図面 (/)

技術 抵抗変化素子及び不揮発性記憶装置

出願人 株式会社東芝
発明者 大間知範威和田純一松尾浩司有賀智崇小澤良夫
出願日 2012年3月23日 (8年8ヶ月経過) 出願番号 2012-068472
公開日 2013年10月3日 (7年1ヶ月経過) 公開番号 2013-201276
状態 未査定
技術分野 物理蒸着 絶縁膜の形成 半導体メモリ オブシンスキー素子 薄膜、厚膜装置
主要キーワード 電気的評価 X線回折法 導電相 任意目盛 回り込み電流 ICP質量分析装置 評価パラメータ Nbターゲット
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2013年10月3日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (10)

課題

製造を容易化した抵抗変化素子及び不揮発性記憶装置を提供する。

解決手段

実施形態によれば、第1導電層と、第2導電層と、記憶層と、を備えた抵抗変化素子が提供される。記憶層は、第1導電層と第2導電層との間に設けられる。記憶層は、第1導電層と第2導電層とを介して供給される電圧及び電流の少なくともいずれかにより、抵抗が低い第1状態と、第1状態よりも抵抗が高い第2状態との間で可逆的に遷移する。記憶層は、酸化ニオブを含む。第1導電層から第2導電層に向かう方向に、前記記憶層の(100)面、(010)面及び(110)面のいずれかの面が配向している。

概要

背景

低抵抗状態高抵抗状態とを有する抵抗変化素子を用いた不揮発性記憶装置がある。抵抗変化素子及び不揮発性記憶装置の製造においては、フォーミング処理を行うことで使用状態にする。

概要

製造を容易化した抵抗変化素子及び不揮発性記憶装置を提供する。実施形態によれば、第1導電層と、第2導電層と、記憶層と、を備えた抵抗変化素子が提供される。記憶層は、第1導電層と第2導電層との間に設けられる。記憶層は、第1導電層と第2導電層とを介して供給される電圧及び電流の少なくともいずれかにより、抵抗が低い第1状態と、第1状態よりも抵抗が高い第2状態との間で可逆的に遷移する。記憶層は、酸化ニオブを含む。第1導電層から第2導電層に向かう方向に、前記記憶層の(100)面、(010)面及び(110)面のいずれかの面が配向している。

目的

本発明の実施形態は、製造を容易化した抵抗変化素子及び不揮発性記憶装置を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

第1導電層と、第2導電層と、前記第1導電層と前記第2導電層との間に設けられ、前記第1導電層と前記第2導電層とを介して供給される電圧及び電流の少なくともいずれかにより、抵抗が低い第1状態と、前記第1状態よりも抵抗が高い第2状態との間で可逆的に遷移可能な記憶層と、を備え、前記記憶層は、NbOx(1.8<x≦2.5)を含み、前記第1導電層から前記第2導電層に向かう方向に(100)面、(010)面及び(110)面のいずれかの面が配向し、前記記憶層中に含まれるNbのX線光電子分光の205eVの結合エネルギーの強度の、207.5eVの結合エネルギーの強度に対する比は、0.062以下である抵抗変化素子

請求項2

第1導電層と、第2導電層と、前記第1導電層と前記第2導電層との間に設けられ、前記第1導電層と前記第2導電層とを介して供給される電圧及び電流の少なくともいずれかにより、抵抗が低い第1状態と、前記第1状態よりも抵抗が高い第2状態との間で可逆的に遷移可能な記憶層と、を備え、前記記憶層は、酸化ニオブを含み、前記第1導電層から前記第2導電層に向かう方向に(100)面、(010)面及び(110)面のいずれかの面が配向している抵抗変化素子。

請求項3

前記記憶層中に含まれるNbのX線光電子分光の205eVの結合エネルギーの強度の、207.5eVの結合エネルギーの強度に対する比は、0.062以下である請求項2記載の抵抗変化素子。

請求項4

第1導電層と、第2導電層と、前記第1導電層と前記第2導電層との間に設けられ、前記第1導電層と前記第2導電層とを介して供給される電圧及び電流の少なくともいずれかにより、抵抗が低い第1状態と、前記第1状態よりも抵抗が高い第2状態との間で可逆的に遷移可能な記憶層と、を備え、前記記憶層は、酸化ニオブを含み、前記記憶層中に含まれるNbのX線光電子分光の205eVの結合エネルギーの強度の、207.5eVの結合エネルギーの強度に対する比は、0.062以下である抵抗変化素子。

請求項5

前記記憶層は、NbOx(1.8<x≦2.5)を含む請求項2〜4のいずれか1つに記載の抵抗変化素子。

請求項6

請求項1〜4のいずれか1つに記載の抵抗変化素子と、前記第1導電層に電気的に接続された第1配線と、前記第2導電層に電気的に接続された第2配線と、を備えた不揮発性記憶装置

技術分野

0001

本発明の実施形態は、抵抗変化素子及び不揮発性記憶装置に関する。

背景技術

0002

低抵抗状態高抵抗状態とを有する抵抗変化素子を用いた不揮発性記憶装置がある。抵抗変化素子及び不揮発性記憶装置の製造においては、フォーミング処理を行うことで使用状態にする。

先行技術

0003

特許第3989506号公報

発明が解決しようとする課題

0004

本発明の実施形態は、製造を容易化した抵抗変化素子及び不揮発性記憶装置を提供する。

課題を解決するための手段

0005

本発明の実施形態によれば、第1導電層と、第2導電層と、記憶層と、を備えた抵抗変化素子が提供される。前記記憶層は、前記第1導電層と前記第2導電層との間に設けられる。前記記憶層は、前記第1導電層と前記第2導電層とを介して供給される電圧及び電流の少なくともいずれかにより、抵抗が低い第1状態と、前記第1状態よりも抵抗が高い第2状態との間で可逆的に遷移する。前記記憶層は、酸化ニオブを含む。前記第1導電層から前記第2導電層に向かう方向に、前記記憶層の(100)面、(010)面及び(110)面のいずれかの面が配向している。

図面の簡単な説明

0006

第1の実施形態に係る抵抗変化素子の構成を例示する模式的断面図である。
第1の実施形態に係る抵抗変化素子の特性を例示する表である。
第1の実施形態に係る抵抗変化素子の特性を例示するグラフ図である。
第1の実施形態に係る抵抗変化素子の特性を例示するグラフ図である。
図5(a)〜図5(f)は、抵抗変化素子の構成を例示する模式図である。
第1の実施形態に係る抵抗変化素子の構成を例示する模式図である。
第2の実施形態に係る不揮発性記憶装置の構成を例示する模式的斜視図である。
第2の実施形態に係る不揮発性記憶装置の構成を例示する模式図である。
第2の実施形態に係る不揮発性記憶装置の一部の構成を例示する模式的断面図である。

実施例

0007

以下に、本発明の各実施の形態について図面を参照しつつ説明する。
なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。
なお、本願明細書と各図において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。

0008

(第1の実施形態)
図1は、第1の実施形態に係る抵抗変化素子の構成を例示する模式的断面図である。
図1に表したように、本実施形態に係る抵抗変化素子110は、第1導電層10と、第2導電層20と、記憶層15と、を含む。記憶層15は、第1導電層10と第2導電層20との間に設けられる。

0009

記憶層15には、第1導電層10と第2導電層20とを介して電圧及び電流が供給される。記憶層15は、供給された電圧及び電流の少なくともいずれかにより、抵抗が低い第1状態(低抵抗状態)と、第1状態よりも抵抗が高い第2状態(高抵抗状態)と、の間を可逆的に遷移する。

0010

第1導電層10及び第2導電層20には、例えば、Pt、Au、Ag、Ru、RuN、Ir、Co、Ni、Ti、TiN、TaN、W及びAlの少なくともいずれかが用いられる。第1導電層10及び第2導電層20の形成には、例えば、スパッタリングが用いられる。

0011

記憶層15には、酸化ニオブが用いられる。すなわち、記憶層15として、例えば、NbOx(0<x≦2.5)が用いられる。記憶層15の形成には、例えば、PV成膜法(Physical Vapor Deposition:物理気相成膜法)が用いられる。PVD成膜法は、例えば、NbターゲットとO2ガスとを用いた反応性スパッタによる成膜方法、及び、Nb2O5ターゲットとNbターゲットとを用いたコスパッタ(cosputter)による成膜方法を含む。

0012

例えば、記憶層15が高抵抗状態にあるときに、第1導電相違10と第2導電層20との間に電圧を印加する。これにより、記憶層15が、高抵抗状態から低抵抗状態へと変化する。この動作を、セット動作という。セット動作は、例えば、書き込み動作である。

0013

低抵抗状態を高抵抗状態に戻す動作において、例えば、第1導電層10と第2導電層20との間にセット動作とは極性が逆の電圧を印加する。これにより、記憶層15が低抵抗状態から高抵抗状態へと変化する。この動作を、リセット動作という。リセット動作は、例えば、消去動作である。

0014

書き込んだ情報の読み出しは、例えば、電圧パルスを記憶層15に印加し、記憶層15の抵抗値を検出することにより行う。この時、電圧パルスの大きさは、記憶層15の抵抗が変化しない程度の微小な値とされる。

0015

一般に、抵抗変化素子110を形成した直後は、抵抗変化素子110の抵抗は高い。このため、記憶層15の抵抗を低くし、スイッチング動作の可能な状態へと変化させるフォーミング処理を行う。フォーミング処理は、記憶層に電圧を印加することで行われる。フォーミング処理に用いる電圧パルスの振幅は、スイッチング動作に用いる電圧パルスの振幅よりも大きい。また、フォーミング処理に用いる電圧パルスのパルス幅は、スイッチング動作に用いる電圧パルスのパルス幅よりも長い。さらに、フォーミング処理では、電圧パルスを複数回印加することもある。このため、フォーミング処理は、抵抗変化素子110の製造を複雑にする。本実施形態は、例えば、フォーミング処理を不要とする抵抗変化素子を提供する。これにより、抵抗変化素子110の製造を容易化できる。

0016

以下、抵抗変化素子110に関する実験結果について説明する。
この実験では、基板の上に、第1導電層10、記憶層15及び第2導電層20を、この順に積層して、各種の試料を作製した。
基板には、シリコン基板を用いた。第1導電層10及び第2導電層20には、ルテニウムを用いた。第1導電層10及び第2導電層20の大きさは、20mm×20mm程度であり、第1導電層10及び第2導電層20の厚さは、約100nmとした。第1導電層10及び第2導電層20の形成には、スパッタリングを用いた。

0017

記憶層15として、各種の条件のPVD成膜法により形成したNbOxを用い試料を作製した。

0018

試料の作製において、成膜パワーは、50W以上2000W以下であり、基板温度は、室温以上500℃以下であり、圧力は、0.05Pa以上2Pa以下であり、酸素分圧は、0%以上90%以下である。膜厚は、1nm以上30nm以下である。成膜パワーは、例えば、ターゲットに印加する電圧と、ターゲットを流れる電流と、の積で与えられる量である。

0019

以下では、第1試料SP01〜第12試料SP12について説明する。これらの試料においては、酸素分圧を変化させることにより、記憶層15のNbOxにおける酸素組成比xを変化させた。これらの試料における酸素の組成比xをICP質量分析装置(ICP−MS)により分析した。

0020

図2は、第1の実施形態に係る抵抗変化素子の特性を例示する表である。
図2に表したように、第1試料SP01〜第3試料SP3においては、酸素の組成比xは2.5であり、第4試料SP04〜第8試料SP08においては、組成比xは2.4である。第9試料SP09及び第10試料SP10においては、組成比xは1.8である。第11試料SP11においては、組成比xは1.2であり、第12試料SP12においては、組成比xは0.8である。

0021

これらの試料に関して、薄膜X線回折法(XRD:X-ray Diffraction)により、記憶層15のNbOxが、結晶であるか否かを評価した。また、結晶である場合には、最大の強度を有する結晶面の方向を求めた。

0022

図3は、第1の実施形態に係る抵抗変化素子の特性を例示するグラフ図である。
図3は、XRDによるNbOxの分析結果の例を表しており、横軸は、XRD分析の際の角度2θであり、縦軸は、XRDのピーク強度カウント/秒)である。XRDによるピークが観察された試料は、記憶層15が結晶である、または、結晶性が高い、と判定し、ピークが観察されない試料は、記憶層15が結晶でない、または、結晶性が低い、と判定した。

0023

図2においては、記憶層15が結晶である、または、結晶性が低い場合は、結晶性CTYに関して「CR」と表示している。記憶層15が結晶でない、または、結晶性が低い場合、「NC」と表記している。記憶層15が結晶である、または、結晶性が高い場合は、さらに、観察されたピークの回折角2θを基に、最大の強度を有する結晶面の方向を評価した。図2には、記憶層15の酸化ニオブの結晶面CPの方向の評価結果を示している。以下、結晶面の方向について説明する。

0024

図3の例では、角度2θが約36.7°においてピークがあり、このピークは、(010)面に対応する。また、角度2θが約55.5°においてピークがあり、このピークは、(110)面に対応する。なお、図3において、角度2θが約33°におけるピークは、基板として用いたシリコンに対応する。

0025

XRDにおいて、記憶層15(酸化ニオブ)に関するX線回折ピークのなかで、最大のピークを示す面を求めた。すなわち、この評価においては、基板として用いたシリコンのピーク(2θが約33°)を除く。そして、酸化ニオブに関して、(010)面に対応するピーク(2θが約36.7°)と、(110)面に対応するピーク(2θが約55.5°)と、が観察される。これらの2つのピークのうちで、(010)面に対応するピークの方が、(110)面に対応するピークよりも高い。この場合には、この試料は、(010)面の結晶面であるとする。

0026

このように、記憶層15に関するX線回折ピークのうちで、ピークの強度が最大である方向を記憶層15の結晶面の方向とする。

0027

なお、XRDにおいてピークが得られる角度2θは、測定時の誤差を含む。例えば、測定される角度2θは、±0.5°の誤差を含む。例えば、Nb2O5において、XRD測定の角度2θが、36.2°以上37.2°以下の範囲に含まれるときに、(010)面であるとすることができる。

0028

図2に表したように、第1試料SP01、第2試料SP2及び第6試料SP6においては、結晶面CPは(010)面である。第3試料SP3においては、結晶面CPは(100)面である。第4試料SP4及び第5試料SP05においては、結晶面CPは(110)面である。第7試料SP07においては、結晶面CPは(001)面である。第8試料SP08においては、結晶面CPは(111)である。

0029

さらに、上記の試料に関して、X線光電子分光(XPS:X-ray Photoelectron Spectroscopy)により、3d5/2軌道における結合エネルギーBEの強度分布を分析した。結合エネルギーBEは、例えば、原子核電子とを分離させるのに必要とするポテンシャルエネルギーである。この例では、例えば、Nbの原子核と、3d5/2軌道の電子と、を分離させるのに必要なエネルギーである。

0030

図4は、第1の実施形態に係る抵抗変化素子の特性を例示するグラフ図である。
図4は、試料のXPSの分析結果の一例を示す。図4の横軸は、XPSにおける結合エネルギーBE(eV:エレクトロンボルト)であり、縦軸は、強度I(任意目盛)である。
Nbの3d5/2軌道における強度のピークは、およそ202.1eVに現れる。また、Nb2O5に含まれるNbの3d5/2軌道における強度のピークは、およそ207.5eVに現れる。NbOx(0<x≦2.5)に含まれるNbの3d5/2軌道における強度のピークは、202.1eV以上207.5eV以下の範囲に現れる。

0031

第1試料SP01〜第12試料SP12の評価において、上記の範囲の中間である205eVの強度βに着目する。そして、評価パラメータとして、Nb2O5に含まれるNbの207.5eVにおける強度(第1強度)αに対する、NbOxに含まれるNbの205eVにおける強度(第2強度)βの割合γ(γ=β/α)を求めた。

0032

さらに、第1試料SP01〜第12試料SP12において、電気的特性を評価した。この評価においては、記憶層15の作製直後初期の抵抗値を測定した後、電圧パルス(リセット動作またはセット動作に対応する電圧パルス)を印加し、この後、記憶層15の抵抗値を測定した。電圧パルスを印加した後の記憶層15の抵抗値が、初期の抵抗値よりも高い場合、記憶層15が、「低抵抗初期状態」であると判定した。電圧パルスを印加した後の抵抗値が、初期の抵抗値以下のとき、記憶層15が、「高抵抗状初期態」であると判定した。

0033

記憶層15が、「高抵抗初期状態」を示す場合には、使用状態にするために、前述のように、フォーミング処理を行う。一方、記憶層15が、「低抵抗初期状態」を示す場合には、フォーミング処理を省略し、リセット動作から使用を始めることができる。記憶層15が、「低抵抗初期状態」を示す場合には、抵抗変化素子110の製造を容易化できる。

0034

図2においては、この電気的評価の「判定Ev」に関して、「低抵抗初期状態LR」と、「高抵抗初期状態HR」と、で表している。

0035

図2に表したように、第1試料SP01〜第8試料SP08は、結晶である。一方、第9試料SP09〜第12試料SP12は、結晶ではない。第1試料SP01〜第8試料SP08において、酸素の組成比xは、2.4以上2.5以下であり、第9試料SP09〜第12試料SP12においては、組成比xは、0.8以上1.8以下である。NbOxにおいて、酸素の組成比xは、1.8を超え、2.5以下であることが好ましい。実施形態において、記憶層15は、NbOx(1.8<x≦2.5)を含む。さらに、組成比xは、2.4以上2.5以下であることがさらに好ましい。記憶層15中の酸化ニオブにおける酸素の組成比xは、例えば、ICP質量分析装置(ICP−MS)またはオージェ電子分光法AES)またはエネルギー分散X線分析装置(EDX)などにより分析できる。

0036

図2に表したように、結晶性を示した第1試料SP01〜第8試料SP08のうちで、低抵抗初期状態LRであるのは、第1試料SP01〜第6試料SP06である。一方、第7試料SP07及び第8試料SP08においては、高抵抗初期状態HRである。第1試料SP01〜第6試料SP06において、最大の強度を有すると判定された結晶面CPは、ミラー指数(100)、(010)または(110)で表される3つの結晶面CPであった。一方、第7試料SP07〜第8試料SP08において、最大の強度を有すると判定された結晶面CPは、ミラー指数(001)または(111)で表される結晶面CPであった。

0037

このように、第1導電層10から第2導電層20に向かう方向に、記憶層15の(100)面、(010)面及び(110)面のいずれかの面が配向しているときに、低抵抗初期状態LRが得られる。これにより、製造を容易化した抵抗変化素子及び不揮発性記憶装置が提供できる。

0038

本願明細書において、第1導電層10から第2導電層20に向かう方向に、記憶層15の(100)面が配向しているとは、記憶層15の膜面に対して平行な方向から角度θの方向(入射角θ)から記憶層15にX線入射させてθ−2θスキャンをしてX線回折法により測定したときに、100反射回折線のピーク強度が、他の面指数の反射の回折線のピーク強度よりも大きいことを意味する。(010)面及び(110)面についても、同様である。すなわち、上述の方法により測定したときに、010反射の回折線のピーク強度が、他の面指数の回折線のピーク強度よりも大きいとき、(010)面が配向している。また、上述の方法により測定したときに、110反射の回折線のピーク強度が他の面指数の回折線のピーク強度よりも大きいとき、(110)面が配向している。

0039

換言すると、第1導電層10から第2導電層20に向かう方向に記憶層15の(100)面が配向しているとき、記憶層15についてのX線回折法(ディフラクトメータ)による100反射の強度が、他の面指数の反射の強度よりも高い。同様に、第1導電層10から第2導電層20に向かう方向に記憶層15の(010)面が配向しているとき、記憶層15についてのX線回折法による010反射の強度が、他の面指数の反射の強度よりも高い。そして、第1導電層10から第2導電層20に向かう方向に記憶層15の(110)面が配向しているとき、記憶層15についてのX線回折法による110反射の強度が、他の面指数の反射の強度よりも高い。
すなわち、記憶層15に関するX線回折の反射の強度のうちで、100反射、010反射及び110反射のいずれかの強度が最大であるときに、低抵抗初期状態LRが得られる。

0040

図5(a)〜図5(f)は、抵抗変化素子の構成を例示する模式図である。
これらの図は、記憶層15における結晶面CFと、第1導電層10の主面と、の関係を例示している。第1導電層10の主面の法線(第1導電層10から第2導電層20に向かう方向に平行)は、記憶層15のb軸に対して実質的に平行に設定されている。これらの図では、簡単のために、結晶構造立方体モデル的に示している。

0041

図5(a)〜図5(f)は、結晶面CP(100)、結晶面CP(010)、結晶面CP(110)、結晶面CP(001)、結晶面CP(111)、及び、結晶面CP(011)をそれぞれ示している。

0042

図5(a)〜図5(c)に表したように、低抵抗初期状態LRを発現させる結晶面CP(100)、CP(010)及びCP(110)は、いずれもb軸と平行な面である。一方、図5(d)及び図5(e)に表したように、高抵抗初期状態HRに対応する結晶面CP(001)及びCP(111)は、b軸と非平行な面である。また、図5(f)に表したように、結晶面CP(011)も、b軸と非平行な面である。

0043

図6は、第1の実施形態に係る抵抗変化素子の構成を例示する模式図である。
図6は、NbOxの結晶構造(単斜晶)を示している。この例では、第1導電層10から第2導電層20に向かう方向をb軸としている。b軸に対して垂直な1つの方向をa軸としている。そして、b軸及びa軸のそれぞれに対して垂直な方向をc軸としている。この例では、記憶層15は、ミラー指数(010)で表される結晶面CPを有する。

0044

図6に表したように、NbOxでは、結晶面CP上に、陰イオンとなる酸素が並ぶ。XRDにおいて結晶面CP(100)、CP(010)またはCP(110)が最大の強度を有する状態は、b軸と平行な結晶面CP上に酸素が並ぶ状態に対応する。この状態において、第1導電層10から第2導電層20に向かう方向(c軸方向)に酸素が移動し易くなると考えられる。XRDにおいて、第1導電層10から第2導電層20に向かう方向に、(100)面、(010)面または(110)面が配向しているときに低抵抗初期状態LRが得られるのは、酸素(酸素イオン)の移動のし易さと関係していると考えられる。

0045

また、図2に表したように、低抵抗初期状態LRの第1試料SP01〜第6試料SP06において、結合エネルギーの強度の割合γは、0.062以下である。一方、低抵抗初期状態LRではなかった第7試料SP07〜第12試料SP12において、γは、0.063以上である。

0046

以上説明したように、本願発明者は、記憶層15の材料に酸化ニオブを用い、酸素の組成比xや結晶の配向性などを変化させた複数の試料を作製した。そして、それら複数の試料のそれぞれについて特性の測定を行うことにより、第1導電層10から第2導電層20に向かう方向に、記憶層15の(100)面、(010)面及び(110)面のいずれかの面が配向している場合に低抵抗初期状態LRが得られることを見出した。さらに、上記のγ(記憶層15中に含まれるNbのX線光電子分光の205eVの結合エネルギーの強度の、207.5eVの結合エネルギーの強度に対する比)が0.062以下である場合に、低抵抗初期状態LRが得られることを見出した。このような状態のときに、リセット動作からスタートでき、製造後のフォーミング処理が不要となる。すなわち、抵抗変化素子110の製造が容易化できる。

0047

(第2の実施形態)
本実施形態に係る不揮発性記憶装置は、クロスポイント型の構成を有する。
図7は、第2の実施形態に係る不揮発性記憶装置の構成を例示する模式的斜視図である。
図8は、第2の実施形態に係る不揮発性記憶装置の構成を例示する模式図である。
図7及び図8に表したように、本実施形態に係る不揮発性記憶装置210においては、基板30が設けられる。基板30の主面に対して並行な平面をX−Y平面とする。X−Y平面内の1つの方向をX軸方向とする。X−Y平面内においてX軸方向に対して垂直な方向をY軸方向とする。X軸方向とY軸方向とに対して垂直な方向をZ軸方向とする。

0048

不揮発性記憶装置210において、基板30の主面の上に、X軸方向に延在する帯状の第1の配線ワード線WL(d)i−1、WL(d)i、WL(d)i+1、WL(u)i−1、WL(u)i、WL(u)i+1)が設けられる。さらに、Y軸方向に延在する帯状の第2の配線(ビット線BLj−1、BLj、BLj+1)が、設けられる。第2の配線(ビット線BLj−1、BLj、BLj+1)は、第1の配線(ワード線WL(d)i−1、WL(d)i、WL(d)i+1、WL(u)i−1、WL(u)i、WL(u)i+1)に対向する。以下では、ワード線WL(d)i−1、WL(d)i、WL(d)i+1、WL(u)i−1、WL(u)i、WL(u)i+1をまとめて、ワード線WLと称す。また、ビット線BLj−1、BLj、BLj+1をまとめて、ビット線BLと称す。

0049

上記では、第1の配線の延在方向が第2の配線の延在方向に対して直交するが、第1の配線の延在方向が第2の配線の延在方向と交差(非平行)すれば良い。

0050

上記において添え字i及び添え字jは任意である。すなわち、第1の配線の数及び第2の配線の数は、任意である。
本具体例では、第1の配線がワード線WLとなり、第2の配線がビット線BLとなる。ただし、第1の配線がビット線BLで、第2の配線がワード線WLでも良い。以下では、第1の配線がワード線WLであり、第2の配線がビット線BLであるとして説明する。

0051

ワード線WL及びビット線BLには、熱に強く、かつ抵抗値の低い材料が用いられる。ワード線WL及びビット線BLには、例えば、W、WSi、NiSiまたはCoSiなどが用いられる。

0052

図7及び図8に表したように、第1の配線と第2の配線との間にメモリセル33が設けられる。

0053

不揮発性記憶装置210では、1段目のワード線WL(d)i−1、WL(d)i、WL(d)i+1の上に、1段目のメモリセル33が設けられる。1段目のメモリセル33の上に、ビット線BLj−1、BLj、BLj+1が設けられる。ビット線BLj−1、BLj、BLj+1の上に、2段目のメモリセル33が設けられる。2段目のメモリセル33の上に、2段目のワード線WL(u)i−1、WL(u)i、WL(u)i+1が設けられる。このように、不揮発性記憶装置210は、メモリセル33を2段積み重ねた3次元構造を有する。メモリセル33の積層数は、3段以上でもよい。また、メモリセル33は、1段でもよい。

0054

図8に表したように、例えば、ワード線WL(d)i−1、WL(d)i、WL(d)i+1の一端は、選択スイッチであるMOSトランジスタRSWを介して、デコーダ機能を有するワード線ドライバ31に接続される。ビット線BLj−1、BLj、BLj+1の一端は、選択スイッチであるMOSトランジスタCSWを介して、デコーダ及び読み出し機能を有するビット線ドライバ32に接続される。

0055

MOSトランジスタRSWのゲートには、ワード線(ロウ)を選択するための選択信号Ri−1、Ri、Ri+1が入力され、MOSトランジスタCSWのゲートには、ビット線(カラム)を選択するための選択信号Ci−1、Ci、Ci+1が入力される。

0056

メモリセル33は、ワード線WL(d)i−1、WL(d)i、WL(d)i+1と、ビット線BLj−1、BLj、BLj+1と、が互いに対向する交差部に配置される。

0057

図9は、第2の実施形態に係る不揮発性記憶装置の一部の構成を例示する模式的断面図である。
図9に表したように、メモリセル33は、抵抗変化素子110と、整流素子34と、を含む。抵抗変化素子110には、第1の実施形態に関して説明した構成が適用できる。整流素子34は、書き込み/読み出し時における回り込み電流(sneak current)を防止する。整流素子34は、非オーミック素子である。

0058

抵抗変化素子110は、例えば、ビット線BL側に設けられる。整流素子34は、例えば、ワード線WL側に設けられる。これにより、第1の配線であるワード線WLが、整流素子34を介して抵抗変化素子110の第1導電層10と電気的に接続される。また、第2の配線であるビット線BLが、抵抗変化素子110の第2導電層20と電気的に接続される。

0059

ビット線BLは、1段目のメモリセル33及び2段目のメモリセル33に共通に用いられる。このため、1段目のメモリセル33と、2段目のメモリセル33と、では、抵抗変化素子110と整流素子34との積層順が逆になっている。なお、抵抗変化素子110をワード線WL側に設け、整流素子34をビット線BL側に設けてもよい。

0060

なお、第1導電層10及び第2導電層20の少なくともいずれかとして、抵抗変化素子110に隣接する、例えば、ワード線WL、整流素子34及びビット線BLの少なくともいずれかを用いても良い。

0061

本実施形態に係る不揮発性記憶装置210においては、駆動部となるワード線ドライバ31及びビット線ドライバ32は、ワード線WL及びビット線BLを介して、記憶層15への電圧の印加、及び、記憶層15への電流の通電、の少なくともいずれかを行う。これにより、記憶層15に変化を発生させて情報を書き込む。例えば、駆動部は、記憶層15に電圧を印加して記憶層15に変化を発生させて情報を書き込む。また、書き込んだ情報を読み出すことができる。また、消去を行うことができる。
本実施形態に係る不揮発性記憶装置210においても、製造を容易化できる。

0062

実施形態によれば、製造を容易化した抵抗変化素子及び不揮発性記憶装置が提供される。

0063

なお、本願明細書において、「垂直」及び「平行」は、厳密な垂直及び厳密な平行だけではなく、例えば製造工程におけるばらつきなどを含むものであり、実質的に垂直及び実質的に平行であれは良い。

0064

以上、具体例を参照しつつ、本発明の実施の形態について説明した。しかし、本発明の実施形態は、これらの具体例に限定されるものではない。例えば、抵抗変化素子及び不揮発性記憶装置に含まれる第1導電層、第2導電層及び記憶層などの各要素の具体的な構成に関しては、当業者が公知の範囲から適宜選択することにより本発明を同様に実施し、同様の効果を得ることができる限り、本発明の範囲に包含される。
また、各具体例のいずれか2つ以上の要素を技術的に可能な範囲で組み合わせたものも、本発明の要旨を包含する限り本発明の範囲に含まれる。

0065

その他、本発明の実施の形態として上述した抵抗変化素子及び不揮発性記憶装置を基にして、当業者が適宜設計変更して実施し得る全ての抵抗変化素子及び不揮発性記憶装置も、本発明の要旨を包含する限り、本発明の範囲に属する。

0066

その他、本発明の思想の範疇において、当業者であれば、各種の変更例及び修正例に想到し得るものであり、それら変更例及び修正例についても本発明の範囲に属するものと了解される。

0067

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。

0068

10…第1導電層、 15…記憶層、 20…第2導電層、 22…記憶部、 30…基板、 31…ワード線ドライバ、 32…ビット線ドライバ、 33…メモリセル、 34…整流素子、 210…不揮発性記憶装置、BL…ビット線、 CP、CP(100)、CP(010)、CP(110)、CP(001)、CP(111)、CP(011)…結晶面、 CSW…トランジスタ、 RSW…トランジスタ、 WL…ワード線

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • パナソニックIPマネジメント株式会社の「 構造体およびその製造方法」が 公開されました。( 2020/09/24)

    【課題・解決手段】本開示の一態様に係る構造体は、第1の誘電体層と、前記第1の誘電体層に接し、前記第1の誘電体層とは異なる屈折率を有する第2の誘電体層とを備える。前記第2の誘電体層は、水素濃度が互いに異... 詳細

  • 三井金属鉱業株式会社の「 配線構造及びターゲット材」が 公開されました。( 2020/09/24)

    【課題・解決手段】配線構造(10)は、ガラス基板(11)と、ガラス基板(11)上に設けられた中間層(12)と、中間層(12)上に設けられた配線層(13)とを備える。配線層(13)は銅を含む。中間層(1... 詳細

  • 昭和電工株式会社の「 エッチング方法及び半導体の製造方法」が 公開されました。( 2020/09/24)

    【課題・解決手段】シリコン窒化物層のエッチング速度とシリコン酸化物層のエッチング速度を同程度に制御することができ、且つ、高アスペクト比のホールであっても高いエッチング速度で良好な形状に形成することがで... 詳細

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ