図面 (/)

技術 ミルペーシング制御装置およびミルペーシング制御方法

出願人 JFEスチール株式会社
発明者 小田慎治
出願日 2012年3月5日 (8年11ヶ月経過) 出願番号 2012-048576
公開日 2013年9月19日 (7年5ヶ月経過) 公開番号 2013-184164
状態 特許登録済
技術分野 圧延の制御
主要キーワード 設備形態 温度許容範囲 温度実測値 加熱ライン 最短ピッチ 予測演算処理 接触ゾーン スケール除去処理
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2013年9月19日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (8)

課題

圧延材の温度に対応してリアルタイム圧延速度を変化させる圧延方式の場合であっても、精度良く圧延時間を予測でき、これによって、圧延材同士の干渉が発生せずに加熱炉から能率良く圧延材を抽出可能な抽出タイミングを精度良く決定できること。

解決手段

本発明の一態様であるミルペーシング制御装置1は、記憶部4と、演算処理部5と、制御部6とを備える。記憶部4は、仕上圧延装置15による圧延速度の増減変化に対応して圧延材温度が増減変化する現象モデル化した温度モデル4aを記憶する。演算処理部5は、温度モデル4aを用いて、圧延材20のミル入側予測温度から圧延材20のミル出側予測温度を算出し、この出側予測温度をもとに、仕上圧延装置15による圧延時間を予測する。制御部6は、この圧延時間の予測結果をもとに、加熱炉13からの圧延材抽出タイミングを制御する。

概要

背景

従来から、圧延材加熱炉および圧延設備が設置された熱間圧延ラインにおいて、加熱炉から抽出された圧延材同士の衝突干渉)を回避しつつ圧延材間隔を最短にするミルペーシング制御が行われている。一般に、圧延材は、加熱炉によって加熱された後、加熱炉から抽出され、搬送装置によって搬送される。その後、圧延材は、粗圧延装置によって粗圧延され、さらに、仕上圧延装置によって所望の厚みに圧延される。このような熱間圧延ライン上には、通常、複数の圧延材が存在し、ミルペーシング制御によって、これら複数の圧延材の間隔が最短に調整される。すなわち、熱間圧延ラインでは、ミルペーシング制御によって、圧延材の搬送時間や圧延時間を予測した上で、圧延材同士の干渉が発生しない最短の圧延材間隔になるように、加熱炉からの圧延材の抽出タイミングを決定する。

なお、上述したようなミルペーシング制御に関する従来技術として、例えば、加熱炉から仕上圧延装置までの熱間圧延ライン上における圧延材同士の干渉を予測し、加熱炉抽出間隔を決定するミルペーシング方法がある(特許文献1参照)。

概要

圧延材の温度に対応してリアルタイム圧延速度を変化させる圧延方式の場合であっても、精度良く圧延時間を予測でき、これによって、圧延材同士の干渉が発生せずに加熱炉から能率良く圧延材を抽出可能な抽出タイミングを精度良く決定できること。本発明の一態様であるミルペーシング制御装置1は、記憶部4と、演算処理部5と、制御部6とを備える。記憶部4は、仕上圧延装置15による圧延速度の増減変化に対応して圧延材温度が増減変化する現象モデル化した温度モデル4aを記憶する。演算処理部5は、温度モデル4aを用いて、圧延材20のミル入側予測温度から圧延材20のミル出側予測温度を算出し、この出側予測温度をもとに、仕上圧延装置15による圧延時間を予測する。制御部6は、この圧延時間の予測結果をもとに、加熱炉13からの圧延材抽出タイミングを制御する。

目的

本発明は、上記の事情に鑑みてなされたものであって、圧延速度が一定である圧延方式は勿論、圧延材の温度に対応してリアルタイムに圧延速度を変化させる圧延方式の場合であっても、精度良く圧延時間を予測でき、これによって、圧延材同士の干渉が発生せずに加熱炉から能率良く圧延材を抽出可能な抽出タイミングを精度良く決定できるミルペーシング制御装置およびミルペーシング制御方法を提供する

効果

実績

技術文献被引用数
0件
牽制数
1件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

圧延材を加熱する加熱炉と、加熱後の前記圧延材を圧延する圧延装置とが設置された熱間圧延ラインミルペーシング制御装置において、前記圧延装置による圧延速度増減変化に対応して前記圧延材の温度が増減変化する現象モデル化した温度モデルを記憶する記憶部と、前記温度モデルを用いて、前記圧延装置の入側における前記圧延材の入側予測温度から、前記圧延装置の出側における前記圧延材の出側予測温度を算出し、前記出側予測温度をもとに、前記圧延装置による圧延時間を予測する演算処理部と、前記圧延時間の予測結果をもとに、前記加熱炉からの前記圧延材の抽出タイミングを制御する制御部と、を備えたことを特徴とするミルペーシング制御装置。

請求項2

前記演算処理部は、前記温度モデルを用いて、前記圧延装置の許容上限の圧延速度に対応する前記出側予測温度を算出し、前記出側予測温度が前記圧延装置に許容される規制温度範囲以内である場合、前記許容上限の圧延速度をもとに前記圧延時間を予測し、前記出側予測温度が前記規制温度範囲外である場合、前記規制温度範囲以内になる上限圧延速度を算出し、前記上限圧延速度をもとに前記圧延時間を予測することを特徴とする請求項1に記載のミルペーシング制御装置。

請求項3

圧延材を加熱する加熱炉と、加熱後の前記圧延材を圧延する圧延装置とが設置された熱間圧延ラインのミルペーシング制御方法において、前記圧延装置による圧延速度の増減変化に対応して前記圧延材の温度が増減変化する現象をモデル化した温度モデルを用い、前記圧延装置の入側における前記圧延材の入側予測温度から、前記圧延装置の出側における前記圧延材の出側予測温度を算出し、前記出側予測温度をもとに、前記圧延装置による圧延時間を予測する演算処理を行い、前記演算処理によって予測した前記圧延時間をもとに、前記加熱炉からの前記圧延材の抽出タイミングを制御することを特徴とするミルペーシング制御方法。

請求項4

前記演算処理は、前記温度モデルを用いて、前記圧延装置の許容上限の圧延速度に対応する前記出側予測温度を算出する出側温度予測ステップと、前記出側予測温度と前記圧延装置に許容される規制温度範囲とを比較する温度比較テップと、前記出側予測温度が前記規制温度範囲以内である場合、前記許容上限の圧延速度をもとに前記圧延時間を予測する第1の圧延時間予測ステップと、前記出側予測温度が前記規制温度範囲外である場合、前記規制温度範囲以内になる上限圧延速度を算出する上限圧延速度算出ステップと、前記上限圧延速度と前記圧延装置の許容下限の圧延速度とを比較する圧延速度比較ステップと、前記上限圧延速度が前記許容下限の圧延速度以下である場合、前記許容下限の圧延速度をもとに前記圧延時間を予測する第2の圧延時間予測ステップと、前記上限圧延速度が前記許容下限の圧延速度を超過する場合、前記上限圧延速度をもとに前記圧延時間を予測する第3の圧延時間予測ステップと、を含むことを特徴とする請求項3に記載のミルペーシング制御方法。

技術分野

0001

本発明は、鉄鋼材等の圧延対象金属材(以下、圧延材という)を圧延する熱間圧延ラインミルペーシング制御装置およびミルペーシング制御方法に関するものである。

背景技術

0002

従来から、圧延材の加熱炉および圧延設備が設置された熱間圧延ラインにおいて、加熱炉から抽出された圧延材同士の衝突干渉)を回避しつつ圧延材間隔を最短にするミルペーシング制御が行われている。一般に、圧延材は、加熱炉によって加熱された後、加熱炉から抽出され、搬送装置によって搬送される。その後、圧延材は、粗圧延装置によって粗圧延され、さらに、仕上圧延装置によって所望の厚みに圧延される。このような熱間圧延ライン上には、通常、複数の圧延材が存在し、ミルペーシング制御によって、これら複数の圧延材の間隔が最短に調整される。すなわち、熱間圧延ラインでは、ミルペーシング制御によって、圧延材の搬送時間や圧延時間を予測した上で、圧延材同士の干渉が発生しない最短の圧延材間隔になるように、加熱炉からの圧延材の抽出タイミングを決定する。

0003

なお、上述したようなミルペーシング制御に関する従来技術として、例えば、加熱炉から仕上圧延装置までの熱間圧延ライン上における圧延材同士の干渉を予測し、加熱炉抽出間隔を決定するミルペーシング方法がある(特許文献1参照)。

先行技術

0004

特開2003−225702号公報

発明が解決しようとする課題

0005

熱間圧延ラインの仕上圧延装置は、圧延方向に沿って配列された複数の圧延ロールを備え、これら複数の圧延ロールを用いて圧延材を連続的に圧延する。このような仕上圧延装置によって良質な圧延材を得るためには、圧延材の温度を所定の範囲内に維持する必要がある。すなわち、圧延材の温度が過度に低い場合、仕上圧延装置は、圧延材の塑性変形抵抗の増大に起因して圧延荷重が増大する等の理由により、この過度に低温な圧延材を良好に圧延できない。一方、圧延材の温度が過度に高い場合、圧延材の温度が仕上圧延装置の設備仕様(例えば圧延ロールの耐熱性等の温度上限)を超過する等の理由により、仕上圧延装置は、この過度に高温な圧延材を圧延できない。また、圧延材の過度に高い温度は、圧延材の機械特性表面性状等の材料品質を決定する要因ともなる。

0006

また、熱間圧延ラインにおける圧延能率を向上するためには、仕上圧延装置による圧延材の圧延速度を圧延材の圧延状態に対応して適宜変化する必要がある。例えば、圧延ロールによって圧延材を噛み込み始めた状態では、圧延速度を低速にし、これによって、圧延ロール間に圧延材を円滑に通板するとともに、圧延材の噛み込み状態を良好な状態に維持する。その後、全圧ロールによって圧延材を噛み込んだ状態では、圧延速度を可能な限り高速にし、これによって、圧延能率を向上する。

0007

ここで、圧延材の温度は、圧延材と圧延ロールとの接触による吸熱水冷等の圧延工程時の要因に起因して、低下する。この圧延材の温度低下は、仕上圧延装置による圧延材の圧延時間の増加に伴って促進される。すなわち、圧延材の温度は、圧延速度の増加に伴って高温に維持され、圧延速度の減少に伴って一層低下する。したがって、圧延材の温度品質の確保と高い圧延能率とを両立するためには、圧延材の温度に対応してリアルタイムに圧延速度を変化させ、これによって、圧延工程における温度許容範囲内に圧延材の温度を維持しつつ、可能な限り高速な圧延速度で圧延材を圧延する必要がある。

0008

このように圧延材の温度に対応してリアルタイムに圧延速度を変化させる圧延方式では、圧延材の温度が、圧延工程において許容される最高温度に達するまで、圧延速度が加速される。しかしながら、上述した従来技術では、この圧延方式における加速後の最高の圧延速度を予測することができない。このため、この圧延方式における圧延時間を精度良く予測することができず、この結果、加熱炉から能率良く圧延材を抽出可能な抽出タイミングを精度良く決定することができないという問題があった。

0009

本発明は、上記の事情に鑑みてなされたものであって、圧延速度が一定である圧延方式は勿論、圧延材の温度に対応してリアルタイムに圧延速度を変化させる圧延方式の場合であっても、精度良く圧延時間を予測でき、これによって、圧延材同士の干渉が発生せずに加熱炉から能率良く圧延材を抽出可能な抽出タイミングを精度良く決定できるミルペーシング制御装置およびミルペーシング制御方法を提供することを目的とする。

課題を解決するための手段

0010

上述した課題を解決し、目的を達成するために、本発明にかかるミルペーシング制御装置は、圧延材を加熱する加熱炉と、加熱後の前記圧延材を圧延する圧延装置とが設置された熱間圧延ラインのミルペーシング制御装置において、前記圧延装置による圧延速度の増減変化に対応して前記圧延材の温度が増減変化する現象モデル化した温度モデルを記憶する記憶部と、前記温度モデルを用いて、前記圧延装置の入側における前記圧延材の入側予測温度から、前記圧延装置の出側における前記圧延材の出側予測温度を算出し、前記出側予測温度をもとに、前記圧延装置による圧延時間を予測する演算処理部と、前記圧延時間の予測結果をもとに、前記加熱炉からの前記圧延材の抽出タイミングを制御する制御部と、を備えたことを特徴とする。

0011

また、本発明にかかるミルペーシング制御装置は、上記の発明において、前記演算処理部は、前記温度モデルを用いて、前記圧延装置の許容上限の圧延速度に対応する前記出側予測温度を算出し、前記出側予測温度が前記圧延装置に許容される規制温度範囲以内である場合、前記許容上限の圧延速度をもとに前記圧延時間を予測し、前記出側予測温度が前記規制温度範囲外である場合、前記規制温度範囲以内になる上限圧延速度を算出し、前記上限圧延速度をもとに前記圧延時間を予測することを特徴とする。

0012

また、本発明にかかるミルペーシング制御方法は、圧延材を加熱する加熱炉と、加熱後の前記圧延材を圧延する圧延装置とが設置された熱間圧延ラインのミルペーシング制御方法において、前記圧延装置による圧延速度の増減変化に対応して前記圧延材の温度が増減変化する現象をモデル化した温度モデルを用い、前記圧延装置の入側における前記圧延材の入側予測温度から、前記圧延装置の出側における前記圧延材の出側予測温度を算出し、前記出側予測温度をもとに、前記圧延装置による圧延時間を予測する演算処理を行い、前記演算処理によって予測した前記圧延時間をもとに、前記加熱炉からの前記圧延材の抽出タイミングを制御することを特徴とする。

0013

また、本発明にかかるミルペーシング制御方法は、上記の発明において、前記演算処理は、前記温度モデルを用いて、前記圧延装置の許容上限の圧延速度に対応する前記出側予測温度を算出する出側温度予測ステップと、前記出側予測温度と前記圧延装置に許容される規制温度範囲とを比較する温度比較テップと、前記出側予測温度が前記規制温度範囲以内である場合、前記許容上限の圧延速度をもとに前記圧延時間を予測する第1の圧延時間予測ステップと、前記出側予測温度が前記規制温度範囲外である場合、前記規制温度範囲以内になる上限圧延速度を算出する上限圧延速度算出ステップと、前記上限圧延速度と前記圧延装置の許容下限の圧延速度とを比較する圧延速度比較ステップと、前記上限圧延速度が前記許容下限の圧延速度以下である場合、前記許容下限の圧延速度をもとに前記圧延時間を予測する第2の圧延時間予測ステップと、前記上限圧延速度が前記許容下限の圧延速度を超過する場合、前記上限圧延速度をもとに前記圧延時間を予測する第3の圧延時間予測ステップと、を含むことを特徴とする。

発明の効果

0014

本発明によれば、圧延速度が一定である圧延方式は勿論、圧延材の温度に対応してリアルタイムに圧延速度を変化させる圧延方式の場合であっても、精度良く圧延時間を予測でき、これによって、圧延材同士の干渉が発生せずに加熱炉から能率良く圧延材を抽出可能な抽出タイミングを精度良く決定できるという効果を奏する。

図面の簡単な説明

0015

図1は、本発明の実施の形態にかかるミルペーシング制御装置の一構成例を示すブロック図である。
図2は、仕上圧延装置の概略構成の一例を示す模式図である。
図3は、本実施の形態におけるミルペーシング制御に用いる温度モデルの概念を示す模式図である。
図4は、本発明の実施の形態におけるミルペーシング制御に必要な圧延時間を予測する演算処理の処理フローを示すフローチャートである。
図5は、本発明の実施の形態における温度モデルによる圧延材温度予測精度を示す模式図である。
図6は、従来技術のミルペーシング制御における圧延時間の予測精度を示す模式図である。
図7は、本発明のミルペーシング制御における圧延時間の予測精度を示す模式図である。

実施例

0016

以下に、添付図面を参照して、本発明にかかるミルペーシング制御装置およびミルペーシング制御方法の好適な実施の形態について詳細に説明する。なお、本実施の形態により、本発明が限定されるものではない。

0017

(実施の形態)
図1は、本発明の実施の形態にかかるミルペーシング制御装置の一構成例を示すブロック図である。図1に示すように、本実施の形態にかかるミルペーシング制御装置1は、各種情報を入力する入力部2と、ミルペーシング制御に関する情報等を表示する表示部3と、ミルペーシング制御に必要な各種情報を記憶する記憶部4と、ミルペーシング制御を実現するための各種演算処理を行う演算処理部5と、ミルペーシング制御を実行する制御部6とを備える。

0018

なお、図1には、本実施の形態にかかるミルペーシング制御装置1の制御対象である熱間圧延ライン11の一構成例も図示されている。この熱間圧延ライン11は、加熱ラインA1、粗圧延ラインA2、および仕上圧延ラインA3を組み合わせて構成される。加熱ラインA1には、各圧延材を加熱する加熱炉13が設置される。粗圧延ラインA2は、加熱ラインA1の後段ラインであり、この粗圧延ラインA2には、加熱炉13によって加熱された圧延材(図1に示す圧延材20)を粗圧延する粗圧延装置14が設置される。仕上圧延ラインA3は、粗圧延ラインA2の後段のラインであり、この仕上圧延ラインA3には、圧延温度に対応して圧延速度を変化させつつ粗圧延後の圧延材を仕上圧延する仕上圧延装置15等が設置される。

0019

一方、ミルペーシング制御装置1において、入力部2は、キーボードおよびマウス等の入力デバイスを用いて実現され、操作者入力操作に対応して各種情報を制御部6に入力する。なお、入力部2による入力情報として、例えば、設定圧延速度および圧延速度の加速率等の圧延条件、圧延材毎に予め決められる適切な圧延材温度範囲等の圧延材諸元、仕上圧延装置15に許容される圧延速度および圧延温度の各上下限等の設備仕様、ミルペーシング制御に必要な演算処理に用いる各種パラメータ、圧延時の摩擦に関する情報、圧延材厚さおよび圧延材成分等の変形抵抗に関する圧延材情報、および過去の圧延実績等が挙げられる。

0020

表示部3は、制御部6によって表示指示された各種情報を表示する。具体的には、表示部3は、入力部2による入力情報、ミルペーシング制御に関する演算処理結果等のミルペーシング制御に有用な各種情報を表示する。

0021

記憶部4は、制御部6によって記憶指示された情報を記憶し、読み出し指示された記憶情報を制御部6に送信する。具体的には、記憶部4は、熱間圧延ライン11のミルペーシング制御に用いられる温度モデル4a、熱間圧延ライン11の操業情報4b、入力部2による入力情報等を記憶する。

0022

温度モデル4aは、仕上圧延装置15による圧延速度の増減変化に対応して圧延材温度が増減変化する現象をモデル化した物理モデルである。温度モデル4aは、熱間圧延ライン11のミルペーシング制御において、仕上圧延装置15の出側の圧延材温度を予測するために用いられる。一方、操業情報4bは、熱間圧延ライン11における圧延材毎の圧延条件および過去の圧延実績等の熱間圧延操業に関する情報である。

0023

演算処理部5は、材温度予測部5a、圧延時間予測部5b、および判定処理部5cを有し、記憶部4内の温度モデル4aを用いて、圧延材毎に仕上圧延装置15による圧延時間を予測する演算処理を行う。材温度予測部5aは、温度モデル4aに基づいて、仕上圧延装置15の入側における圧延材予測温度から、仕上圧延装置15の出側における圧延材温度を予測する。圧延時間予測部5bは、材温度予測部5aによって予測された圧延材予測温度をもとに、仕上圧延装置15による現圧延処理最高圧延速度を算出し、この算出した最高圧延速度をもとに、仕上圧延装置15による圧延時間を圧延材毎に予測する。判定処理部5cは、上述した圧延材温度の予測および圧延時間の予測に必要な各判定処理を各々行う。

0024

制御部6は、ミルペーシング制御装置1の機能を実現するためのプログラム等を記憶するメモリおよびこのメモリ内のプログラムを実行するCPU等を用いて実現される。制御部6は、ミルペーシング制御装置1の各構成部、すなわち、入力部2、表示部3、記憶部4、および演算処理部5の各動作を制御し、且つ、これらの各構成部との電気信号入出力を制御する。また、制御部6は、熱間圧延ライン11のミルペーシング制御として、演算処理部5による圧延時間の予測結果をもとに、加熱炉13からの圧延材抽出タイミングを制御する。

0025

ここで、上述したミルペーシング制御装置1の制御対象である熱間圧延ライン11の概略構成および圧延工程の概略について説明する。熱間圧延ライン11には、上述したように、加熱炉13、粗圧延装置14、および仕上圧延装置15が設置される。また、熱間圧延ライン11には、図1に示すように、搬送装置11、温度計16,18、およびスケールブレーカー17が設置される。この熱間圧延ライン11において、加熱炉13は、搬送装置12の搬送上流側に配置され、粗圧延装置14は、加熱炉13に比して搬送装置12の搬送下流側に配置され、仕上圧延装置15は、粗圧延装置14に比して搬送装置12の搬送下流側に配置される。また、仕上圧延装置15の入側には、温度計16およびスケールブレーカー17が配置され、仕上圧延装置15の出側には、温度計18が配置される。なお、スケールブレーカー17は、温度計16と仕上圧延装置15との間に配置される。

0026

搬送装置12は、複数の搬送ロール等を用いて実現され、加熱炉13から抽出された圧延材20を搬送する。この搬送装置12によって搬送される圧延材20は、加熱炉13から粗圧延装置14および仕上圧延装置15をこの順に通って、仕上圧延装置15の後段に搬送される。

0027

加熱炉13は、各圧延材を順次加熱して搬送装置12に投入する。搬送装置12は、加熱炉13から抽出された圧延材20を粗圧延ラインA2内に搬送する。なお、この加熱炉13からの次の圧延材21の圧延材抽出タイミングは、上述したミルペーシング制御装置1の制御部6によって制御される。

0028

粗圧延装置14は、圧延機群14aを有し、加熱炉13から抽出された圧延材20を粗圧延する。具体的には、圧延機群14aは、複数スタンド圧延機からなる。圧延機群14aは、これら複数スタンドの圧延機の各圧延ロールによって、圧延材20を上下(および水平)方向から挟圧し、これによって、圧延材20を粗圧延する。なお、粗圧延装置14による圧延材20の圧延速度等の圧延条件は、圧延材20の厚みおよび成分等の材料に関する諸元に対応して、所定の管理装置(図示せず)によって設定される。

0029

粗圧延装置14によって粗圧延された圧延材20は、搬送装置12によって仕上圧延ラインA3内に搬送される。仕上圧延ラインA3において、圧延材20は、温度計16によって温度測定される。温度計16は、測定した圧延材20の温度を所定の管理装置(図示せず)に送信する。ここで、この圧延材20の温度(実測値)が、仕上圧延装置15に許容される規制温度範囲を超過していれば、搬送装置12は、管理装置からの指示に基づき、温度計16の位置に圧延材20を停止させる。搬送装置12は、圧延材20の温度が仕上圧延装置15の規制温度範囲以内になるまで圧延材20の搬送を停止する。圧延材20の温度が仕上圧延装置15の規制温度範囲以内になれば、搬送装置12は、圧延材20の搬送を再開する。

0030

その後、圧延材20は、搬送装置12によって、スケールブレーカー17の位置に搬送される。スケールブレーカー17は、圧延材20の表面に生じたスケールを除去する。このスケール除去後の圧延材20は、搬送装置12によって仕上圧延装置15内に搬送される。

0031

仕上圧延装置15は、加熱炉13によって加熱され且つ粗圧延装置14によって粗圧延された圧延材20を仕上圧延する。図2は、仕上圧延装置の概略構成の一例を示す模式図である。図1,2に示すように、仕上圧延装置15は、圧延機群15aを有し、圧延材20の温度の増減変化に対応して圧延速度をリアルタイムに増減変化させつつ、圧延材20を所望の厚みに仕上圧延する。

0032

圧延機群15aは、例えば図2に示すように、7スタンドの圧延機15a−1〜15a−7からなる。圧延機群15aは、圧延機15a−1〜15a−7の各圧延ロールによって、圧延材20を上下方向から挟圧する。この場合、圧延材20は、図2実線矢印に示すように、圧延機15a−1〜15a−7の各圧延ロール間を通りつつ、圧延機15a−1〜15a−7によって、所望の厚みまで連続的に仕上圧延される。

0033

ここで、圧延機群15aによる圧延材20の圧延速度は、圧延材20の厚みおよび成分等の材料に関する諸元に対応して、所定の管理装置(図示せず)によって初期的に設定される。圧延機群15aは、この初期的に設定された圧延速度(以下、初期圧延速度という)で圧延材20の仕上圧延を開始する。その後、圧延機群15aは、圧延機15a−1〜15a−7に許容される規制温度範囲以内に圧延材20の温度を維持しつつ、可能な限り高速の圧延速度で圧延材20を圧延する。この場合、圧延機群15aによる圧延材20の圧延速度は、圧延材20の温度が規制温度範囲の上限に達するまで、または、その他の設備上の制約速度に達するまで加速し、圧延材20の温度が規制温度範囲を超過する以前に加速停止する。この圧延速度の加速によって、圧延材20の温度は高温化し、この圧延速度の加速停止によって、圧延材20の温度は保持または低下する。なお、このような圧延機群15aの圧延速度は、圧延機15a−1〜15a−7の間において互いに同じである。

0034

上述したように仕上圧延装置15によって仕上圧延された圧延材20は、搬送装置12によって、仕上圧延ラインA3の後工程のラインに搬送される。その際、仕上圧延後の圧延材20は、仕上げ圧延装置15の出側に配置された温度計18によって、温度測定される。温度計18は、測定した圧延材20の温度を所定の管理装置(図示せず)に送信する。この管理装置は、温度計18による測定温度、すなわち、仕上げ圧延装置15の出側における圧延材20の実測温度が圧延機15a−1〜15a−7に許容される規制温度範囲以内になるように、仕上圧延装置15を制御する。仕上圧延装置15は、この管理装置の制御に基づいて、圧延速度を変化させる。

0035

つぎに、上述したミルペーシング制御に用いる温度モデル4aについて説明する。図3は、本実施の形態におけるミルペーシング制御に用いる温度モデルの概念を示す模式図である。図3に示す温度モデル概念図は、図1に示した仕上圧延ラインA3に対応する。すなわち、図3において、圧延材モデル30は、仕上圧延装置15によって仕上圧延される圧延材20に対応する。ミル入側温度基準点31は、仕上圧延装置15の入側の温度計16に対応し、ミル出側温度基準点40は、仕上圧延装置15の出側の温度計18に対応する。スケールブレーカーモデル32は、上述したスケールブレーカー17に対応し、圧延機モデル33〜39は、仕上圧延装置15の圧延機群15a、すなわち、図2に示す圧延機15a−1〜15a−7に各々対応する。なお、圧延機15a−1〜15a−7の圧延方向(図2の実線矢印参照)は、図3に示す太線矢印と同方向である。

0036

圧延材モデル30は、仕上圧延ラインA3内の各装置の位置関係に対応して、図3に示すような複数のゾーン区分けされる。具体的には、圧延材モデル30において、ミル入側温度基準点31からスケールブレーカーモデル32までのゾーンは、空冷ゾーンB1として区分けされる。スケールブレーカーモデル32のゾーンは、スケールブレーカーゾーンB2として区分けされ、スケールブレーカーモデル32から圧延機モデル33までのゾーンは、空冷ゾーンB3として区分けされる。圧延機モデル33〜39の各ゾーンは、圧延機ゾーンB4,B6,B8,B10,B12,B14,B16として各々区分けされる。圧延機モデル33,34間のゾーンは、空冷ゾーンB5として区分けされ、圧延機モデル34,35間のゾーンは、空冷ゾーンB7として区分けされる。圧延機モデル35,36間のゾーンは、空冷ゾーンB9として区分けされ、圧延機モデル36,37間のゾーンは、空冷ゾーンB11として区分けされる。圧延機モデル37,38間のゾーンは、空冷ゾーンB13として区分けされ、圧延機モデル38,39間のゾーンは、空冷ゾーンB15として区分けされる。圧延機モデル39からミル出側温度基準点40までのゾーンは、空冷ゾーンB17として区分けされる。

0037

また、上述した圧延機ゾーンB4,B6,B8,B10,B12,B14,B16の各々は、水冷ゾーンとロール接触ゾーンとに区分けされる。具体的には、圧延機ゾーンB4は、圧延方向に向かって、水冷ゾーンB4aと、ロール接触ゾーンB4bと、水冷ゾーンB4cとに区分けされる。これと同様に、圧延機ゾーンB6は、圧延方向に向かって、水冷ゾーンB6aと、ロール接触ゾーンB6bと、水冷ゾーンB6cとに区分けされ、圧延機ゾーンB8は、圧延方向に向かって、水冷ゾーンB8aと、ロール接触ゾーンB8bと、水冷ゾーンB8cとに区分けされる。圧延機ゾーンB10は、圧延方向に向かって、水冷ゾーンB10aと、ロール接触ゾーンB10bと、水冷ゾーンB10cとに区分けされ、圧延機ゾーンB12は、圧延方向に向かって、水冷ゾーンB12aと、ロール接触ゾーンB12bと、水冷ゾーンB12cとに区分けされる。圧延機ゾーンB14は、圧延方向に向かって、水冷ゾーンB14aと、ロール接触ゾーンB14bと、水冷ゾーンB14cとに区分けされ、圧延機ゾーンB16は、圧延方向に向かって、水冷ゾーンB16aと、ロール接触ゾーンB16bと、水冷ゾーンB16cとに区分けされる。

0038

ここで、空冷ゾーンB1,B3,B5,B7,B9,B11,B13,B15,B17は、圧延材20が空気接触しているゾーンである。このようなゾーンにおいて、圧延材20は、空冷される。すなわち、空冷ゾーンB1,B3,B5,B7,B9,B11,B13,B15,B17において、空冷に起因する抜熱量Qa1〜Qa9が生じる。一方、スケールブレーカーゾーンB2は、スケールブレーカー17によって圧延材20の表面からスケールを除去するゾーンであり、圧延材20は、スケールブレーカー17のロール等と接触している。このようなゾーンにおいて、ロール接触による吸熱等のスケール除去処理に起因する抜熱量Qbrが生じる。

0039

また、圧延機ゾーンB4において、水冷ゾーンB4a,B4cは、圧延材20の圧延処理時に圧延材20に対して冷却水ストリップクーラント)が噴射されるゾーンである。このようなゾーンにおいて、圧延材20は、冷却水と接触して水冷される。すなわち、水冷ゾーンB4a,B4cにおいて、水冷に起因する抜熱量Qw1,Qw2が生じる。このことは、残りの圧延機ゾーンB6,B8,B10,B12,B14,B16においても同様である。すなわち、水冷ゾーンB6a,B6c,B8a,B8c,B10a,B10c,B12a,B12c,B14a,B14c,B16a,B16cにおいて、水冷に起因する抜熱量Qw3〜Qw14が生じる。

0040

さらに、圧延機ゾーンB4において、ロール接触ゾーンB4bは、圧延機15a−1の圧延ロールと圧延材20とが接触するゾーンである。このロール接触ゾーンB4bにおいて、圧延材20は、圧延機15a−1の圧延ロールによって上下方向から挟圧されつつ、圧延される。このようなゾーンにおいて、圧延材20は、圧延ロールとの接触に起因して吸熱されるとともに、圧延加工に起因する摩擦熱および加工熱が加えられる。すなわち、ロール接触ゾーンB4bにおいて、圧延材20と圧延ロールとの接触に起因する抜熱量Qr1と、摩擦熱および加工熱等の加熱量Qm1とが生じる。このことは、残りの圧延機ゾーンB6,B8,B10,B12,B14,B16においても同様である。すなわち、ロール接触ゾーンB6b,B8b,B10b,B12b,B14b,B16bにおいて、ロール接触に起因する抜熱量Qr2〜Qr7と、摩擦熱および加工熱等の加熱量Qm2〜Qm7とが生じる。

0041

なお、上述した抜熱量Qa1〜Qa9,Qw1〜Qw14,Qr1〜Qr7,Qbrは、各ゾーンにおける圧延材20の通過時間の増加に伴って増加し、この通過時間の減少に伴って減少する。すなわち、抜熱量Qa1〜Qa9,Qw1〜Qw14,Qr1〜Qr7,Qbrは、圧延機15a−1〜15a−7による圧延材20の圧延速度vの減少に伴って増加し、この圧延速度vの増加に伴って減少する。

0042

本実施の形態におけるミルペーシング制御に用いる温度モデル4aは、図3に示す圧延材モデル30内の全ゾーンの累積抜熱量をもとに、ミル入側温度基準点31における圧延材モデル30の温度から、ミル出側温度基準点40における圧延材モデル30の温度を予測するものである。ここで、この累積抜熱量は、図3に示すミル入側温度基準点31からミル出側温度基準点40に至るまでの圧延材モデル30内の各ゾーンの抜熱量を累積した値である。また、ミル入側温度基準点31における圧延材モデル30の温度は、仕上圧延装置15の入側における圧延材20の予測温度(以下、ミル入側予測温度という)である。このミル入側予測温度は、加熱炉13による加熱後の圧延材20の温度実績値に基づいて予測される。ミル出側温度基準点40における圧延材モデル30の温度は、仕上圧延装置15の出側における圧延材20の予測温度(以下、ミル出側予測温度という)である。

0043

具体的には、抜熱量Qa1〜Qa9,Qw1〜Qw14,Qr1〜Qr7,Qbrを、圧延材20の単位体積部分が圧延材モデル30の各ゾーン通過時に奪われる単位時間あたりの熱量(負の値)とし、加熱量Qm1〜Qm7を、圧延材20の単位体積部分が圧延材モデル30の各ゾーン通過時に与えられる単位時間あたりの熱量(正の値)とする。また、圧延材20の単位体積部分のゾーン滞在時間をtとする。この場合、温度モデル4aは、ミル出側予測温度FDTを算出する数式モデルとして、圧延材20の比熱Cを用い、次式(1)のように表される。

0044

0045

この式(1)において、ゾーン滞在時間tは、圧延材モデル30における各ゾーンの圧延方向の長さと圧延速度vとによって決まる変数であり、具体的には、ゾーンの圧延方向の長さを圧延速度vによってゾーン毎に除することにより、算出される。例えば、図3に示したロール接触ゾーンB4bにおけるゾーン滞在時間tは、ロール接触ゾーンB4bの圧延方向の長さLと圧延速度vとを用い、次式(2)によって算出される。

t=L/v ・・・(2)

0046

また、式(1)において、熱量Qは、仕上圧延装置15の入側において圧延材20の単位体積部分がもつ総熱量であり、ミル入側予測温度をもとに算出される。一方、抜熱量Qa1〜Qa9,Qw1〜Qw14,Qr1〜Qr7,Qbrおよび加熱量Qm1〜Qm7は、圧延材20の厚みおよび成分等の材料に関する諸元とミル入側予測温度とを用いて、予測される。したがって、温度モデル4aは、上述した圧延速度vおよびミル入側予測温度を決定することによって、圧延材20のミル出側予測温度を算出できる。

0047

なお、上述した抜熱量Qa1〜Qa9,Qw1〜Qw14,Qr1〜Qr7,Qbrおよび加熱量Qm1〜Qm7は、圧延材モデル30における各ゾーンの圧延方向の長さに依存し、例えば、これら各ゾーンの長さの増加に伴って増加する。この圧延材モデル30における各ゾーンの圧延方向の長さは、図1に示した仕上圧延ラインA3内の各設備の位置関係に対応して決まる。

0048

具体的には、空冷ゾーンB1の長さは、温度計16とスケールブレーカー17との間隔によって決まり、空冷ゾーンB3の長さは、スケールブレーカー17と圧延機15a−1との間隔によって決まる。空冷ゾーンB5の長さは、圧延機15a−1,15a−2の間隔によって決まり、空冷ゾーンB7の長さは、圧延機15a−2,15a−3の間隔によって決まる。空冷ゾーンB9の長さは、圧延機15a−3,15a−4の間隔によって決まり、空冷ゾーンB11の長さは、圧延機15a−4,15a−5の間隔によって決まる。空冷ゾーンB13の長さは、圧延機15a−5,15a−6の間隔によって決まり、空冷ゾーンB15の長さは、圧延機15a−6,15a−7の間隔によって決まる。空冷ゾーンB17の長さは、圧延機15a−7と温度計18との間隔によって決まる。

0049

また、水冷ゾーンB4a,B4c,B6a,B6c,B8a,B8c,B10a,B10c,B12a,B12c,B14a,B14c,B16a,B16cの各長さは、ストリップクーラント噴射幅等によって決まる。ロール接触ゾーンB4b,B6b,B8b,B10b,B12b,B14b,B16bの各長さは、圧延材20の圧下率や圧延ロールの直径等によって決まる。

0050

つぎに、本発明の実施の形態にかかるミルペーシング制御方法について説明する。図4は、本発明の実施の形態におけるミルペーシング制御に必要な圧延時間を予測する演算処理の処理フローを示すフローチャートである。本実施の形態にかかるミルペーシング制御方法では、仕上圧延装置15による圧延速度の増減変化に対応して圧延材20の温度が増減変化する現象をモデル化した温度モデル4aを用い、圧延材20のミル入側予測温度から、圧延材20のミル出側予測温度を算出し、このミル出側予測温度をもとに、仕上圧延装置15による圧延時間を予測する予測演算処理を行う。ついで、この予測演算処理による予測圧延時間をもとに、加熱炉13からの圧延材抽出タイミングを制御する。

0051

詳細には、図4に示すように、ミルペーシング制御装置1の演算処理部5(図1参照)は、まず、ミルペーシング制御のための基礎情報を読み出す(ステップS101)。このステップS101において、演算処理部5は、記憶部4に格納された操業情報4bの中から、圧延材20のミル入側予測温度と、仕上圧延装置15による初期圧延速度と、仕上圧延装置15に許容される圧延速度の上限(以下、上限速度という)および下限(以下、下限速度という)と、仕上圧延装置15による圧延速度の加速率とを読み出す。

0052

つぎに、演算処理部5は、圧延材20のミル入側予測温度が仕上圧延装置15の規制温度範囲以内であるか否かを判定する(ステップS102)。このステップS102において、判定処理部5cは、ステップS101において読み出した基礎情報のうちのミル入側予測温度と規制温度範囲とを比較し、この比較結果に基づいて、ミル入側予測温度が規制温度範囲以内であるか否かを判定する。なお、このミル入側予測温度は、加熱炉13から圧延材20を抽出した時点における圧延材20の温度実測値に基づいて予測される。また、この規制温度範囲は、仕上圧延装置15の設備仕様に基づいて定められる。

0053

判定処理部5cによって、ミル入側予測温度が規制温度範囲以内であると判定された場合(ステップS102,Yes)、演算処理部5は、仕上圧延装置15による圧延材20の上限速度での圧延材20のミル出側温度を予測する(ステップS104)。このステップS104において、材温度予測部5aは、記憶部4に格納された温度モデル4aを読み出す。材温度予測部5aは、この上限速度を圧延材20の圧延速度vとして仮決定し、この仮決定した上限速度を温度モデル4a(式(1)参照)に代入する。材温度予測部5aは、この温度モデル4aを用いて、仕上圧延ラインA3全体における圧延材20の累積抜熱量を予測し、この予測した累積抜熱量をもとに、圧延材20のミル出側予測温度を算出する。この算出されたミル出側予測温度が、上述した上限速度での圧延材20のミル出側温度の予測値である。

0054

一方、判定処理部5cによって、ミル入側予測温度が規制温度範囲外であると判定された場合(ステップS102,No)、演算処理部5は、このミル入側予測温度を規制上限温度に変更する(ステップS103)。このステップS103における規制上限温度は、上述した仕上圧延装置15の規制温度範囲内における最高温度である。その後、演算処理部5は、上述したステップS104の処理を実行する。

0055

つぎに、演算処理部5は、圧延材20のミル出側予測温度が仕上圧延装置15の規制温度範囲以内であるか否かを判定する(ステップS105)。このステップS105において、判定処理部5cは、上述したステップS104において予測されたミル出側予測温度と仕上圧延装置15の規制温度範囲とを比較し、この比較結果に基づいて、ミル出側予測温度が規制温度範囲以内であるか否かを判定する。

0056

判定処理部5cによって、ミル出側予測温度が規制温度範囲以内であると判定された場合(ステップS105,Yes)、演算処理部5は、圧延材20が上限速度で圧延されると判断して、仕上圧延装置15による圧延材20の圧延時間を予測し(ステップS106)、本処理を終了する。このステップS106において、圧延時間予測部5bは、圧延材20の圧延速度として予測される上限速度と、仕上圧延ラインA3のライン長さL2(図1参照)とをもとに、除算処理等を行って、圧延材20の予測圧延時間を算出する。

0057

一方、判定処理部5cによって、ミル出側予測温度が規制温度範囲外であると判定された場合(ステップS105,No)、演算処理部5は、仕上圧延装置15の出側における規制温度範囲(以下、ミル出側規制温度範囲という)を満たす上限速度を算出する(ステップS107)。

0058

このステップS107において、演算処理部5は、ステップS101において読み出した基礎情報のうちの初期圧延速度と加速率とをもとに、仕上圧延装置15による圧延材20の仮上限速度を算出する。ついで、材温度予測部5aは、この算出された仮上限速度を圧延速度vとして温度モデル4aに代入し、この温度モデル4aを用いて、圧延材20のミル出側予測温度を算出する。この算出されたミル出側予測温度がミル出側規制温度範囲以内である場合、演算処理部5は、この算出した仮上限速度を、ミル出側規制温度範囲を満たす上限速度とする。

0059

一方、このミル出側予測温度がミル出側規制温度範囲外である場合、演算処理部5は、上述した初期圧延速度と加速率とをもとに、仕上圧延装置15による圧延材20の仮上限速度を算出し直す。この再度の仮上限速度算出処理において、このミル出側予測温度がミル出側規制温度範囲を超過する場合、演算処理部5は、前回算出した仮上限速度に比して高速の仮上限速度を算出する。このミル出側予測温度がミル出側規制温度範囲を下回る場合、演算処理部5は、前回算出した仮上限速度に比して低速の仮上限速度を算出する。材温度予測部5aは、この算出し直された仮上限速度を圧延速度vとして温度モデル4aに代入し、この温度モデル4aを用いて、圧延材20のミル出側予測温度を再度算出する。この算出されたミル出側予測温度がミル出側規制温度範囲以内である場合、演算処理部5は、この算出した仮上限速度を、ミル出側規制温度範囲を満たす上限速度とする。演算処理部5は、このミル出側予測温度がミル出側規制温度範囲以内になるまで、上述した再度の仮上限速度算出処理およびミル出側予測温度算出処理を繰り返し実行する。

0060

つぎに、演算処理部5は、上述したミル出側規制温度範囲を満たす上限速度算出値が仕上圧延装置15の下限速度以下であるか否かを判定する(ステップS108)。このステップS108において、判定処理部5cは、上述したステップS107において算出された上限速度算出値とステップS101において読み出された基礎情報のうちの下限速度とを比較し、この比較結果に基づいて、この上限速度算出値が下限速度以下であるか否かを判定する。

0061

判定処理部5cによって、上限速度算出値が下限速度以下であると判定された場合(ステップS108,Yes)、演算処理部5は、圧延材20の圧延速度が下限速度以下にならないと判断して、仕上圧延装置15による圧延材20の圧延時間を予測し(ステップS109)、本処理を終了する。このステップS109において、圧延時間予測部5bは、圧延材20の圧延速度が下限速度であると予測し、この予測した下限速度と、仕上圧延ラインA3のライン長さL2とをもとに、除算処理等を行って、圧延材20の予測圧延時間を算出する。

0062

一方、判定処理部5cによって、上限速度算出値が下限速度を超過すると判定された場合(ステップS108,No)、演算処理部5は、ミル出側規制温度範囲を満たす上限速度まで圧延材20の圧延速度が加速すると判断して、仕上圧延装置15による圧延材20の圧延時間を予測し(ステップS110)、本処理を終了する。このステップS110において、圧延時間予測部5bは、圧延材20の圧延速度がステップS107による上限速度算出値と同値であると予測し、この上限速度算出値と、仕上圧延ラインA3のライン長さL2とをもとに、除算処理等を行って、圧延材20の予測圧延時間を算出する。

0063

演算処理部5は、上述したステップS101〜S110の各処理工程を適宜実行することによって、圧延速度の予測演算処理を達成する。演算処理部5は、このような予測演算処理を圧延材毎に繰り返し実行する。

0064

上述したように圧延時間の予測演算処理が実行された後、制御部6は、この予測演算処理による圧延時間予測結果として、ステップS106、ステップS109、またはステップS110によって算出された予測圧延時間を演算処理部5から取得する。制御部6は、この取得した予測圧延時間をもとにミルペーシング制御を行い、これによって、圧延材同士の干渉が発生しない最短の抽出タイミングでの圧延材抽出を加熱炉13に行わせる。

0065

詳細には、このミルペーシング制御において、制御部6は、まず、図1に示した加熱ラインA1から仕上圧延ラインA3までの距離(すなわち粗圧延ラインA2のライン長さL1)と、搬送装置12による圧延材搬送速度とをもとに、圧延材20に後続する次の圧延材21が加熱炉13から仕上圧延ラインA3に到達するまでの時間を算出する。ついで、制御部6は、この算出した時間と、演算処理部5から取得した予測圧延時間とをもとに、加熱炉13から圧延材21を抽出する抽出タイミングを算出する。その後、制御部6は、この算出した抽出タイミングに加熱炉13内の圧延材21が搬送装置12側へ抽出されるように、加熱炉13を制御する。

0066

このように制御部6によって抽出タイミングを制御された加熱炉13は、先行する圧延材20と次の圧延材21とを干渉させない最短の時間間隔で、加熱後の圧延材21を抽出する。この結果、圧延材温度に対応して圧延速度を変化させる仕上圧延装置15を備えた熱間圧延ライン11において、加熱炉13からの圧延材抽出を能率よく行えるとともに、ライン上における圧延材間隔として、圧延材同士が干渉しない最短の間隔を圧延材毎に実現できる。

0067

つぎに、本発明の実施の形態にかかるミルペーシング制御装置1およびミルペーシング制御方法によるミルペーシング制御の精度について説明する。図5は、本発明の実施の形態における温度モデルによる圧延材温度の予測精度を示す模式図である。図6は、従来技術のミルペーシング制御における圧延時間の予測精度を示す模式図である。図7は、本発明のミルペーシング制御における圧延時間の予測精度を示す模式図である。なお、図5には、温度モデル4aを用いて算出した圧延材予測温度と、この圧延材予測温度に対応する圧延材実績温度との相関関係を示す散布図が図示されている。また、図6,7には、縦軸に、度数として圧延材数(スラブ数)をとり、横軸に、ミルペーシング制御における圧延時間の予測値と実績値との誤差時間をとったヒストグラムが図示されている。

0068

まず、本実施の形態における温度モデル4aによる圧延材温度の予測精度の観点から、本発明によるミルペーシング制御の精度を評価する。本評価においては、厚みおよび成分等の材料特性が圧延材20と略同様な圧延材サンプルを準備し、この圧延材サンプルについて、まず、温度モデル4aを用いて圧延材サンプルのミル出側温度を予測した。ついで、この温度予測後の圧延材サンプルを熱間圧延ライン11に実際に流して、温度計18による圧延材サンプルのミル出側温度の実績値を測定した。なお、相当数(例えば、15,000サンプル以上)の圧延材サンプルについて、このような評価を実施した。また、本評価において、加工発熱摩擦発熱等の圧延材サンプルに加わる加熱量は、学習によって補完した。

0069

本評価によって、図5の散布図に示すような結果が得られた。なお、図5において、温度モデル4aによる圧延材予測温度は、圧延材20のミル出側予測温度に相当し、温度計18による圧延材実績温度は、圧延材20のミル出側実測温度に相当する。図5に示すように、本評価において、温度モデル4aによる圧延材予測温度と温度計18による圧延材実績温度との予測誤差は、σ=20℃という良好な結果となった。すなわち、上述した温度モデル4aは、圧延材温度に対応してリアルタイムに圧延速度を変化させる仕上圧延装置15を対象にしても、本発明によるミルペーシング制御の実現に十分な程度に、圧延材サンプルのミル出側温度を精度よく予測できることが確認できた。なお、本評価において、温度モデル4aは、集中定数系のモデルであるが、本発明はこれに限定されるものではなく、差分法または有限要素法を用いたモデルであってもよい。

0070

つぎに、上述した温度モデル4aによるミル出側予測温度に基づいた圧延時間の予測精度の観点から、本発明によるミルペーシング制御の精度を評価する。本評価においては、従来法による圧延時間の予測精度と本発明による圧延時間の予測精度とを比較した。なお、圧延材サンプルの厚みおよび成分等の材料特性は、従来法による評価と本発明の方法による評価との間において、ほぼ同様とした。また、本評価に用いるラインは、図1に示した熱間圧延ライン11に統一した。

0071

従来法によるミルペーシング制御機能を用いた場合、圧延時間の予測精度は、次のようになった。具体的には、従来法では、上述した圧延速度vを加味せず、コイル状に巻き取られる圧延材の予測コイル長、圧延後の圧延材の命令目標板厚、圧延材のミル出側温度目標値等を項とした回帰式に基づいて、仕上圧延装置15による圧延材サンプル(スラブ)の圧延時間を予測した。

0072

従来法による圧延時間の予測精度を評価した結果、図6に示すように、圧延時間の予測値と実績値との予測誤差は、σ=4.8秒となった。このような従来法による予測誤差では、圧延材温度に対応してリアルタイムに圧延速度を変化させる仕上圧延装置15の圧延時間の予測精度として不足である。すなわち、従来法のミルペーシング制御機能では、このような圧延法を用いる仕上圧延装置15に対する圧延時間の予測誤差が過度に大きい。これは、上述したように、従来法において圧延時間の予測に用いる回帰式に、仕上圧延装置15における圧延速度vの変化が考慮されていないためである。

0073

ここで、上述したような予測精度の従来法に基づいてミルペーシング制御を行っても、熱間圧延ライン11内において圧延材同士が干渉する可能性がある。この圧延材同士の干渉を回避するためには、本発明による最短ピッチに比して、加熱炉13からの圧延材抽出タイミングを延長せざるを得ない。この結果、加熱炉13からの圧延材抽出を能率よく行えないことは勿論、圧延能率の向上も期待できない。

0074

これに対し、本発明におけるミルペーシング制御機能では、上述した式(1)に示される温度モデル4aを用いてミル出側予測温度を算出し、この算出したミル出側予測温度をもとに、仕上圧延装置15による圧延材サンプルの圧延時間を予測した。その結果、図7に示すように、圧延時間の予測値と実績値との予測誤差は、上述した従来法の場合に比して低い誤差時間、具体的には、σ=3.7秒という良好なものになった。これは、上述した温度モデル4aによるミル出側温度の予測が、圧延材温度に対応してリアルタイムに圧延速度を変化させる仕上圧延装置15に十分順応しているためである。このような圧延時間の予測精度を実現可能な本発明のミルペーシング制御によれば、熱間圧延ライン11内において圧延材同士を干渉させることなく、加熱炉13からの圧延材抽出タイミングを最短ピッチに制御できる。この結果、本発明によれば、加熱炉13からの圧延材抽出を能率よく行えるとともに、仕上圧延装置15等の設備の上流側において圧延材20が停滞する時間(以下、設備アイドリング時間という)の延長を防止でき、この結果、圧延能率を向上できることが確認された。

0075

以上、説明したように、本発明の実施の形態では、仕上圧延装置による圧延速度の増減変化に対応して圧延材の温度が増減変化する現象をモデル化した温度モデルを用いて、圧延材のミル入側予測温度から圧延材のミル出側温度を予測し、この予測したミル出側温度をもとに、仕上圧延装置による圧延時間を予測するように構成している。また、この予測した圧延時間をもとに、加熱炉からの圧延材抽出タイミングを制御している。

0076

このため、たとえ圧延材温度の増減変化に対応してリアルタイムに圧延速度を変化させる仕上圧延装置を予測対象とした場合であっても、上述した温度モデルを用いて、この仕上圧延装置の出側における圧延材のミル出側予測温度を実績値に比して精度よく算出できる。これによって、如何なる圧延速度パターンの圧延工程についても、圧延速度パターンに対応して圧延材の圧延時間を精度よく予測できることから、圧延速度が一定である圧延方式は勿論、圧延材の温度に対応してリアルタイムに圧延速度を変化させる圧延方式の場合であっても、精度良く圧延時間を予測できる。この結果、加熱炉からの圧延材抽出タイミングを、熱間圧延ライン内において圧延材同士が干渉しない最短ピッチに制御可能なミルペーシング制御を実現できる。

0077

このようなミルペーシング制御によって、加熱炉からの圧延材抽出タイミングの延長を防止できるとともに、圧延材同士の干渉を発生させずに加熱炉から圧延材を能率良く抽出できる。この結果、熱間圧延ライン内における設備アイドリング時間の延長を防止できることから、熱間圧延ラインの圧延能率を向上できるとともに、熱間圧延製品を効率よく製造でき、さらには、用役費を削減することができる。

0078

また、本発明の実施の形態では、ミル出側予測温度に対応して可能な限り高速の圧延速度をもとに、圧延材の圧延時間を予測しているので、圧延工程において許容される最高の圧延材温度に達するまで加速する圧延速度での圧延時間を精度よく予測できる。この結果、仕上圧延装置に許容される最高の圧延速度の圧延工程を行いつつ、この最高の圧延速度に適合した最短の圧延材抽出タイミングで加熱炉から圧延材を抽出できることから、加熱炉からの圧延材抽出能率の向上と熱間圧延ラインにおける圧延能率の向上とを一層促進できる。

0079

なお、上述した実施の形態では、仕上圧延装置15に対応する温度モデル4aを用いてミルペーシング制御を行っていたが、本発明はこれに限定されるものではない。すなわち、圧延材温度の予測対象の圧延装置は、圧延材温度の増減変化に対応して圧延速度を変化させる圧延法の装置であればよく、例えば、この圧延法を粗圧延装置に適用していれば、この粗圧延装置を圧延材温度の予測対象としてもよい。

0080

また、上述した実施の形態では、7スタンドの圧延機15a−1〜15a−7を有する仕上圧延装置15を例示したが、これに限らず、仕上圧延装置15は、1以上の圧延機を有する圧延装置であればよい。また、仕上圧延装置15の各圧延機の圧延ロール数等の設備形態は、圧延工程に対応して必要なものにすればよい。すなわち、本発明において、仕上圧延装置15の圧延スタンド数および設備形態は、特に問われない。

0081

さらに、上述した実施の形態では、仕上圧延装置15による圧延時間を予測する際に用いる圧延速度は、圧延機15a−1〜15a−7に共通の圧延速度にしていたが、これに限らず、圧延時間予測時の圧延速度は、仕上圧延装置15内の上流側の圧延機による圧延速度であってもよいし、下流側の圧延機による圧延速度であってもよいし、これらの中間の圧延機による圧延速度であってもよい。あるいは、この圧延速度は、これらを適宜組み合わせたものであってもよいし、仕上圧延装置15における平均の圧延速度であってもよい。

0082

また、上述した実施の形態により本発明が限定されるものではない。上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。例えば、圧延材20,21は、鉄鋼材であってもよいし、銅またはアルミニウム等の鉄鋼材以外の金属材であってもよい。その他、上述した実施の形態に基づいて当業者等によりなされる他の実施の形態、実施例および運用技術等は全て本発明に含まれる。

0083

1ミルペーシング制御装置
2 入力部
3 表示部
4 記憶部
4a温度モデル
4b操業情報
5演算処理部
5a材温度予測部
5b圧延時間予測部
5c判定処理部
6 制御部
11熱間圧延ライン
12搬送装置
13加熱炉
14粗圧延装置
14a,15a圧延機群
15 仕上圧延装置
15a−1〜15a−7圧延機
16,18温度計
17スケールブレーカー
20,21圧延材
30 圧延材モデル
31ミル入側温度基準点
32 スケールブレーカーモデル
33〜39 圧延機モデル
40 ミル出側温度基準点
A1加熱ライン
A2粗圧延ライン
A3 仕上圧延ライン
B1,B3,B5,B7,B9,B11,B13,B15,B17空冷ゾーン
B2 スケールブレーカーゾーン
B4,B6,B8,B10,B12,B14,B16 圧延機ゾーン
B4a,B4c,B6a,B6c,B8a,B8c,B10a,B10c,B12a,B12c,B14a,B14c,B16a,B16c水冷ゾーン
B4b,B6b,B8b,B10b,B12b,B14b,B16bロール接触ゾーン

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

該当するデータがありません

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 日本冶金工業株式会社の「 厚板の圧延方法」が 公開されました。( 2020/12/17)

    【課題】厚板の先後端の板厚偏差を解消することのできる圧延方法を提供する。【解決手段】厚板圧延における、圧延中に圧延率を変化させることができる圧延機を用いた圧延方法であって、ワークロールのロールギャップ... 詳細

  • JFEプラントエンジ株式会社の「 ロール偏芯制御方法」が 公開されました。( 2020/12/10)

    【課題】ロール偏芯の補償制御を精度よく行うことができ、被圧延材のロール偏芯による厚さ変動を抑制することができるロール偏芯制御方法を提供する。【解決手段】キスロール状態の荷重データに基づいてロール偏芯に... 詳細

  • 株式会社神戸製鋼所の「 圧延機の速度制御装置および該方法ならびに圧延システム」が 公開されました。( 2020/12/10)

    【課題】本発明は、ミルモータを一定の目標速度で速度制御する圧延機において、スリップ疵の発生を低減できる圧延機の速度制御装置、該方法および圧延システムを提供する。【解決手段】本発明は、ミルモータ8を一定... 詳細

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

該当するデータがありません

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ