図面 (/)

技術 CIGS膜の製法およびそれを用いるCIGS太陽電池の製法

出願人 日東電工株式会社
発明者 西井洸人森田成紀寺地誠喜細川和人峯元高志
出願日 2011年9月7日 (9年3ヶ月経過) 出願番号 2011-194933
公開日 2013年3月28日 (7年9ヶ月経過) 公開番号 2013-058540
状態 特許登録済
技術分野 光起電力装置 光起電力装置
主要キーワード エネルギー分散型蛍光X線装置 多源蒸着法 太陽光変換効率 加熱昇 非真空プロセス n型半導体 化合物薄膜太陽電池 原子数濃度
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2013年3月28日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (10)

課題

面積素子を作製する場合であっても、変換効率に優れるCIGS膜を、低コスト再現性よく製造できるCIGS膜の製法およびそれを含むCIGS太陽電池の製法を提供する。

解決手段

インジウムガリウムセレンとを含む層(A)と、銅とセレンとを含む層(B)を、固相状態でこの順で基板に積層する積層工程と、上記層(A)および層(B)が積層された積層体を加熱し、上記層(B)の銅とセレンの化合物溶融させ液相状態とすることにより、上記層(A)中に上記層(B)中の銅を拡散させ、結晶成長させてCIGS膜を得る加熱工程とを有するようにした。

概要

背景

アモルファスシリコン太陽電池化合物薄膜太陽電池に代表される薄膜型太陽電池は、従来の結晶型シリコン太陽電池と比較すると、材料コスト製造コストの大幅な削減が可能である。このため、近年、これらの研究開発が急速に進められている。なかでも、I族、III族VI族元素構成物質とした化合物薄膜太陽電池であって、光吸収層が銅(Cu)、インジウム(In)、ガリウム(Ga)、セレン(Se)合金からなるCIGS太陽電池は、シリコンを全く使用せず、しかも優れた太陽光変換効率(以下「変換効率」とする)を有するため、薄膜太陽電池の中でも特に注目されている。

このようなCIGS太陽電池における光吸収層は、セレン化法、非真空プロセスナノ粒子)法、真空蒸着法等により作製することができる。真空蒸着法は、Cu、In、Ga、Seを各々別の蒸着源にて加熱し、蒸着により製膜する製法であり、各元素の吐出量を制御しながら製膜できるため、厚み方向に組成制御が可能であるという利点を有している。

真空蒸着法のうち、最も高い変換効率が得られるのは、多源蒸着法一種である3段階法と呼ばれる方法である。この方法は、〔図8(b)〕に示すように、工程が3段階に分離されており、まず第1段階目基板上にIn、Ga、Seを蒸着し、(In,Ga)2Se3膜を形成する。つぎの2段階目で、この基板温度を550℃に上昇させ、さらにCu、Seを蒸着し、Cu過剰組成CIGS膜を形成する。この段階におけるCIGS膜は、液相Cu(2-x)Seと固相CIGSの2相共存しており、Cu(2-x)Seにより結晶の急激な大粒化が起きる。

一方、Cu(2-x)Seは低抵抗であるため、太陽電池特性に悪影響を与えることが知られている。したがって、3段階法では、その第3段階目で、Cu(2-x)Seを低減させるため、さらにIn、Ga、Seを蒸着し、CIGS膜全体として、わずかにIII族が過剰な組成となるようにしている。3段階法で得られたCIGS薄膜は、結晶が大粒径となり、しかも、従来の蒸着法で得られるものと比べ、結晶学的に高品質薄膜結晶組織になるとされる(例えば、特許文献1。)。

このような3段階法で得られたCIGS膜を太陽電池に適用すると、小面積素子視点でみた場合には、確かに高い変換効率が得られ良好である。しかし、このCIGS膜は、結晶成長を引き起こすための主成分であるCu(2-x)Seをはじめから液相として供給していることから、膜内へのCuの拡散が必ずしも均一に行われておらず、その結晶粒は厳密には必ずしも均一ではない。したがって、このCIGS膜を用いて大面積素子を作製する場合には、素子ごとの変換効率にばらつきが生じ、再現性に劣る。また、Cu(2-x)Seを液相として供給していることから、膜内にこれが過剰に取り込まれ易くなっており、素子の特性が低下するという問題も有している。

概要

大面積素子を作製する場合であっても、変換効率に優れるCIGS膜を、低コストで再現性よく製造できるCIGS膜の製法およびそれを含むCIGS太陽電池の製法を提供する。インジウムとガリウムとセレンとを含む層(A)と、銅とセレンとを含む層(B)を、固相状態でこの順で基板に積層する積層工程と、上記層(A)および層(B)が積層された積層体を加熱し、上記層(B)の銅とセレンの化合物溶融させ液相状態とすることにより、上記層(A)中に上記層(B)中の銅を拡散させ、結晶成長させてCIGS膜を得る加熱工程とを有するようにした。

目的

本発明は、このような事情に鑑みなされたもので、大面積素子を作製する場合であっても、変換効率に優れるCIGS膜を低コストで再現性よく製造できるCIGS膜の製法およびそれを含むCIGS太陽電池の製法の提供をその目的とする

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

CIGS太陽電池光吸収層として用いられるCIGS膜製法であって、インジウムガリウムセレンとを含む層(A)と、銅とセレンとを含む層(B)を、固相状態でこの順で基板に積層する積層工程と、上記層(A)および層(B)が積層された積層体を加熱し、上記層(B)を溶融させ液相状態とすることにより、上記層(A)中に上記層(B)中の銅を拡散させ、結晶成長させてCIGS膜を得る加熱工程とを有することを特徴とするCIGS膜の製法。

請求項2

上記積層工程を、100〜250℃の範囲の温度で行う請求項1記載のCIGS膜の製法。

請求項3

上記加熱工程を、520℃以上の温度で行う請求項1または2記載のCIGS膜の製法。

請求項4

上記積層工程の温度から上記加熱工程の温度への昇温を、昇温速度10℃/秒以上で行う請求項1〜3のいずれか一項に記載のCIGS膜の製法。

請求項5

上記加熱工程において、セレン蒸気もしくはセレン化水素を供給し、CIGS膜表面のセレン分圧が、内部のセレン分圧よりも高い状態で維持されるようにする請求項1〜4のいずれか一項に記載のCIGS膜の製法。

請求項6

上記加熱工程終了時のCIGS膜が、0.95<銅/(インジウム+ガリウム)<1.30のモル比を満たすとともに、上記加熱工程時の温度を維持した状態で、上記加熱工程により得られたCIGS膜に、さらにインジウムとガリウムとセレンとを蒸着させることにより、上記CIGS膜が、0.70<銅/(インジウム+ガリウム)<0.95のモル比を満たすようにする請求項1〜5のいずれか一項に記載のCIGS膜の製法。

請求項7

基板上に、裏面電極層を設ける工程と、光吸収層を設ける工程と、バッファ層を設ける工程と、透明導電層を設ける工程とを有するCIGS太陽電池の製法であって、上記光吸収層を設ける工程として、上記請求項1に記載のCIGS膜の製法を用いることを特徴とするCIGS太陽電池の製法。

技術分野

0001

本発明は、均一な銅拡散を引き起こし、結晶粒の均一化を図ることにより、良好な特性を有するCIGS太陽電池光吸収層として用いるCIGS膜製法およびそれを用いるCIGS太陽電池の製法に関する。

背景技術

0002

アモルファスシリコン太陽電池化合物薄膜太陽電池に代表される薄膜型太陽電池は、従来の結晶型シリコン太陽電池と比較すると、材料コスト製造コストの大幅な削減が可能である。このため、近年、これらの研究開発が急速に進められている。なかでも、I族、III族VI族元素構成物質とした化合物薄膜太陽電池であって、光吸収層が銅(Cu)、インジウム(In)、ガリウム(Ga)、セレン(Se)合金からなるCIGS太陽電池は、シリコンを全く使用せず、しかも優れた太陽光変換効率(以下「変換効率」とする)を有するため、薄膜太陽電池の中でも特に注目されている。

0003

このようなCIGS太陽電池における光吸収層は、セレン化法、非真空プロセスナノ粒子)法、真空蒸着法等により作製することができる。真空蒸着法は、Cu、In、Ga、Seを各々別の蒸着源にて加熱し、蒸着により製膜する製法であり、各元素の吐出量を制御しながら製膜できるため、厚み方向に組成制御が可能であるという利点を有している。

0004

真空蒸着法のうち、最も高い変換効率が得られるのは、多源蒸着法一種である3段階法と呼ばれる方法である。この方法は、〔図8(b)〕に示すように、工程が3段階に分離されており、まず第1段階目基板上にIn、Ga、Seを蒸着し、(In,Ga)2Se3膜を形成する。つぎの2段階目で、この基板温度を550℃に上昇させ、さらにCu、Seを蒸着し、Cu過剰組成のCIGS膜を形成する。この段階におけるCIGS膜は、液相Cu(2-x)Seと固相CIGSの2相共存しており、Cu(2-x)Seにより結晶の急激な大粒化が起きる。

0005

一方、Cu(2-x)Seは低抵抗であるため、太陽電池特性に悪影響を与えることが知られている。したがって、3段階法では、その第3段階目で、Cu(2-x)Seを低減させるため、さらにIn、Ga、Seを蒸着し、CIGS膜全体として、わずかにIII族が過剰な組成となるようにしている。3段階法で得られたCIGS薄膜は、結晶が大粒径となり、しかも、従来の蒸着法で得られるものと比べ、結晶学的に高品質薄膜結晶組織になるとされる(例えば、特許文献1。)。

0006

このような3段階法で得られたCIGS膜を太陽電池に適用すると、小面積素子視点でみた場合には、確かに高い変換効率が得られ良好である。しかし、このCIGS膜は、結晶成長を引き起こすための主成分であるCu(2-x)Seをはじめから液相として供給していることから、膜内へのCuの拡散が必ずしも均一に行われておらず、その結晶粒は厳密には必ずしも均一ではない。したがって、このCIGS膜を用いて大面積素子を作製する場合には、素子ごとの変換効率にばらつきが生じ、再現性に劣る。また、Cu(2-x)Seを液相として供給していることから、膜内にこれが過剰に取り込まれ易くなっており、素子の特性が低下するという問題も有している。

先行技術

0007

特表平10−513606号公報

発明が解決しようとする課題

0008

本発明は、このような事情に鑑みなされたもので、大面積素子を作製する場合であっても、変換効率に優れるCIGS膜を低コストで再現性よく製造できるCIGS膜の製法およびそれを含むCIGS太陽電池の製法の提供をその目的とする。

課題を解決するための手段

0009

上記目的を達成するため、本発明のCIGS膜の製法は、CIGS太陽電池の光吸収層として用いられるCIGS膜の製法であって、インジウムとガリウムとセレンとを含む層(A)と、銅とセレンとを含む層(B)を、固相状態でこの順で基板に積層する積層工程と、上記層(A)および層(B)が積層された積層体を加熱し、上記層(B)を溶融させ液相状態とすることにより、上記層(A)中に上記層(B)中の銅を拡散させ、結晶成長させてCIGS膜を得る加熱工程とを有することを第1の要旨とする。

0010

そして、基板上に、裏面電極層を設ける工程と、光吸収層を設ける工程と、バッファ層を設ける工程と、透明導電層を設ける工程とを有するCIGS太陽電池の製法であって、上記光吸収層を設ける工程として、上記第1の要旨であるCIGS膜の製法を用いるCIGS太陽電池の製法を第2の要旨とする。

0011

すなわち、本発明者らは、光吸収係数が高く、省資源化に有効な太陽電池を得るため、化合物半導体系太陽電池の中でも、特にCIGS太陽電池に着目し、研究を重ねた。その結果、CIGS太陽電池の光吸収層であるCIGS膜を、〔図8(b)〕に示す従来法の3段階法で得るのではなく、〔図8(a)〕に示すように、まず、基板に、InとGaとSeとを含む層(A)と、CuとSeとを含む層(B)をともに固相状態で、この順で積層し、つぎに、この2層(A)、(B)が積層された積層体を加熱し、層(B)のCuとSeの化合物を溶融させ液相状態とすることにより、上記層(A)の中に上記層(B)中のCuを拡散させ、結晶成長させてCIGS膜を得るようにすると、膜内の結晶粒が均一な大型粒になるとともに、膜内に余剰なCu(2-x)Seが取り込まれないことを見い出し、本発明に到達した。そして、本発明のCIGS膜製法をその一部に用いてCIGS太陽電池を製造すると、光吸収層であるCIGS膜の結晶粒が大粒でしかも均一になるため、変換効率が高くなるとともに、素子ごとの変換効率のばらつきが生じにくいCIGS太陽電池を得ることができる。しかも、上記CIGS膜内に余剰なCu(2-x)Seが形成されないため、電池特性に悪影響を及ぼさない。したがって、高効率のCIGS太陽電池を再現性よく得ることができる。

0012

なお、本発明において、「固相」とは、その温度において固体状態にある相のことをいい、「液相」とは、その温度において液体状態にある相のことを意味する。

0013

また、本発明において、「基板に層(A)と層(B)を積層する」とは、基板に直接これらを積層する場合だけでなく、基板に他の層を介してこれらを積層する場合を含むことを意味する。

発明の効果

0014

このように、本発明のCIGS膜の製法は、まず、基板上に、InとGaとSeとを含む層(A)と、CuとSeとを含む層(B)をこの順で積層するようになっている。このため、層(B)を固相状態で、同じく固相状態の層(A)上に均一な厚みで積層できる。なお、この段階では各層の相互拡散は抑制されている。つぎに、この2層(A)、(B)が積層された積層体を加熱し、層(B)のCuとSeの化合物を溶融させ液相状態とすることにより、上記層(A)中に上記層(B)中のCuが急速に拡散する。このとき、層(B)は、先の過程で、均一な厚みで層(A)上に形成されているため、上記層(B)中のCuは、層(A)中に均一的に拡散され、大粒で均一な結晶粒が形成される。また、層(B)を一旦、固相として用いるため、Cu(2-x)Seが過剰にCIGS膜内に取り込まれることを抑制できる。したがって、この製法により得られたCIGS膜を用いたCIGS太陽電池は、変換効率が高くなるとともに、素子ごとの変換効率のばらつきが生じにくい。しかも、膜内に余剰なCu(2-x)Seが形成されないため、電池特性に悪影響を及ぼすこともない。

0015

また、上記積層工程を、100〜250℃の範囲の温度で行うと、層(A)と層(B)の互いの界面における相互拡散を最小に抑制することができるため、後の工程でこの積層体を加熱することにより、より大粒で均一な結晶粒を形成することができる。

0016

そして、上記加熱工程を、520℃以上の温度で行うと、層(B)のCuとSeの化合物のほとんどが溶融するため、上記層(A)中に上記層(B)中のCuをより急速、かつ均一に拡散させることができ、より大粒で均一な結晶粒を形成することができる。

0017

さらに、上記積層工程の温度から上記加熱工程の温度への昇温を、昇温速度10℃/秒以上で行うと、層(B)の液相化が急速に進み、上記層(A)中に上記層(B)中のCuがより急速に拡散することにより、膜内においてより大粒で均一な結晶が形成されるようになる。

0018

そして、上記加熱工程において、Se蒸気もしくはセレン化水素(H2Se)を供給し、CIGS膜表面のSe分圧が、内部のSe分圧よりも高い状態で維持されるようにすると、加熱工程におけるCIGS膜からのSeの放出を抑制でき、CIGS膜の組成をより好ましいものにできる。

0019

また、上記加熱工程終了時のCIGS膜が、0.95<Cu/(In+Ga)<1.30のモル比を満たすとともに、上記加熱工程時の温度を維持した状態で、上記加熱工程により得られたCIGS膜に、さらにInとGaとSeとを蒸着させることにより、上記CIGS膜が、0.70<Cu/(In+Ga)<0.95のモル比を満たすようにすると、まず、上記加熱工程終了時のCIGS膜の組成が、0.95<Cu/(In+Ga)<1.30のモル比を満たすことにより、層(A)と層(B)との界面においても、Cu成分が充分に拡散され、結晶成長が起こるとともに、Cu(2-x)SeがCIGS膜内に過剰に取り込まれないため、このCIGS膜を素子に用いた際の素子特性は低下しない。そして、上記加熱工程時の温度を維持した状態で、上記加熱工程により得られたCIGS膜に、さらにInとGaとSeとを蒸着し、上記CIGS膜の組成が、0.70<Cu/(In+Ga)<0.95のモル比を満たすようにすると、CIGS膜全体において、わずかにCu不足の状態にできるため、このCIGS膜を素子に用いた際に、より高効率の光吸収層とすることができる。

0020

さらに、基板上に、裏面電極層を設ける工程と、CIGS膜を設ける工程と、バッファ層を設ける工程と、透明導電層を設ける工程とを有するCIGS太陽電池の製法であって、上記CIGS膜を設ける工程として、上記第1の要旨であるCIGS膜の製法を用いると、得られたCIGS太陽電池を、素子ごとの変換効率のばらつきが少ない、再現性の高いものとすることができ、しかも、その変換効率を充分に高くできる。

図面の簡単な説明

0021

本発明の一実施の形態により得られるCIGS膜の説明図である。
上記CIGS膜の製法の説明図である。
上記CIGS膜の製法の説明図である。
上記CIGS膜の製法の説明図である。
上記CIGS膜の製法の説明図である。
上記CIGS膜の製法の説明図である。
本発明の一実施の形態により得られるCIGS太陽電池の説明図である。
(a)は本発明の概略を示す説明図であり、(b)は従来例の概略を示す説明図である。
比較例1の概略を示す説明図である。

0022

つぎに、本発明を実施するための形態について説明する。

0023

図1は、本発明の一実施の形態により得られるCIGS膜3の説明図である。図1において、上記CIGS膜3は、CIGS太陽電池の光吸収層に用いられるもので、ソーダ石灰ガラス(SLG)からなる基材1上にモリブデン(Mo)からなる裏面電極層2が設けられ、この裏面電極層2上に、上記CIGS膜3が積層されている。以下に、上記各構成を詳しく説明するとともに、上記CIGS膜3を得る方法を詳細に説明する。なお、図1において、各部分は模式的に示したものであり、実際の厚み,大きさ等とは異なっている(以下の図においても同じ)。

0024

図1において、上記基板1は、支持基板として用いられるものであり、SLGの他にも、柔軟性のある金属箔等を基板として用いることができる。ただし、後の加熱工程での加熱に耐えられるように、520℃以上の温度に耐性のある材料を用いることが好ましい。

0025

上記裏面電極層2は、スパッタリング法により形成されたものである。また、Moの他にも、タングステンクロムチタン等を用いることができ、単層のみならず複層に形成することもできる。そして、その厚みは、100nm〜1000nmの範囲にあることが好ましい。

0026

上記CIGS膜3は、Cu、In、Ga、Seの4元素を含む化合物半導体であり、その厚みは2.0μmである。また、Cu、In、Gaの組成比は、22.1:21.2:7.5であり、Cu/(In+Ga)≒0.77(モル比)となっている。

0027

このようなCIGS膜3は、以下のようにして製造することができる。まず、裏面電極層2が設けられた基板1を準備し、図2に示すように、裏面電極層2が形成された側から、基板1の保持温度を200℃とした状態で、In、Ga、Seを蒸着し、裏面電極層2上に層(A)4を形成する。

0028

そして、基板1の保持温度を200℃に保ったままで、図3に示すように、上記層(A)4側から、Cu、Seを蒸着し、上記層(A)4上に層(B)5が積層された積層体6を形成する。このとき、上記層(A)4および層(B)5は、いずれも固相状態であるため、両層間の拡散は最小レベルに抑えられている。したがって、この段階では、結晶成長は引き起こされない。

0029

さらに、上記積層体6を加熱し、基板1の保持温度を550℃とし、加熱昇華させたSe蒸気を供給した状態で、15分間保持することにより、上記層(B)のCuとSeの化合物を溶融させ、液相状態とする。これにより、上記層(B)中のCuが上記層(A)中に拡散し、このなかで結晶成長が起こる。このとき、結晶は基板と平行な方向に成長する。この加熱工程により、上記層(A)と層(B)とが一体化し、CIGS膜3’となる(図4参照)。このとき、上記CIGS膜3’のCu、In、Gaの組成比は、25.1:18.5:6.4であり、Cu/(In+Ga)≒1.00(モル比)となっている。

0030

なお、上記積層工程(温度200℃)から加熱工程(温度550℃)への昇温は、10℃/秒で行っている。すなわち、昇温速度が遅すぎると、上記層(B)の液相化がゆっくりと進み、上記層(B)中のCuが層(A)中に急速に拡散することができず、結晶が大粒化しない傾向がみられるため、上記昇温は10℃/秒以上で行うことが好ましい。

0031

そして、図5に示すように、上記層(A)と層(B)とが一体化したCIGS膜3’に対し、基板1の保持温度を加熱工程時と同じ550℃に保持し、加熱昇華させたSe蒸気を供給した状態で、さらに、In、Ga、Seを蒸着させることにより、上記CIGS膜3(図1参照)を得ることができる。これにより、上記CIGS膜3全体を、わずかにCu不足の状態にできる。なお、上記実施の形態における基板1の保持温度のプロファイルを、図6に示す。

0032

このCIGS膜の製法によれば、先に述べたように、まず、温度200℃において、基板1にInとGaとSeを含む層(A)4と、CuとSeとを含む層(B)5をこの順で積層し、つぎに、上位層(A)4および層(B)5が積層された積層体6を加熱し、基板1の保持温度を550℃とした状態を、15分間保持するようにして、層(B)5のCuとSeとの化合物を溶融させ液相状態とし、上記層(A)4中に層(B)5中のCuを急速に拡散させるようにしている。このため、層(B)5に含まれるCuを均一的に層(A)4中に拡散でき、大粒で均一な結晶粒が形成されたCIGS膜3’を得ることができる。また、上記層(B)5に含まれるCuを、一旦、固相(層(B)5)として用いるため、膜内への過剰なCu(2-x)Seの取り込みを抑制できる。そして、加熱工程時に、加熱昇華させたSe蒸気が供給されているため、加熱によるSeの系外への放出を抑制でき、上記CIGS膜3’のCu,In,Gaの組成比を所望どおりに調整することができる。さらに、上記CIGS膜3’に対し、加熱工程時と同等の温度(550℃以上)において、In、Ga、Seとをさらに蒸着して、CIGS膜3としているため、CIGS膜3全体を、わずかにCu不足の状態にでき、このCIGS膜3を素子に用いた際に、より高効率の光吸収層とすることができる。

0033

なお、上記の実施の形態では、上記層(A)4および層(B)5の形成を、基板1の保持温度を200℃とした状態で行っているが、それぞれ100〜250℃の範囲の温度にすることが好ましく、なかでも、150〜200℃の範囲の温度にすることが好ましい。温度が高すぎると、層(B)5を固相として層(A)4上に積層できないためであり、逆に温度が低すぎると、蒸着による各層の形成が困難になる傾向がみられるためである。

0034

また、上記の実施の形態では、上記層(A)4および層(B)5が積層された積層体6に対する加熱を、基板1の保持温度を550℃にした状態で15分間行っているが、これに限らず加熱温度は520℃以上の温度で行うことが好ましい。また、その加熱時間は1〜30分間とすることが好ましく、2〜15分間とすることがより好ましい。これは、層(B)5に含まれるCuは、層(A)4への拡散は極めて速いが、充分な結晶成長が起きるには、ある程度の時間が必要なためである。

0035

さらに、上記の実施の形態では、加熱工程終了後のCIGS膜3’に対し、基板1保持温度を550℃にした状態で、さらに、In、Ga、Seを蒸着させているが、CIGS膜3’の表層に、膜内に取り込まれなかったCu、Se系の層が露出していない場合等には、In、Ga、Seをさらに蒸着させる必要はない。しかし、加熱工程終了後のCIGS膜3’に、さらにIn、Ga、Seを蒸着させると、膜内にCu−Se系の相が形成されず、充分な結晶成長をさせることができ、しかも、膜全体としてわずかにCu不足とすることが容易であるため、好適である。

0036

そして、上記実施の形態では、加熱工程終了後のCIGS膜3’の、Cu、In、Gaの組成比が25.1:18.5:6.4であり、Cu/(In+Ga)≒1.00(モル比)となっているが、これに限らず任意の組成比とすることができる。しかし、CIGS膜3’のCu、In、Gaの組成割合は、0.95<Cu/(In+Ga)<1.30(モル比)の式を満たす範囲内にあることが好ましい。Cu/(In+Ga)の値が低すぎると、Cu成分が不足し、充分な結晶成長が起きない傾向がみられ、逆に、高すぎると、CIGS膜3’内に、Cu(2-x)Seが過剰に取り込まれ、上記CIGS膜3’を素子に用いた際の素子特性が低下する傾向がみられるためである。

0037

さらに、上記実施の形態では、上記CIGS膜3のCu、In、Gaの組成比が22.1:21.2:7.5であり、Cu/(In+Ga)≒0.77(モル比)になっているが、これに限らず任意の組成比とすることができる。しかし、0.70<Cu/(In+Ga)<0.95(モル比)の式を満たすようになっていると、上記CIGS膜3内にCu(2-x)Seが過剰に取り込まれることをより阻止でき、しかも、膜全体としてわずかにCu不足にできる点で好ましい。また、同族元素であるGaとInとの比は、0.10<Ga/(In+Ga)<0.40の範囲にあることが好ましい。

0038

そして、上記実施の形態では、上記CIGS膜3の厚みは、2.0μmに形成されているが、これに限らず任意の厚みとすることができる。しかし、上記CIGS膜3の厚みは、1.0〜3.0μmの範囲にあることが好ましく、1.5〜2.5μmの範囲にあることがより好ましい。厚みが薄すぎると、光吸収層として用いた際の光吸収量が少なくなり、素子の性能が低下する傾向がみられ、逆に、厚すぎると、膜の形成にかかる時間が増加し、生産性に劣る傾向がみられるためである。

0039

また、上記実施の形態では、加熱工程時およびその後につづくIn、Ga、Seを蒸着させる工程において、Se蒸気を供給するようにしているが、これに代えてH2Seを供給するようにしてもよい。この場合も、Se蒸気を供給するのと同様の効果が得られる。また、上記CIGS膜3’およびCIGS膜3のSeの系外への放出が少ない等の場合には、これらを供給する必要はない。

0040

つぎに、上記CIGS膜3を光吸収層として用いたCIGS太陽電池Qの構成およびこれを得る方法を以下に示す。このCIGS太陽電池Qは、図7に示すように、上記CIGS膜3の上に、バッファ層7、バッファ層8、透明導電層9がこの順に積層されている。

0041

より詳しく説明すると、まず、上記得られたCIGS膜3上に、化学堆積法(CBD法)により、硫化カドミウムCdS)からなるバッファ層7(厚み50nm)を形成し、さらにスパッタリング法により、ZnOからなるバッファ層8(厚み50nm)を形成する。これらのバッファ層(7、8)は、上記CIGS膜3とpn接合できるよう、高抵抗n型半導体が好ましく、上記CdS、ZnOのほか、単層で、ZnMgO、Zn(O,S)等を用いることができる。また、バッファ層(7、8)の厚みは、それぞれ30〜200nmであることが好ましい。そして、バッファ層を単層にした場合でも30〜200nmの範囲の厚みであることが好ましい。さらに、上記バッファ層7は溶液法である上記CBD法等、上記バッファ層8は真空製膜法であるスパッタリング法等によって形成することもできる。なお、このようにバッファ層として複数種類の層を重ねて用いると、上記CIGS膜3とのpn接合をより良好にすることができるが、pn接合が充分に良好である場合には、必ずしも複数層設けなくてもよい。

0042

そして、上記バッファ層8上に、スパッタリング法により、酸化インジウム錫(ITO)からなる透明導電層9(厚み200nm)を形成する。この透明導電層9は、高透過率を有する材料を用いることが好ましく、上記ITOのほか、酸化インジウム亜鉛(IZO)、酸化亜鉛アルミニウム(Al:ZnO)等を用いることができる。また、その厚みは100nm〜300nmであることが好ましい。このようにして、基板1上に、裏面電極層2、CIGS膜3、バッファ層7、バッファ層8、透明導電層9がこの順に積層されたCIGS太陽電池Qを得ることができる。

0043

上記CIGS太陽電池の製法によれば、すでに述べたように、光吸収層として、上記CIGS膜3を用いているため、変換効率が高くなるとともに、素子ごとの変換効率のばらつきが生じにくいCIGS太陽電池Qを得ることができる。しかも、光吸収層であるCIGS膜3内に余剰なCu(2-x)Seが形成されないため、電池特性の低下が生じず、高効率となる。また、上記CIGS膜3全体として、わずかにCu不足の状態になっているため、さらに高効率とすることができる。

0044

なお、上記実施の形態では、太陽電池Qは、基板1、裏面電極層2、CIGS膜3、バッファ層7、バッファ層8、透明導電層9からなるが、必要であれば、上記透明導電層9上に、金属電極を形成してもよい。

0045

つぎに、実施例について、比較例と併せて説明する。ただし、本発明はこれに限定されるものではない。

0046

〔実施例1〕
上記実施の形態と同様にして、CIGS太陽電池を製造した。すなわち、基板1として、SLG(大きさ30×30mm、厚み0.55mm)を用意し、この上に、Mo(厚み500nm)を積層し、裏面電極層2を形成した。そして、基板1保持温度を200℃にした状態で、In、Ga、Seを蒸着し、層(A)を形成した。つづいて、基板1保持温度を200℃に保ったままの状態で、上記層(A)上にCu、Seを蒸着し、層(B)を積層し、積層体6を形成した。この積層体6を、微量のSe蒸気を供給しつつ加熱し、基板1保持温度が550℃の状態を15分間保持し、結晶成長を行いCIGS膜3’を得た。さらに、このCIGS膜3’に、微量のSeガスを供給しつつ、基板1保持温度を550℃に保った状態で、In、Ga、Seを蒸着することで、目的のCIGS膜3(厚み2.0μm)を得た。このCIGS膜3を用いたCIGS太陽電池を実施例1品とした。なお、実施例1品を得るための概略図を〔図8(a)〕に示す。

0047

〔比較例1〕
実施例1と同様に、裏面電極層2が形成された基板1を準備した。そして、基板1の保持温度を200℃にした状態で、Cu、In、Ga、Seを蒸着し、わずかにCu過剰となるCu、In、Ga、Seからなる層を形成した。これを微量のSeガスを供給しつつ加熱し、基板1保持温度が550℃の状態で15分間保持し、結晶成長を行いCIGS膜’(図示せず)を得た。さらに、このCIGS膜’に、微量のSe蒸気を供給しつつ、基板1保持温度を550℃に保った状態で、In、Ga、Seを蒸着することで、目的のCIGS膜(厚み2.0μm)を得た。このCIGS膜を用いたCIGS太陽電池を比較例1品とした。なお、比較例1品を得るための概略図を〔図9〕に示す。

0048

〔比較例2〕
実施例1と同様に、裏面電極層2が形成された基板1を準備した。そして、基板1の保持温度を350℃にした状態で、In、Ga、Seを蒸着し、In、Ga、Seからなる層を形成した。つぎに、基板1の保持温度が550℃の状態となるよう加熱した状態で、この層の上に、Cu、Seを蒸着させ、結晶成長を行いCIGS膜''(図示せず)を得た。さらに、このCIGS膜''に、微量のSe蒸気を供給しつつ、基板1保持温度を550℃に保った状態で、In、Ga、Seを蒸着することで、目的のCIGS膜(厚み2.0μm)を得た。このCIGS膜を用いたCIGS太陽電池を比較例2品とした。なお、比較例2品を得るための概略図を〔図8(b)〕に示す。

0049

上記実施例品および比較例品をそれぞれ10個製造し、それらの変換効率を下記の手順に従って測定するとともに、それらの実施例品および比較例品に用いたCIGS膜のCu/(In+Ga)の組成比を下記の手順に従って測定し、算出した。測定および算出した結果を下記の〔表1〕に併せて示す。

0050

〔変換効率の測定〕
擬似太陽光(AM1.5)を各実施例品および比較例品の表面面積以上の領域に照射し、その変換効率をソーラーシミュレーターセルテスターSS150、山下電装社)によって測定した。

0051

〔Cu/(In+Ga)の組成比の算出〕
各実施例品および比較例品に用いたCIGS膜のCu、In、Gaの含有量を、エネルギー分散型蛍光X線装置(EX−250、堀場製作所)を用いて測定し、これらの原子数濃度を元にCu/(In+Ga)の組成比を算出した。

0052

実施例

0053

上記の結果より、実施例1品は平均変換効率が14.7%と高い値を示し、しかも、各素子間における変換効率のばらつきは、わずか2.5と少なくなっており、本発明の製法によって、高効率の太陽電池を再現性よく得られることがわかった。一方、比較例1品は変換効率のばらつきは、3.0と比較的少ないものの、平均変換効率は9.5%と低いものであった。また、比較例2品は、平均変換効率は13.6%と比較的高いものの、変換効率のばらつきは3.6と多いものであった。

0054

本発明のCIGS膜の製法は、CIGS太陽電池の光吸収層として用いるCIGS膜を、良好な特性を再現性よく製造するのに適している。また、本発明のCIGS太陽電池の製法は、変換効率の高い太陽電池を、再現性よく製造するのに適している。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ