定した条件に対応付けられた原子間の結合の種別に決定してもよい。たとえば、第1の条件が満たされた場合、決定部304は、第1の原子と第2の原子との間の結合の種別を、第1の条件に対応付けられた単結合に決定する。

0048

また、決定部304は、第4の条件および第5の条件を満たすと判定した場合、第1の原子と第2の原子との間の結合の種別を配位結合に決定してもよい。また、決定部304は、第6の条件を満たすと判定した場合、環を形成する原子群の各々の原子の間の結合の種別を芳香族結合に決定してもよい。また、決定部304は、第7の条件を満たすと判定した場合、環を形成する原子群の各々の原子の間の結合の種別を芳香族結合に決定してもよい。

0049

また、決定部304は、第1の原子と第2の原子との間の電子密度および第3の原子と第4の原子との間の電子密度のうちの低い電子密度となる原子間の結合の種別を単結合に決定する。さらに、決定部304は、結合の種別を単結合に決定した2つの原子のいずれか一方の原子をアニオン性原子に決定する。なお、決定部304は、判断部306によって第1の原子と第2の原子との間の電子密度と、第3の原子と第4の原子との間の電子密度と、が同一でないと判断された場合に行う。また、決定部304は、たとえば、いずれか一方の原子のうち、原子価と比較して結合している原子の数が少ない原子を、アニオン性原子に決定する。具体的な処理については、図9にて後述する。なお、決定されたデータは、RAM203、磁気ディスク205、光ディスク207などの記憶領域に記憶される。

0050

抽出部305は、分子のうちの第1の原子および第2の原子を除く残余の原子群の中から、原子間の結合の種別が二重結合となり、かつ、原子の種別の組合せが第1の原子の種別および第2の原子の種別の組合せに一致する第3の原子および第4の原子を抽出する。なお、抽出部305は、決定部304によって第1の原子と第2の原子との間の結合の種別が二重結合であると決定された場合に行われる。たとえば、第1の原子となる酸素原子と、第2の原子として炭素原子との結合の種別が二重結合であったとする。このとき、抽出部305は、分子のうち、原子間の結合の種別が二重結合であり、かつ、酸素原子と炭素原子の組合せとなる第3の原子と第4の原子を抽出する。なお、抽出されたデータは、RAM203、磁気ディスク205、光ディスク207などの記憶領域に記憶される。

0051

判断部306は、第1の原子と第2の原子との間の電子密度と、抽出部305によって抽出された第3の原子と第4の原子との間の電子密度と、が同一であるか否かを判断する。同一か否かの判断としては、電子密度の値が完全同一でなくてよい。具体的な判断方法については、図9にて後述する。なお、判断されたデータは、RAM203、磁気ディスク205、光ディスク207などの記憶領域に記憶される。

0052

出力部307は、決定部304により決定された第1の原子と第2の原子との間の結合種を出力する。出力先として、たとえば、出力部307は、ディスプレイ208に出力する。また、出力部307は、RAM203、磁気ディスク205、光ディスク207などの記憶領域に出力してもよい。

0053

図4は、結合種決定条件テーブルの記憶内容の一例を示す説明図である。結合種決定条件テーブル312は、結合種ごとに記憶している。結合種決定条件テーブル312は、レコード401−1〜401−6を記憶している。結合種決定条件テーブル312は、結合種、電子密度条件、原子条件、その他の条件、力場種別という5つのフィールドを含む。結合種フィールドには、結合の種別を表す識別情報が格納される。電子密度条件フィールドには、結合種で結合する原子の間の電子密度に関する条件が格納される。原子条件フィールドには、結合種で結合する原子の種別が格納される。その他の条件フィールドには、電子密度条件と原子条件以外の条件が格納される。力場種別フィールドには、原子種が定義されている力場の種別が格納される。

0054

たとえば、レコード401−1は、単結合となる条件として、電子密度が1.5未満であることを示している。また、レコード401−1は、単結合がAM1BCC電荷、GAFF力場共に定義されていることを示す。レコード401−1の電子密度条件フィールドの内容が、第1の条件となる。

0055

同様に、レコード401−2の電子密度条件フィールドの内容が、第2の条件となり、レコード401−3の電子密度条件フィールドの内容が、第3の条件となる。また、レコード401−4の電子密度条件フィールドの内容が、第4の条件となる。さらに、レコード401−4の原子条件フィールドの内容が、第5の条件となる。また、レコード401−5の原子条件フィールドの内容が、第6の条件となる。なお、第6の条件の詳細については、参考文献1の図1aに詳細に記述されている。また、レコード401−5の原子条件フィールドの内容が、第7の条件となる。次に、分子構造を記憶するテーブルである分子構造テーブル501の記憶内容の一例について説明する。

0056

図5は、分子構造テーブルの記憶内容の一例を示す説明図である。図5の(A)および図5の(B)では、エチレン分子の分子構造が分子構造テーブル501に記憶されている場合を例にして説明する。図5の(A)では、分子構造テーブル501の記憶内容の一例を示す。図5の(B)では、分子構造テーブル501の記憶内容に対応した原子の位置をxy座標上にて示す。

0057

図5の(A)に示す分子構造テーブル501は、レコード501−1〜501−6を記憶している。分子構造テーブル501は、原子ID、x座標、y座標、z座標という4つのフィールドを含む。原子IDフィールドには、対象原子を識別する識別情報が格納される。x座標フィールドには、対象原子のx座標の値が格納される。y座標フィールドには、対象原子のy座標の値が格納される。z座標フィールドには、対象原子のz座標の値が格納される。たとえば、レコード501−1は、C_(5_1)が、x座標=0.66、y座標=0.0、z座標=0.0に位置することを示す。

0058

図5の(B)では、レコード501−1〜501−6にて示す、C_(5_1)〜H_(5_6)を、xy座標上にて示す。図5の(B)では、C_(5_1)〜H_(5_6)のz座標の値は、全て0であるため、z軸を省略している。次に、図6図10を用いて、C12H6O4における、分子構造の生成から、分子力場の割当を行う処理までを説明する。

0059

図6は、モデリングソフトによる分子構造初期値の生成例を示す説明図である。図6では、モデリングソフトによって、分子構造テーブル501に格納されるデータが生成されていく様子を、図6の(A)、図6の(B)、および図6の(C)にて説明する。

0060

図6の(A)にて、決定装置101は、利用者の操作により、ベンゼン環を表示する。たとえば、決定装置101は、利用者によるマウス211の操作により、ツールバーにあるベンゼン環アイコンが押下される。さらに、決定装置101は、利用者のマウス211のクリック操作により、作業用ウィンドウ上のいずれかの位置にベンゼン環を表示する。

0061

次に、図6の(B)にて、決定装置101は、利用者によるマウス211の操作により、二つ目のベンゼン環を表示する。さらに、決定装置101は、利用者によるマウス211の操作により、1つ目のベンゼン環と2つ目のベンゼン環を結合した状態を表示する。

0062

続けて、図6の(C)にて、決定装置101は、利用者によるマウス211の操作により、図6の(B)内のH_(6_1)〜H_(6_4)を、O_(6_5)〜O_(6_8)に置き換えた図である。さらに、決定装置101は、利用者によるマウス211の操作により、全体の電荷を−2に設定する。次に、図6にて生成したC12H6O4について、分子軌道法により、安定構造を求める。分子軌道法の計算方法は、NDDO(Neglect of Diatomic Differential Overlap)法に属するPM5(Parametric Method 5)法を用いることにする。

0063

続けて、決定装置101は、PM5法を用いて、結合のある部位のMayerのボンドオーダーを算出する。決定装置101は、下記(1)式を用いて、Mayerのボンドオーダーを算出する。

0064

0065

ただし、BOkk'は原子kと原子k’との間のMayerのボンドオーダーを示す。P、Sは、それぞれ電子の密度行列、原子軌道の重なり積分行列を示す。λ、ωは、それぞれk、k’に属する基底関数を示す。密度行列Pと重なり積分行列Sは、量子科学計算でエネルギーを計算する際に行われるため、ボンドオーダーを求める場合に余分に行われるべき計算ではない。このため、ボンドオーダーの計算量は量子科学計算に対して無視できるほど小さい。なお、決定装置101は、密度行列Pの行列要素と重なり積分行列Sの行列要素を、下記(2)式、(3)式にて算出する。

0066

0067

ただし、μ、νは原子軌道に関する添え字を表す。また、cμi、cνiは分子が取り得るポテンシャルエネルギーのうちi番目に低い分子軌道、あるいは密度汎関数法における軌道軌道係数を示す。χμ、χνは分子軌道を展開するための基底関数(原子軌道)を表す。また、nは電子が占有している軌道の数である。たとえば、電子が10個ある場合、nは5となる。なお、i番目の軌道をΨiとすると、Ψiとcμi、χμとの関係は下記(4)式で表される。

0068

0069

図7は、電子密度を用いた結合種の決定方法の一例を示す説明図である。図7の(A)では、電子密度を用いた結合種の決定方法を示す。図7の(B)では、原子価を用いた結合種の決定方法を示す。

0070

図7の(A)にて示す電子密度を用いる方法にて、決定装置101は、O_(7_1)とC_(7_2)の間の電子密度ρの値が、1.38であると算出する。続けて、決定装置101は、ρの値が単結合を示す条件となる電子密度ρ<1.5を満たすため、O_(7_1)とC_(7_2)の結合種を単結合に決定する。また、単結合となるため、決定装置101は、原子価が1であるアニオン性酸素に決定する。酸素原子の原子価が1である場合に酸素原子がアニオン性となり、酸素原子の原子価が2である場合に酸素原子が中性となる、という情報は、表として、RAM203、磁気ディスク205、光ディスク207に記憶されているものとする。

0071

また、決定装置101は、O_(7_3)とC_(7_4)の間の電子密度ρの値が、1.62であると算出する。続けて、決定装置101は、ρが二重結合を示す条件1.5≦ρ<2.5を満たすため、O_(7_3)とC_(7_4)の結合種を二重結合に決定する。このように、決定装置101は、ρ<1.5を満たせば結合種を単結合に決定し、1.5≦ρ<2.5を満たせば結合種を二重結合に決定する。また、図7には表示されていないが、決定装置101は、2.5≦ρを満たせば結合種を三重結合に決定する。

0072

図7の(B)にて示す原子価を用いる方法は、O-の原子価が1であり、Oの原子価が2であるため、図7の(B1)で示す構造と、図7の(B2)で示す構造と、の2パターンがあり、正しい方を判断することが難しい。このように、原子価を用いる方法は、判別に曖昧性を残すことになる。実際に取り得る構造としては、アニオン性酸素同士が対角にある図7の(A)および図7の(B1)で示す構造が安定である。したがって、決定装置101は、電子密度を用いた決定方法を用いることにより、原子価を用いて決定するより正確に結合種を決定することができる。

0073

図8は、電子密度を用いた芳香族結合の決定方法の一例を示す説明図である。図8の(A1)および図8の(A2)と、図8の(B1)および図8の(B2)を用いて、特定の環構造に含まれる原子間の結合種の決定方法を説明する。具体的に、図8の(A1)および図8の(A2)では、決定装置101は、C12H6O4に含まれる原子間の結合種を決定する。また、図8の(B1)および図8の(B2)では、決定装置101は、C6H6に含まれる原子間の結合種を決定する。

0074

図8の(A1)にて、決定装置101は、H_(8_1)とC_(8_2)の間の結合種を、単結合に決定したとする。次に、決定装置101は、H_(8_1)とC_(8_2)のいずれかが環に含まれるか否かを判断する。図8の(A1)の場合、C_(8_2)〜C_(8_7)が環を形成しているため、C_(8_2)が環に含まれる。以下、C_(8_2)〜C_(8_7)にて形成される環を、環801とする。C_(8_2)が環801に含まれるため、決定装置101は、環801を形成する原子群の組合せが特定の組合せか否かを判断する。ここで、特定の組合せとは、レコード401−5の原子条件である。この場合、環801を形成する原子群は、全て炭素原子であり、特定の組合せとなる。

0075

環801が特定の組合せである場合、決定装置101は、続けて、環801と環801に結合する原子との間の結合種が単結合、または配位結合か否かを判断する。図8の(A1)の段階では、環801と環801に結合する原子との結合種、たとえばC_(8_7)とO-_(8_8)の結合種がまだ決定されていないため、決定装置101は、環801に含まれる原子間の結合種が芳香族結合か否かの判断を行わない。

0076

次に、図8の(A2)にて、決定装置101は、C_(8_7)とO-_(8_8)の結合種を、単結合に決定したとする。また、決定装置101は、環801と環801に結合する原子との結合種が全て決定済みであるとする。C_(8_7)が環801に含まれるため、決定装置101は、続けて、環801と環801に結合する原子との結合種が単結合または配位結合か否かを判断する。環801に接する結合種のうち、C_(8_3)とC_(8_9)間の結合種が二重結合であるように、単結合または配位結合でない結合種があるため、決定装置101は、環801の各々の原子間の結合種を芳香族結合でないと判断する。なお、環801の各々の原子間の結合種については、図7に記載した電子密度に用いた方法で行う。

0077

また、図8の(B1)にて、決定装置101は、H_(8_11)とC_(8_12)の間の結合種を、単結合に決定したとする。次に、決定装置101は、H_(8_11)とC_(8_12)のいずれかが環に含まれるか否かを判断する。図8の(B1)の場合、C_(8_12)〜C_(8_17)が環を形成しているため、C_(8_12)が環に含まれる。以下、C_(8_12)〜C_(8_17)にて形成される環を、環802とする。図8の(B1)の段階では、環802と環802に結合する原子との結合種が決定されていないものがあるため、決定装置101は、環802に含まれる原子間の結合種が芳香族結合か否かの判断を行わない。

0078

次に、図8の(B2)にて、決定装置101は、C_(8_17)とH_(8_18)の結合種を、単結合に決定したとする。C_(8_17)が環802に含まれるため、決定装置101は、続けて、環802と環802に結合する原子との結合種が単結合または配位結合か否かを判断する。環802と環802に結合する原子との結合種全てが単結合であるため、決定装置101は、環802に含まれる原子間の結合種を芳香族結合であると判断する。

0079

図9は、電子密度を用いた電荷を有する結合種の決定方法の一例を示す説明図である。
アニオン性原子を含む単結合の電子密度の値は、中性原子同士の単結合より高くなり、単結合と二重結合を判断する閾値1.5を超えてしまう場合も有り得る。図9の(A)と図9の(B)では、電子密度の値が閾値1.5を超えた場合における、アニオン性原子を含む単結合を決定する方法について説明する。

0080

決定装置101は、C12H6O4の原子間の組合せのうち、結合種が二重結合である組を抽出する。図9の(A)では、決定装置101は、C_(9_1)とO_(9_2)の組と、C_(9_3)とO_(9_4)の組と、C_(9_5)とO_(9_6)の組と、C_(9_7)とO_(9_8)の組とを抽出する。また、C_(9_1)とO_(9_2)の電子密度ρの値が1.51であるとし、C_(9_3)とO_(9_4)の電子密度の値が1.72であるとする。さらに、C_(9_5)とO_(9_6)の電子密度ρの値が1.71であるとし、C_(9_7)とO_(9_8)の電子密度ρの値が1.50であるとする。

0081

なお、抽出された4つの組は、全て炭素原子と酸素原子の組合せとなったため、決定装置101は、そのまま4つの組を対象に処理を続ける。もし、抽出された組の2つの原子の組合せが異なる場合、決定装置101は、抽出された組合せを、2つの原子の種別ごとグループに分割し、グループごとに処理を続行する。たとえば、抽出された組合せが、炭素原子と炭素原子の組合せと、炭素原子と酸素原子の組合せと、になった場合、決定装置101は、炭素原子と酸素原子の組合せを1つのグループに設定し、炭素原子と酸素原子の組合せをもう一つのグループに設定する。

0082

次に、決定装置101は、4つの抽出された組の電子密度の値が同一か否かを判断する。同一か否かの判断としては、電子密度の値が完全同一でなく、たとえば、比較対象同士の電子密度の値の差が、所定の閾値以下であれば、同一とみなしてよい。図9の(A)の例では、比較対象同士の電子密度の値が0.05未満であれば、同一とみなすことにする。たとえば、C_(9_1)とO_(9_2)の電子密度の値が1.51であり、C_(9_3)とO_(9_4)の電子密度の値が1.72であるので、1.72−1.51=0.21>0.05となるため、決定装置101は、同一でないと判断する。同様に、決定装置101は、C_(9_5)とO_(9_6)と、C_(9_7)とO_(9_8)との電子密度の値も同一でないと判断する。

0083

同一でないと判断した場合、決定装置101は、電子密度の値が低い方の結合種を単結合に決定する。設定した後の図として、図9の(B)に示す。決定装置101は、C_(9_1)とO_(9_2)との間の結合種を単結合に決定し、さらに、O_(9_2)を、O-_(9_2)に決定する。同様に、決定装置101は、C_(9_7)とO_(9_8)との間の結合種を単結合に決定し、さらに、O_(9_8)を、O-_(9_8)に設定する。次に、図7図9に示した決定した結合種を用いた原子種の決定の例について、図10にて説明する。

0084

図10は、原子種の決定結果の一例を示す説明図である。図10では、C12H6O4について、図7の(A)で示した構造における原子種を図10の(A)として示し、図7の(B2)で示した構造における原子種を図10の(B)として示す。

0085

原子種は、結合種から1対1で特定できる。また、図10の(A)および図10の(B)では、GAFF原子種を用いた場合の例を示している。なお、図10の(A)および図10の(B)の水素原子の表記を省略しているが、全ての水素原子のGAFF原子種が、[ha]となる。

0086

図10の(A)では、決定装置101は、C_(10_1)〜C_(10_6)のGAFF原子種を、それぞれ、[c]、[cd]、[cc]、[cc]、[cd]、[cd]に決定する。

0087

また、図10の(B)では、決定装置101は、C_(10_11)〜C_(10_16)のGAFF原子種を、全て[ca]に決定する。GAFF原子種が異なると、割り当てられる分子力場が異なるため、物性などのシミュレーションに影響を与える。

0088

図10にて示したように、原子種が異なると、割り当てられる力場が異なるため、シミュレーションが不正確となってしまう。本実施の形態にかかる決定装置101は、新規の分子についても、適切な分子力場を割り当てることができる。次に、結合種の決定に用いた電子密度の算出結果と、従来技術における結合種の決定に用いた結合距離の算出結果との比較の一例を示す。

0089

図11は、電子密度の算出結果および結合距離の算出結果の比較の一例を示す説明図である。表1101は、本実施の形態による電子密度を用いて決定した結合種の2つの計算方法による結果と、結合距離を用いて決定した結合種の2つの計算方法による結果との比較例を示した表である。また、図11では、対象分子として、リン同士の結合種が二重結合となるP2H2と、リン同士の結合種が単結合となるP2H4と、の2つの分子のリン原子間の算出結果について比較する。以下、P2H2を「対象分子A」と呼称する。また、P2H4を「対象分子B」と呼称する。

0090

また、図11では、2つの計算方法として、AM1(Austin model 1)法と、PM5法を用いて電子密度、結合距離を算出する。なお、それぞれの計算方法には、計算結果が粗くてもよいので処理時間を短くしたい場合に用いられる計算方法、処理時間が長くともよいので計算結果を正確に得たい場合に用いられる計算方法、というように、使用目的に応じた用途が存在する。

0091

対象分子Aについて、決定装置101は、AM1法を用いて、P原子間の電子密度ρの値を2.02と算出する。また、対象分子Bについて、決定装置101は、AM1法を用いて、P原子間の電子密度の値を、1.01と算出する。ここから、AM1法を用いた場合の二重結合と単結合の判断の閾値は、中間の値となる1.5にすることになる。

0092

また、対象分子Aについて、決定装置101は、PM5法を用いて、P原子間の電子密度を2.03と算出する。また、対象分子Bについて、決定装置101は、AM1法を用いて、P原子間の電子密度の値を、1.03と算出する。ここから、PM5法を用いた場合の二重結合と単結合とを判断する電子密度の閾値は、中間の値となる1.5にすることになる。このように、電子密度を用いて結合種を決定する場合、決定装置101は、計算方法によらずに、同一の閾値を用いることができる。

0093

また、対象分子Aについて、決定装置101は、AM1法を用いて、P原子間の結合距離を1.757[オングストローム]と算出する。また、対象分子Bについて、決定装置101は、AM1法を用いて、P原子間の結合距離を、1.990[オングストローム]と算出する。ここから、AM1法を用いた場合の二重結合と単結合の判断の閾値は、中間の値となる1.874[オングストローム]にすることになる。

0094

また、対象分子Aについて、決定装置101は、PM5法を用いて、P原子間の結合距離を1.889[オングストローム]と算出する。また、対象分子Bについて、決定装置101は、AM1法を用いて、P原子間の結合距離を、2.012[オングストローム]と算出する。ここから、PM5法を用いた場合の二重結合と単結合とを判断する結合距離の閾値は、中間の値となる1.951[オングストローム]にすることになる。このように、結合距離を用いて結合種を決定する場合、計算方法間でばらつきが大きくなるため、決定装置101は、計算方法に依存した閾値を用いることになる。

0095

したがって、結合距離を用いて結合種を決定する場合、決定装置101は、計算ごとに閾値を記憶することになってしまう。また、異なる計算で用いている閾値を、他の計算時に用いてしまうと、誤った結合種として決定してしまう。次に、電子密度を用いて原子種を決定し、決定した原子種に対応するフローチャートについて、図12図15を用いて説明する。

0096

図12は、力場割当処理手順の一例を示すフローチャートである。力場割当処理は、新たな分子に力場を割り当てる処理である。決定装置101は、分子構造初期値と対象部子全体の電荷を与えて、量子科学計算による安定構造探索を行う(ステップS1201)。安定構造探索にて、電子の密度行列P、原子軌道の重なり積分行列Sが算出される。次に、決定装置101は、原子間の結合の有無を探索する(ステップS1202)。続けて、決定装置101は、結合が存在する原子間について、結合種を決定していない2つの原子を選択する(ステップS1203)。次に、決定装置101は、結合種決定処理を実行する(ステップS1204)。結合種決定処理の詳細は、図13にて後述する。続けて、決定装置101は、2つの原子の少なくとも一つの原子が、環に含まれるか否かを判断する(ステップS1205)。

0097

環に含まれる場合(ステップS1205:Yes)、決定装置101は、芳香族結合決定処理を実行する(ステップS1206)。芳香族結合決定処理の詳細は、図14に後述する。ステップS1206の実行後、または、環に含まれない場合(ステップS1205:No)、決定装置101は、決定された結合種から原子種を決定する(ステップS1207)。次に、決定装置101は、対象分子内の全ての結合種と原子種が決定されたか否かを判断する(ステップS1208)。未決定である結合種、原子種がある場合(ステップS1208:No)、決定装置101は、ステップS1203の処理に移行する。

0098

全ての結合種と原子種が決定した場合(ステップS1208:Yes)、決定装置101は、アニオン性単結合決定処理を実行する(ステップS1209)。アニオン性単結合決定処理の詳細については、図15に後述する。アニオン性単結合決定処理は、アニオン性原子を有する単結合があるか否かを探索する処理である。なお、アニオン性原子を有する単結合は、AM1BCC電荷で定義されており、GAFF力場では定義されていない。したがって、GAFF力場を用いる場合には、決定装置101は、ステップS1209の処理を実行しなくてもよい。

0099

ステップS1209の実行後、決定装置101は、力場テーブルと、決定した原子種と結合種から、力場情報を割り当てる(ステップS1210)。ステップS1210の具体的処理として、たとえば、決定装置101は、決定した原子種と結合種を他の装置に出力してもよい。出力後、他の装置が、決定した原子種と結合種に対応した力場情報を割り当てる。また、力場テーブルとは、たとえば、参考文献3に記載された原子種ごとのばね定数等が格納されたテーブルである。ステップS1210の終了後、決定装置101は、力場割当処理を終了する。力場割当処理を実行することにより、決定装置101は、新たな分子に適切な力場を割り当てることができる。

0100

図13は、結合種決定処理手順の一例を示すフローチャートである。結合種決定処理は、結合種を決定する処理である。決定装置101は、2つの原子の種別の組合せが、非局在結合を示す組合せか否かを判断する(ステップS1301)。非局在結合を示す組合せでない場合(ステップS1301:No)、決定装置101は、電子密度BOkk'を算出する(ステップS1302)。なお、ステップS1302の処理について、電子密度を算出する処理量は、電子の密度行列Pと原子軌道の重なり積分行列SがステップS1201の処理にて算出されているため、ステップS1201にて行われた処理量に対して無視できるほど小さい。

0101

続けて、決定装置101は、2つの原子の間の電子密度BOkk'を確認する(ステップS1303)。BOkk'が1.5未満となる場合(ステップS1303:BOkk'<1.5)、決定装置101は、続けて、2つの原子の種別の組合せが、配位結合を示す組合せか否かを判断する(ステップS1304)。なお、ステップS1304の処理にて、配位結合は、AM1BCC電荷で定義されており、GAFF力場では定義されていない。したがって、GAFF力場を用いる場合には、決定装置101は、ステップS1304の処理を行わず、ステップS1306の処理に移行する。配位結合を示す組合せとなる場合(ステップS1304:Yes)、決定装置101は、結合種を配位結合に決定する(ステップS1305)。

0102

配位結合を示す組合せではない場合(ステップS1304:No)、決定装置101は、結合種を単結合に決定する(ステップS1306)。BOkk'が1.5以上2.5未満となる場合(ステップS1303:1.5≦BOkk'<2.5)、決定装置101は、結合種を二重結合に決定する(ステップS1307)。BOkk'が2.5以上となる場合(ステップS1303:2.5≦BOkk')、決定装置101は、結合種を三重結合に決定する(ステップS1308)。非局在結合を示す組合せである場合(ステップS1301:Yes)、決定装置101は、結合種を非局在結合に決定する(ステップS1309)。ステップS1305〜ステップS1309のうちのいずれかの処理終了後、決定装置101は、結合種決定処理を終了する。結合種決定処理を実行することにより、決定装置101は、適切な結合種を決定することができる。

0103

図14は、芳香族結合決定処理手順の一例を示すフローチャートである。芳香族結合決定処理は、結合種を芳香族結合に決定する処理である。決定装置101は、環を形成する原子群の種別の組合せが、特定の組合せか否かを判断する(ステップS1401)。特定の組合せである場合(ステップS1401:Yes)、決定装置101は、環に結合する原子があるか否かを判断する(ステップS1402)。環に結合する原子がある場合(ステップS1402:Yes)、決定装置101は、環と環に結合する原子との結合種が単結合または配位結合か否かを判断する(ステップS1403)。単結合または配位結合である場合(ステップS1403:Yes)、決定装置101は、環を形成する原子間の結合種を、芳香族結合に決定する(ステップS1404)。

0104

ステップS1403の終了後、特定の組合せでない場合(ステップS1401:No)、結合する原子がない場合(ステップS1402:No)または、単結合または配位結合以外の結合種である場合(ステップS1403:No)、決定装置101は、芳香族結合決定処理を終了する。芳香族結合決定処理を実行することにより、決定装置101は、芳香族結合で結合している原子群に対して、適切な結合種を決定することができる。

0105

図15は、アニオン性単結合決定処理手順の一例を示すフローチャートである。アニオン性単結合決定処理は、アニオン性原子を含む単結合となる可能性のある結合種を検索して、条件を満たした場合にアニオン性原子を含む単結合に決定する処理である。決定装置101は、各原子について、原子価と結合している原子の数が全て一致しているか否かを判断する(ステップS1501)。一致している場合(ステップS1501:Yes)、決定装置101は、続けて、対象分子全体の電荷と、各原子の電荷の和が一致するか否かを判断する(ステップS1502)。一致する場合(ステップS1502:Yes)、決定装置101は、アニオン性単結合決定処理を終了する。

0106

一致していない場合(ステップS1501:No)、または、電荷の和が一致しない場合(ステップS1502:No)、決定装置101は、対象分子のうち、結合種が二重結合となった組を抽出する(ステップS1503)。続けて、決定装置101は、抽出した組のうち、2つの原子の種別ごとのグループに分類する(ステップS1504)。次に、決定装置101は、分類されたグループのうち、未選択のグループを選択する(ステップS1505)。なお、選択されたグループに含まれる組が1つである場合、決定装置101は、後述するステップS1509の処理に移行する。続けて、決定装置101は、選択されたグループ内のBOkk'が全て同一の値か否かを判断する(ステップS1506)。

0107

同一の値ではない場合(ステップS1506:No)、決定装置101は、低いBOkk'となる2つの原子の間の結合種を、単結合に決定する(ステップS1507)。さらに、決定装置101は、単結合に決定した2つの原子のうち、原子価に対し、結合している原子の数が少ない原子をアニオン性に決定する(ステップS1508)。

0108

ステップS1508の処理終了後、または同一である場合(ステップS1506:Yes)、決定装置101は、全てのグループを選択したか否かを判断する(ステップS1509)。未選択のグループがある場合(ステップS1509:No)、決定装置101は、ステップS1505の処理に移行する。全てのグループが選択済みである場合(ステップS1509:Yes)、決定装置101は、アニオン性単結合決定処理を終了する。アニオン性単結合決定処理を実行することにより、決定装置101は、より正確な結合種を決定することができるため、より正確な分子力場を割り当てることができる。

0109

以上説明したように、決定装置101によれば、2つの原子間の原子種を、量子科学計算の電子密度を用いて決定する。これにより、決定装置101は、量子科学計算の計算方法によらず同一の閾値を用いて原子種を決定することができるようになるため、原子間の結合種の決定精度を向上することができる。また、割り当てられた力場がより現実に近くなり、化学産業、特に製薬業において、新規な分子のシミュレーションを正確に行うことができる。また、量子科学計算の計算方法によらず同一の閾値を用いることができるため、決定装置101は、量子科学計算がどの計算方法によるものかを記憶しなくともよい。

0110

なお、結合距離を用いて結合種を決定する方法について、AM1法、PM5法といった計算方法に応じて結合距離を算出するための初期パラメータが異なるため、計算結果が異なる値になり、結果、閾値も計算方法で異なる値となってしまっている。一方、電子密度を用いて結合種を決定する方法について、電子密度を算出するための初期パラメータとしては電子の数であるため、どの計算方法も同じ初期パラメータとなり計算結果が近い値となり、結果、計算方法によらず同一の閾値を用いることができる。

0111

また、決定装置101によれば、単結合で結合する原子間の電子密度に関する第1の条件と、二重結合で結合された電子密度に関する第2の条件と、三重結合で結合された電子密度に関する第3の条件と、を用いて結合種を決定してもよい。これにより、決定装置101は、単結合から三重結合までの結合種を、電子密度を用いて決定することができる。また、決定装置101は、単結合から三重結合に応じた力場を割り当てることができる。

0112

また、決定装置101によれば、配位結合で結合する原子間の電子密度に関する第4の条件と、配位結合で結合された原子の種別に関する第5の条件を用いて、結合種を配位結合に決定してもよい。これにより、決定装置101は、配位結合に応じた力場を割り当てることができる。

0113

また、決定装置101によれば、芳香族結合で結合する原子群が形成する環を形成可能な原子の種別に関する第6の条件を用いて、結合種を芳香族結合に決定してもよい。これにより、決定装置101は、芳香族結合に応じた力場を割り当てることができる。

0114

また、決定装置101によれば、第6の条件と、芳香族結合で結合する原子群が形成する環と環に結合する原子との間の結合の種別に関する第7の条件を用いて、結合種を芳香族結合に決定してもよい。これにより、決定装置101は、芳香族結合に応じた力場を割り当てることができる。また、第6の条件と第7の条件を用いることにより、結合種の判定精度が向上するため、決定装置101は、シミュレーション結果の精度を向上させることができる。

0115

また、決定装置101によれば、2つの原子の間の結合の種別が二重結合であると決定した場合、2つの原子の間の電子密度と、分子内の他の二重結合となる原子間の電子密度とを比較して、アニオン性の単結合に決定してもよい。これにより、決定装置101は、結合種の判定精度が向上するため、決定装置101は、シミュレーション結果の精度を向上させることができる。

0116

なお、本実施の形態で説明した決定方法は、予め用意されたプログラムをパーソナル・コンピュータやワークステーション等のコンピュータで実行することにより実現することができる。本決定プログラムは、ハードディスクフレキシブルディスクCD−ROM、MO、DVD等のコンピュータで読み取り可能な記録媒体に記録され、コンピュータによって記録媒体から読み出されることによって実行される。また本決定プログラムは、インターネット等のネットワークを介して配布してもよい。

0117

上述した実施の形態に関し、さらに以下の付記を開示する。

0118

(付記1)コンピュータに、
構造的に安定な状態における分子内の各原子に属する電子の電子密度と前記分子内の原子間の原子軌道の重なりの度合いとを記憶する第1の記憶部を参照して、前記分子から選択された第1の原子と前記第1の原子とは異なる第2の原子との間の電子密度を算出し、
原子間の結合の種別を表す結合種と前記結合種で結合する原子間の電子密度に関する条件とを対応付けて記憶する第2の記憶部を参照して、算出した電子密度に基づいて、前記第1の原子と前記第2の原子との間の結合種を決定し、
決定した前記第1の原子と前記第2の原子との間の結合種を出力する、
処理を実行させることを特徴とする決定プログラム。

0119

(付記2)前記第2の記憶部は、原子間の結合の種別を表す単結合に対応付けて前記単結合で結合する原子間の電子密度に関する第1の条件を記憶し、原子間の結合の種別を表す二重結合に対応付けて前記二重結合で結合する原子間の電子密度に関する第2の条件を記憶し、原子間の結合の種別を表す三重結合に対応付けて前記三重結合で結合する原子間の電子密度に関する第3の条件と、を記憶しており、
前記コンピュータは、
前記算出した電子密度が前記第2の記憶部に記憶された前記第1の条件と前記第2の条件と前記第3の条件とのうちいずれかの条件を満たすか否かを判定する処理を実行させ、
前記決定する処理は、
前記いずれかの条件を満たすと判定した場合、前記第1の原子と前記第2の原子との間の結合の種別を、前記算出した電子密度が満たすと判定した条件に対応付けられた原子間の結合の種別に決定することを特徴とする付記1に記載の決定プログラム。

0120

(付記3)前記第2の記憶部は、原子間の結合の種別を表す配位結合に対応付けて前記配位結合で結合する原子間の電子密度に関する第4の条件を記憶し、前記配位結合に対応付けて前記配位結合で結合する原子の種別の組合せに関する第5の条件を記憶しており、
前記コンピュータに、
前記算出した電子密度が前記第2の記憶部に記憶された前記第4の条件を満たすか否かを判定し、
前記第1の原子の種別および前記第2の原子の種別の組合せが前記第2の記憶部に記憶された前記第5の条件を満たすか否かを判定する処理を実行させ、
前記決定する処理は、
前記第4の条件および前記第5の条件を満たすと判定した場合、前記第1の原子と前記第2の原子との間の結合の種別を前記配位結合に決定する処理を実行する付記1または2に記載の決定プログラム。

0121

(付記4)前記第2の記憶部は、さらに、原子間の結合の種別を表す芳香族結合に対応付けて前記芳香族結合で結合して環を形成可能な原子の種別に関する第6の条件を記憶しており、
前記コンピュータに、
前記分子に環を形成する原子群があるか否かを判定し、
前記分子に環を形成する原子群があると判定した場合、前記原子群の各々の原子の種別が前記第2の記憶部に記憶された前記第6の条件を満たすか否かを判定し、
前記第6の条件を満たすと判定した場合、前記分子に環を形成する原子群の各々の原子間の結合の種別を前記芳香族結合に決定する、処理を実行させることを特徴とする付記1〜3のいずれか一つに記載の決定プログラム。

0122

(付記5)前記第2の記憶部は、さらに、前記芳香族結合に対応付けて前記芳香族結合で結合する原子間が結合して形成される環と前記環に結合する原子との間の結合の種別に関する第7の条件を記憶しており、
前記コンピュータに、
前記第1の原子と前記第2の原子との間の結合種を決定し、かつ、前記分子に環を形成する原子群があると判定した場合、前記分子内の環に結合する原子があるか否かを判定し、
前記分子内の環に結合する原子があると判定した場合、前記分子内の環と前記分子内の環に結合する原子との間の結合の種別が前記第2の記憶部に記憶された前記第7の条件を満たすか否かを判定し、
前記第7の条件を満たすと判定した場合、前記分子内の環を形成する原子群の各々の原子間の結合の種別を前記芳香族結合に決定する、
処理を実行させることを特徴とする付記4に記載の決定プログラム。

0123

(付記6)前記コンピュータに、
前記第1の原子と前記第2の原子との間の結合の種別が前記二重結合であると決定した場合、前記分子のうちの前記第1の原子および前記第2の原子を除く残余の原子群の中から、原子間の結合の種別が前記二重結合となり、かつ、原子の種別の組合せが前記第1の原子の種別および前記第2の原子の種別の組合せに一致する第3の原子および第4の原子を抽出し、
前記第1の原子と前記第2の原子との間の電子密度と、前記第3の原子と前記第4の原子との間の電子密度と、が同一であるか否かを判断し、
前記第1の原子と前記第2の原子との間の電子密度と、前記第3の原子と前記第4の原子との間の電子密度と、が同一でないと判断した場合、前記第1の原子と前記第2の原子との間の電子密度および前記第3の原子と前記第4の原子との間の電子密度のうちの低い電子密度となる原子間の結合の種別を前記単結合に決定すると共に、前記結合の種別を単結合に決定した2つの原子のいずれか一方の原子をアニオン性原子に決定する、
処理を実行させることを特徴とする付記2〜5のいずれか一つに記載の決定プログラム。

0124

(付記7)構造的に安定な状態における分子内の各原子に属する電子の電子密度と前記分子内の原子間の原子軌道の重なりの度合いとを記憶する第1の記憶部を参照して、前記分子から選択された第1の原子と前記第1の原子とは異なる第2の原子との間の電子密度を算出する算出部と、
原子間の結合の種別を表す結合種と前記結合種で結合する原子間の電子密度に関する条件とを対応付けて記憶する第2の記憶部を参照して、前記算出部によって算出された電子密度に基づいて、前記第1の原子と前記第2の原子との間の結合種を決定する決定部と、
前記決定部によって決定された前記第1の原子と前記第2の原子との間の結合種を出力する出力部と、
を有することを特徴とする決定装置。

0125

(付記8)コンピュータが、
構造的に安定な状態における分子内の各原子に属する電子の電子密度と前記分子内の原子間の原子軌道の重なりの度合いとを記憶する第1の記憶部を参照して、前記分子から選択された第1の原子と前記第1の原子とは異なる第2の原子との間の電子密度を算出し、
原子間の結合の種別を表す結合種と前記結合種で結合する原子間の電子密度に関する条件とを対応付けて記憶する第2の記憶部を参照して、算出した電子密度に基づいて、前記第1の原子と前記第2の原子との間の結合種を決定し、
決定した前記第1の原子と前記第2の原子との間の結合種を出力する、
処理を実行することを特徴とする決定方法。

0126

101決定装置
301 選択部
302 算出部
303 判定部
304 決定部
305 抽出部
306 判断部
307 出力部
311 量子科学計算結果
312結合種決定条件テーブル

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ