図面 (/)

技術 不等速ベベルギヤ機構及びこれを備えた田植機

出願人 ヤンマー株式会社
発明者 竹山智洋
出願日 2012年3月15日 (8年8ヶ月経過) 出願番号 2012-059161
公開日 2013年9月30日 (7年1ヶ月経過) 公開番号 2013-192457
状態 特許登録済
技術分野 移植機(3)(田植機の要素)
主要キーワード 固定パーツ スライドパーツ 取付け位相 シェル体 長手中間 ユニット軸 単一構造体 主動ギヤ
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2013年9月30日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (14)

課題

姿勢が交差した回転軸間で、構造を複雑化することなく不等速回転を生成・伝達できるようにする。

手段

本願発明は、互いに噛み合う一対のベベルギヤ98,99からなるベベルギヤ機構の中でも、不等速回転を生成・伝達可能な不等速ベベルギヤ機構に係るものである。前記各ベベルギヤ98,99は、ピッチ円錐角θ1,θ2を回転方向に沿って連続的に変化させてなる不等速ベベルギヤ98,99に構成されている。

概要

背景

従来の田植機では、走行機体の後部に、載台及び植付爪付きの移植機構を有する苗植付装置が装着されている。苗植付装置の移植機構としては、1つのロータリケースに2つの植付爪を設けたタイプが一般的であり、ロータリケースが1回転すると、2つの植付爪はそれぞれロータリケースに対して逆向きに1回転する。すなわち、植付爪はロータリケースの軸心回り公転しながら自転する。

この種の田植機を用いた苗植え作業では、苗マットが載置された苗載台を所定間隔間欠的に左右横送りさせながら、前方の苗載台の方向に向いた植付爪をロータリケースの軸心回りに公転しつつ自転させることによって、植付爪を苗載台と圃場面との間で往復動させ、苗マットから苗を1株ずつ掻き取って圃場植え付けている。苗植付装置における植付爪の動作周期植付け周期)は走行機体の走行速度に連動していて、走行速度が変化しても苗の植付け間隔(株間)は一定に保持される。

単位面積(一般に3.3平方m)当りに苗を何株植えるかは必ずしも一定でなく、例えば地域やユーザー等によって、希望する単位面積当りの植付け株数は異なる。この点、従来の田植機には、走行速度と植付け周期との連動関係を調節する株間変速装置が設けられている。この場合、株間変速装置にて走行速度に対する移植機構の動作速度(植付け速度)を変更することによって、株間が変更されて単位面積当りの植付け株数が変わる。

近年、圃場に植え付けられた苗の生育条件等を考慮して、標準植えに比べて株間を長くとる疎植が行われているが、株間を長くするほど植付け速度を遅くする必要がある。しかし、株間変速装置によって単に植付け速度を遅くしただけでは、植付爪先端が圃場で引き摺られて、苗が前倒れしたり浮き苗が発生したりするという問題がある。

この点、特許文献1及び2には、疎植の際に植付爪を圃場で引き摺らないようにするため、移植機構に不等速回転動力を伝達する不等速部材を備えた田植機の構造が開示されている。不等速部材は、移植機構を構成するロータリケースの1回転中の角速度を変化(不等速回転)させるように構成されていて、疎植時でも植付爪が圃場から逃げる速度を速めている。特許文献1の田植機では、ミッションケース内にある株間変速装置に不等速部材を組み込んでいる。特許文献2の田植機では、苗載台の横送り駆動機構よりも動力伝達下流側に不等速部材を設けている。

概要

姿勢が交差した回転軸間で、構造を複雑化することなく不等速回転を生成・伝達できるようにする。本願発明は、互いに噛み合う一対のベベルギヤ98,99からなるベベルギヤ機構の中でも、不等速回転を生成・伝達可能な不等速ベベルギヤ機構に係るものである。前記各ベベルギヤ98,99は、ピッチ円錐角θ1,θ2を回転方向に沿って連続的に変化させてなる不等速ベベルギヤ98,99に構成されている。

目的

本願発明は上記のような問題を解消することを技術的課題とする

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

互いに噛み合う一対のベベルギヤからなるベベルギヤ機構であって、前記各ベベルギヤは、ピッチ円錐角を回転方向に沿って連続的に変化させてなる不等速ベベルギヤに構成されている、不等速ベベルギヤ機構。

請求項2

前記各不等速ベベルギヤのピッチ円は、楕円に近い形状で且つ回転軸を中心とする真円に対して偏心しており、且つ、前記各不等速ベベルギヤの外径形状を真円に形成している、請求項1に記載した不等速ベベルギヤ機構。

請求項3

走行機体に搭載したエンジンからの動力変速するミッションケースと、非円形動作軌跡を描く植付爪付きの移植機構を有する苗植付装置と、前記走行機体の走行速度に対する前記移植機構の動作速度を変速して株間を変更する株間変速装置とを備える田植機において、前記株間変速装置には、疎植時に前記苗植付装置を不等速回転させる複数段上流不等速部材を有する一方、前記苗植付装置には、これを不等速回転させる下流不等速部材を有しており、前記下流不等速部材として、請求項1又は2に記載した不等速ベベルギヤ機構を用いている、田植機。

技術分野

0001

本願発明は、互いに噛み合って不等速回転する一対の不等ベベルギヤからなる不等速ベベルギヤ機構と、これを備えた田植機とに関するものである。

背景技術

0002

従来の田植機では、走行機体の後部に、載台及び植付爪付きの移植機構を有する苗植付装置が装着されている。苗植付装置の移植機構としては、1つのロータリケースに2つの植付爪を設けたタイプが一般的であり、ロータリケースが1回転すると、2つの植付爪はそれぞれロータリケースに対して逆向きに1回転する。すなわち、植付爪はロータリケースの軸心回り公転しながら自転する。

0003

この種の田植機を用いた苗植え作業では、苗マットが載置された苗載台を所定間隔間欠的に左右横送りさせながら、前方の苗載台の方向に向いた植付爪をロータリケースの軸心回りに公転しつつ自転させることによって、植付爪を苗載台と圃場面との間で往復動させ、苗マットから苗を1株ずつ掻き取って圃場植え付けている。苗植付装置における植付爪の動作周期植付け周期)は走行機体の走行速度に連動していて、走行速度が変化しても苗の植付け間隔(株間)は一定に保持される。

0004

単位面積(一般に3.3平方m)当りに苗を何株植えるかは必ずしも一定でなく、例えば地域やユーザー等によって、希望する単位面積当りの植付け株数は異なる。この点、従来の田植機には、走行速度と植付け周期との連動関係を調節する株間変速装置が設けられている。この場合、株間変速装置にて走行速度に対する移植機構の動作速度(植付け速度)を変更することによって、株間が変更されて単位面積当りの植付け株数が変わる。

0005

近年、圃場に植え付けられた苗の生育条件等を考慮して、標準植えに比べて株間を長くとる疎植が行われているが、株間を長くするほど植付け速度を遅くする必要がある。しかし、株間変速装置によって単に植付け速度を遅くしただけでは、植付爪先端が圃場で引き摺られて、苗が前倒れしたり浮き苗が発生したりするという問題がある。

0006

この点、特許文献1及び2には、疎植の際に植付爪を圃場で引き摺らないようにするため、移植機構に不等速回転動力を伝達する不等速部材を備えた田植機の構造が開示されている。不等速部材は、移植機構を構成するロータリケースの1回転中の角速度を変化(不等速回転)させるように構成されていて、疎植時でも植付爪が圃場から逃げる速度を速めている。特許文献1の田植機では、ミッションケース内にある株間変速装置に不等速部材を組み込んでいる。特許文献2の田植機では、苗載台の横送り駆動機構よりも動力伝達下流側に不等速部材を設けている。

先行技術

0007

特許第4376154号公報
特開2003−189712号公報

発明が解決しようとする課題

0008

さて、前記各特許文献の田植機に用いられた不等速部材は、主として非円形の平ギヤ対であった。このため、例えば互いに交差した回転軸を有する動力伝達系において、これら交差した回転軸間で不等速回転動力を伝達する場合は、前記両回転軸よりも上流側で、非円形の平ギヤ対等によって不等速回転を生成させるか、又は、前記両回転軸よりも下流側で、非円形の平ギヤ対等によって不等速回転を生成させることになり、部品点数の増加や構造の複雑化を招いて田植機のコストアップにつながるという問題があった。

課題を解決するための手段

0009

本願発明は上記のような問題を解消することを技術的課題とするものである。

0010

本願発明は様々な構成を含んでいる。請求項1の発明は最も上位概念をなしており、当該発明は、互いに噛み合う一対のベベルギヤからなるベベルギヤ機構であって、前記各ベベルギヤは、ピッチ円錐角を回転方向に沿って連続的に変化させてなる不等速ベベルギヤに構成されているというものである。

0011

請求項2の発明は、請求項1に記載した不等速ベベルギヤ機構において、前記各不等速ベベルギヤのピッチ円は、楕円に近い形状で且つ回転軸を中心とする真円に対して偏心しており、且つ、前記各不等速ベベルギヤの外径形状を真円に形成しているというものである。

0012

請求項3の発明は、走行機体に搭載したエンジンからの動力を変速するミッションケースと、非円形の動作軌跡を描く植付爪付きの移植機構を有する苗植付装置と、前記走行機体の走行速度に対する前記移植機構の動作速度を変速して株間を変更する株間変速装置とを備える田植機に係るものである。前記株間変速装置には、疎植時に前記苗植付装置を不等速回転させる複数段の上流不等速部材を有する一方、前記苗植付装置には、これを不等速回転させる下流不等速部材を有しており、前記下流不等速部材として、請求項1又は2に記載した不等速ベベルギヤ機構を用いている。

発明の効果

0013

本願発明によると、互いに噛み合う一対のベベルギヤからなるベベルギヤ機構であって、前記各ベベルギヤは、ピッチ円錐角を回転方向に沿って連続的に変化させてなる不等速ベベルギヤに構成されているから、前記不等速ベベルギヤ機構によって、例えば互いに交差した回転軸間で不等速回転を生成して伝達できることになる。従って、部品点数の低減や構造の簡素化が図れ、不等速回転用の構造をコンパクト化できる。

0014

請求項2の発明によると、前記各不等速ベベルギヤのピッチ円は、楕円に近い形状で且つ回転軸を中心とする真円に対して偏心しているが、その上で外径形状をそれぞれ真円とすることによって、前記不等速ベベルギヤの対をそれぞれ通常のベベルギヤ並みのサイズに形成できることになり、動力伝達系における前記不等速ベベルギヤ機構の組付けスペースの小型化・コンパクト化を図れる。この場合の不等速ベベルギヤ製造の考え方としては、円錐距離を一定にして形成された歪んだ円錐形状を回転軸が共通の円柱カットして、外径形状を真円にするというものになる。

0015

請求項3の発明によると、走行機体に搭載したエンジンからの動力を変速するミッションケースと、非円形の動作軌跡を描く植付爪付きの移植機構を有する苗植付装置と、前記走行機体の走行速度に対する前記移植機構の動作速度を変速して株間を変更する株間変速装置とを備える田植機において、前記株間変速装置には、疎植時に前記苗植付装置を不等速回転させる複数段の上流不等速部材を有する一方、前記苗植付装置には、これを不等速回転させる下流不等速部材を有しており、前記下流不等速部材として、請求項1又は2に記載した不等速ベベルギヤ機構を用いているから、前記苗植付装置に構造を複雑化することなく不等速回転を付与でき、田植機への適応性に優れるのである。

図面の簡単な説明

0016

実施形態に係る田植機の平面図である。
田植機の側面図である。
田植機の骨組みを示す斜視図である。
(A)は動力伝達経路の全体を示す斜視図、(B)は苗植付装置の斜視図である。
(A)は動力伝達経路の側面図、(B)は苗植付装置の箇所の側面図、(C)は植付爪の軌跡を示す図である。
(A)は動力伝達経路を示す平面図、(B)は株間変更装置外観斜視図、(C)及び(D)は植付け部に設けたセンターケースの外観斜視図である。
(A)は株間変更装置及びセンターケースにおけるギヤ群の外観斜視図、(B)はセンターケースにおけるギヤ群の斜視図、(C)はセンターケースにおけるギヤ群の背面図である。
伝動系統図である。
(A)は苗植付装置への動力伝達経路を示す平面図、(B)は動力伝達経路の末端植付け部の分離平面図、(C)はベベルギヤの概略図である。
(A)及び(B)はベベルギヤの噛み合い状態を示す平面図、(C)(D)はベベルギヤの斜視図、(E)はベベルギヤの対を並べた対比図である。
株間変速装置内のギヤ組合せと植付け株数との関係を示す図表である。
不等速の43株に設定した場合の植付爪の動作軌跡を示す図である。
不等速の43株に設定した場合の植付爪の角速度変化を示す図である。

実施例

0017

次に、本願発明を実施形態を図面に基づいて説明する。実施形態は乗用型田植機(以下、単に「田植機」という)に適用している。以下の説明では方向を特定するため前後・左右の文言を使用しているが、この前後・左右の文言は、田植機の前進方向を前として定義している。正面視方向は前進方向と対向した方向になる。

0018

(1).田植機の概要
まず、図1図5に基づいて田植機の概要を説明する。図1図3に示すように、田植機は走行機体1とその後ろに配置された苗植付装置2とを有している。走行機体1は前後の車輪3,4や操縦座席5、操縦ハンドル6を有しており、一方、苗植付装置2は苗マットが載る苗載台7や移植機構8を有している。実施形態の田植機は8条植えタイプであり、このため、苗載台7には8つの苗マット載置エリアが形成されていると共に、苗植付装置2の後部には8個の移植機構8が横一列に配置されている。

0019

図3に示すように、走行機体1は多数のフレーム材から成る骨組み9を有しており、骨組み9の前部でエンジン10が支持されている。エンジン10の後ろにはミッションケース11が配置されている。図4(A)に明示するように、ミッションケース11の左側面には静油圧式無段変速機(HST)12が装着されており、エンジン10の動力はベルト13によって静油圧式無段変速機(HST)12に伝達される。エンジン10はボンネット14で覆われている。また、走行機体1のうちボンネット14を除いた部分は車体カバー15で覆われている。

0020

ミッションケース11の左右側面にはフロントアクスル装置17が取り付けられており、フロントアクスル装置17に前輪3が取り付けられている。ミッションケース11の後ろにはリヤアクスルケース18が配置されており、リヤアクスルケース18から横向きに突出させた後ろ車軸後輪4が取付けられている。ミッションケース11とリヤアクスルケース18とは前後長手ジョイント材19で連結されている。リヤアクスルケース18には左右2本のリヤ支柱20が取付けられており、リヤ支柱20の上端は、骨組み9の後端部を構成する左右横長リヤフレーム9a(図3参照)に固定されている。

0021

左右のリヤ支柱20には上下のリンク体トップリンク及びロアリンク)から成るリンク装置21が回動自在に連結されており、リンク装置21の後端に苗植付装置2が取付けられている。リンク装置21は、ジョイント材19に連結された油圧シリンダ昇降シリンダ)22によって回動させることができる。従って、油圧シリンダ22を伸縮させることにより、苗植付装置2が昇降する。

0022

図4から容易に理解できるように、ミッションケース11の内部からリヤアクスルケース18の内部に後輪ドライブ軸23で動力伝達される。後輪ドライブ軸23の回転はリヤアクスルケース18に設けたギヤ群を介して後輪4に伝達される。実施形態の田植機は苗植付装置2に整地ロータ24を設けており、整地ロータ24にはリヤアクスルケース18から後ろ向き突出したロータ駆動軸25で動力伝達される。

0023

実施形態ではリヤアクスルケース18の右側部に株間変速装置26を取り付けており、植付動力伝達軸27を介してミッションケース11から株間変速装置26に動力伝達される。植付用動力伝達軸27の回転は株間変速装置26に内蔵したギヤ群によって変速され、PTO軸29によって苗植付装置2に伝達される。

0024

苗植付装置2は左右横長のメインフレーム28を有しており、メインフレーム28の略左右中間部にセンターケース30が固定されており、PTO軸29の動力はセンターケース30に内蔵されたギヤ群に伝達される。メインフレーム28の後面には後ろ向きに延びる4本の支持アーム31が固定されており、支持アーム31の後端部に左右一対ずつの移植機構8が回転自在に取付けられている。

0025

支持アーム31の基端部(前端寄り部位)には左右横長の植付駆動軸32が貫通しており、この植付駆動軸32の回転によって移植機構8が駆動される(詳細は後述する)。また、植付駆動軸32には、センターケース30に内蔵したギヤ群を介してPTO軸29から動力が伝達される。センターケース30には左右横長の横送り軸33も取付けられており、横送り軸33の回転によって苗載台7が1ピッチずつ横移動する。

0026

苗植付装置2は苗マットが載るベルト34の群を有しており、ベルト34は上下一対縦送り支軸35に巻き掛けられている。苗載台7が左右のいずれか一方に移動し切ると縦送り支軸35は回転し、苗マットが1ピッチだけ下降動する。

0027

図4(B)に示すように、各移植機構8は1つのロータリケース36とその両端部に回転自在に設けた植付爪部材37とを有しており、ロータリケース36が1/2回転するごとに植付爪部材37による苗の掻き取りと植付けとが行われる。また、PTO軸29が1回転するとロータリケース36は1/2回転するように設定されている。そして、PTO軸29の回転数は基本的に走行機体1の走行速度に比例しているが、株間変速装置26によって走行速度とPTO軸29の回転数との関係を変えることにより、苗の植付け間隔(株間)を変更することができる。

0028

(2).株間変速装置の構造・動力伝達構造(上流不等速部材)
以下、株間変速装置26から移植機構8に至る動力伝達系の詳細を説明する。まず、株間変速装置26の構造やこれに対する動力伝達構造を、主として図6〜8に基づいて説明する。株間変速装置26は、図4(B)に示す前後2つ割り方式の株間ケース40を有しており、その内部に図6(A)(C)に示すようなギヤ群が配置されている。

0029

株間ケース40の内部には、入力軸41と出力軸42とが配置されており、入力軸41に自在継手を介して植付用動力伝達軸27の後端が接続されている。入力軸41には同径の第1ギヤ43と第2ギヤ44とが固定されている。両ギヤ43,44は同径ではあるが、歯数は第1ギヤ43よりも第2ギヤ44が僅かに少なくなっている。

0030

入力軸41と出力軸42とは同心に配置されている。入力軸41には筒型中間軸45が相対回転可能に嵌まっており、中間軸45は出力軸42と一緒に回転する状態(相対回転不能な状態)で嵌まっている。中間軸45には第3ギヤ46と第4ギヤ47とがスプライン嵌合等によってスライド可能で相対回転不能に嵌まっている。更に、中間軸45には上流不等速第1ギヤ48及び上流不等速第3ギヤ121が相対回転自在に嵌まっている。

0031

出力軸42にはカム式のメインクラッチ49を設けている。メインクラッチ49は固定パーツ49aとスライドパーツ49bとから成っており、スライドパーツ49bはクラッチばね49c(図7(C)参照)で固定パーツ49aに向けて付勢されている。スライドパーツ49bがクラッチばね49cに抗して固定パーツ49aから離反すると入力軸41から出力軸42への動力伝達は遮断される。路上走行時旋回時のように苗植付装置2を上昇させている状態ではメインクラッチ49が切れる。メインクラッチ49の切り操作はメインクラッチ操作軸50を下降させることで行われる。

0032

株間ケース40の内部には、側面視で入力軸41及び出力軸42と平行に延びるアイドル軸51が回転自在に軸支されており、このアイドル軸51に第1ギヤ43又は第2ギヤ44に噛み合い得る第5ギヤ52がスプライン嵌合等によってスライド可能・相対回転不能に嵌まっている。第5ギヤ52は第1ギヤ43又は第2ギヤ44の2倍程度の歯数であり、第1ギヤ43に噛合した第1ポジションと、第2ギヤ44に噛合した第2ポジションとを選択できる。

0033

アイドル軸51には、上流不等速第3ギヤ121と常に噛み合っている上流不等速第4ギヤ122、第3ギヤ46に対して噛み合い・離反する第6ギヤ54、第4ギヤ47に噛み合い・離反する第7ギヤ55、並びに、上流不等速第1ギヤ48と常に噛み合っている上流不等速第2ギヤ56が固定されている。第3ギヤ46に対する第6ギヤ54の比率よりも、第4ギヤ47に対する第7ギヤ55の歯数の比率が小さくなるように設定されている。従って、中間軸45(及び出力軸42)の回転数は、第3ギヤ46と第6ギヤ54とが噛み合っている状態よりも、第4ギヤ47と第7ギヤ55とが噛み合っている状態の方が低くなっている。

0034

上流不等速第1ギヤ48と上流不等速第2ギヤ56とは楕円のような非円形のプロフィールであり、歯数は同じに設定されている。従って、両不等速ギヤ48,56を介してアイドル軸51の回転が中間軸45及び出力軸42が伝えられている状態では、アイドル軸51と出力軸42との回転数は同じで、且つ、出力軸42はその1回転中で角速度を周期的に変化させた状態で回転する。両不等速ギヤ48,56は非円形であって噛み合わせの位相が常に決まっているという特殊性から、常に噛み合い状態に保持されている。また同様に、上流不等速第3ギヤ121と上流不等速第4ギヤ122とについても、楕円のような非円形のプロフィールであり、歯数は同じに設定されている。従って、両不等速ギヤ48,56を介してアイドル軸51の回転が中間軸45及び出力軸42が伝えられている状態では、アイドル軸51と出力軸42との回転数は同じで、且つ、出力軸42はその1回転中で角速度を周期的に変化させた状態で回転する。つまり、上流不等速第1ギヤ48及び上流不等速第2ギヤ56は、偏芯歯車等の非円形ギヤ対であって、加減速比(不等速比率)の大きいものである。上流不等速第3ギヤ121及び上流不等速第4ギヤ122も、偏芯歯車等の非円形ギヤ対であるが、加減速比(不等速比率)の小さいものである。

0035

ここで、ロータリケース36では、例えば37株/平方mの疎植時に、植付爪部材37における各植付爪96の最高速位相(植付爪96の動作速度が最高速になる位相)を下死点付近にするような加減速を付与しているが、その上で実施形態では、株間変速装置26に設けた上流不等速第1ギヤ48及び上流不等速第2ギヤ56によって、株間ケース40からの回転動力にやや大きめの加減速を付与して不等速回転動力を出力させる。従って、加減速比(不等速比率)が上流不等速第3ギヤ121及び上流不等速第4ギヤ122の組合せよりも大きいので、植付爪96の動作軌跡のうち下死点付近での動作速度を大きく増速させる。また、上流不等速第3ギヤ121及び上流不等速第4ギヤ122によって、株間ケース40からの回転動力にやや小さめの加減速を付与して不等速回転動力を出力させる。従って、加減速比(不等速比率)が上流不等速第1ギヤ48及び上流不等速第2ギヤ56の組合せよりも小さいので、植付爪96の動作軌跡のうち下死点付近での動作速度を小さく増速させる。上流不等速第1〜第4ギヤ48,56,121,122は、移植機構8に不等速回転動力を伝達する株間変速装置26側の上流不等速部材に相当する。

0036

第4ギヤ47と上流不等速第1ギヤ48とには、噛み合い・離間自在な第1中間クラッチ57を設けている。第4ギヤ47が図8の状態からいったん第7ギヤ55と噛合した状態を経て更に右向きにスライドすると、第1中間クラッチ57が噛み合う。第1中間クラッチ57が噛み合った状態では、アイドル軸51の動力は、上流不等速第2ギヤ56及び上流不等速第1ギヤ48を介して出力軸42に伝えられる。第1中間クラッチ57が噛み合っている状態では第3ギヤ46と第4ギヤ47は空転している。従って、第1中間クラッチ57は中間軸45と上流不等速第1ギヤ48との連結を継断する働きをしている。

0037

また、第3ギヤ46と上流不等速第3ギヤ121とにも、噛み合い・離間自在な第2中間クラッチ123を設けている。第3ギヤ46が図8の状態から一旦第6ギヤ54と噛合した状態を経て更に左向きにスライドすると、中間軸45に対して第2中間クラッチ123が噛み合う。第2中間クラッチ123が噛み合った状態では、アイドル軸51の動力は、上流不等速第4ギヤ122及び上流不等速第3ギヤ121を介して出力軸42に伝えられる。この場合も、第2中間クラッチ123が噛み合っていれば第3ギヤ46と第4ギヤ47が空転する。従って、第2中間クラッチ123は中間軸45と上流不等速第3ギヤ121との連結を継断する働きをしている。

0038

第5ギヤ52がスライドすることで2段階の切り換えが行われ、中間軸45がスライドすることで4段階の切り換えが行われる。従って、全体として8段階の組み合わせ(速度切換)が存在する。例えば、3.3平方m当たりの株数として、37株〜85株といった株数に変更できるのであり、疎植・密植の全エリアを殆ど網羅している。図11には、実施形態におけるギヤの組合せと植付け株数との関係を示している。第1ギヤ43と第5ギヤ52とを噛み合わせた場合において、第4ギヤ47と第7ギヤ55とを噛み合わせれば植付け株数が等速のd株に設定され、第3ギヤ46と第6ギヤ54とを噛み合わせれば植付け株数が等速のf株に設定される。第2中間クラッチ123を噛み合わせれば植付け株数が不等速のb株に設定される。第2ギヤ44と第5ギヤ52とを噛み合わせた場合において、第4ギヤ47と第7ギヤ55とを噛み合わせれば植付け株数が等速のc株に設定され、第3ギヤ46と第6ギヤ54とを噛み合わせれば植付け株数が等速のe株に設定される。第1中間クラッチ57を噛み合わせれば植付け株数が不等速のa株に設定される。この場合、アルファベットで示した株数はアルファベット順に多い関係にある。

0039

ここで、上流不等速第1〜第4ギヤ48,56,121,122は、取付け位相を調節して中間軸45やアイドル軸51に組み付けることによって、移植機構8における植付爪96の動作速度が最高速になる最高速位相を、下死点を挟んだ前後範囲で設定変更可能になっている。図12には一例として、不等速の43株に設定した場合の植付爪96の動作軌跡を示している。図12の符号MS1は、下死点より前側(上流側)で植付爪96の動作速度が最高速になるように、上流不等速第3ギヤ121及び上流不等速第4ギヤ122を組み付けた場合の最高速位相であり、MS2は、下死点付近で植付爪96の動作速度が最高速になるように、上流不等速第3ギヤ121及び上流不等速第4ギヤ122を組み付けた場合の最高速位相である。符号MS3は、下死点より後側(下流側)で植付爪96の動作速度が最高速になるように、上流不等速第3ギヤ121及び上流不等速第4ギヤ122を組み付けた場合の最高速位相である。

0040

組付け精度との関係等に応じて、例えば下死点より前側(上流側)を最高速位相MS1にするように上流不等速第3ギヤ121及び上流不等速第4ギヤ122を組み付けたり、下死点付近を最高速位相MS2にするように上流不等速第3ギヤ121及び上流不等速第4ギヤ122を組み付けたり、更には下死点より後側(下流側)を最高速位相MS3にするように上流不等速第3ギヤ121及び上流不等速第4ギヤ122を組み付けたりすることが可能である。すなわち、例えば組付け精度との関係等で、動力伝達系のねじれが大きくて植付爪96の動作周期ずれが懸念される場合や、動力伝達系のねじれが小さく且つ動力伝達系の振動を極力抑制したい場合にも最高速位相を下死点前後に設定変更できる。そうすれば、植付爪96のシャクリを抑制したり動力伝達系の振動を抑制したりできる。なお、上流不等速第1ギヤ48及び上流不等速第2ギヤ56に関して、取付け位相を調節して中間軸45やアイドル軸51に組み付けてよいことは言うまでもない。

0041

株間ケース40の上部には、入力軸41及び出力軸42と平行に延びる施肥用回転軸58が回転自在に配置されており、この施肥用回転軸58に、第1ギヤ43と噛合する第8ギヤ59が相対回転自在に嵌まっている。施肥用回転軸58からはベベルギヤ61を介して施肥駆動軸62に動力伝達される。

0042

図7(A)に示すように、株間変速装置26は第1操作軸63と第2操作軸64との2本の操作軸を有する。これら操作軸63,64は前後長手の姿勢になっており、株間ケース40の手前に露出している。図6(B)から理解できるように、第1操作軸63は第1レバー65で前後スライド操作することができ、第2操作軸64は第2レバー66で前後スライド操作することができる。第1操作軸63は第5ギヤ52をスライド操作するためのものであり、第5ギヤ52をスライドさせるシフターを有している。第2操作軸64は中間軸45をスライド操作するためのものであり、中間軸45に係合するシフターを備えている。

0043

(3).センターケースの内部構造
次に、図6図8に基づいてセンターケース30の内部構造(すなわち植付け部変速装置)を説明する。センターケース30は左右2つ割り方式のシェル体から成っており、前後長手の入力軸69が回転自在に保持されている。入力軸69の前端とPTO軸29の後端とは自在継手を介して接続されている。

0044

センターケース30の内部には左右長手の中間軸70が配置されており、入力軸69の回転は第1ベベルギヤ71a,71bの対によって中間軸70に伝達される。センターケース30の内部には横送り駆動軸72が左右横長の姿勢で配置されており、横送り駆動軸72に横送り軸33が連結されている。

0045

横送り駆動軸72には3枚の横送り量調節従動ギヤ73が固定されている一方、中間軸70には、横送り量調節従動ギヤ73に対応して3枚の横送り量調節主動ギヤ74が遊嵌されている。3枚の横送り量調節主動ギヤ74のうちいずれか1つのみに、スライドキー76(図8参照)によって中間軸70から選択的に動力伝達される。スライドキー76は、図6(C)(D)及び図7(A)(B)に示すスライドレバー77によってスライド操作される。

0046

横送り量調節ギヤ73,74の対はそれぞれ歯数の比率が相違しており、横送り量調節ギヤ73,74の組み合わせを変えると、PTO軸29に対する横送り駆動軸72の回転比率が変わる。その結果、苗載台7の横送りピッチが変化して苗の掻取り量が変化する。

0047

センターケース30は後ろ下向きに延びる張り出し部30aを有しており、この張り出し部30aに左右横長の植付出力軸78が回転自在に保持されており、植付出力軸78には、中間軸70に固定した第1中継ギヤ79、横送り駆動軸72に相対回転自在に嵌まった第2中継ギヤ80、センターケース30にアイドル軸81を介して回転自在に保持された第3中継ギヤ82、及び第4中継ギヤ84を介して動力伝達される。第4中継ギヤ84は、植付出力軸78にスリーブ83を介して取り付けられている。

0048

第1ベベルギヤ71a,71bの各歯数の比率は1:1の関係にあり、また、第1中継ギヤ79、第2中継ギヤ80及び第4中継ギヤ84の歯数は1:1:1の関係にある。従って、PTO軸29と植付出力軸78との回転数は1:1の関係になっている。なお、第3中継ギヤ82は単なるアイドルギヤなので、その歯数は第4中継ギヤ84の回転数に影響しない。

0049

植付出力軸78とその隣に位置した植付駆動軸32とは、カップリング(スリーブ)86で接続されている。また、左右に隣り合った植付駆動軸32の間には中継軸85が配置されており、駆動軸32と中継軸85もカップリング86で接続されている。従って、各植付駆動軸32は一体に回転する。植付駆動軸32は各移植機構8の箇所ごとに分断されており、隣り合った植付駆動軸32はカップリング86で接続されている。なお、植付出力軸78と各植付駆動軸32と中継軸85とを1本の棒材から成る単一構造体とすることも可能である。

0050

(4).移植機構の構造・動力伝達構造
次に、移植機構8の構造やこれに対する動力伝達構造を説明する。これらは実施形態の要部を成すものであり、主に図8図10に表示されている(図6(A)も参照)。支持アーム31は中空構造になっており、図8に示すように、その内部に前後長手の植付伝動軸87が回転自在に保持されている。

0051

植付伝動軸87には植付駆動軸32から第2ベベルギヤ対88a,88bで動力伝達されている。第2ベベルギヤ対88a,88bのうち植付伝動軸87と同心に回転するベベルギヤ88bは植付伝動軸87に嵌ったトルクリミッタ89に取り付けられている。トルクリミッタ89はばね90を有しており、植付伝動軸87に所定以上の負荷がかかると、噛み合いが外れて動力伝達が遮断される。

0052

支持アーム31の後端部(先端部)には、左右一対の軸受け104を介して左右横長の植付中心軸91が回転自在に保持されている。植付中心軸91は支持アーム31の左右外側に突出しており、その突出端部にロータリケース36に内蔵された太陽ギヤ92が固定されている。詳細は省略するが、ロータリケース36は支持アーム31の後端部に回転可能に保持されている。

0053

ロータリケース36は左右2つのシェル体を重ね合わせた中空構造になっており、その長手中間部には既述の太陽ギヤ92が配置され、その外側に中間ギヤ93が配置され、その外側に遊星ギヤ94が配置されている。各ギヤ92,93,94は非円形で偏心している。そして、遊星ギヤ94に固定されたユニット軸95に植付爪部材37が固定されている。

0054

図5に明示するように、植付爪部材37は植付爪96と突出しロッド97とを備えており、図5(C)に示すように、植付爪96で苗マットから苗を1株だけ切り取って圃場に移行させ、下死点近傍で突出しロッド97が植付爪96に対して相対的に前進することによって、苗は圃場に植え付けられる。

0055

図9に示すように、植付中心軸91には、下流不等速ベベルギヤ対98,99によって、植付伝動軸87から動力が伝達される。すなわち、植付伝動軸87にはカップリング100を介して下流不等速主動ベベルギヤ98が固定されている一方、植付中心軸91には下流不等速従動ベベルギヤ99が嵌まっており、これら不等速ベベルギヤ対98,99によって、植付伝動軸87から植付中心軸91に常に不等速回転が伝達される。

0056

下流不等速主動ベベルギヤ98は段違い状のボス体98aを有しており、カップリング100はボス体98aの小径部に嵌まっている。ボス体98aにはベアリング101が嵌まっている。なお、カップリング100は、植付伝動軸87に溶接固定され相対回転不能に保持されている。下流不等速従動ベベルギヤ99は植付中心軸91に相対回転可能に嵌まっており、且つ、条止めクラッチ102と噛み合うカム部103を有している。条止めクラッチ102には、操作リング105が一体に溶接されている。

0057

条止めクラッチ102は、植付中心軸91にスライド可能で相対回転不能に保持されている。そして、条止めクラッチ102は通常、ばね106で下流不等速従動ベベルギヤ99に噛み合う状態に押されている。回転式操作ロッド(図示省略)を操作すると、条止めクラッチ102が植付中心軸91の軸心に沿って下流不等速従動ベベルギヤ99から離反し、植付中心軸91への動力が遮断される。

0058

例えば畦際での植付け作業において、4対の移植機構8のうち一部は作動させたくない場合があるが、このような場合に条止めクラッチ102を操作して、一部の移植機構8の機能を停止させることができる。つまり、植付け条数を減らす条止め機能が発揮される。

0059

(5).下流不等速部材
実施形態では、下流不等速ベベルギヤ対98,99に不等速回転(加減速)させる機能を持たせている(下流不等速部材として下流不等速ベベルギヤ対98,99(不等速ベベルギヤ機構)を採用している)。この点を主として図10図9(C)とに基づき説明する。図10(E)に示すように、下流不等速主動ベベルギヤ98に多数の歯107を形成するにおいて、各歯107の先端から軸心O1までの距離が少しずつ大きく広がって再び狭まるように設定している。すなわち、各歯107は、軸心O1から先端までの距離が最も狭いピッチ円錐角最小部108と、軸心O1から先端までの距離が最も広いピッチ円錐角最大部109とを有しており、両者の間では間隔は徐々に変化している。

0060

換言すると、図9(C)に示すように、各歯107のピッチ円110は楕円に近い形状でかつ真円に対して偏心している(符号110′では真円の場合のピッチ円を表示している)。逆の視点で述べると、通常のベベルギヤは、仮想円外周面はどの部位においても軸心に対して同じ角度で傾斜しているが、実施形態の下流不等速主動ベベルギヤ98では、仮想円錘の外周面が周方向に移行するに従い、当該外周面の傾斜角度θ1(図10(A)(C)参照)を徐々に変化させている。

0061

下流不等速従動ベベルギヤ99は下流不等速主動ベベルギヤ98の歯数の2倍の歯112を有している。そして、図10(A)(B)から明瞭に把握できるように、各歯112の軸方向の位置が少しずつずれている。換言すると、実施形態の下流不等速従動ベベルギヤ99でも、下流不等速主動ベベルギヤ98と同様に、仮想円錘の外周面が周方向に移行するに従い、当該外周面の傾斜角度θ2(図10(A)参照)を徐々に変化させている。

0062

下流不等速従動ベベルギヤ99は下流不等速主動ベベルギヤ98の歯数の2倍の歯数なので、下流不等速主動ベベルギヤ98は、2つずつのピッチ円錐角最大部113及びピッチ円錐角最小部114を有している。従って、図9(C)に示すように、下流不等速従動ベベルギヤ99のピッチ円115は略楕円形状になっており、軸心O2を挟んで対称の形状になっている(図9(C)では、真円の場合のピッチ円を符号115′で表示している)。つまり、下流不等速ベベルギヤ対98,99は、円錐距離γ(図10(C)参照)を一定にした状態で、ピッチ円錐角θ1,θ2を回転方向に沿って連続的に変化させているのである。上記の説明から分かるように、下流不等速部材としての下流不等速ベベルギヤ対98,99は単段であり、上流不等速部材としての上流不等速第1〜第4ギヤ48,56,121,122のような変速動作はしない(速度切換がない)。

0063

このように、下流不等速ベベルギヤ98,99のピッチ円110,115を、楕円に近い形状で且つ回転軸(軸心)O1,O2を中心とする真円に対して偏心させた上で、その外径形状をそれぞれ真円とすることによって、下流不等速ベベルギヤ98,99の対をそれぞれ通常のベベルギヤ並みのサイズに形成できることになり、動力伝達系における下流不等速ベベルギヤ98,99対の組付けスペースの小型化・コンパクト化を図れる。この場合の下流不等速ベベルギヤ99,99製造の考え方としては、円錐距離を一定にして形成された歪んだ円錐形状を回転軸O1,O2が共通の円柱でカットして、外径形状を真円にするということになる。

0064

ここで、下流不等速ベベルギヤ対98,99も、上流不等速第1〜第4ギヤ48,56,121,122と同様に取付け位相を調節して、前述した最高速位相を下死点から更に離れる方向に設定変更可能になっている。図13には一例として、不等速の43株に設定した場合の植付爪96の角速度変化を示している。図13(A)の太い一点鎖線は、下死点より前側(上流側)を最高速位相MS1にするように上流不等速第3ギヤ121及び上流不等速第4ギヤ122を組み付けた上で、更に下死点より前側を最高速位相MS1′(図12参照)にするように下流不等速ベベルギヤ対98,99を組み付けた場合である。図13(B)の太い実線は、下死点付近を最高速位相MS2にするように、上流不等速第3ギヤ121及び上流不等速第4ギヤ122を組み付けると共に下流不等速ベベルギヤ対98,99を組み付けた場合である。図13(C)の太い二点鎖線は、下死点より後側(下流側)を最高速位相MS3にするように上流不等速第3ギヤ121及び上流不等速第4ギヤ122を組み付けた上で、更に下死点より後側を最高速位相MS3′(図12参照)にするように下流不等速ベベルギヤ対98,99を組み付けた場合である。このように構成した場合、植付爪96の動作速度を下死点付近で速め、植付爪96を下死点から的確に素早く逃がせるという効果をより一層助長できるのである。

0065

(6).まとめ
図5(C)では、3.3平方m当たりの植付け株数と植付爪96の動作軌跡との関係を示している。この図から理解できるように、密植時には植付爪96が下死点から真上に上昇しても、疎植時になると植付爪96の逃げが悪くなって苗を前倒しする現象を引き起こすことが理解できる。

0066

そして、実施形態では、株間変速装置26に上流不等速第1〜第4ギヤ48,56,121,122を設けたことと、苗植付装置2に下流不等速ベベルギヤ対98,99を設けたこととにより、植付爪部材37は、植付爪96が下死点に位置した付近で動作速度が速くなるように加速して回転駆動する。このため、植付爪96は下死点から素早く逃げることになり、その結果、植付爪96で苗を前倒しする現象を防止できる。

0067

そして、実施形態では、不等速部材を株間変速装置26と苗植付装置2とに分離して配置したため、株間変速装置26から下流不等速ベベルギヤ対98,99までの間は従来に比べて不等速回転の割合が少ない。その結果、動力伝達系を構成する伝動要素(PTO軸29や植付駆動軸32、植付伝動軸87等)に発生するねじれが著しく抑制され、移植機構8の円滑な動きを確保できる。また、動力伝達系に発生するガタも抑制できるため、不等速のタイミングがずれて、苗の植付け姿勢乱れたりするといった不具合も防止できる。

0068

さて、移植機構8は細長いロータリケース36の両端に植付爪部材37を揺動可能に取り付けた形態であるため、植付爪部材37自体が重り役割を果たして大きな慣性力が生ずる。しかも、苗の掻取り時には大きな負荷が発生し、その後は負の負荷が生ずる。すなわち、植付爪部材37の揺動により、移植機構8の回転に対して、過負荷無負荷→負の負荷といった周期で大きなトルク変動が生ずる。このようなトルク変動は、密植時に等速回転していても、共振回転数を超えた場合に顕著に現れる(密植時には、疎植時に比べて移植機構8が高速回転するためである)。

0069

更に述べると、移植機構8が等速回転しても、1つの植付爪部材37が圃場から逃げるときは他の植付爪部材37は苗の掻取りに移行しており、従って、2つの植付爪部材37は互いの負荷変動打ち消すように作用していると言える。しかし、苗の掻取りには大きなトルクが必要であるため、2つの植付爪部材37の動きのみではトルク変動を平準化する機能が弱いのである。このため、移植機構8が滑らかに回転せず、「しゃくり」と呼ばれる現象も発生しやすくなる。

0070

これに対して、実施形態のように密植状態でも下流不等速ベベルギヤ対98,99によって移植機構8に若干の不等速回転を付与すると、植付爪部材37による苗の掻取りが慣性力を利用しつつ加速をつけた状態で行われ、しかも、苗の掻取りが行われた後は移植機構8が減速するため、移植機構8に大きな慣性力が作用するのを抑制できる。このため、移植機構8に作用する負荷変動(或いはトルク変動)を平準化してスムーズな回転を確保できる。

0071

(7).その他
本願発明は上記の実施形態の他にも様々に具体化できる。例えばベベルギヤを下流不等速部材となす場合、第1ベベルギヤ対71a,71bを下流不等速部材にしたり、第2ベベルギヤ対88a,88bを下流不等速部材にしたりしてもよい。また、動力伝達系の3カ所以上に不等速部材を設けることも可能である。更に、苗植付装置2には不等速部材を設けずに、走行機体に複数の不等速部材を設けてもよい。

0072

また、株間変速装置26はミッションケース11に内蔵することも可能であり、この場合は、1つの上流不等速部材をミッションケース11に内蔵することになる。走行機体1と苗植付装置2とのそれぞれに不等速部材を設ける場合、加減速比(不等速比率)は必要に応じて設定したらよい。従って、場合によっては、走行機体1側での加減速比(不等速比率)を苗植付装置2での加減速比(不等速比率)より小さくすることも可能である。更に、不等速ベベルギヤ機構である下流不等速ベベルギヤ対98,99は、田植機に適用するに限らず、姿勢が交差した回転軸間で不等速回転を生成・伝達するためであれば、あらゆる構造に適用可能である。

0073

1走行機体
2苗植付装置
8移植機構
10エンジン
11ミッションケース
26株間変速装置
36ロータリケース
37植付爪部材
40株間ケース
41入力軸
42出力軸
45中間軸
48上流不等速第1ギヤ
49メインクラッチ
51アイドル軸
56 上流不等速第2ギヤ
57 第1中間クラッチ
87植付伝動軸
91植付中心軸
96 植付爪
98 下流不等速主動ベベルギヤ
99 下流不等速従動ベベルギヤ
121 上流不等速第3ギヤ
122 上流不等速第4ギヤ
123 第2中間クラッチ

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 三菱マヒンドラ農機株式会社の「 マルチ田植機」が 公開されました。( 2020/09/24)

    【課題】枕地での走行距離を車輪の回転量で測定すると、車輪のスリップ率の変化により、上記測定に誤差を生じることがある。【解決手段】走行機体の位置情報及び走行機体の長手方向線L0を検知し得るGPS受信機2... 詳細

  • 株式会社クボタの「 作業車」が 公開されました。( 2020/09/17)

    【課題】適切に自動走行をおこなう。【解決手段】方向制御部60Mは、目標直進経路の制御対象領域では、測位ユニット86の測位結果などに基づいて車体を目標直進経路上で走行させる自動直進制御を行い、エンジン制... 詳細

  • 株式会社クボタの「 圃場作業機」が 公開されました。( 2020/09/17)

    【課題】非使用時のスペース効率が改善された圃場作業機を実現する【解決手段】乗用型田植機は、苗植付装置6とマーカ装置23とを備える。マーカ装置23は、アーム部70と、アーム部70に対して着脱可能なマーカ... 詳細

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ