図面 (/)

技術 アクチュエータの制御方法及びアクチュエータの制御装置

出願人 いすゞ自動車株式会社
発明者 山本康
出願日 2011年9月16日 (9年2ヶ月経過) 出願番号 2011-202769
公開日 2013年4月11日 (7年7ヶ月経過) 公開番号 2013-065152
状態 特許登録済
技術分野 位置、方向の制御 フィードバック制御一般
主要キーワード 制御軌跡 制御軌道 機械的減衰 品質工学 計算時刻 出力加速度 フィードバック要素 残留エネルギー
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2013年4月11日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題

最短時間制御フィードバック制御の要素を取り入れると共に、制御終了後に制御出力収束できるアクチュエータ制御方法及び制御装置を提供する。

解決手段

最短時間制御を用いると共に、制御力最大出力時の最大加速度αpと最大減速度αmを用いて、加速出力から減速出力切り替え切替時刻t1と、減速出力の終了時刻t2を算出し、計算時刻t0から切替時刻t1までは、アクチュエータの制御力を最大加速出力とし、切替時刻t1から終了時刻t2まではアクチュエータの制御力を最大減速出力とし、終了時刻t2では制御力の出力を終了すると共に、予め設定した時間毎に切替時刻t1と終了時刻t2を繰り返して算出して更新し、更に、制御系が持つ残り仕事運動エネルギーの和である残留エネルギーの減少と共に、制御出力を小さくする。

概要

背景

従来の制御ではPID制御フィードバック制御が一般的に用いられてきている。このPID制御では、現象に対して必ず遅れ制御出力が決定されるため、制御速度を上げようとして、PIDの各制御ゲインを大きくすると制御が現象に対し間に合わなくなり、制御が不安定となる。特に制御対象機械的減衰力が著しく低下すると制御が不安定になり易く、制御が発散する場合もある。この制御の不安定を避けるためのPID制御の各制御ゲインを決定する方法として、制御の安定性保証できるH∞等の制御理論を適用している。しかし、PID制御という制約のもとでは、負荷変動によりオーバーシュート制御遅れが生じる。

PID制御においても、スライディングモード制御を使用すると、制御ゲインを制御状態によって切り替えることで、負荷変動の影響を理論的には排除できる。しかし、制御周期が遅くなると、この制御は振動したまま収束しなくなる。そのため、負荷変動の影響を完全に排除するためには、無限に速く制御ゲインを切り替える必要があり、現象に対し無限に速いと言える程度まで、高速コントロールが必要になる。更に、PID等の各制御ゲインの調整が必要であり、この制御ゲインの調整の善し悪しが制御の善し悪しを決定してしまうため、この制御ゲインの調整が非常に重要な要素となってしまっている。

また、これらの制御理論は、PID制御の欠点を補うもので、「最短の時間で目標位置に制御対象を静止させる」ことを制御の目的するために構築された手法ではない。そのため、この単純な目的に対してはPID制御よりもむしろ、最短時間制御がより目的に合致した制御方法であるといえる。

最も単純な最短時間制御は、目標位置までの行程の半分で制御対象を最大推力加速し、残り半分の行程を最大減速度減速して目標位置に制御対象を静止させる制御である。この出力パターン制御開始前に決定されるので、この最短時間制御は、フィードフォワード制御と言える。

言い換えれば、最短時間制御とはアクチュエータ最大駆動力で動かし、最大制動力で停止させる制御方法で、理論的には最短時間で制御対象を目標に静止させることが可能な制御である。つまり、最短時間制御は「最短の時間で目標位置に制御対象を静止させる」という制御の目的に完全に合致する制御方法である。

例えば、この最短時間制御を用いた制御装置として、サーボモータを制御するための制御手段と、無負荷時の値を基準とした制御量と負荷重量の関係を記憶しておく対応関係記憶手段と、負荷推定計算手段と、負荷推定計算手段で計算されたワーク情報を基に加減速定数を決定する加減速定数決定手段と、決定された加減速定数を使用してサーボ制御手段に払い出す指令を作成する指令作成手段を備えて、ワークを把持した時は、加速時間が長くなり、ワークを把持していない時は、加速時間を短くするロボットの最短時間制御装置が提案されている(例えば、特許文献1参照。)。

しかしながら、最短時間制御は、理論的に最短の時間で制御可能な理想的な制御である一方、出力パターンが初速最大加速度、最大減速度を考慮して決定されるオープン制御であり、フィードバック要素が無いため、目標と制御量が合致しないときに、修正の方法がなく、正確に目標と制御量を一致させることが困難であるという問題があるため、実際の制御に採用されることは稀であった。

概要

最短時間制御にフィードバック制御の要素を取り入れると共に、制御終了後に制御出力を収束できるアクチュエータの制御方法及び制御装置を提供する。最短時間制御を用いると共に、制御力最大出力時の最大加速度αpと最大減速度αmを用いて、加速出力から減速出力へ切り替える切替時刻t1と、減速出力の終了時刻t2を算出し、計算時刻t0から切替時刻t1までは、アクチュエータの制御力を最大加速出力とし、切替時刻t1から終了時刻t2まではアクチュエータの制御力を最大減速出力とし、終了時刻t2では制御力の出力を終了すると共に、予め設定した時間毎に切替時刻t1と終了時刻t2を繰り返して算出して更新し、更に、制御系が持つ残り仕事運動エネルギーの和である残留エネルギーの減少と共に、制御出力を小さくする。

目的

本発明は、上記の状況を鑑みてなされたものであり、その目的は、最短時間制御にフィードバック制御の要素を取り入れると共に、制御終了後に制御出力を収束させることができるアクチュエータの制御方法及びアクチュエータの制御装置を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

最短時間制御を用いると共に、予め、計測されたアクチュエータ制御力最大出力時の最大加速度αpと最大減速度αmを用いて、制御のための計算を行う計算時刻t0からの経過時間表示で、加速出力から減速出力切り替え切替時刻t1と、減速出力の終了時刻t2を算出する算出ステップと、前記計算時刻t0から前記切替時刻t1までは前記アクチュエータの制御力を最大加速出力とし、前記切替時刻t1から前記終了時刻t2までは前記アクチュエータの制御力を最大減速出力とし、前記終了時刻t2で制御力の出力を終了する制御出力ステップを備えると共に、前記算出ステップを予め設定した時間毎に繰り返し、前記切替時刻t1と前記終了時刻t2を算出して更新する更新ステップと、更に、制御系が持つ残り仕事運動エネルギーの和である残留エネルギーの減少と共に、制御出力を小さくする制御出力減少ステップを備えたことを特徴とするアクチュエータの制御方法

請求項2

前記制御出力減少ステップで、前記最大加速出力及び前記最大減速出力のそれぞれに、前記残留エネルギーを乗じ、この乗じた値に、更に、前記残留エネルギーに対して制御出力の大きさを決定するための係数であるエネルギーゲインを乗じた値を制御力の出力とすることを特徴とする請求項1に記載のアクチュエータの制御方法。

請求項3

前記更新ステップで、前記最大加速度、前記最大減速度に、制御出力制限値掛け合わせた値を新たな最大加速度、最大減速度として再計算することを特徴とする請求項1又は2に記載のアクチュエータの制御方法。

請求項4

前記算出ステップにおいて、前記計算時刻t0での位置から前記終了時刻t2の目標位置までの軌道を相接する2つの2次曲線の組み合わせで表して、初速をV0、目標位置と制御量の偏差をXとした場合に、前記切替時刻t1と、前記終了時刻t2を、ここで、α1は計算時刻t0〜切替時刻t1の最大加速度αp又は最大減速度αmであり、α2は切替時刻t1〜終了時刻t2の最大減速度αm又は最大加速度αpであり、この(1)式と(2)式で算出することを特徴とする請求項1〜3のいずれか1項に記載のアクチュエータの制御方法。

請求項5

最短時間制御を用いると共に、予め、計測されたアクチュエータの制御力の最大出力時の最大加速度αpと最大減速度αmを用いて、制御のための計算を行う計算時刻t0からの経過時間表示で、加速出力から減速出力へ切り替える切替時刻t1と、減速出力の終了時刻t2を算出する算出手段と、前記計算時刻t0から前記切替時刻t1までは前記アクチュエータの制御力を最大加速出力とし、前記切替時刻t1から前記終了時刻t2までは前記アクチュエータの制御力を最大減速出力とし、前記終了時刻t2で制御力の出力を終了する制御出力手段を備えると共に、予め設定した時間毎に前記算出手段により前記切替時刻t1と前記終了時刻t2を繰り返して算出し、更新する更新手段と、更に、制御系が持つ残り仕事と運動エネルギーの和である残留エネルギーの減少と共に、制御出力を小さくする制御出力減少手段を備えたことを特徴とするアクチュエータの制御装置

請求項6

前記制御出力減少手段が、前記最大加速出力及び前記最大減速出力のそれぞれに、前記残留エネルギーを乗じ、この乗じた値に、更に、前記残留エネルギーに対して制御出力の大きさを決定するための係数であるエネルギーゲインを乗じた値を制御力の出力とすることを特徴とする請求項5に記載のアクチュエータの制御装置。

請求項7

前記更新手段が、前記最大加速度、前記最大減速度に、制御出力制限値を掛け合わせた値を新たな最大加速度、最大減速度として再計算することを特徴とする請求項5又は6に記載のアクチュエータの制御装置。

請求項8

前記算出手段が、前記計算時刻t0での位置から前記終了時刻t2の目標位置までの軌道を相接する2つの2次曲線の組み合わせで表して、初速をV0、目標位置と制御量の偏差をXとした場合に、前記切替時刻t1と、前記終了時刻t2を、ここで、α1は計算時刻t0〜切替時刻t1の最大加速度αp又は最大減速度αmであり、α2は切替時刻t1〜終了時刻t2の最大減速度αm又は最大加速度αpであり、この(1)式と(2)式で算出することを特徴とする請求項5〜7のいずれか1項に記載のアクチュエータの制御装置。

請求項9

計算時刻t0から切替時刻t1の間の加速度αpと切替時刻t1から終了時刻t2の間の加速度αmを表1によって決定することを特徴とする請求項1〜8のいずれか1項に記載のアクチュエータの制御装置。

技術分野

0001

本発明は、アクチュエータ制御方法及びアクチュエータの制御装置に関し、より詳細には、最短時間制御において、予め設定した時間毎出力パターン修正する制御則を用いることでフィードバックの要素を取り入れることができると共に、制御終了後に制御出力収束させることができるアクチュエータの制御方法及びアクチュエータの制御装置に関する。

背景技術

0002

従来の制御ではPID制御フィードバック制御が一般的に用いられてきている。このPID制御では、現象に対して必ず遅れて制御出力が決定されるため、制御速度を上げようとして、PIDの各制御ゲインを大きくすると制御が現象に対し間に合わなくなり、制御が不安定となる。特に制御対象機械的減衰力が著しく低下すると制御が不安定になり易く、制御が発散する場合もある。この制御の不安定を避けるためのPID制御の各制御ゲインを決定する方法として、制御の安定性保証できるH∞等の制御理論を適用している。しかし、PID制御という制約のもとでは、負荷変動によりオーバーシュート制御遅れが生じる。

0003

PID制御においても、スライディングモード制御を使用すると、制御ゲインを制御状態によって切り替えることで、負荷変動の影響を理論的には排除できる。しかし、制御周期が遅くなると、この制御は振動したまま収束しなくなる。そのため、負荷変動の影響を完全に排除するためには、無限に速く制御ゲインを切り替える必要があり、現象に対し無限に速いと言える程度まで、高速コントロールが必要になる。更に、PID等の各制御ゲインの調整が必要であり、この制御ゲインの調整の善し悪しが制御の善し悪しを決定してしまうため、この制御ゲインの調整が非常に重要な要素となってしまっている。

0004

また、これらの制御理論は、PID制御の欠点を補うもので、「最短の時間で目標位置に制御対象を静止させる」ことを制御の目的するために構築された手法ではない。そのため、この単純な目的に対してはPID制御よりもむしろ、最短時間制御がより目的に合致した制御方法であるといえる。

0005

最も単純な最短時間制御は、目標位置までの行程の半分で制御対象を最大推力加速し、残り半分の行程を最大減速度減速して目標位置に制御対象を静止させる制御である。この出力パターンは制御開始前に決定されるので、この最短時間制御は、フィードフォワード制御と言える。

0006

言い換えれば、最短時間制御とはアクチュエータの最大駆動力で動かし、最大制動力で停止させる制御方法で、理論的には最短時間で制御対象を目標に静止させることが可能な制御である。つまり、最短時間制御は「最短の時間で目標位置に制御対象を静止させる」という制御の目的に完全に合致する制御方法である。

0007

例えば、この最短時間制御を用いた制御装置として、サーボモータを制御するための制御手段と、無負荷時の値を基準とした制御量と負荷重量の関係を記憶しておく対応関係記憶手段と、負荷推定計算手段と、負荷推定計算手段で計算されたワーク情報を基に加減速定数を決定する加減速定数決定手段と、決定された加減速定数を使用してサーボ制御手段に払い出す指令を作成する指令作成手段を備えて、ワークを把持した時は、加速時間が長くなり、ワークを把持していない時は、加速時間を短くするロボットの最短時間制御装置が提案されている(例えば、特許文献1参照。)。

0008

しかしながら、最短時間制御は、理論的に最短の時間で制御可能な理想的な制御である一方、出力パターンが初速最大加速度、最大減速度を考慮して決定されるオープン制御であり、フィードバック要素が無いため、目標と制御量が合致しないときに、修正の方法がなく、正確に目標と制御量を一致させることが困難であるという問題があるため、実際の制御に採用されることは稀であった。

先行技術

0009

特開2000−94371号公報

発明が解決しようとする課題

0010

これに対して、本発明者は、最短時間制御を用いると共に、予め、計測されたアクチュエータの制御力最大出力時の最大加速度αpと最大減速度αmを用いて、制御のための計算を行う計算時刻t0からの経過時間表示で、加速出力から減速出力へ切り替える切替時刻t1と、減速出力の終了時刻t2を算出し、前記計算時刻t0から前記切替時刻t1までは前記アクチュエータの制御力を最大加速出力とし、前記切替時刻t1から前記終了時刻t2までは前記アクチュエータの制御力を最大減速出力とし、前記終了時刻t2で制御力の出力を終了すると共に、前記算出ステップを予め設定した時間毎に繰り返し、前記切替時刻t1と前記終了時刻t2を算出して更新するアクチュエータの制御方法とアクチュエータの制御装置を考えた。

0011

この制御方法と制御装置は、予め設定した時間毎に、制御の各時刻における目標量と制御量の偏差を入れて切替時刻と終了時刻を更新するというフィードバックの要素を取り入れているため、外力が変化しても、また、制御の時間間隔を高速にしなくても、常に安定した制御結果を得ることができるという効果を奏することができた。

0012

しかしながら、この制御方法と制御装置においては、制御量が制御目標と合致してもパルス状の制御出力が出たままとなる問題が発生した。

0013

本発明は、上記の状況を鑑みてなされたものであり、その目的は、最短時間制御にフィードバック制御の要素を取り入れると共に、制御終了後に制御出力を収束させることができるアクチュエータの制御方法及びアクチュエータの制御装置を提供することにある。

課題を解決するための手段

0014

上記のような目的を達成するための本発明のアクチュエータの制御方法は、最短時間制御を用いると共に、予め、計測されたアクチュエータの制御力の最大出力時の最大加速度αpと最大減速度αmを用いて、制御のための計算を行う計算時刻t0からの経過時間表示で、加速出力から減速出力へ切り替える切替時刻t1と、減速出力の終了時刻t2を算出する算出ステップと、前記計算時刻t0から前記切替時刻t1までは前記アクチュエータの制御力を最大加速出力とし、前記切替時刻t1から前記終了時刻t2までは前記アクチュエータの制御力を最大減速出力とし、前記終了時刻t2で制御力の出力を終了する制御出力ステップを備えると共に、前記算出ステップを予め設定した時間毎に繰り返し、前記切替時刻t1と前記終了時刻t2を算出して更新する更新ステップと、更に、制御系が持つ残り仕事運動エネルギーの和である残留エネルギーの減少と共に、制御出力を小さくする制御出力減少ステップを備えたことを特徴とする方法である。

0015

つまり、計算時刻t0の制御対象物の位置から目標位置までの制御の目標軌跡を予め設定した時間毎である一定周期毎又は不定期毎に偏差、速度を考慮して再計算して、切替時刻t1と終了時刻t2を更新する。この切替時刻t1と終了時刻t2は再計算した計算時刻t0のからの経過時間となる。

0016

なお、この最大加速度αp、又は、最大減速度αmは、制御値の2階の時間微分値若しくは制御値の2階の差分値であり、制御値が運動を伴わない温度のようなものでも適用できる。

0017

この方法によれば、最短時間制御であるために、制御速度が高速となり、最大加速度αpと最大減速度αmは計測によって設定でき、これ以外に調整項が無いため、制御ゲインを調整する必要が無い。また、ON/OFF制御であるため、中間的な出力を出す必要がなく、コントローラドライバーを簡略化できる。

0018

また、予め設定した時間毎に、制御の各時刻における目標量と制御量の偏差Xを入れて計算し直して再計算の計算時刻t0からの経過時間表示である切替時刻t1と終了時刻t2を更新するというフィードバックの要素を取り入れているため、外力が変化しても、また、制御の時間間隔を高速にしなくても、常に安定した制御結果を得ることができる。その結果、従来の制御則では相反する大きな課題であった「制御の速度」と「安定性」を両立させることができる。

0019

その上、制御系が持つ残り仕事と運動エネルギーの和である残留エネルギーの減少と共に、制御出力を小さくすることにより、制御終了後に制御出力を収束させて、ゼロにすることができる。

0020

また、上記のアクチュエータの制御方法において、前記制御出力減少ステップで、前記最大加速出力及び前記最大減速出力のそれぞれに、前記残留エネルギーを乗じ、この乗じた値に、更に、前記残留エネルギーに対して制御出力の大きさを決定するための係数であるエネルギーゲインを乗じた値を制御力の出力とすると、容易に制御終了後に制御出力を収束させて、ゼロにすることができる。

0021

また、上記のアクチュエータの制御方法において、前記更新ステップで、前記最大加速度、前記最大減速度に、制御出力制限値掛け合わせた値を新たな最大加速度、最大減速度として再計算すると、容易に制御終了後に制御出力を収束させて、ゼロにすることができる。

0022

また、上記のアクチュエータの制御方法において、前記算出ステップにおいて、前記計算時刻t0での位置から前記終了時刻t2の目標位置までの軌道を相接する2つの2次曲線の組み合わせで表して、初速をV0、目標位置と制御量の偏差をXとした場合に、前記切替時刻t1と、前記終了時刻t2を、

0023

の(1)式と(2)式で算出すると、容易に、切替時刻t1と記終了時刻t2を算出できる。なお、α1は計算時刻t0〜切替時刻t1の最大加速度αp又は最大減速度αmであり、α2は切替時刻t1〜終了時刻t2の最大減速度αm又は最大加速度αpである。

0024

そして、上記のような目的を達成するための本発明のアクチュエータの制御装置は、最短時間制御を用いると共に、予め、計測されたアクチュエータの制御力の最大出力時の最大加速度αpと最大減速度αmを用いて、制御のための計算を行う計算時刻t0からの経過時間表示で、加速出力から減速出力へ切り替える切替時刻t1と、減速出力の終了時刻t2を算出する算出手段と、前記計算時刻t0から前記切替時刻t1までは前記アクチュエータの制御力を最大加速出力とし、前記切替時刻t1から前記終了時刻t2までは前記アクチュエータの制御力を最大減速出力とし、前記終了時刻t2で制御力の出力を終了する制御出力手段を備えると共に、予め設定した時間毎に前記算出手段により前記切替時刻t1と前記終了時刻t2を繰り返して算出し、更新する更新手段と、更に、制御系が持つ残り仕事と運動エネルギーの和である残留エネルギーの減少と共に、制御出力を小さくする制御出力減少手段を備えて構成される。また、上記のアクチュエータの制御装置において、前記制御出力減少手段が、前記最大加速出力及び前記最大減速出力のそれぞれに、前記残留エネルギーを乗じ、この乗じた値に、更に、前記残留エネルギーに対して制御出力の大きさを決定するための係数であるエネルギーゲインを乗じた値を制御力の出力とするように構成される。

0025

また、上記のアクチュエータの制御装置において、前記更新手段が、前記最大加速度、前記最大減速度に、制御出力制限値を掛け合わせた値を新たな最大加速度、最大減速度として再計算するように構成される。

0026

また、上記のアクチュエータの制御装置において、前記算出手段が、前記計算時刻t0での位置から前記終了時刻t2の目標位置までの軌道を相接する2つの2次曲線の組み合わせで表して、初速をV0、目標位置と制御量の偏差をXとした場合に、前記切替時刻t1と、前記終了時刻t2を、

0027

の(1)式と(2)式で算出するように構成する。なお、α1は計算時刻t0〜切替時刻t1の最大加速度αp又は最大減速度αmであり、α2は切替時刻t1〜終了時刻t2の最大減速度αm又は最大加速度αpである。

0028

また、上記のアクチュエータの制御装置において、計算時刻t0から切替時刻t1の間の加速度αpと切替時刻t1から終了時刻t2の間の加速度αmを表1によって決定する。

0029

0030

これらの構成のアクチュエータの制御装置によれば、上記のアクチュエータの制御方法を実施でき、同様の効果を奏することができる。

発明の効果

0031

本発明に係るアクチュエータの制御方法及びアクチュエータの制御装置によれば、最短時間制御であるために、制御速度が高速となり、最大加速度と最大減速度は計測によって設定でき、これ以外に調整項はないため、制御ゲインを調整する必要が無い。また、ON/OFF制御であるため、中間的な出力を出す必要がなく、コントローラ、ドライバーを簡略化できる。

0032

また、予め設定した時間毎に、制御の各時刻における目標量と制御量の偏差を入れて切替時刻と終了時刻を更新するというフィードバックの要素を取り入れているため、外力が変化しても、また、制御の時間間隔を高速にしなくても、常に安定した制御結果を得ることができる。その結果、従来の制御則では相反する大きな課題であった「制御の速度」と「安定性」を両立させることができる。

0033

その上、制御系が持つ残り仕事と運動エネルギーの和である残留エネルギーの減少と共に、制御出力を小さくすることにより、制御終了後に制御出力を収束させることができる。

図面の簡単な説明

0034

本発明の実施の形態のアクチュエータの制御方法で用いられる最短時間制御を説明するための最短時間制御モデルを示す図である。
制御軌跡計算条件を説明するための図である。
再計算における制御軌跡の変化を説明するための図である。
f(t)、g(t)の取り得る目標軌跡を示す図である。
本発明の実施の形態のアクチュエータの制御方法の制御フローの一例を示す図である。
図5の制御フローのステップS18の詳細な制御フローを示す図である。
本発明の実施の形態のアクチュエータの制御方法における、最短時間制御における残留エネルギーを示す図である。
本発明の実施の形態のアクチュエータの制御方法における残留エネルギーと制御出力(制御出力制限値)の関係の一例を示す図である。
本発明の実施の形態のアクチュエータの制御方法における残留エネルギーと制御出力(制御出力制限値)の関係の他の例を示す図である。
本発明の実施の形態のアクチュエータの制御方法のエネルギーゲインを導入したフィードバック最短時間制御の機械系減衰力が無い場合の制御結果を示す図である。
本発明の実施の形態のアクチュエータの制御方法のエネルギーゲインを導入したフィードバック最短時間制御の機械系の減衰力が有る場合の制御結果を示す図である。
機械系の減衰係数が1の場合の実施例と比較例の制御結果を示す図である。
機械系の減衰係数が0.1の場合の実施例と比較例の制御結果を示す図である。
機械系の減衰係数が2の場合の実施例と比較例の制御結果を示す図である。
実施例のシミュレーション結果を示す図である。
比較例のシミュレーション結果を示す図である。
本発明の参考となるアクチュエータの制御方法のエネルギーゲインを導入しないフィードバック最短時間制御の機械系の減衰力が無い場合の制御結果を示す図である。
本発明の参考となるアクチュエータの制御方法のエネルギーゲインを導入しないフィードバック最短時間制御の機械系の減衰力が有る場合の制御結果を示す図である。
従来技術の最短時間制御の機械系の減衰力が無い場合の制御結果を示す図である。
従来技術の最短時間制御の機械系の減衰力が有る場合の制御結果を示す図である。
PID制御を説明するためのPID制御モデルを示す図である。
PID制御の残留エネルギーを示す図である。

実施例

0035

以下、本発明に係る実施の形態のアクチュエータの制御方法及びアクチュエータの制御装置について、図面を参照しながら説明する。なお、ここでは、本発明の最短時間制御を明確にするために、PID制御との比較を行いながら説明する。

0036

本発明に係る実施の形態のアクチュエータの制御装置は、最短時間制御を用いると共に、算出手段と、制御力出力手段と、更新手段と、制御出力減少手段を備えて構成される。

0037

この算出手段は、予め計測されたアクチュエータの制御力の最大出力時の最大加速度αpと最大減速度αmを用いて、制御のための計算を行う計算時刻t0からの経過時間表示で、加速出力から減速出力へ切り替える切替時刻t1と、減速出力の終了時刻t2を算出する。

0038

また、制御出力手段は、計算時刻t0から切替時刻t1までは、アクチュエータの制御力を最大加速出力とし、切替時刻t1から終了時刻t2まではアクチュエータの制御力を最大減速出力とし、終了時刻t2で制御力の出力を終了する。

0039

更に、更新手段は、一定周期又は不定期な予め設定した時間毎に算出手段で切替時刻t1と終了時刻t2を繰り返し算出して更新するように構成される。また、制御出力減少手段は、制御系が持つ残り仕事と運動エネルギーの和である残留エネルギーの減少と共に、制御出力を小さくする。

0040

この算出手段は、再計算される計算時刻t0の位置から目標位置までの軌道を相接する2つの2次曲線の組み合わせで表すことにして、初速をV0、目標量と制御量の偏差をXとした場合に、切替時刻t1と、終了時刻t2を、

0041

の(1)式と(2)式で算出する。ここで、α1は計算時刻t0〜切替時刻t1の最大加速度αp又は最大減速度αmであり、α2は切替時刻t1〜終了時刻t2の最大減速度αm又は最大加速度αpである。

0042

また、本発明の実施の形態のアクチュエータの制御方法で用いる最短時間制御は、図1に示すmが斜面を下って上がるような機械モデルと等価となる。図1のように、斜面に対し錘を持ち上げてから放すと、重力のために一定の加速度で錘は斜面を下り、続いて反対側の斜面を一定の減速度で上がる。摩擦等のエネルギー損失がなければ、錘mは始めと同じ高さまで登った所で速度ゼロとなり、一瞬停止する。この時に重力が無くなれば錘mはその位置に静止し続ける。

0043

これをアクチュエータで制御対象を移動させる制御システムに置き換えると、アクチュエータの最大推力で錘を押し、続いてアクチュエータの最大推力で錘を引き戻すと、推す時に入力した仕事量と、引き戻す時に入力した仕事量が釣り合った時に制御対象が静止する。この様にして制御対象が静止した位置が目標位置となっていれば制御終了となる。

0044

つまり、最短時間制御ではアクチュエータの最大推力で制御対象を加減速させ、目標位置に制御するため、理論的に最短の時間で制御できる。また、この時の制御出力パターンは、制御開始前に決定されるため、最短時間制御はフィードフォワード制御である。

0045

これに対し、従来技術のPID制御は、図21に示すような基本的な質量m、ばね、ダンパ系減衰振動モデルを基本としたものとなり、ばねがP項ダッシュポッドがD項の役割を果たす。なお、ゼロ点補正項がI項となるが、ここではI項には物理的な意味はあまりない。

0046

この制御をエネルギー変換で考えると、図21中段に示すように、目標位置を入力することで、目標変位としてばねを撓ませて、ばねの歪エネルギーを制御系に入力すると、ばね力に引かれて錘(質量m)が動き始める。この時、歪エネルギーから運動エネルギーへの変換が行われる。錘mが運動を始めるとダッシュポッドにより運動エネルギーが熱エネルギーに変換され、系の外へエネルギーが放出される。初めに入力されたばねの歪エネルギーが全て熱エネルギーに変換されると、図21下段に示すように、制御対象である錘mは目標位置で静止することになる。なお、PID制御では制御対象の運動状態から制御出力が決定されるため、フィードバック制御である。

0047

このように最短時間制御とPID制御は根本的に異なる制御であると言えるが、一方で、PID制御のPゲイン、Dゲインを非常に大きくし、アクチュエータの最大出力で出力の上限をカットすると、PID制御の制御出力波形は最短時間制御の制御出力波形に近づいていくため、最短時間制御はPID制御のPDゲインを極限まで大きくした制御であると見ることもできる。しかし、PID制御では、通常は計算や制御の遅れにより、PDゲインをあまり大きくすると制御が発散してしまうことになる。これはPID制御がフィードバック制御であり常に現象に遅れて制御出力が決定されるため、この遅れが大きくなりすぎると制御が発散するからである。

0048

これに対し、最短時間制御はフィードフォワード制御であり、動かし始めてから止めるまでを考慮した制御出力が常に現象よりも先に決定されるため、制御が安定であり、最短時間制御で、PDゲインを極限まで大きくしたPID制御と同等の制御出力を出しても制御は発散しない。

0049

この最短時間制御の最も単純な例を図19及び図20に示す。図19は、機械系の減衰力が無い場合を、図20は機械系の減衰力がある場合を示す。図19及び図20では、計算時刻t0から最大推力で目標に向かってアクチュエータを作動させ、切替時刻t1で今度は最大減速度でアクチュエータを作動させ、続いて終了時刻t2でアクチュエータ推力をゼロにしている。このように最短時間制御では切替時刻t1と終了時刻t2を決定すれば制御が可能である。切替時刻t1と終了時刻t2は以下の計算条件を元に決定することができる。

0050

この計算条件では、制御対象が相接する2つの2次曲線上を通って目標に到達すると仮定する。そして、アクチュエータが発生可能な最大加速度αpと、アクチュエータが発生可能な最大減速度αmと、計算時刻t0での目標量と制御量の偏差X(=目標量−制御量:目標位置と制御時の位置の差)と、計算時刻t0での制御対象の速度V0を既知の値とし、切替時刻t1で2つの2次曲線が接することと、終了時刻t2で制御対象の速度をゼロとすること(V=0)、終了時刻t2で偏差Xをゼロとすること(X=0)を拘束条件として、切替時刻t1と終了時刻t2を求める。

0051

制御軌跡は、図2に示すように、2つの2次曲線f(t)、g(t)で構成されるものと仮定し、以下の条件を元に、制御出力を切り替える切替時刻t1と制御出力を終了する終了時刻t2求める。また加速度α1、α2を表1より決定する。また、V0は制御中に得られた制御量の1階の微分値(または差分値)である。

0052

計算条件は、次の(1)から(7)である。
(1)アクチュエータの最大出力時に発生可能な最大加速度αp、最大減速度αmは既知、すなわち、予め測定した加速度より得られる。
(2)計算時刻t0における速度V0は既知、すなわち、測定値の1階の微分(または差分)により得られる。
(3)計算時刻t0で第1の2次曲線f(t0)の値がゼロである。
(4)計算時刻t0で第1の2次曲線f(t0)の1階の微分値が時刻t0での速度(初速)である。
(5)切替時刻t1で第2の2次曲線g(t)が、1つ目の2次曲線f(t)に接する。(6)終了時刻t2で第2の2次曲線g(t2)の値が目標値である。
(7)終了時刻t2で第2の2次曲線g(t)の1階の微分値がゼロである。

0053

以上の条件から、下記の(3)式〜(13)式が得られる。これらを連立させて、出力の切替時刻t1と終了時刻t2を求め、加速度α1、α2を求める。ここでα1は計算時刻t0から切替時刻t1の加速度であり、α2は切替時刻t1から終了時刻t2の加速度で、α1=αpのとき、α2=αm、α1=αmのときα2=αpである。

0054

0055

(3)式と(5)式より、

0056

(3)式と(6)式と(13)式より、

0057

(3)式と(7)式より、

0058

(4)式と(12)式より、

0059

(4)式と(11)式と(16)式より、



(4)式と(10)式と(16)式と(17)式より、

0060

(18)式を変形して、

0061

(3)式と(5)式と(9)式と(15)式と(16)式と(17)式と(19)式より、

0062

(3)式と(5)式と(8)式と(15)式と(16)式と(17)式と(19)式と(20)式より、

0063

(21)式を変形して、

0064

(22)に2次方程式の解の公式を適用して、

0065

(23)式を(20)式に代入してt2を得る。

0066

ここで、f(t)、g(t)の取り得る軌跡図4に示すA1〜A6の6通りとなる。この6通りを場合分けする。

0067

A1は、X>0,V0>0のとき、アクチュエータ発生最大減速度αmで減速しても目標をオーバーする状態である。最大減速度αmで減速した時に速度がゼロになるまでの時間をt3とすると、t3=V0/αmとなり、時刻t3においてオーバーシュートする条件は、V0×t3/2=V02/2αm>Xである。

0068

A2は、X>0,V0>0のとき、アクチュエータ発生最大減速度αmで減速すれば、目標をオーバーしない状態である。A1と同様に計算すると、時刻t3においてオーバーシュートしない条件は、V02/2αm<Xである。

0069

A3は、X>0,V0<0の条件であり、A4は、X<0,V0>0の条件である。 また、A5は、X<0,V0<0のとき、アクチュエータ発生最大減速度αpで減速すれば目標をオーバーしない状態である。A1と同様に計算すると、時刻t3においてオーバーシュートしない条件は、V02/2αp>Xである。

0070

A6は、X<0,V0<0のとき、アクチュエータ発生最大減速度αpで減速しても目標をオーバーする状態である。A1と同様に計算すると、時刻t3においてオーバーシュートする条件は、V02/2αp<Xである。

0071

A1、A2、A3が上凸から下凸への変化であり、α1=αm<0、α2=αp>0であり、A4、A5、A6が下凸から上凸への変化であり、α1=αp>0、α2=αm<0である。これにより、α1とα2を決定する。

0072

この場合分けを表1に示す。

0073

0074

この様にして求めたα1、α2に仮想質量mを乗じ、アクチュエータ推力を求める。つまり、計算時刻t0〜切替時刻t1の間はアクチュエータ推力1(=α1×仮想質量)で、切替時刻t1〜終了時刻t2の間はアクチュエータ推力2(=α2×仮想質量)となる。

0075

この本発明の実施の形態のアクチュエータの制御方法で用いる最短時間制御は、図5及び図6に示すような制御フローによって行うことができる。この制御フローがスタートすると、ステップS11で、最大加速度αpと最大減速度αmのデータを読み込む。次のステップS12で、目標量(目標値)Txと制御量(制御値)xのデータを読み込む。それとともに、経過時間tと再計算用経過時間tcのカウントを始める。

0076

ステップS13で,軌道再計算の周期になっているか否か、即ち、軌道計算してからの再計算用経過時間tcが軌道再計算の周期tcr以上になったか否かを判定する。ステップS13で,軌道再計算の周期tcrになった場合には(YES)、ステップS14で、軌道計算し直してから、ステップS15に行き、ステップS13で,起動再計算の周期になっていない場合には(NO)、ステップS14の軌道計算を迂回してステップS15に行く。なお、軌道再計算の周期tcrは、制御周期の1/10程度の周期とするのが好ましいが、軌道再計算の周期tcrを制御周期と同じにしても問題は生じない。

0077

ステップS14の軌道計算では、初速V0を「V0=(x−x-1)/tcr」(x-1は、計算周期前の制御量)で、運動エネルギーEを「E=V02/2」で算出し、表1からα1とα2を決定し、(23)式と(20)式より、切替時刻t1と終了時刻t2を計算する。また、再計算用経過時間tcをリセットしてゼロにする(Tc=0)。

0078

次のステップS15では、加速度の制限を行うための加速度制限値(制御出力制限値)を計算する。この加速度制限値は、運動エネルギーEと残り仕事Wの絶対値|W|の和(残留エネルギー)にEゲインを乗じた値である。つまり、「加速度制限値=(E+|W|)×Eゲイン」となる。

0079

この加速度制限値の最大値は1であるので、ステップS17で、加速度制限値が1より大きいか否かを判定し、1より大きい場合は(YES)、ステップS17で、加速度制限値を1に設定してから、ステップS18に行く。ステップS17で、加速度制限値が1より大きくない場合は(NO)、そのままとし、ステップS18に行く。

0080

ステップS18では、図6に示すように、ステップS18に入ると、最初のステップS18aでは、経過時間tが切替時刻t1より小さいか否かを判定し、小さい場合には(YES)、ステップS18bに行き、出力加速度を「α1×加速度制限値」にしてから、ステップS19に行く。ステップS18aで、経過時間tが切替時刻t1より小さくない場合には(NO)、ステップS18cに行き、経過時間tが終了時刻t2より小さいか否かを判定し、小さい場合には(YES)、ステップS18dに行き、出力加速度を「α2×加速度制限値」にしてから、ステップS19に行く。また、ステップS18cで、経過時間tが終了時刻t2より小さくない場合には(NO)、ステップS18eに行き、出力加速度を「ゼロ」にしてから、ステップS19に行く。

0081

ステップS19では、出力加速度に相当するアクチュエータ推力を予め設定された時間(各種の判定のインターバルに関係する時間)の間発生し、制御対象を制御する。また、経過時間tと再計算用経過時間tcをカウントする。その後、ステップS12に戻り、ステップS12〜ステップS19を繰り返す。これにより、再計算用経過時間tcが軌道再計算の周期tcr毎にステップS14の軌道計算を計算し直しながら、アクチュエータの推力を制御することができる。

0082

なお、経過時間tが予め設定してある時間を超えたり、制御を終了するスイッチ信号が入力されたりする等の、この図5の制御を終了すべき事情が発生すると、この制御フローのどのステップを実施していても、割り込みが発生し、リターンに行き、上位の制御フローに戻り、上位の制御フローの終了と共に、図5の制御フローも終了する。

0083

上記の様にして求めた切替時刻t1と終了時刻t2でアクチュエータの動作を切り替えることで、図19に示すような理想的な制御結果が得られる。しかし、この結果は、摩擦や減衰誤差などが無い理想的な状況下での結果である。制御対象に機械的な減衰力が存在すると制御結果は図20に示すように目標と一致しなくなってしまう。

0084

この問題を解決するために、本発明のアクチュエータの制御方法では、一定周期又は不定期な予め設定した時間毎に目標軌跡を修正する。この再計算による制御軌跡の変化の様子を図3に示す。この図3では、最初の計算の制御軌道点線)ではX1になる予定が実際にはX2であった場合に、再計算により、新たな制御軌道(実線)が計算されて、切替時刻t1と終了時刻t2も新たな値となり、この新たな切替時刻t1と終了時刻t2に基づいて制御力が制御されることになる。

0085

図17及び図18に一定周期毎に切替時刻t1と終了時刻t2を計算し直したときの制御結果を示す。信号パルス立ち上がりのタイミングで再計算を実施している。この最短時間制御方法を、従来技術の最短時間制御方法と区別するために、ここでは、フィードバック(FB)最短時間制御方法ということにする。図17に機械系の減衰力が無い場合を、図18に機械系の減衰力がある場合を示すが、結果として図18に示すような制御対象に機械的な減衰力がある場合でもほぼ理想的な軌跡で制御対象を目標位置に合致させることができることが分かる。

0086

しかしながら、制御量が制御目標に合致してもパルス状の制御出力が出たままとなることが分かった。

0087

本発明では、これを解決して、制御終了後に制御出力を収束させる方法として、制御系が持つ残り仕事と運動エネルギーの和として定義される残留エネルギーの減少と共に、制御出力を小さくしていく方法を採用する。また、この残留エネルギーに対する制御出力の大きさを決定するための係数としてのエネルギーゲイン(Eゲイン)を用いる。

0088

ここでは、目標位置近傍での加速度α2と偏差X及び質量mを掛け合わせた値を残り仕事として定義し、残留エネルギーを残り仕事と運動エネルギーの和として定義する。つまり、「残り仕事=α2×X×m」であり、「残留エネルギー=|残り仕事|+運動エネルギー」となる。ここで、「m」は制御系の質量(仮想的な質量でもよい)であり、「m=アクチュエータ最大推力/α2」で定義される。

0089

このように定義した残留エネルギーの時間変化図7に示す。この図7に示すように、偏差=0且つ速度=0のときのみ残留エネルギーがゼロとなるため、制御の評価値として利用することが可能となる。

0090

そして、制御では、制御の安定性やエネルギー消費量を低減するために、制御終了と共に制御出力がゼロになることが望ましい。そこで、制御終了の評価値として適切な残留エネルギーを制御出力に乗ずることで制御終了と同時に制御出力をゼロにする。具体的には、図8及び図9に示すような「残留エネルギー×Eゲインと制御出力制限値」の関係をデータ化したマップデータに従って、制御出力制限値を決定し、この値を最大推力に掛け合わせた値を制御出力とする。この制御出力制限値の最大値は1である。また、一定周期や不定期の予め設定された時間毎における再計算の時に、最大加速度、最大減速度に、この制御出力制限値を掛け合わせた値を最大加速度、最大減速度として再計算する。

0091

これにより、アクチュエータ推力は、「アクチュエータ推力=アクチュエータ最大推力×残留エネルギー×Eゲイン」となる。図10及び図11にこの制御の結果を示す。制御量が制御目標になり、制御対象が目標に合致すると制御出力もゼロになっていることが分かる。

0092

なお、参考までに、最短時間制御ではベースとするモデルが異なるが、PID制御における残留エネルギーは、品質工学に用いた制御の評価を実施する際に用いる制御の評価指標として使用でき、制御系の持つポテンシャルエネルギーと運動エネルギーの和として定義できる。

0093

このPID制御における制御系のポテンシャルエネルギーは、ばね系の歪エネルギーのことで、目標と制御値の差を歪量Xとし、制御系のばね定数k(P項に相当)とすると「(1/2)・kx2=(1/2)・Px2」として定義できる。また制御系の持つ運動エネルギーとは制御系の質量をm(仮想的な質量でも構わない)と、速度をdx/dt=vとすると「(1/2)・mv2」として定義できる。

0094

ここで制御が終了するとはどういうことか考えてみると、偏差がゼロで且つ速度もゼロの時であることは明らかである。言い換えると、ポテンシャルエネルギー=0、運動エネルギー=0の時である。つまり、これらの和である残留エネルギー=0のときに、制御が終了したと判断できる。残留エネルギーで一般的な制御波形をみると図22のようになり、オーバーシュートが有ったとしても制御開始から残留エネルギーは単調に減少し、制御終了と同時にゼロとなるので、制御の評価値として適切であることが分かる。

0095

図12図14に、フィードバック最短時間制御の実施例とPID制御の比較例との比較結果を示す。両制御とも、図12に示す機械系の減衰係数を1とした時を基準に制御ゲインを調整した。図13図14では制御ゲイン固定のまま機械系の減衰係数のみ0.1と2に変更した。まず、図12をみるとPID制御の比較例の方が若干速いものの、ほぼ同等の結果を示している。これに対し減衰係数を小さくした図13の場合、FB最短時間制御の実施例では、オーバーシュートの無い制御結果が得られたのに対し、PID制御の比較例ではおおきなオーバーシュートが発生している。一方、減衰係数を大きくした図14の場合、フィードバック最短時間制御の実施例は素早く目標に達しているのに対し、PID制御の比較例は目標直前で速度が大きく低下し、目標への乙辰が遅くなっている。この様にフィードバック最短時間制御の実施例では、制御対象の減衰係数の変化で表わされる抵抗変化に対し、PID制御の比較例よりも安定した制御結果が得られることが分かる。

0096

更に、図15にフィードバック最短時間制御の実施例のシミュレーション結果を示し、図16にPID制御の比較例のシミュレーション結果を示す。この結果を比較すると、図16に示すPID制御の比較例では制御系の負荷変動に対し、制御結果が大きく変化してしまうのに対し、図15に示すフィードバック最短時間制御の実施例では、制御結果に乱れがなく常に安定した制御結果が得られている。つまり、図16の比較例では、制御系の負荷変動に対し、制御結果が大きく変化してしまうのに対し、図15の実施例では制御結果に乱れが無く、常に安定した制御結果が得られている。

0097

従って、上記のアクチュエータの制御方法及びアクチュエータの制御装置によれば、最短時間制御であるために、制御速度が高速となり、最大加速度と最大減速度は計測によって設定でき、これ以外に調整項はないため、制御ゲインを調整する必要が無い。また、ON/OFF制御であるため、中間的な出力を出す必要がなく、コントローラ、ドライバーを簡略化できる。

0098

また、予め設定した時間毎に、制御の各時刻における目標量と制御量の偏差Xを入れて切替時刻t1と終了時刻t2を更新するというフィードバックの要素を取り入れているため、外力が変化しても、また、制御周期を高速にしなくても、常に安定した制御結果を得ることができる。その結果、従来の制御則では相反する大きな課題であった「制御の速度」と「安定性」を両立させることができる。

0099

その上、制御系が持つ残り仕事と運動エネルギーの和である残留エネルギーの減少と共に、制御出力を小さくすることにより、制御終了後に制御出力を収束させて、ゼロにすることができる。

0100

本発明のアクチュエータの制御方法及びアクチュエータの制御装置によれば、制御速度が高速となり、しかも、制御ゲインを調整する必要が無く、ON/OFF制御であるため、中間的な出力を出す必要がなく、コントローラ、ドライバーを簡略化でき、また、予め設定した時間毎に、制御の各時刻における目標量と制御量の偏差Xを入れて切替時刻t1と終了時刻t2を更新するというフィードバックの要素を取り入れているため、外力が変化しても、また、制御周期を高速にしなくても、常に安定した制御結果を得ることができ、その上、制御系が持つ残り仕事と運動エネルギーの和である残留エネルギーの減少と共に、制御出力を小さくすることにより、制御終了後に制御出力を収束させて、ゼロにすることができるので、自動車等に搭載した機器など、数多くのアクチュエータの制御方法及びアクチュエータの制御装置として利用できる。

0101

t0計算時刻
t1切替時刻
t2終了時刻
V0初速
X目標量と制御量の偏差
αp最大加速度
αm最大減速度

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • オムロン株式会社の「 制御システムおよび制御プログラム」が 公開されました。( 2020/09/24)

    【課題】制御対象を対象物の表面の形状に精度良く追従させる。【解決手段】計測センサは、制御対象による処理対象点から目標軌道に沿って所定距離だけ離れた位置が計測点となるように、制御対象と一体化される。制御... 詳細

  • オムロン株式会社の「 制御装置および制御プログラム」が 公開されました。( 2020/09/24)

    【課題】制御対象を対象物の表面の形状に精度良く追従させる。【解決手段】制御装置は、目標軌道に基づいて、各制御周期における制御対象の平面上の第1指令位置を生成する第1生成部と、第1動特性モデルと第1指令... 詳細

  • オムロン株式会社の「 制御装置、制御方法および制御プログラム」が 公開されました。( 2020/09/24)

    【課題】外乱等の影響で応答が変化した場合でも、過渡状態において複数の制御対象の制御量の分布を所望の分布に制御できる制御装置を提供する。【解決手段】複数の制御手段は、目標値に対する制御量の応答速度の最も... 詳細

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ