図面 (/)

技術 磁気センサおよびその製造方法

出願人 TDK株式会社
発明者 太田尚城照沼幸一三浦聡酒井正則山崎寛史
出願日 2012年8月7日 (8年4ヶ月経過) 出願番号 2012-174718
公開日 2012年12月27日 (8年0ヶ月経過) 公開番号 2012-255796
状態 特許登録済
技術分野 磁気的変量の測定 ホール/MR素子
主要キーワード 被測定線 境界部分近傍 特殊設備 眺めた図 測定線 高周波応答性 差分検出器 所定材料
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2012年12月27日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (18)

課題

コンパクトな構成でありながら磁場の検出性能に優れ、かつ容易に製造可能な磁気センサを提供する。

解決手段

磁化固着層63と介在層62と磁化自由層61とを順にそれぞれ含むと共に、信号磁場によって互いに反対向きの抵抗変化を示す第1および第2のMR素子を備える。ここで、第1のMR素子における磁化固着層63は、介在層62の側から順にピンド層631と、結合層632と、ピンド層631と反強磁性結合するピンド層633とを含むシンセティック構造を有する。このシンセティック構造は、ピンド層633の総磁気モーメントがピンド層631の総磁気モーメントよりも大きなものである。一方、第2のMR素子における磁化固着層63は、単一もしくは複数の強磁性材料層からなる。

概要

背景

一般に、制御機器回路に流れる微小制御電流を正確に検知するにあたっては、その回路内に抵抗直列接続し、この抵抗の電圧降下を測定する方法を用いる。しかし、この場合には、制御系とは異なる負荷が加わることとなり制御系に対して何らかの悪影響を与える可能性が生じてしまう。このため、制御電流によって発生する電流磁界勾配を検出することによって間接的に測定する方法が用いられている。具体的には、例えば、トロイダルコア被測定線を巻き、制御電流をその測定線に供給することによりトロイダルコアの中心部分に生じる磁束をホール素子によって検出するする方法である。

ところが、上記の方法を実現する電流センサでは、小型化が困難であることや直線性あるいは高周波応答性の面で不十分であるなどの問題点が指摘されるようになった。このため、巨大磁気抵抗効果(Giant Magneto-Resistive effect)を発現する巨大磁気抵抗効果素子(以下、GMR素子)を制御電流による誘導磁場中に配置し、その勾配を検出するようにした磁気センサが提案されている(例えば、特許文献1参照。)。また、これに関連するものとして、GMR素子を備えた磁気センサを利用し、金属基板の表面等の探傷を行うようにした技術も開示されている。このようなGMR素子を用いた磁気センサであれば、比較的検出感度応答性が向上するうえ、温度変化に対しても安定した検出特性が得られる。特に、誘導磁場を検出を、4つのGMR素子を含むホイートストンブリッジ回路を用いて行うことにより、GMR素子を1つのみ用いて行う場合と比べ、感度および精度をいっそう向上させることができる。

但し、そのホイートストンブリッジ回路は、4つのうちの2つのGMR素子(第1および第2のGMR素子)が、残りの2つのGMR素子(第3および第4のGMR素子)と正反対の振る舞いをするように構成する必要がある。すなわち、例えば第1および第2のGMR素子におけるピンド層磁化と、第3および第4のGMR素子におけるピンド層の磁化とが正反対の向きに固定されていなければならない。また、ホイートストンブリッジ回路を構成する4つのGMR素子は、可能な限り互いに均質磁気特性を有することが望ましい。こうした事情から、本出願人は、同一ウェハ上に複数のGMR素子を一括形成し、それら複数のGMR素子を個別にウェハごと切り出したのち、それらのなかから選択された4つのGMR素子を一の基板に適切な向きとなるように配置した磁気センサを既に提案している(例えば特許文献2参照)。あるいは、第1の方向の磁場中において2つのGMR素子を堆積させたのち、第1の方向と逆方向の磁場中において残りの2つのGMR素子を堆積させるようにした磁気センサの製造方法も提案されている(例えば特許文献3参照)。さらに、例えば特許文献4には、所定方向外部磁場印加した状態で個別に加熱処理(例えばレーザパルス電子ビーム等を照射する処理)を行い、一の基板上に配置された4つのGMR素子におけるピンド層の磁化が各々適切な向きとなるようにする方法が提案されている。

概要

コンパクトな構成でありながら磁場の検出性能に優れ、かつ容易に製造可能な磁気センサを提供する。磁化固着層63と介在層62と磁化自由層61とを順にそれぞれ含むと共に、信号磁場によって互いに反対向きの抵抗変化を示す第1および第2のMR素子を備える。ここで、第1のMR素子における磁化固着層63は、介在層62の側から順にピンド層631と、結合層632と、ピンド層631と反強磁性結合するピンド層633とを含むシンセティック構造を有する。このシンセティック構造は、ピンド層633の総磁気モーメントがピンド層631の総磁気モーメントよりも大きなものである。一方、第2のMR素子における磁化固着層63は、単一もしくは複数の強磁性材料層からなる。

目的

本発明はかかる問題点に鑑みてなされたもので、その第1の目的は、コンパクトな構成でありながら磁場の検出性能に優れ、かつ容易に製造可能な磁気センサを提供する

効果

実績

技術文献被引用数
0件
牽制数
2件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

一定方向に固着された磁化を有する磁化固着層と、非磁性介在層と、信号磁場に応じて磁化の向きが変化する磁化自由層とを順にそれぞれ含むと共に、前記信号磁場によって互いに反対向きの抵抗変化を示す第1および第2の磁気抵抗効果素子を備え、前記第1および第2の磁気抵抗効果素子の双方における前記磁化固着層が、前記介在層の側から順に第1の強磁性層と、結合層と、前記結合層を介して前記第1の強磁性層と反強磁性結合する第2の強磁性層とを含むシンセティック構造を有し、前記第1の磁気抵抗効果素子におけるシンセティック構造は、前記第1の強磁性層の総磁気モーメントが前記第2の強磁性層の総磁気モーメントと一致もしくは前記第2の強磁性層の総磁気モーメントよりも大きなものであり、前記第2の磁気抵抗効果素子におけるシンセティック構造は、前記第2の強磁性層の総磁気モーメントが前記第1の強磁性層の総磁気モーメントよりも大きなものであることを特徴とする磁気センサ

請求項2

前記第1の磁気抵抗効果素子における第1の強磁性層の総磁気モーメントと第2の強磁性層の総磁気モーメントとの差分の絶対値は、前記第2の磁気抵抗効果素子における第1の強磁性層の総磁気モーメントと第2の強磁性層の総磁気モーメントとの差分の絶対値と異なっていることを特徴とする請求項1記載の磁気センサ。

請求項3

一定方向に固着された磁化を有する磁化固着層と、非磁性の介在層と、信号磁場に応じて磁化の向きが変化する磁化自由層とを順にそれぞれ含むと共に、前記信号磁場によって互いに反対向きの抵抗変化を示す第1および第2の磁気抵抗効果素子を備え、前記第1および第2の磁気抵抗効果素子のうちの一方における前記磁化固着層が、前記介在層の側から順に第1の強磁性層と、結合層と、前記結合層を介して前記第1の強磁性層と反強磁性結合する第2の強磁性層とを含むシンセティック構造を有し、前記シンセティック構造は、前記第2の強磁性層の総磁気モーメントが前記第1の強磁性層の総磁気モーメントよりも大きなものであり、前記第1および第2の磁気抵抗効果素子のうちの他方における前記磁化固着層が、単一もしくは複数の強磁性材料層からなることを特徴とする磁気センサ。

請求項4

前記第1および第2の磁気抵抗効果素子は、同一基板上に設けられていることを特徴とする請求項1から請求項3のいずれか1項記載の磁気センサ。

請求項5

一定方向に固着された磁化を有する磁化固着層と、非磁性の介在層と、信号磁場に応じて磁化の向きが変化する磁化自由層とを順にそれぞれ有する第1から第4の磁気抵抗効果素子と、差分検出器とを備え、前記第1から第4の磁気抵抗効果素子の全てにおける前記磁化固着層が、前記介在層の側から順に第1の強磁性層と、結合層と、前記結合層を介して前記第1の強磁性層と反強磁性結合する第2の強磁性層とを含むシンセティック構造を有し、前記第1および第3の磁気抵抗効果素子におけるシンセティック構造は、前記第1の強磁性層の総磁気モーメントが前記第2の強磁性層の総磁気モーメントと一致もしくは前記第2の強磁性層の総磁気モーメントよりも大きなものであり、前記第2および第4の磁気抵抗効果素子におけるシンセティック構造は、前記第2の強磁性層の総磁気モーメントが前記第1の強磁性層の総磁気モーメントよりも大きなものであり、前記第1および第2の磁気抵抗効果素子の一端同士が第1の接続点において接続され、前記第3および第4の磁気抵抗効果素子の一端同士が第2の接続点において接続され、前記第1の磁気抵抗効果素子の他端と前記第4の磁気抵抗効果素子の他端とが第3の接続点において接続され、前記第2の磁気抵抗効果素子の他端と前記第3の磁気抵抗効果素子の他端とが第4の接続点において接続されることによりブリッジ回路が形成されており、前記第1および第3の磁気抵抗効果素子の各抵抗値は、前記信号磁場に応じて互いに同じ向きに変化し、前記第2および第4の磁気抵抗効果素子の各抵抗値は、いずれも、前記信号磁場に応じて前記第1および第3の磁気抵抗効果素子とは反対向きに変化し、前記差分検出器により、前記第1の接続点と前記第2の接続点との間に電圧印加されたときの前記第3の接続点と前記第4の接続点の間の電位差が検出されることを特徴とする磁気センサ。

請求項6

一定方向に固着された磁化を有する磁化固着層と、非磁性の介在層と、信号磁場に応じて磁化の向きが変化する磁化自由層とを順にそれぞれ有する第1から第4の磁気抵抗効果素子と、差分検出器とを備え、前記第2および第4の磁気抵抗効果素子における前記磁化固着層が、前記介在層の側から順に第1の強磁性層と、結合層と、前記結合層を介して前記第1の強磁性層と反強磁性結合する第2の強磁性層とを含むシンセティック構造を有し、前記シンセティック構造は、前記第2の強磁性層の総磁気モーメントが前記第1の強磁性層の総磁気モーメントよりも大きなものであり、前記第1および第3の磁気抵抗効果素子における前記磁化固着層が、単一もしくは複数の強磁性材料層からなり、前記第1および第2の磁気抵抗効果素子の一端同士が第1の接続点において接続され、前記第3および第4の磁気抵抗効果素子の一端同士が第2の接続点において接続され、前記第1の磁気抵抗効果素子の他端と前記第4の磁気抵抗効果素子の他端とが第3の接続点において接続され、前記第2の磁気抵抗効果素子の他端と前記第3の磁気抵抗効果素子の他端とが第4の接続点において接続されることによりブリッジ回路が形成されており、前記第1および第3の磁気抵抗効果素子の各抵抗値は、前記信号磁場に応じて互いに同じ向きに変化し、前記第2および第4の磁気抵抗効果素子の各抵抗値は、いずれも、前記信号磁場に応じて前記第1および第3の磁気抵抗効果素子とは反対向きに変化し、前記差分検出器により、前記第1の接続点と前記第2の接続点との間に電圧が印加されたときの前記第3の接続点と前記第4の接続点の間の電位差が検出されることを特徴とする磁気センサ。

請求項7

基板上に、信号磁場に応じて磁化の向きが変化する第1の磁化自由層と、非磁性の第1の介在層と、一方向に固定された磁化を有する1の磁化固着層とを含む第1の磁気抵抗効果素子を選択的に形成する工程と、前記基板上における前記第1の磁気抵抗効果素子と離間した位置に、前記信号磁場に応じて磁化の向きが変化する第2の磁化自由層と、非磁性の第2の介在層と、一方向に固定された磁化を有する第2の磁化固着層とを含む第2の磁気抵抗効果素子を選択的に形成する工程と、前記第1および第2の磁気抵抗効果素子に対して一定方向の磁場を印加しつつ加熱することにより、前記第1および第2の磁化固着層における磁化の向きの設定を行う工程とを含み、前記第1および第2の磁化固着層を、前記第1および第2の介在層の側から順に第1の強磁性層と、結合層と、前記結合層を介して前記第1の強磁性層と反強磁性結合する第2の強磁性層とを積層してなるシンセティック構造を有するように形成し、前記第1の磁化固着層における前記シンセティック構造を、前記第1の強磁性層の総磁気モーメントが前記第2の強磁性層の総磁気モーメントと一致もしくは前記第2の強磁性層の総磁気モーメントよりも大きくなるように形成し、前記第2の磁化固着層における前記シンセティック構造を、前記第2の強磁性層の総磁気モーメントが前記第1の強磁性層の総磁気モーメントよりも大きくなるように形成することを特徴とする磁気センサの製造方法。

請求項8

前記第1の磁化固着層を、前記シンセティック構造を有するように形成したのち、前記第2の磁気抵抗効果素子の形成を行う前に、前記第1および第2の強磁性層の双方の磁化が同一方向を向く程度の第1の印加磁場を前記第1の磁気抵抗効果素子に対して付与しつつ加熱することにより、前記第1の磁化固着層における磁化の向きの設定を行うことを特徴とする請求項7に記載の磁気センサの製造方法。

請求項9

前記第1の磁化固着層における磁化の向きの設定を行ったのち、前記第2の磁化固着層を、前記シンセティック構造を有するように形成し、前記第2の磁化固着層における第1および第2の強磁性層の磁化が互いに反平行である状態を維持する程度の、前記第1の印加磁場よりも小さな第2の印加磁場を前記第2の磁気抵抗効果素子に対して付与しつつ加熱することにより、前記第2の磁化固着層の磁化方向の設定を行うことを特徴とする請求項8に記載の磁気センサの製造方法。

請求項10

前記第1および第2の磁化固着層におけるシンセティック構造を、前記第1の磁化固着層における第1の強磁性層の総磁気モーメントと第2の強磁性層の総磁気モーメントとの差分の絶対値よりも、前記第2の磁化固着層における第1の強磁性層の総磁気モーメントと第2の強磁性層の総磁気モーメントとの差分の絶対値が大きくなるように形成することを特徴とする請求項9に記載の磁気センサの製造方法。

請求項11

基板上に、信号磁場に応じて磁化の向きが変化する第1の磁化自由層と、非磁性の第1の介在層と、一方向に固定された磁化を有する第1の磁化固着層とを含む第1の磁気抵抗効果素子を選択的に形成する工程と、前記基板上における前記第1の磁気抵抗効果素子と離間した位置に、前記信号磁場に応じて磁化の向きが変化する第2の磁化自由層と、非磁性の第2の介在層と、一方向に固定された磁化を有する第2の磁化固着層とを含む第2の磁気抵抗効果素子を選択的に形成する工程と、前記第1および第2の磁気抵抗効果素子に対して一定方向の磁場を印加しつつ加熱することにより、前記第1および第2の磁化固着層における磁化の向きの設定を行う工程とを含み、前記第1および第2の磁化固着層のうちの一方を、前記第1および第2の介在層の側から順に第1の強磁性層と、結合層と、前記結合層を介して前記第1の強磁性層と反強磁性結合する第2の強磁性層とを積層してなるシンセティック構造を有するように形成し、前記シンセティック構造を、前記第2の強磁性層の総磁気モーメントが前記第1の強磁性層の総磁気モーメントよりも大きくなるように形成し、前記第1および第2の磁化固着層のうちの他方を、単一もしくは複数の強磁性材料層によって形成することを特徴とする磁気センサの製造方法。

技術分野

0001

本発明は、磁場の変化を高感度に検出可能な磁気センサおよびその製造方法に関する。

背景技術

0002

一般に、制御機器回路に流れる微小制御電流を正確に検知するにあたっては、その回路内に抵抗直列接続し、この抵抗の電圧降下を測定する方法を用いる。しかし、この場合には、制御系とは異なる負荷が加わることとなり制御系に対して何らかの悪影響を与える可能性が生じてしまう。このため、制御電流によって発生する電流磁界勾配を検出することによって間接的に測定する方法が用いられている。具体的には、例えば、トロイダルコア被測定線を巻き、制御電流をその測定線に供給することによりトロイダルコアの中心部分に生じる磁束をホール素子によって検出するする方法である。

0003

ところが、上記の方法を実現する電流センサでは、小型化が困難であることや直線性あるいは高周波応答性の面で不十分であるなどの問題点が指摘されるようになった。このため、巨大磁気抵抗効果(Giant Magneto-Resistive effect)を発現する巨大磁気抵抗効果素子(以下、GMR素子)を制御電流による誘導磁場中に配置し、その勾配を検出するようにした磁気センサが提案されている(例えば、特許文献1参照。)。また、これに関連するものとして、GMR素子を備えた磁気センサを利用し、金属基板の表面等の探傷を行うようにした技術も開示されている。このようなGMR素子を用いた磁気センサであれば、比較的検出感度応答性が向上するうえ、温度変化に対しても安定した検出特性が得られる。特に、誘導磁場を検出を、4つのGMR素子を含むホイートストンブリッジ回路を用いて行うことにより、GMR素子を1つのみ用いて行う場合と比べ、感度および精度をいっそう向上させることができる。

0004

但し、そのホイートストンブリッジ回路は、4つのうちの2つのGMR素子(第1および第2のGMR素子)が、残りの2つのGMR素子(第3および第4のGMR素子)と正反対の振る舞いをするように構成する必要がある。すなわち、例えば第1および第2のGMR素子におけるピンド層磁化と、第3および第4のGMR素子におけるピンド層の磁化とが正反対の向きに固定されていなければならない。また、ホイートストンブリッジ回路を構成する4つのGMR素子は、可能な限り互いに均質磁気特性を有することが望ましい。こうした事情から、本出願人は、同一ウェハ上に複数のGMR素子を一括形成し、それら複数のGMR素子を個別にウェハごと切り出したのち、それらのなかから選択された4つのGMR素子を一の基板に適切な向きとなるように配置した磁気センサを既に提案している(例えば特許文献2参照)。あるいは、第1の方向の磁場中において2つのGMR素子を堆積させたのち、第1の方向と逆方向の磁場中において残りの2つのGMR素子を堆積させるようにした磁気センサの製造方法も提案されている(例えば特許文献3参照)。さらに、例えば特許文献4には、所定方向外部磁場印加した状態で個別に加熱処理(例えばレーザパルス電子ビーム等を照射する処理)を行い、一の基板上に配置された4つのGMR素子におけるピンド層の磁化が各々適切な向きとなるようにする方法が提案されている。

先行技術

0005

米国特許第5621377号明細書
特開2008−111801号公報
特表2003−502674号公報
特表2003−502876号公報

発明が解決しようとする課題

0006

しかしながら、上述の特許文献2,3に記載された磁気センサ等では、製造過程がやや煩雑であり、生産性の面で不利である。また、上記特許文献3では、先に形成したGMR素子におけるピンド層の磁化の向きが、後に形成するGMR素子の形成時に印加される逆方向の磁場の影響を受けてしまい、所定の向きから外れてしまうおそれもある。また、特許文献4の場合には、レーザ照射装置電子ビーム照射装置などの特殊設備が必要となるうえ、やはり生産性の面で不利である。

0007

本発明はかかる問題点に鑑みてなされたもので、その第1の目的は、コンパクトな構成でありながら磁場の検出性能に優れ、かつ容易に製造可能な磁気センサを提供することにある。本発明の第2の目的は、そのような磁気センサを簡便に製造可能な磁気センサの製造方法を提供することにある。

課題を解決するための手段

0008

本発明の第1の磁気センサは、一定方向に固着された磁化を有する磁化固着層と、非磁性介在層と、信号磁場に応じて磁化の向きが変化する磁化自由層とを順にそれぞれ含むと共に、信号磁場によって互いに反対向きの抵抗変化を示す第1および第2の磁気抵抗効果素子を備える。第1および第2の磁気抵抗効果素子の双方における磁化固着層が、介在層の側から順に第1の強磁性層と、結合層と、この結合層を介して第1の強磁性層と反強磁性結合する第2の強磁性層とを含むシンセティック構造を有する。第1の磁気抵抗効果素子におけるシンセティック構造は、第1の強磁性層の総磁気モーメントが第2の強磁性層の総磁気モーメントと一致もしくは第2の強磁性層の総磁気モーメントよりも大きなものである。一方、第2の磁気抵抗効果素子におけるシンセティック構造は、第2の強磁性層の総磁気モーメントが第1の強磁性層の総磁気モーメントよりも大きなものである。ここでいう「総磁気モーメント」とは、その強磁性層を構成する材料の「単位体積あたりの磁気モーメント」と、その強磁性層の体積との積である。また「抵抗変化」とは、「抵抗値増減」を意味する。すなわち、「互いに反対向きの抵抗変化を示す」とは、信号磁場が印加された際、例えば第1の磁気抵抗効果素子の抵抗値が増加する場合には第2の磁気抵抗効果素子の抵抗値は必ず減少する関係にあることを意味する。例えば、第1の磁気抵抗効果素子における磁化固着層の磁化と、第2の磁気抵抗効果素子における磁化固着層の磁化とが、互いに逆向きとなっている。

0009

本発明の第2の磁気センサは、一定方向に固着された磁化を有する磁化固着層と、非磁性の介在層と、信号磁場に応じて磁化の向きが変化する磁化自由層とを順にそれぞれ含むと共に、信号磁場によって互いに反対向きの抵抗変化を示す第1および第2の磁気抵抗効果素子を備える。第1および第2の磁気抵抗効果素子のうちの一方における磁化固着層が、前記介在層の側から順に第1の強磁性層と、結合層と、この結合層を介して第1の強磁性層と反強磁性結合する第2の強磁性層とを含むシンセティック構造を有する。このシンセティック構造は、第2の強磁性層の総磁気モーメントが第1の強磁性層の総磁気モーメントよりも大きなものである。第1および第2の磁気抵抗効果素子のうちの他方における磁化固着層が、単一もしくは複数の強磁性材料層からなる。

0010

本発明の第3の磁気センサは、一定方向に固着された磁化を有する磁化固着層と、非磁性の介在層と、信号磁場に応じて磁化の向きが変化する磁化自由層とを順にそれぞれ有する第1から第4の磁気抵抗効果素子と、差分検出器とを備える。ここで、第1から第4の磁気抵抗効果素子の全てにおける磁化固着層が、介在層の側から順に第1の強磁性層と、結合層と、この結合層を介して第1の強磁性層と反強磁性結合する第2の強磁性層とを含むシンセティック構造を有する。第1および第3の磁気抵抗効果素子におけるシンセティック構造は、第1の強磁性層の総磁気モーメントが第2の強磁性層の総磁気モーメントと一致もしくは第2の強磁性層の総磁気モーメントよりも大きなものであり、第2および第4の磁気抵抗効果素子におけるシンセティック構造は、第2の強磁性層の総磁気モーメントが第1の強磁性層の総磁気モーメントよりも大きなものである。第1および第2の磁気抵抗効果素子の一端同士が第1の接続点において接続され、第3および第4の磁気抵抗効果素子の一端同士が第2の接続点において接続され、第1の磁気抵抗効果素子の他端と第4の磁気抵抗効果素子の他端とが第3の接続点において接続され、第2の磁気抵抗効果素子の他端と第3の磁気抵抗効果素子の他端とが第4の接続点において接続されることによりブリッジ回路が形成されている。第1および第3の磁気抵抗効果素子の各抵抗値は、信号磁場に応じて互いに同じ向きに変化し、第2および第4の磁気抵抗効果素子の各抵抗値は、いずれも、信号磁場に応じて第1および第3の磁気抵抗効果素子とは反対向きに変化する。差分検出器により、第1の接続点と第2の接続点との間に電圧が印加されたときの第3の接続点と第4の接続点の間の電位差が検出される。

0011

本発明の第4の磁気センサは、一定方向に固着された磁化を有する磁化固着層と、非磁性の介在層と、信号磁場に応じて磁化の向きが変化する磁化自由層とを順にそれぞれ有する第1から第4の磁気抵抗効果素子と、差分検出器とを備える。ここで、第2および第4の磁気抵抗効果素子における磁化固着層が、介在層の側から順に第1の強磁性層と、結合層と、この結合層を介して第1の強磁性層と反強磁性結合する第2の強磁性層とを含むシンセティック構造を有する。このシンセティック構造は、第2の強磁性層の総磁気モーメントが第1の強磁性層の総磁気モーメントよりも大きなものである。第1および第3の磁気抵抗効果素子における磁化固着層が、単一もしくは複数の強磁性材料層からなる。第1および第2の磁気抵抗効果素子の一端同士が第1の接続点において接続され、第3および第4の磁気抵抗効果素子の一端同士が第2の接続点において接続され、第1の磁気抵抗効果素子の他端と第4の磁気抵抗効果素子の他端とが第3の接続点において接続され、第2の磁気抵抗効果素子の他端と第3の磁気抵抗効果素子の他端とが第4の接続点において接続されることによりブリッジ回路が形成されている。第1および第3の磁気抵抗効果素子の各抵抗値は、信号磁場に応じて互いに同じ向きに変化し、第2および第4の磁気抵抗効果素子の各抵抗値は、いずれも、信号磁場に応じて第1および第3の磁気抵抗効果素子とは反対向きに変化する。差分検出器により、第1の接続点と第2の接続点との間に電圧が印加されたときの第3の接続点と第4の接続点の間の電位差が検出される。

0012

本発明の第1の磁気センサの製造方法は、基板上に、信号磁場に応じて磁化の向きが変化する第1の磁化自由層と、非磁性の第1の介在層と、一方向に固定された磁化を有する1の磁化固着層とを含む第1の磁気抵抗効果素子を選択的に形成する工程と、基板上における第1の磁気抵抗効果素子と離間した位置に、信号磁場に応じて磁化の向きが変化する第2の磁化自由層と、非磁性の第2の介在層と、一方向に固定された磁化を有する第2の磁化固着層とを含む第2の磁気抵抗効果素子を選択的に形成する工程と、第1および第2の磁気抵抗効果素子に対して一定方向の磁場を印加しつつ加熱することにより、第1および第2の磁化固着層における磁化の向きの設定を行う工程とを含むものである。ここで、第1および第2の磁化固着層を、第1および第2の介在層の側から順に第1の強磁性層と、結合層と、この結合層を介して第1の強磁性層と反強磁性結合する第2の強磁性層とを積層してなるシンセティック構造とし、第1の磁化固着層におけるシンセティック構造を、第1の強磁性層の総磁気モーメントが第2の強磁性層の総磁気モーメントと一致もしくは第2の強磁性層の総磁気モーメントよりも大きくなるように形成し、第2の磁化固着層におけるシンセティック構造を、第2の強磁性層の総磁気モーメントが第1の強磁性層の総磁気モーメントよりも大きくなるように形成する。

0013

本発明の第2の磁気センサの製造方法は、基板上に、信号磁場に応じて磁化の向きが変化する第1の磁化自由層と、非磁性の第1の介在層と、一方向に固定された磁化を有する第1の磁化固着層とを含む第1の磁気抵抗効果素子を選択的に形成する工程と、基板上における第1の磁気抵抗効果素子と離間した位置に、信号磁場に応じて磁化の向きが変化する第2の磁化自由層と、非磁性の第2の介在層と、一方向に固定された磁化を有する第2の磁化固着層とを含む第2の磁気抵抗効果素子を選択的に形成する工程と、これら第1および第2の磁気抵抗効果素子に対して一定方向の磁場を印加しつつ加熱することにより、第1および第2の磁化固着層における磁化の向きの設定を行う工程とを含む。第1および第2の磁化固着層のうちの一方を、第1および第2の介在層の側から順に第1の強磁性層と、結合層と、この結合層を介して第1の強磁性層と反強磁性結合する第2の強磁性層とを積層してなるシンセティック構造とし、そのシンセティック構造を、第2の強磁性層の総磁気モーメントが第1の強磁性層の総磁気モーメントよりも大きくなるように形成し、第1および第2の磁化固着層のうちの他方を、単一もしくは複数の強磁性材料層によって形成する。

0014

本発明の第1および第3の磁気センサ、ならびに第1の磁気センサの製造方法では、第1および第2の磁気抵抗効果素子の双方における磁化固着層をシンセティック構造とし、第1の磁気抵抗効果素子のシンセティック構造を、第1の強磁性層の総磁気モーメントが第2の強磁性層の総磁気モーメントと同一もしくは第2の強磁性層の総磁気モーメントよりも相対的に大きくなるように構成し、第2の磁気抵抗効果素子のシンセティック構造を、第2の強磁性層の総磁気モーメントが相対的に大きくなるように構成している。このため、外部磁場に対して第1の磁気抵抗効果素子と第2の磁気抵抗効果素子とが互いに異なる(反対の)挙動を示すこととなる。磁化固着層が上記のシンセティック構造を含むことで、例えば製造過程において一定方向の印加磁場を付与しながら熱アニール処理を行うことにより、第1の磁気抵抗効果素子の第1の強磁性層が印加磁場に沿って固着される一方、第2の磁気抵抗効果素子の第1の強磁性層が印加磁場と逆向きに固着される。

0015

本発明の第2および第4の磁気センサ、ならびに第2の磁気センサの製造方法では、第1および第2の磁気抵抗効果素子のうち、一方における磁化固着層をシンセティック構造とし、他方における磁化固着層を単一もしくは複数の強磁性材料層によって構成している。上記シンセティック構造では、第2の強磁性層の総磁気モーメントが第1の強磁性層の総磁気モーメントよりも大きくなるように構成される。このため、上記本発明の第1の磁気センサと同様に、外部磁場に対して第1の磁気抵抗効果素子と第2の磁気抵抗効果素子とが互いに異なる(反対の)挙動を示すこととなる。第1の磁気抵抗効果素子における磁化固着層が上記のシンセティック構造を含むことで、例えば製造過程において一定方向の印加磁場を付与しながら熱アニール処理を行うことにより、第1の磁気抵抗効果素子の第1の強磁性層が印加磁場と逆向きに磁化される一方、第2の磁気抵抗効果素子の単一強磁性層が印加磁場に沿って磁化される。

0016

本発明の第1の磁気センサでは、第1の磁気抵抗効果素子における第1の強磁性層の総磁気モーメントと第2の強磁性層の総磁気モーメントとの差分の絶対値は、第2の磁気抵抗効果素子における第1の強磁性層の総磁気モーメントと第2の強磁性層の総磁気モーメントとの差分の絶対値と異なっているとよい。製造過程において、第1の強磁性層と第2の強磁性層との十分な交換結合磁場を形成するのに有利となるからである。

発明の効果

0017

本発明の第1および第2の磁気センサによれば、シンセティック構造における第1の強磁性層の総磁気モーメントと第2の強磁性層の総磁気モーメントとの大小関係を調整することにより、外部磁場に対して第1の磁気抵抗効果素子と第2の磁気抵抗効果素子とが互いに異なる(反対の)挙動を示すようにしたので、第1および第2の磁気抵抗効果素子を例えばハーフブリッジ接続、あるいはフルブリッジ接続すれば、容易に製造可能、かつ、コンパクトな構成を確保しつつ、良好な磁場検出が可能なものとなる。また、本発明の第1および第2の磁気センサの製造方法によれば、上記本発明の第1および第2の磁気センサを簡便かつ高精度に製造することができる。

0018

本発明の第3および第4の磁気センサによれば、フルブリッジ接続された第1〜第4の磁気抵抗効果素子において、シンセティック構造における第1の強磁性層の総磁気モーメントと第2の強磁性層の総磁気モーメントとの大小関係を調整することにより、外部磁場に対して第1および第3の磁気抵抗効果素子と第2および第4の磁気抵抗効果素子とが互いに異なる(反対の)挙動を示すようにしたので、容易に製造可能、かつ、コンパクトな構成を確保しつつ、良好な磁場検出が可能なものとなる。

図面の簡単な説明

0019

本発明の第1の実施の形態としての磁気センサの全体構成を表す平面図である。
図1に示した磁気センサの要部構成を拡大して表す斜視図である。
図2に示した第1〜第4のMR素子に含まれる積層体積層構造を表す断面図である。
図1に示した磁気センサにおける磁場検出回路の構成を示す回路図である。
図1に示した磁気センサの製造方法を説明する一工程を表す断面図である。
図5に続く一工程を表す断面図である。
図6に続く一工程を表す平面図および断面図である。
図7に続く一工程を表す平面図および断面図である。
図8に続く一工程を表す平面図および断面図である。
図9に続く一工程を表す平面図および断面図である。
図10に続く一工程を表す平面図および断面図である。
図11に続く一工程を表す平面図および断面図である。
図12に続く一工程を表す平面図および断面図である。
図13に続く一工程を表す平面図および断面図である。
図14に続く一工程を表す平面図および断面図である。
図15に続く一工程を表す平面図および断面図である。
第2の実施の形態としての積層体の積層構造を表す断面図である。

実施例

0020

以下、本発明の実施の形態について、図面を参照して詳細に説明する。

0021

[第1の実施の形態]
最初に、図1などを参照して、本発明における第1の実施の形態としての磁気センサの構成について説明する。図1は、本実施の形態の磁気センサの全体構成を表す上面図である。また、図2は、この磁気センサの要部構成を拡大して表す斜視図である。

0022

本実施の形態の磁気センサは、基板100の上に、第1〜第4の磁気抵抗効果MR;Magneto-Resistive effect)素子1〜4、パッド51〜54、導線L1〜L6、差分検出器AMP(後出)などが設けられたものである。この磁気センサは、例えば+Y方向へ印加される信号磁場Hmの大きさを検出するものである。より具体的には、例えばX軸方向へ延在する導体(図示せず)の近傍に配置され、その導体を流れる電流によって誘導される誘導磁場を信号磁場Hmとして検出し、その電流を間接的に測定する電流センサとして用いられる。例えば、パッド51は電源Vcc(後出)と接続され、パッド52は接地され、パッド53,54は、差分検出器AMPの入力側端子とそれぞれ接続されている。

0023

基板100は、磁気センサ全体を支持する矩形状のものであり、例えば、ガラス硅素(Si)、酸化アルミニウム(Al2 O3 )またはAlTiC(Al2 O3 −TiC)などのセラミックスによって構成されている。なお、基板100を覆うように、例えば酸化硅素(SiO2 )やAl2 O3 などのセラミックスを含有する絶縁層(図示せず)を設けるようにしてもよい。

0024

第1〜第4のMR素子1〜4は、それぞれ、スピンバルブ構造を有する積層体11,21,31,41を複数(図1,2では、8つの場合を例示する)含んでいる。図1,2では、第1〜第4のMR素子1〜4が、積層体11,21,31,41を8つずつ含む場合について例示しているが、これに限定されるものではない。信号磁場Hmが印加されると、第1および第3のMR素子1,3の各抵抗値は、信号磁場Hmに応じて互いに同じ向きに変化し、第2および第4のMR素子2,4の各抵抗値は、いずれも、信号磁場Hmに応じて第1および第3のMR素子1,3とは反対向きに変化する。なお、第1〜第4のMR素子1〜4は、積層体11,21,31,41の構成を除き、他は実質的に同様の構成を有している。このため、以下では、積層体11,21,31,41の説明を除き、主に図2を参照して、第1〜第4のMR素子1〜4を代表して第1のMR素子1について説明を行う。

0025

図2に示したように、例えば第1のMR素子1では、各積層体11(11A〜11H)が、厚み方向(積層方向)において上部電極12(12A〜12H)と下部電極13(13A〜13H)との間に挟まれるように配置され、各上部電極12の一端と各下部電極13の一端とを繋いでいる。一端が積層体11と接続された上部電極12の他端は、隣の積層体11と一端が接続された下部電極13の他端と、柱状の接続部14(14A〜14H)によって接続されている。すなわち、全ての積層体11A〜11Hが、上部電極12A〜12H、下部電極13A〜13H、および接続部14A〜14Hによって直列に接続されている。第1のMR素子1の一端に位置する上部電極12Aは、積層体11Aと接続されると共に導線L1(図1参照)とも接続されている。また、第1のMR素子1の他端に位置する下部電極13Hは、積層体11Hと接続されると共に導線L2(図1参照)とも接続されている。このような構成により、導線L1から電流が供給されると、その電流は積層体11A〜11Hを順次経由して導線L2へ流れることとなる。その際、各積層体11では、上部電極12から下部電極13へ向かう方向(−Z方向)へ電流が流れる。上部電極12、下部電極13および接続部14は、いずれも、例えば銅(Cu)などの非磁性の高導電性材料によって構成されている。

0026

図1に示したように、第2〜第4のMR素子2〜4は、第1のMR素子1における上部電極12、下部電極13および接続部14の各々に対応して、それぞれ上部電極22,32,42、下部電極23,33,43および接続部24,34,44を備えている。第2のMR素子2においては、その一端に位置する上部電極22が導線L1と接続され、その他端に位置する下部電極23は導線L3と接続されている。また、第3のMR素子3においては、その一端に位置する上部電極32が導線L3と接続され、その他端に位置する下部電極33が導線L4と接続されている。さらに、第4のMR素子4においては、その一端に位置する上部電極42が導線L2と接続され、その他端に位置する下部電極43が導線L4と接続されている。また、導線L2は、導線L5を介してパッド53と接続されており、導線L3は、導線L6を介してパッド54と接続されている。

0027

導線L1〜L6は、例えば銅(Cu)などの非磁性の高導電性材料によって構成されている。導線L1,L3〜L6は、例えば上部電極12,22,32,42と同じ階層に位置し、導線L2は、例えば下部電極13,23,33,43と同じ階層に位置する。なお、例えば導線L2および導線L5は、互いに異なる階層に位置するが、それらは厚み方向において銅などからなる柱状部材(図示せず)によって繋がれている。

0028

次に、図3(A),3(B)を参照して、積層体11,21,31,41の構成を説明する。図3(A)に、積層体11,31の概略断面構成を表し、図3(B)に、積層体21,41の概略断面構成を表す。積層体11,21,31,41は、いずれも、上部電極12,22,32,42の側から、磁化自由層61と、介在層62と、磁化固着層63と、反強磁性層64とを順に有するものである。なお、磁化自由層61の、上部電極12,22,32,42側の面を覆うように保護膜を設けるようにしてもよい。また、反強磁性層64と基板100との間に、シード層を設けるようにしてもよい。

0029

磁化自由層61は、信号磁場などの外部磁場に応じて磁化方向J61が変化する軟質強磁性層であり、例えばX軸方向の磁化容易軸を有するものである。磁化自由層61は、例えばコバルト鉄合金(CoFe)、ニッケル鉄合金(NiFe)あるいはコバルト鉄硼素(CoFeB)、などによって構成される。

0030

介在層62は、例えば酸化マグネシウム(MgO)からなる非磁性のトンネルバリア層であり、量子力学に基づくトンネル電流が通過可能な程度に厚みの薄いものである。MgOからなるトンネルバリア層は、例えば、MgOからなるターゲットを用いたスパッタリング処理のほか、マグネシウム(Mg)の薄膜酸化処理、あるいは酸素雰囲気中でマグネシウムのスパッタリングを行う反応性スパッタリング処理などによって得られる。また、MgOのほか、アルミニウム(Al),タンタル(Ta),ハフニウム(Hf)の各酸化物もしくは窒化物を用いて介在層62を構成することも可能である。

0031

反強磁性層64は、白金マンガン合金(PtMn)やイリジウムマンガン合金(IrMn)などの反強磁性材料により構成されている。反強磁性層64は、例えば+Y方向のスピン磁気モーメントと、−Y方向のスピン磁気モーメントとが完全に打ち消し合った状態にあり、隣接するピンド層633の磁化J633の向きを、+Y方向または−Y方向へ固定するように作用している。

0032

磁化固着層63は、介在層62の側から順にピンド層631と、結合層632と、ピンド層633とを含むシンセティック構造をなしている。ピンド層633は、結合層632を介してピンド層631と反強磁性結合している。すなわち、ピンド層631の磁化J631の向きは、ピンド層633の磁化J633の向きと反平行となっている。但し、積層体11,31では、ピンド層631の総磁気モーメントMIPが、ピンド層633の総磁気モーメントMOP と一致もしくはそれよりも大きな値を示すものとなっている。一方、積層体21,41では、ピンド層633の総磁気モーメントMOP が、ピンド層631の総
磁気モーメントMIP よりも大きなものとなっている。ここでいう「総磁気モーメントMIP 」および「総磁気モーメントMOP 」は、それぞれ、ピンド層631,633を各々構
成する材料の「単位体積あたりの磁気モーメントMs」と、各ピンド層631,633の体積との積である。なお、図3(A),3(B)では、ピンド層631の総磁気モーメントMIPの大きさと、ピンド層633の総磁気モーメントMOPの大きさとを、磁化J631,J633の向きを示す矢印の相対的な長さによって表現している。ここで、総磁気モーメントMIPの大きさと、総磁気モーメントMOPの大きさとの差異は、ピンド層631,633を、互いに異なる材料によって構成したり、それらの厚みが互いに異なるように構成したりすることによって実現可能である。

0033

このように、ピンド層631の総磁気モーメントMIPの大きさと、ピンド層633の総磁気モーメントMOPの大きさとに差があることから、製造段階におけるアニール処理の際、例えば+Y方向に印加磁場が付与されつつ加熱されると、積層体11,31と積層体21,41とは、互いに異なった振る舞いを生じることとなる。すなわち、積層体11,31では、図3(A)に示したように、ピンド層631の磁化J631が+Y方向へ固着されると共にピンド層633の磁化J633が−Y方向へ固着される。これに対し、積層体21,41では、図3(B)に示したように、ピンド層631の磁化J631は−Y方向へ固着されると共に、ピンド層633の磁化J633は+Y方向へ固着される。このように、積層体11,31と積層体21,41とでは、ピンド層631の磁化J631の方向が互いに異なっているので、例えば+Y方向の信号磁場Hmが付与されると、積層体11,31では、磁化J61が磁化J631と平行な向きとなるので低抵抗状態となる。一方、積層体21,41では、磁化J61が磁化J631と反平行な向きとなるので高抵抗状態となる。すなわち、この磁気センサでは、信号磁場Hmが印加されると、第1および第3のMR素子1,3の抵抗値は、第2および第4のMR素子2,4の抵抗値と逆向きの変化を示す。

0034

ピンド層631,633は、コバルト(Co)やコバルト鉄合金(CoFe)、コバルト鉄ボロン合金(CoFeB)などの強磁性材料からなり、介在層62は、ルテニウム(Ru)などの非磁性の高導電性材料からなる。ピンド層631,633は、単層構造であってもよいし、複数層からなる多層構造であってもよい。

0035

なお、積層体11,31におけるピンド層631の総磁気モーメントMIP とピンド層
633の総磁気モーメントMOP との差分の絶対値は、積層体21,41におけるピンド
層631の総磁気モーメントMIP とピンド層633の総磁気モーメントMOP との差分の絶対値と異なっていることが望ましい。後に説明するように、この磁気センサを製造する際に、磁化J631,J633の方向がより高精度に固着されるうえ、積層体11,21,31,41における抵抗変化率MR比)の向上に有利となるからである。

0036

図4は、磁気センサにおける磁場検出回路の構成を示す概略図である。第1のMR素子1および第2のMR素子2の一端同士が第1の接続点P1において接続され、第3のMR素子3および第4のMR素子4の一端同士が第2の接続点P2において接続され、第1のMR素子1の他端と第4のMR素子4の他端とが第3の接続点P3において接続され、第2のMR素子2の他端と第3のMR素子3の他端とが第4の接続点P4において接続されることにより、ブリッジ回路が構成されている。ここで、第1の接続点P1は、導線L1によって電源Vccと接続されており、第2の接続点P2は、導線L4を介して接地されている。第3の接続点P3および第4の接続点P4は、それぞれ、導線L5,L6を介して差分検出器AMPの入力側端子と接続されている。この差分検出器AMPは、第1の接続点P1と第2の接続点P2との間に電圧が印加されたときの第3の接続点P3と第4の接続点P4との間の電位差(第1および第2のMR素子1,2のそれぞれに生ずる電圧降下の差分)を検出し、差分信号S1として出力するものである。

0037

次に、本実施の形態の磁気センサを使用し、差分信号S1に基づいて検出対象とする信号磁場Hmを検出する方法について以下に説明する。

0038

図4において、まず、信号磁場Hmが印加されていない状態を考える。ここで、電源Vccから読出電流I0を流したときの第1〜第4のMR素子1〜4における各々の抵抗値をr1〜r4とする。電源Vccからの読出電流I0は、第1の接続点P1において読出電流I1および読出電流I2の2つに分流される。そののち、第1のMR素子1と第3のMR素子3とを通過した読出電流I1と、第2のMR素子2と第4のMR素子4とを通過した読出電流I2とが第2の接続点P2において合流する。この場合、第1の接続点P1と第2の接続点P2との間の電位差Vは、
V=I1×r4+I1×r1=I2×r3+I2×r2
=I1×(r4+r1)=I2×(r3+r2) ……(1)
と表すことができる。
また、第3の接続点P3における電位V1および第4の接続点P4における電位V2は、それぞれ、
V1=V−V4
=V−I1×r4
V2=V−V3
=V−I2×r3
と表せる。よって、第3の接続点P3と第4の接続点P4との間の電位差V0は、
V0=V1−V2
=(V−I1×r4)−(V−I2×r3)
=I2×r3−I1×r4 ……(2)
ここで、(1)式から
V0=r3/(r3+r2)×V−r4/(r4+r1)×V
={r3/(r3+r2)−r4/(r4+r1)}×V ……(3)
となる。このブリッジ回路では、信号磁場Hmが印加されたときに、上記の式(3)で示された第3および第4の接続点P3,P4間の電圧V0を測定することにより、抵抗変化量が得られる。ここで、信号磁場Hmが印加されたときに、抵抗値r1〜r4がそれぞれ変化量ΔR1〜ΔR4だけ増加したとすると、すなわち、信号磁場Hmを印加したときの抵抗値R1〜R4がそれぞれ、
R1=r1+ΔR1
R2=r2+ΔR2
R3=r3+ΔR3
R4=r4+ΔR4
であるとすると、信号磁場Hmを印加した際の電位差V0は、式(3)より、
V0={(r3+ΔR3)/(r3+ΔR3+r2+ΔR2)−(r4+ΔR4)/(r4+ΔR4+r1+ΔR1)}×V ……(4)
となる。すでに述べたように、この磁気センサでは、第1および第3のMR素子1,3の抵抗値R1,R3と第2および第4のMR素子2,4の抵抗値R2,R4とが逆方向に変化するので、変化量ΔR3と変化量ΔR2とが打ち消し合うと共に変化量ΔR4と変化量ΔR1とが打ち消し合うこととなる。このため、信号磁場Hmの印加前後を比較した場合、式(4)の各項における分母の増加はほとんど無い。一方、各項の分子については、変化量ΔR3と変化量ΔR4とは必ず反対の符号を有するので、打ち消し合うことなく増減が現れることとなる。信号磁場Hmが印加されることにより、第2および第4のMR素子2,4では、抵抗値は変化量ΔR2,ΔR4(ΔR2,ΔR4<0)の分だけそれぞれ変化する(実質的に低下する)一方で、第1および第3のMR素子1,3では、抵抗値は変化量ΔR1,ΔR3(ΔR1,ΔR3>0)の分だけそれぞれ変化する(実質的に増加する)からである。

0039

仮に、第1〜第4のMR素子1〜4の全てが完全に同一の特性を有するものとした場合、すなわち、r1=r2=r3=r4=R、かつ、ΔR1=−ΔR2=ΔR3=−ΔR4=ΔRであるとした場合、式(4)は、
V0={(R+ΔR)/(2・R)−(R−ΔR)/(2・R)}×V
=(ΔR/R)×V ……(5)
となる。

0040

以上により、信号磁場Hmと抵抗値の変化量ΔR(もしくはΔR1〜ΔR4)との関係が既知である第1〜第4のMR素子1〜4を用いるようにすれば、式(4)または式(5)に基づき、信号磁場Hmの大きさを求めることができる。

0041

次に、図5図16を参照して、磁気センサの製造方法について説明する。なお、図5図16は、第1のMR素子1と第2のMR素子2との境界部分近傍を拡大して表すものである。また、図7(A)〜図16(A)は、上面から眺めた図であり、図7(B)〜図16(B)は、図7(A)〜図16(A)の各々に示した切断線に対応する断面図である。

0042

まず、図5に示したように、上記した所定材料からなる基板100を用意し、必要に応じてその表面に絶縁層Z1を設ける。次に、基板100または絶縁層Z1を全面に亘って覆うように、のちに下部電極13,23,33,43となる金属膜M1を、銅などの所定の材料によって形成する。さらに、金属膜M1を全面に亘って覆うように、のちに積層体11,31となるMR膜S1を形成する。MR膜S1は、例えばスパッタリング法により、金属膜M1の上に反強磁性層64、ピンド層633、結合層632、ピンド層631、介在層62および磁化自由層61を順次積層することにより得られる。但し、ピンド層631の総磁気モーメントMIP が、ピンド層633の総磁気モーメントMOP と一致もしくはそれよりも大きくなるように形成する。なお、MR膜S1を成膜する際には、所定の大きさの磁場を、例えば後述するアニール処理によってピンド層631,633の磁化J631,633が固着される方向に沿って印加するようにしてもよい。さらに、必要に応じて、MR膜S1を全面に亘って覆うように、保護膜Cとしてカーボンなどのハードマスクを形成する。

0043

こののち、図6に示したように、第1のMR素子1および第3のMR素子3が形成されることとなる領域R1のみを覆うように、レジストマスクRM1を選択的に形成する。そののち、図7(A),7(B)に示したように、領域R1における保護膜CおよびMR膜S1を残すように、露出した領域の保護膜CおよびMR膜S1をミリングによって選択的に除去する。ここでのミリングは、金属膜M1に到達した時点で終了する。

0044

続いて、レジストマスクRM1を溶解除去したのち、全面に亘って覆うように、のちに積層体21,41となるMR膜S2を形成する(図8(A),8(B)参照)。なお、MR膜S2は、例えばMR膜S1と同様の手順により形成することができる。但し、ピンド層633の総磁気モーメントMOPが、ピンド層631の総磁気モーメントMIP よりも大
きくなるように形成する点が異なる。MR膜S2を形成したのち、図9(A),9(B)に示したように、第2のMR素子2および第4のMR素子4が形成されることとなる領域R2のみを覆うように、レジストマスクRM2を選択的に形成する。そののち、図10(A),10(B)に示したように、領域R2におけるMR膜S2を残すように、露出した領域のMR膜S2をミリングによって選択的に除去する。ここでのミリングは、金属膜M1もしくは保護膜Cに到達した時点で終了する。

0045

次いで、図11(A),11(B)に示したように、レジストマスクRM2を溶解除去すると共に保護膜Cをアッシングにより除去したのち、アニール処理を行う。詳細には、例えば+Y方向に印加磁場H1を印加しつつ、所定の温度(例えば280℃)に加熱することにより、ピンド層631,633の磁化J631,633の方向の設定を一括して行う。この際、上記した総磁気モーメントMIP と総磁気モーメントMOP とのバランス(大小関係)により、MR膜S1(のちの積層体11,31)における磁化J631は+Y方向となる一方、MR膜S2(のちの積層体21,41)における磁化J631は−Y方向となる。但し、ここでの印加磁場H1は、磁化固着層63のシンセティック構造を維持可能な程度の強度、すなわちピンド層631とピンド層633との交換結合が維持される程度の強度とすることが好ましい。

0046

アニール処理ののち、MR膜S1,S2をパターニングすることにより、所定の位置に、所定の平面形状および寸法を有する柱状の積層体11,21,31,41を形成し、さらにその周囲を埋めるようにAl2 O3 などによって絶縁層Z2を形成する(図12(A),12(B)参照)。なお、図12(A),12(B)では、積層体31,41を図示していない。

0047

さらに、図13(A),13(B)に示したように、所定の位置に立設するように接続部14,24,34,44(但し、ここでは接続部34,44を図示せず)を形成したのち、図14(A),14(B)に示したように、積層体11,21,31,41および接続部14,24,34,44、ならびにその近傍領域をレジストマスクRM3によって選択的に覆い、未保護領域の金属膜M1に対するミリングを行う。その結果、下部電極13,23,33,43、および導線L2を得る。

0048

こののち、図15(A),15(B)に示したように、ミリングによって金属膜M1を除去した領域を埋めるようにAl2 O3 などによって絶縁層Z3を形成したのち、レジストマスクRM3を溶解除去する。

0049

続いて、図16(A),16(B)に示したように、積層体11,21,31,41および接続部14,24,34,44の上面と接するように所定形状の上部電極12,22,32,42(ここでは上部電極12,22のみ図示する)を形成すると共に、導線L1,L3〜L6(ここでは導線L3のみ図示する)を形成する。最後に、パッド51〜54を形成するなど、所定の工程を経ることで本実施の形態の磁気センサが完成する。

0050

以上説明したように、本実施の形態によれば、シンセティック構造をなす磁化固着層63におけるピンド層631の総磁気モーメントMIP とピンド層633の総磁気モーメン
トMOP との大小関係を調整することにより、印加磁場H1に対して第1および第3のM
R素子1,3と第2および第4のMR素子2,4とが互いに異なる(反対の)挙動を示すような構成とした。このため、同一基板上においてフルブリッジ接続された第1〜第4のMR素子1〜4からなる磁場検出回路を、容易、かつ高精度に製造することが可能となる。これは、磁気センサが、レーザ照射装置や電子ビーム照射装置などの特殊設備を用いなくとも製造可能であるうえ、アニール処理の際、一方向の印加磁場H1を付与することにより、磁化固着層63の磁化方向を設定することができるからである。そのような磁場検出回路を備えた磁気センサは、コンパクトな構成でありながら、信号磁場Hmに対し、第1および第3のMR素子1,3の抵抗値と第2および第4のMR素子2,4の抵抗値とが互いに反対向きに変化することにより、良好な磁場検出を可能とするものである。

0051

<変形例1>
次に、本実施の形態における磁気センサの第1の変形例について説明する。上記実施の形態では、第1〜第4のMR素子1〜4における積層体11,21,31,41の磁化固着層63を全てシンセティック構造としたが、次のようにしてもよい。すなわち、第1および第3のMR素子1,3における磁化固着層63を、シンセティック構造ではなく、単一もしくは複数の強磁性材料層によって構成してもよい。その際、第2および第4のMR素子2,4は、上記実施の形態と同様のシンセティック構造とする。すなわち、ピンド層633の総磁気モーメントMOP がピンド層631の総磁気モーメントMIP よりも大きくなるようにする。

0052

このような構成の本変形例においても、上記実施の形態と同様、製造段階において一方向の印加磁場H1を付与しつつ加熱することにより、第1および第3のMR素子1,3における磁化J631の向きと、第2および第4のMR素子2,4における磁化J631の向きとを相対的に逆平行とすることができる。よって、上記実施の形態と同様の効果が得られる。但し、本変形例では、ピンド層631とピンド層633との交換結合が維持される程度の強度を有する印加磁場H1のかわりに、ピンド層631とピンド層633との交換結合磁場よりも大きな印加磁場H2を印加するようにしてもよい。

0053

<変形例2>
次に、本実施の形態における磁気センサの第2の変形例について説明する。上記実施の形態では、一度のアニール処理によって、第1〜第4のMR素子1〜4における全てのピンド層631,633の磁化J631,633の方向を一括して設定するようにしたが、本変形例では、第1および第3のMR素子1,3のアニール処理と、第2および第4のMR素子2,4のアニール処理とを順次行うものである。

0054

ピンド層631,633を構成する材料組成の組み合わせによっては、ピンド層631の総磁気モーメントMIPと、ピンド層633の総磁気モーメントMOPとの差分の絶対値を小さくすることができる。しかしながら、そのような組み合わせの場合、シンセティック構造が維持されるような弱い印加磁場H1を付与して加熱しただけではピンド層631,633が十分に着磁されず、磁化J631,633の方向にばらつきが生じ、結果として十分なMR比が得られにくい。そこで、本変形例では、先に、上記のような総磁気モーメントの差分の絶対値が小さなシンセティック構造を含むMR膜を先に成膜したのち、ピンド層631とピンド層633との交換結合磁場よりも大きな印加磁場H2を用いたアニール処理を行う。次いで、総磁気モーメントの差分の絶対値が比較的大きなシンセティック構造を含むMR膜を成膜し、ピンド層631とピンド層633との交換結合を維持可能な印加磁場H1を用いて再度アニール処理を行う。より具体的には、例えば、図5に示したようにMR膜S1を形成したのち、このMR膜S1を選択的に除去する(図7(A),7(B)に示した工程の)前にMR膜S1に対して+Y方向へ印加磁場H2を印加しつつ所定時間に亘って加熱する。そののち、印加磁場H2を印加した状態のまま室温まで降温する。降温したのち、印加磁場H2の印加を停止する。この段階でMR膜S1におけるピンド層631の磁化J631とピンド層633の磁化J633とは、互いに反平行の状態に戻る。次に、MR膜S2を成膜したのち、MR膜S2に対してシンセティック構造が維持されるような弱い印加磁場H1を−Y方向へ印加しつつ所定時間に亘って加熱する。そののち、印加磁場H1を印加した状態のまま室温まで降温する。これにより、MR膜S2の磁化固着層63も十分に着磁される。この際、先に成膜したMR膜S1における磁化固着層63は、印加磁場H1による大きな影響を受けず、磁化J631および磁化J633の向きは良好に維持される。ここでは印加磁場H1および印加磁場H2を印加した状態のまま室温まで降温するようにしたが、十分に安定した磁化J631および磁化J633の向きが得られるのであれば、室温まで温度が低下する前に印加磁場H1および印加磁場H2の印加を停止してもよい。なお、上記特許文献3では、MR膜を成膜する際に磁場を印加しているが、本変形例ではMR膜S1,S2の成膜後に所定の大きさの印加磁場H2、H1をそれぞれ所定の方向へ印加するようにしている。このため、本変形例では、上記特許文献3の場合と比較して、ピンド層の磁化の向きをより高精度に、かつ、より強固に設定することができる。

0055

このように本変形例では、2段階のアニール処理を行うようにしたので、総磁気モーメントの差分の絶対値が極めて小さな磁化固着層63であっても、十分に着磁することができる。

0056

[第2の実施の形態]
次に、図17などを参照して、本発明における第2の実施の形態としての磁気センサの構成について説明する。本実施の形態の磁気センサは、第1〜第4のMR素子1〜4が、それぞれ積層体11A,21A,31A,41Aを複数含むようにしたものである。それ以外の点については、第1〜第4のMR素子1〜4は上記第1の実施の形態と同様の構成を備える。なお、本実施の形態において、上記第1の実施の形態と実質的に同じ構成要素については同じ符号を付し、その説明を適宜省略する。

0057

図17(A)は、積層体11A,31Aの断面構成を表す模式図であり、図17(B)は、積層体21A,41Aの断面構成を表す模式図である。

0058

積層体11A,21A,31A,41Aは、反強磁性層64と、磁化固着層63Aと、介在層62と、磁化自由層61Aとが順に積層されたものである。磁化固着層63Aは、ピンド層631とピンド層633とが結合層632を介して反強磁性的に交換結合したシンセティック構造からなる。なお、ピンド層631とピンド層633との総磁気モーメントの差分は実質的にとなっている。あるいは、必要に応じてその差分を適宜設定してもよい。なお、磁化固着層63Aは、上記のようなシンセティック構造に限定されるものではなく、単一もしくは複数の強磁性材料層からなる構造であってもよい。

0059

磁化自由層61Aは、介在層62の側から順に強磁性層611と、結合層612と、強磁性層613とを含んでいる。強磁性層611および強磁性層613は、結合層612を介して反強磁性結合しており、いずれもNiFeやCoFeなどの軟質磁性材料によって構成されている。強磁性層611,613は、単層構造であってもよいし、複数層からなる多層構造であってもよい。結合層612は、結合層632と同様、非磁性の高導電性材料によって構成されている。積層体11A,31Aにおいては、強磁性層611が、強磁性層613と同じ、もしくは強磁性層613よりも大きな総磁気モーメントを有している。一方、積層体21A,41Aにおいては、強磁性層613が、強磁性層611よりも大きな総磁気モーメントを有している。このため、例えば+Y方向に信号磁場Hmが付与されると、積層体11A,31Aでは、図17(A)に示したように、相対的に大きな総磁気モーメントを有する強磁性層611の磁化J611が信号磁場Hmと同方向(+Y方向)へ向くこととなる。よって、相対的に小さな総磁気モーメントを有する強磁性層613の磁化J613は、それと反対方向(−Y方向)へ向くこととなる。一方、積層体21A,41Aでは、図17(B)に示したように、相対的に大きな総磁気モーメントを有する強磁性層613の磁化J613が信号磁場Hmと同方向(+Y方向)へ向く。よって、相対的に小さな総磁気モーメントを有する強磁性層611の磁化J611は、それと反対方向(−Y方向)へ向く。ここで、各積層体の抵抗状態は磁化J611と磁化J631との相対角度に依存するので、ピンド層631の磁化J631の向きが+Y方向であるとすれば、積層体11A,31Aでは低抵抗状態となり、積層体21A,41Aでは高抵抗状態となる。したがって、このような積層体11A,21A,31A,41Aを備えた本実施の形態の磁気センサにおいても、上記第1の実施の形態における磁気センサと同様に機能する。

0060

このように、本実施の形態では、第1および第3のMR素子1,3における積層体11A,31Aと、第2および第4のMR素子2,4における積層体21A,41Aとを、信号磁場Hmに対して互いに異なる挙動を示すものとしたので、上記第1の実施の形態と同様の効果が得られる。なお、本実施の形態では、磁化固着層63をシンセティック構造としたが、単一もしくは複数の強磁性材料層によって形成するようにしてもよい。

0061

<変形例3>
次に、第2の実施の形態における磁気センサの変形例(変形例3)について説明する。第2の実施の形態では、第1〜第4のMR素子1〜4における積層体11A,21A,31A,41Aの磁化自由層61を全てシンセティック構造としたが、次のようにしてもよい。すなわち、第1および第3のMR素子1,3における磁化自由層61を、シンセティック構造ではなく、単一もしくは複数の強磁性材料層によって構成してもよい。その際、第2および第4のMR素子2,4の磁化自由層61を、第2の実施の形態と同様のシンセティック構造とする。すなわち、強磁性層613の総磁気モーメントが強磁性層611の総磁気モーメントよりも大きくなるようにする。

0062

このような構成の本変形例においても、第1および第3のMR素子1,3における積層体11A,31Aと、第2および第4のMR素子2,4における積層体21A,41Aとが、信号磁場Hmに対して互いに異なる挙動を示すので、上記実施の形態と同様の効果が得られる。

0063

以上、いくつかの実施の形態および変形例を挙げて本発明を説明したが、本発明はこれらの実施の形態等に限定されるものではなく、種々の変形が可能である。例えば、上記実施の形態等では、4つのMR素子を含む検出回路(フルブリッジ回路)を用いて信号磁場の検出を行う場合について説明したが、本発明はこれに限定されるものではない。例えば信号磁場によって互いに反対向きの抵抗変化を示す第1および第2のMR素子を備えた検出回路(いわゆるハーフブリッジ回路)を用いて信号磁場の検出を行うようにしてもよい。

0064

また、上記実施の形態等では、MR素子としてトンネルMR素子を例に挙げて説明するようにしたが、本発明はこれに限定されるものではなく、例えばCPP型のGMR素子を採用することもできる。その場合、介在層を、トンネルバリア層ではなく、例えば銅(Cu)や金(Au)、あるいはクロム(Cr)などの高導電性非磁性材料層とする必要がある。

0065

また、上記実施の形態等では、磁気センサとして一定方向へ印加される信号磁場の大きさを検出するものを例に挙げて説明したが、本発明はこれに限定されるものではない。本発明の磁気センサは、例えば、ある回転面(MR素子の積層面に平行な面)において回転する信号磁場の向きを検出する角度センサとして利用することもできる。この場合、信号磁場の大きさが一定であれば、信号磁場の印加方向と各MR素子における磁化固着層の磁化の向きとの相対角度に応じて抵抗変化量が変化するので、その関係を利用することにより信号磁場の回転角が求められる。

0066

100…基板、1〜4…第1〜第4のMR素子、11,21,31,41…積層体、12,22,32,42…上部電極、13,23,33,43…下部電極、14,24,34,44…接続部、61…磁化自由層、611,613…強磁性層、612…結合層、62…介在層、63…磁化固着層、631,633…ピンド層、632…結合層、64…反強磁性層、Hm…信号磁場、H1…印加磁場、L1〜L6…導線、P1〜P4…接続部。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • パナソニックIPマネジメント株式会社の「 磁気抵抗素子およびその製造方法」が 公開されました。( 2020/10/29)

    【課題】本発明は、生産性を向上させることが可能になる磁気抵抗素子およびその製造方法を提供することを目的とする。【解決手段】本発明の磁気抵抗素子は、絶縁基板11と、前記絶縁基板11の上面の両端部に設けら... 詳細

  • 日本電産株式会社の「 モータ」が 公開されました。( 2020/10/29)

    【課題】外部磁場によって生ずる磁気センサの出力電圧のオフセットを除去する。【解決手段】開示される実施形態に係るモータは、ロータの回転位置を検出する第1の磁気センサと、第1の磁気センサに対して所定の機械... 詳細

  • 日本電産株式会社の「 モータ」が 公開されました。( 2020/10/29)

    【課題】外部磁場によって生ずる磁気センサの出力電圧のオフセットを除去する。【解決手段】開示される実施形態に係るモータは、ロータの回転位置を検出する第1の磁気センサと、極対数をNとしたときに、第1の磁気... 詳細

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ