図面 (/)

技術 赤色蛍光体の製造方法

出願人 デクセリアルズ株式会社
発明者 菅野正輝伊澤孝昌楠木常夫
出願日 2011年12月1日 (8年3ヶ月経過) 出願番号 2011-263327
公開日 2012年12月27日 (7年2ヶ月経過) 公開番号 2012-255133
状態 特許登録済
技術分野 液晶4(光学部材との組合せ) 発光性組成物 発光ダイオード LED素子のパッケージ
主要キーワード 特殊設備 X線解析 メラミン量 最大ピーク高 原料使用量 窒素ガス濃度 空間点 炭素含有還元剤
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2012年12月27日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題

生産性を向上させることができる赤色蛍光体の製造方法であり、発光特性が良好な赤色蛍光体、並びにこの赤色蛍光体を用いた白色光源照明装置、及び液晶表示装置を提供する。

解決手段

元素A、ユーロピウム(Eu)、シリコン(Si)、アルミニウム(Al)及び炭素(C)が、下記組成式(1)の原子数比となるように、元素A含有化合物窒素非含有ユーロピウムシリコン含有化合物アルミニウム含有化合物及び炭素含有還元剤を混合して混合物を生成し、前記混合物の焼成と、当該焼成によって得られた焼成物粉砕とを行う。ただし、組成式(1)中の元素Aは、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、またはバリウム(Ba)の少なくとも1つであり、組成式(1)中のm、x、z、nは、3<m<5、0<x<1、0≦y<2、0<z<1、0<n<10なる関係を満たす。

概要

背景

近年、高色域バックライト高演色性LED(Light Emitting Diode)などの用途に青色LED励起により赤色発光する赤色蛍光体ニーズが高まっており、化学的に安定で高効率である窒化物赤色蛍光体の開発が行われている。

例えば、特許文献1には、ユーロピウム(Eu)の供給源として窒化ユーロピウム(EuN)を用いて、ユーロピウム(Eu)、シリコン(Si)、酸素(O)、及び窒素(N)を含有する赤色蛍光体を作製することが記載されている。

概要

生産性を向上させることができる赤色蛍光体の製造方法であり、発光特性が良好な赤色蛍光体、並びにこの赤色蛍光体を用いた白色光源照明装置、及び液晶表示装置を提供する。元素A、ユーロピウム(Eu)、シリコン(Si)、アルミニウム(Al)及び炭素(C)が、下記組成式(1)の原子数比となるように、元素A含有化合物窒素非含有ユーロピウムシリコン含有化合物アルミニウム含有化合物及び炭素含有還元剤を混合して混合物を生成し、前記混合物の焼成と、当該焼成によって得られた焼成物粉砕とを行う。ただし、組成式(1)中の元素Aは、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、またはバリウム(Ba)の少なくとも1つであり、組成式(1)中のm、x、z、nは、3<m<5、0<x<1、0≦y<2、0<z<1、0<n<10なる関係を満たす。

目的

本発明は、このような実情に鑑みてなされたものであり、生産性を向上させることができる赤色蛍光体の製造方法を提供する

効果

実績

技術文献被引用数
0件
牽制数
1件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

元素A、ユーロピウム(Eu)、シリコン(Si)、アルミニウム(Al)及び炭素(C)が、下記組成式(1)の原子数比となるように、元素A含有化合物窒素非含有ユーロピウムシリコン含有化合物アルミニウム含有化合物及び炭素含有還元剤を混合して混合物を生成し、前記混合物の焼成と、当該焼成によって得られた焼成物粉砕とを行う赤色蛍光体の製造方法。ただし、組成式(1)中の元素Aは、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、又はバリウム(Ba)の少なくとも1つであり、組成式(1)中のm、x、z、nは、3<m<5、0<x<1、0≦y<2、0<z<1、0<n<10なる関係を満たす。

請求項2

前記窒素非含有ユーロピウムは、酸化ユーロピウム酢酸ユーロピウム、又は炭酸ユーロピウムの少なくとも1つであり、元素Aの炭酸化合物、窒素非含有ユーロピウム、窒化シリコン窒化アルミニウム及び炭素含有還元剤を混合して混合物を生成する請求項1記載の赤色蛍光体の製造方法。

請求項3

前記混合物を湿式法により生成する請求項2記載の赤色蛍光体の製造方法。

請求項4

前記炭素含有還元剤は、メラミンであり、元素Aの炭酸化合物、窒素非含有ユーロピウム、窒化シリコン、及び窒化アルミニウムの全モル数に対して、前記メラミンを65%以下添加する請求項3記載の赤色蛍光体の製造方法。

請求項5

前記焼成は、常圧で行われる請求項4記載の赤色蛍光体の製造方法。

請求項6

前記焼成は、H2ガス濃度が4%以下の雰囲気で行われる請求項5記載の赤色蛍光体の製造方法。

請求項7

前記焼成は、1400℃以上1800℃以下の温度範囲で行われる請求項6記載の赤色蛍光体の製造方法。

請求項8

元素(A)、ユーロピウム(Eu)、シリコン(Si)、アルミニウム(Al)及び炭素(C)が、下記組成式(1)の原子数比となるように、元素(A)、窒素非含有ユーロピウム、シリコン含有化合物、アルミニウム含有化合物及び炭素含有還元剤を混合して混合物を生成し、前記混合物の焼成と、該焼成によって得られた焼成物の粉砕とを行うことで得られ、X線回折パターンにおいて、回折角が36°〜36.6°の位置に存在するピークの強度が、回折角が35°〜36°の位置に存在するピークの強度の0.65倍以上を示す赤色蛍光体。ただし、組成式(1)中の元素Aは、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、又はバリウム(Ba)の少なくとも1つであり、組成式(1)中のm、x、z、nは、3<m<5、0<x<1、0≦y<2、0<z<1、0<n<10なる関係を満たす。

請求項9

前記組成式(1)中、z≦0.072を満たす請求項8記載の赤色蛍光体。

請求項10

PLE(Photoluminescence Excitation)スペクトルにおいて、励起波長400nmの発光強度を1としたときにおける励起波長550nmの発光強度の相対値が0.48以上である請求項8又は9に記載の赤色蛍光体。

請求項11

前記組成式(1)中、0.05≦x≦0.15を満たす請求項8乃至10のいずれか1項に記載の赤色蛍光体。

請求項12

素子基板上に形成された青色発光ダイオードと、前記青色発光ダイオード上に配置されていて赤色蛍光体と緑色蛍光体もしくは黄色蛍光体とを透明樹脂混練した混練物とを有し、前記赤色蛍光体は、元素(A)、ユーロピウム(Eu)、シリコン(Si)、アルミニウム(Al)及び炭素(C)が、下記組成式(1)の原子数比となるように、元素(A)、窒素非含有ユーロピウム、シリコン含有化合物、アルミニウム含有化合物及び炭素含有還元剤を混合して混合物を生成し、前記混合物の焼成と、該焼成によって得られた焼成物の粉砕とを行うことで得られ、X線回折パターンにおいて、回折角が36°〜36.6°の位置に存在するピークの強度が、回折角が35°〜36°の位置に存在するピークの強度の0.65倍以上を示す白色光源。ただし、組成式(1)中の元素Aは、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、又はバリウム(Ba)の少なくとも1つであり、組成式(1)中のm、x、z、nは、3<m<5、0<x<1、0≦y<2、0<z<1、0<n<10なる関係を満たす。

請求項13

照明基板上に複数の白色光源が配置され、前記白色光源は、素子基板上に形成された青色発光ダイオードと、前記青色発光ダイオード上に配置されていて赤色蛍光体と緑色蛍光体もしくは黄色蛍光体を透明樹脂に混練した混練物を有し、前記赤色蛍光体は、元素(A)、ユーロピウム(Eu)、シリコン(Si)、アルミニウム(Al)及び炭素(C)が、下記組成式(1)の原子数比となるように、元素(A)、窒素非含有ユーロピウム、シリコン含有化合物、アルミニウム含有化合物及び炭素含有還元剤を混合して混合物を生成し、前記混合物の焼成と、該焼成によって得られた焼成物の粉砕とを行うことで得られ、X線回折パターンにおいて、回折角が36°〜36.6°の位置に存在するピークの強度が、回折角が35°〜36°の位置に存在するピークの強度の0.65倍以上を示す照明装置。ただし、組成式(1)中の元素Aは、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、又はバリウム(Ba)の少なくとも1つであり、組成式(1)中のm、x、z、nは、3<m<5、0<x<1、0≦y<2、0<z<1、0<n<10なる関係を満たす。

請求項14

液晶表示パネルと、前記液晶表示パネルを照明する複数の白色光源を用いたバックライトとを有し、前記白色光源は、素子基板上に形成された青色発光ダイオードと、前記青色発光ダイオード上に配置されていて赤色蛍光体と緑色蛍光体もしくは黄色蛍光体を透明樹脂に混練した混練物を有し、前記赤色蛍光体は、元素(A)、ユーロピウム(Eu)、シリコン(Si)、アルミニウム(Al)及び炭素(C)が、下記組成式(1)の原子数比となるように、元素(A)、窒素非含有ユーロピウム、シリコン含有化合物、アルミニウム含有化合物及び炭素含有還元剤を混合して混合物を生成し、前記混合物の焼成と、該焼成によって得られた焼成物の粉砕とを行うことで得られ、X線回折パターンにおいて、回折角が36°〜36.6°の位置に存在するピークの強度が、回折角が35°〜36°の位置に存在するピークの強度の0.65倍以上を示す液晶表示装置。ただし、組成式(1)中の元素Aは、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、又はバリウム(Ba)の少なくとも1つであり、組成式(1)中のm、x、z、nは、3<m<5、0<x<1、0≦y<2、0<z<1、0<n<10なる関係を満たす。

技術分野

0001

本発明は、赤色波長帯(例えば、620nm〜770nmの波長帯)に発光ピーク波長を有する赤色蛍光体の製造方法に関する。

背景技術

0002

近年、高色域バックライト高演色性LED(Light Emitting Diode)などの用途に青色LED励起により赤色発光する赤色蛍光体のニーズが高まっており、化学的に安定で高効率である窒化物赤色蛍光体の開発が行われている。

0003

例えば、特許文献1には、ユーロピウム(Eu)の供給源として窒化ユーロピウム(EuN)を用いて、ユーロピウム(Eu)、シリコン(Si)、酸素(O)、及び窒素(N)を含有する赤色蛍光体を作製することが記載されている。

先行技術

0004

特開2011−1530号公報

発明が解決しようとする課題

0005

しかしながら、特許文献1の技術では、各原料を混合する際、乾式法による混合(乳鉢による粉砕混合)が行われるため、混合物内に組成ムラが生じ易く、生産性を向上させるのが困難であった。

0006

本発明は、このような実情に鑑みてなされたものであり、生産性を向上させることができる赤色蛍光体の製造方法を提供することを目的とする。

0007

また、本発明は、発光特性が良好な赤色蛍光体、並びにこの赤色蛍光体を用いた白色光源照明装置、及び液晶表示装置を提供することを目的とする。

課題を解決するための手段

0008

前述した課題を解決するために、本発明に係る赤色蛍光体の製造方法は、元素A、ユーロピウム(Eu)、シリコン(Si)、アルミニウム(Al)及び炭素(C)が、下記組成式(1)の原子数比となるように、元素Aの炭酸化合物窒素非含有ユーロピウム窒化シリコン窒化アルミニウム及び炭素含有還元剤を混合して混合物を生成し、前記混合物の焼成と、当該焼成によって得られた焼成物粉砕とを行うことを特徴とする。

0009

0010

ただし、組成式(1)中の元素Aは、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、又はバリウム(Ba)の少なくとも1つであり、組成式(1)中のm、x、z、nは、3<m<5、0≦y<2、0<x<1、0<z<1、0<n<10なる関係を満たす。

0011

また、本発明に係る赤色蛍光体は、元素(A)、ユーロピウム(Eu)、シリコン(Si)、アルミニウム(Al)及び炭素(C)が、前記組成式(1)の原子数比となるように、元素(A)、窒素非含有ユーロピウム、シリコン含有化合物アルミニウム含有化合物及び炭素含有還元剤を混合して混合物を生成し、前記混合物の焼成と、該焼成によって得られた焼成物の粉砕とを行うことで得られ、X線回折パターンにおいて、回折角が36°〜36.6°の位置に存在するピークの強度が、回折角が35°〜36°の位置に存在するピークの強度の0.65倍以上を示すことを特徴とする。

0012

また、本発明に係る白色光源は、素子基板上に形成された青色発光ダイオードと、前記青色発光ダイオード上に配置されていて赤色蛍光体と緑色蛍光体もしくは黄色蛍光体とを透明樹脂混練した混練物とを有し、前記赤色蛍光体は、元素(A)、ユーロピウム(Eu)、シリコン(Si)、アルミニウム(Al)及び炭素(C)が、前記組成式(1)の原子数比となるように、元素(A)、窒素非含有ユーロピウム、シリコン含有化合物、アルミニウム含有化合物及び炭素含有還元剤を混合して混合物を生成し、前記混合物の焼成と、該焼成によって得られた焼成物の粉砕とを行うことで得られ、X線回折パターンにおいて、回折角が36°〜36.6°の位置に存在するピークの強度が、回折角が35°〜36°の位置に存在するピークの強度の0.65倍以上を示すことを特徴とする。

0013

また、本発明に係る照明装置は、照明基板上に複数の白色光源が配置され、前記白色光源は、素子基板上に形成された青色発光ダイオードと、前記青色発光ダイオード上に配置されていて赤色蛍光体と緑色蛍光体もしくは黄色蛍光体を透明樹脂に混練した混練物を有し、前記赤色蛍光体は、元素(A)、ユーロピウム(Eu)、シリコン(Si)、アルミニウム(Al)及び炭素(C)が、前記組成式(1)の原子数比となるように、元素(A)、窒素非含有ユーロピウム、シリコン含有化合物、アルミニウム含有化合物及び炭素含有還元剤を混合して混合物を生成し、前記混合物の焼成と、該焼成によって得られた焼成物の粉砕とを行うことで得られ、X線回折パターンにおいて、回折角が36°〜36.6°の位置に存在するピークの強度が、回折角が35°〜36°の位置に存在するピークの強度の0.65倍以上を示すことを特徴とする。

0014

また、本発明に係る液晶表示装置は、液晶表示パネルと、前記液晶表示パネルを照明する複数の白色光源を用いたバックライトとを有し、前記白色光源は、素子基板上に形成された青色発光ダイオードと、前記青色発光ダイオード上に配置されていて赤色蛍光体と緑色蛍光体もしくは黄色蛍光体を透明樹脂に混練した混練物を有し、前記赤色蛍光体は、元素(A)、ユーロピウム(Eu)、シリコン(Si)、アルミニウム(Al)及び炭素(C)が、前記組成式(1)の原子数比となるように、元素(A)、窒素非含有ユーロピウム、シリコン含有化合物、アルミニウム含有化合物及び炭素含有還元剤を混合して混合物を生成し、前記混合物の焼成と、該焼成によって得られた焼成物の粉砕とを行うことで得られ、X線回折パターンにおいて、回折角が36°〜36.6°の位置に存在するピークの強度が、回折角が35°〜36°の位置に存在するピークの強度の0.65倍以上を示すことを特徴とする。

発明の効果

0015

本発明は、ユーロピウムの供給源として窒素非含有ユーロピウムを用いるため、湿式法による混合が可能となり、混合物の組成ムラを防ぎ、生産性を向上させることができる。

0016

また、本発明は、特定のX線回折パターンを示す結晶構造を有するため、優れた発光特性を得ることができる。

図面の簡単な説明

0017

従来における赤色蛍光体の製造方法を示すフローチャートである。
本発明の一実施の形態に係る赤色蛍光体の製造方法を示すフローチャートである。
本発明の一実施の形態に係る白色光源を示す概略断面図である。
本発明の一実施の形態に係る照明装置を示す概略平面図である。
本発明の一実施の形態に係る液晶表示装置を示す概略構成図である。
赤色蛍光体の製造方法の具体例(常圧2段階焼成)を示すフローチャートである。
赤色蛍光体の製造方法の具体例(加圧2段階焼成)を示すフローチャートである。
ユーロピウムの供給源として、Eu2O3、Eu(CH3COO)3・nH2O、Eu2(CO3)3、又はEuNを用いて作製された各赤色蛍光体ピーク強度比YAG基準)を示すグラフである。
ユーロピウムの供給源として、Eu2O3、Eu(CH3COO)3・nH2O、Eu2(CO3)3、又はEuNを用いて作製された各赤色蛍光体の内部量子効率を示すグラフである。
湿式混合又は乾式混合によって作製された各赤色蛍光体のピーク強度比(YAG基準)を示すグラフである。
湿式混合又は乾式混合によって作製された各赤色蛍光体の内部量子効率を示すグラフである。
加圧焼成又は常圧焼成によって作製された各赤色蛍光体のピーク強度比(YAG基準を示すグラフである。
加圧焼成又は常圧焼成によって作製された各赤色蛍光体の内部量子効率を示すグラフである。
次焼成時のH2ガス濃度をそれぞれ4%、50%、又は75%としたときの各赤色蛍光体のピーク強度比を示すグラフである。
赤色蛍光体の製造方法の具体例(常圧1段階焼成)を示すフローチャートである。
加圧2段階焼成、常圧2段階焼成、又は常圧1段階焼成によって作製された各赤色蛍光体のピーク強度比(YAG基準)を示すグラフである。
加圧2段階焼成、常圧2段階焼成、又は常圧1段階焼成によって作製された各赤色蛍光体の内部量子効率を示すグラフである。
焼成温度をそれぞれ1500℃、1600℃、1700℃、1750℃、又は1800℃として作製された各赤色蛍光体のピーク強度比(YAG基準)を示すグラフである。
焼成温度をそれぞれ1500℃、1600℃、1700℃、1750℃、又は1800℃として作製された各赤色蛍光体における最大のピーク強度比(YAG基準)を示すグラフである。
赤色蛍光体の製造方法の具体例(窒素雰囲気常圧2段階焼成)を示すフローチャートである。
赤色蛍光体の発光励起スペクトルである。
メラミン量に対する赤色蛍光体のピーク強度比(YAG基準)を示すグラフである。
メラミン量に対する赤色蛍光体の内部量子効率を示すグラフである。
メラミン添加量を変化させたときの各赤色蛍光体(サンプル1)の発光スペクトルを示す図である。
メラミン添加量を変化させたときの各赤色蛍光体(サンプル1)のXRDスペクトルについて、回折角が35°〜36°の位置に存在するピーク強度規格化したスペクトルを示す図である。
メラミン添加量を変化させたときの各赤色蛍光体(サンプル1)のXRDスペクトルについて、回折角が35.0°〜36.0°の位置に存在するピーク強度に対する各回折角でのピーク強度の回折ピーク強度比を示すグラフである。
メラミン添加量を変化させたときの各赤色蛍光体(サンプル1)のXRDスペクトルについて、回折角が35.0°〜36.0°の位置に存在するピーク強度に対する回折角が36.0°〜36.6°の位置に存在するピーク強度の回折ピークの強度比と、発光ピークの強度比(YAG基準)との関係を示す図である。
メラミン添加量を変化させたときの各赤色蛍光体(サンプル2)の発光スペクトルを示す図である。
メラミン添加量を変化させたときの各赤色蛍光体(サンプル2)のXRDスペクトルについて、回折角が35°〜36°の位置に存在するピーク強度で規格化したスペクトルを示す図である。
メラミン添加量を変化させたときの各赤色蛍光体(サンプル2)のXRDスペクトルについて、回折角が35.0°〜36.0°の位置に存在するピーク強度に対する各回折角でのピーク強度の回折ピークの強度比を示すグラフである。
メラミン添加量を変化させたときの各赤色蛍光体(サンプル2)のXRDスペクトルについて、回折角が35.0°〜36.0°の位置に存在するピーク強度に対する回折角が36.0°〜36.6°の位置に存在するピーク強度の回折ピークの強度比と、発光ピークの強度比(YAG基準)との関係を示す図である。
メラミン添加量を変化させたときの各赤色蛍光体(サンプル3)の発光スペクトルを示す図である。
メラミン添加量を変化させたときの各赤色蛍光体(サンプル3)のXRDスペクトルについて、回折角が35°〜36°の位置に存在するピーク強度で規格化したスペクトルを示す図である。
メラミン添加量を変化させたときの各赤色蛍光体(サンプル3)のXRDスペクトルについて、回折角が35.0°〜36.0°の位置に存在するピーク強度に対する各回折角でのピーク強度の回折ピークの強度比を示すグラフである。
メラミン添加量を変化させたときの各赤色蛍光体(サンプル3)のXRDスペクトルについて、回折角が35.0°〜36.0°の位置に存在するピーク強度に対する回折角が36.0°〜36.6°の位置に存在するピーク強度の回折ピークの強度比と、発光ピークの強度比(YAG基準)との関係を示す図である。
メラミン添加量を変化させたときの各赤色蛍光体(サンプル4)の発光スペクトルを示す図である。
メラミン添加量を変化させたときの各赤色蛍光体(サンプル4)のXRDスペクトルについて、回折角が35°〜36°の位置に存在するピーク強度で規格化したスペクトルを示す図である。
メラミン添加量を変化させたときの各赤色蛍光体(サンプル4)のXRDスペクトルについて、回折角が35.0°〜36.0°の位置に存在するピーク強度に対する各回折角でのピーク強度の回折ピークの強度比を示すグラフである。
メラミン添加量を変化させたときの各赤色蛍光体(サンプル4)のXRDスペクトルについて、回折角が35.0°〜36.0°の位置に存在するピーク強度に対する回折角が36.0°〜36.6°の位置に存在するピーク強度の回折ピークの強度比と、発光ピークの強度比(YAG基準)との関係を示す図である。
実施例1の赤色蛍光体のXRDスペクトルについて、回折角が35°〜36°の位置に存在するピーク強度で規格化したスペクトルを示す図である。
従来の製法による赤色蛍光体のXRDスペクトルについて、回折角が35°〜36°の位置に存在するピーク強度で規格化したスペクトルを示す図である。
赤色蛍光体の励起波長400nmの発光強度を1としたときにおける励起波長550nmの発光強度と外部量子効率の関係を示すグラフである。

0018

以下、本発明の実施の形態について、図面を参照しながら下記順序にて詳細に説明する。
1.赤色蛍光体の構成
2.従来における赤色蛍光体の製造方法
3.本発明の一実施形態における赤色蛍光体の製造方法
4.発光特性が良好な赤色蛍光体の構成
5.白色光源の構成例
6.照明装置の構成例
7.液晶表示装置の構成例
8.実施例

0019

<1.赤色蛍光体の構成>
本発明の一実施の形態に係る赤色蛍光体は、元素A、ユーロピウム(Eu)、シリコン(Si)、アルミニウム(Al)及び炭素(C)を、下記組成式(1)の原子数比で含有する。

0020

0021

ただし、組成式(1)中の元素Aは、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、又はバリウム(Ba)の少なくとも1つであり、組成式(1)中のm、x、z、nは、3<m<5、0≦y<2、0<x<1、0<z<1、0<n<10なる関係を満たす。

0022

この組成式(1)は、シリコンと炭素の合計の原子数比を9に固定して示したものである。また、組成式(1)中の窒素(N)の原子数比[12+y−2(n−m)/3]は、組成式(1)内における各元素の原子数比の和が中性になるように計算されている。つまり、組成式(1)における窒素(N)の原子数比をδとし、組成式(1)を構成する各元素の電荷補償されるとした場合、2m+3y+4×9−2n−3δ=0となる。これにより、窒素(N)の原子数比δは、δ=12+y−2(n−m)/3と算出される。

0023

また、この組成式(1)で表わされる赤色蛍光体は、斜方晶系空間点群Pmn21に属する結晶構造で構成され、構成元素の一つに炭素(C)を含む。炭素は、生成過程での余剰な酸素(O)を取り除き、酸素量を調整する機能を果たす。

0024

このような構成の赤色蛍光体は、青色波長帯を吸収し、赤色波長帯(例えば、620nm〜770nmの波長帯)に発光ピーク波長を有する化学的に安定で高効率な蛍光体であるため、高色域バックライト、高演色性LED(Light Emitting Diode)などの用途に最適に用いられる。

0025

<2.従来における赤色蛍光体の製造方法>
次に、赤色蛍光体の従来における製造方法について、図1に示すフローチャートを用いて説明する。

0026

図1に示すように、先ず、原料混合工程S101を行う。組成式(1)を構成する元素を含む各原料化合物は、窒素雰囲気中のグローボックス内で乾式法により混合される。具体的な乾式混合の処理は、メノウ乳鉢内で各原料化合物を粉砕混合するものであり、これにより混合物が得られる。

0027

組成式(1)を構成する元素を含む原料化合物としては、元素Aの炭酸化合物[例えば、炭酸ストロンチウム(SrCO3)、炭酸カルシウム(CaCO3)など]、窒化ユーロピウム(EuN)、窒化シリコン(Si3N4)、窒化アルミニウム(AlN)及びメラミン(C3H6N6)を用意する。そして、用意した各原料化合物に含まれる組成式(1)の元素が、組成式(1)の原子数比となるように、各原料化合物を所定のモル比量する。メラミンは、フラックスとして、炭酸ストロンチウム、窒化ユーロピウム、窒化シリコン及び窒化アルミニウムの全モル数の合計に対して所定割合で添加する。そして、秤量した各原料化合物を乾式混合して混合物を生成する。

0028

次に、1次焼成工程S102を行う。この1次焼成工程では、前記混合物を焼成して、赤色蛍光体の前駆体となる第1焼成物を生成する。具体的には、窒化ホウ素(BN)製坩堝内に前記混合物を入れて、H2ガス濃度を75%、熱処理温度を1400℃に設定し、2時間の熱処理を行う。

0029

この1次焼成工程では、融点が250℃以下であるメラミンが熱分解される。この熱分解された炭素(C)、水素(H)が炭酸ストロンチウムに含まれる一部の酸素(O)と結合して、炭酸ガス(COもしくはCO2)やH2Oとなる。そして、炭酸ガスやH2Oは、気化されるので、前記第1焼成物の炭酸ストロンチウム中より一部の酸素が取り除かれる。また、分解されたメラミンに含まれる窒素(N)によって、還元と窒化とが促される。

0030

次に、第1粉砕工程S103を行う。この第1粉砕工程では、前記第1焼成物を粉砕して第1粉末を生成する。具体的には、窒素雰囲気中のグローボックス内で、メノウ乳鉢を用いて、前記第1焼成物を粉砕し、その後、例えば#100メッシュ(目開きが約200μm)に通して、第1粉末を得る。

0031

次に、2次焼成工程S104を行う。この2次焼成工程では、前記第1粉末を熱処理して第2焼成物を生成する。具体的には、窒化ホウ素(BN)製坩堝内に前記第1粉末を入れて、窒素(N2)雰囲気中で0.85MPaに加圧し、熱処理温度を1800℃に設定し、2時間の熱処理を行う。

0032

次に、第2粉砕工程S105を行う。この第2粉砕工程では、前記第2焼成物を粉砕して第2粉末を生成する。具体的には、窒素囲気中のグローボックス内でメノウ乳鉢を用いて粉砕し、例えば#420メッシュ(目開きが約26μm)を用いて粉砕する。

0033

以上により、原料混合工程S101において混合した原子数比で各元素を含有する組成式(1)で表される赤色蛍光体を得ることができる。

0034

しかしながら、前述のような従来の製造方法では、原料混合工程S101において乾式法による混合(乳鉢による粉砕混合)が行われるため、混合物内に組成ムラが生じ易く、均一な赤色蛍光体が得られないことがある。

0035

また、2次焼成工程S104において、高温条件で加圧するため、熱処理炉均熱帯が狭くなり(φ100程度)、焼成量の制限が発生してしまう。また、1次焼成工程S102では、水素濃度爆発限界値の4%を超える強還元雰囲気で熱処理するために安全装置の設置が必須となり、また、2次焼成工程S104では、高温条件で加圧するために高温高圧に耐えうる熱処理炉が必須となるため、高コスト特殊設備が必要となってしまう。

0036

このように従来の製造方法では、混合物の組成ムラ、焼成量の制限の発生や、強還元雰囲気、高温高圧条件を必要とするため、生産性を向上させるのが困難である。

0037

<3.赤色蛍光体の製造方法>
次に、本発明の一実施の形態に係る赤色蛍光体の製造方法を、図2に示すフローチャートを用いて説明する。本発明の一実施の形態に係る赤色蛍光体の製造方法では、賦活剤であるユーロピウムの供給源として、酸化ユーロピウム(Eu2O3)、酢酸ユーロピウム(Eu(CH3COO)3・nH2O)、炭酸ユーロピウム(Eu2(CO3)3)などの窒素非含有ユーロピウムを用いる。これにより、湿式法による混合が可能となり、混合物の組成ムラを防ぎ、生産性を向上させることができる。

0038

先ず、原料混合工程S11では、組成式(1)を構成する元素を含む各原料化合物を混合して混合物を得る。具体的には、元素A、ユーロピウム(Eu)、シリコン(Si)、アルミニウム(Al)及び炭素(C)が、組成式(1)の原子数比となるように、元素A含有化合物、窒素非含有ユーロピウム、シリコン含有化合物、アルミニウム含有化合物及び炭素含有還元剤を混合して混合物を生成する。

0039

ここでは、元素A含有化合物として、元素A(Mg、Ca、Sr、又はBaの少なくとも1つ)の炭酸化合物、酸化物など、シリコン含有化合物として、窒化シリコン、酸化シリコン(SiO2)など、アルミニウム含有化合物として、窒化アルミニウム、酸化アルミニウム(Al2O3)など、及び炭素含有還元剤として、メラミン、尿素などが好適に用いられる。

0040

炭素含有還元剤がメラミンである場合、メラミンを、元素Aの炭酸化合物、窒素非含有ユーロピウム、窒化シリコン、及び窒化アルミニウムの全モル数に対して65%以下添加することが好ましい。メラミン量を65%以下とすることにより、常圧条件下やH2ガス低濃度雰囲気下で最大のピーク強度比や内部量子効率を得ることができる。

0041

本実施の形態における混合は、湿式法又は乾式法のいずれでも用いることができるが、混合物に組成ムラが生じ難い湿式法を用いることが好ましい。湿式法の具体的な処理は、溶媒エタノールを使用し、各原料化合物を撹拌し、吸引ろ過し、沈殿物を乾燥した後、例えば#110メッシュに通して行われる。この湿式混合は、グローボックス内で行う必要がないため、作業性を向上させることができる。

0042

次に、前駆体混合物を熱処理炉に充填し、焼成する焼成工程S12を行う。この焼成工程S12は、常圧(大気圧)で行われることが好ましい。これにより、熱処理炉の均熱帯が狭くなり(φ100程度)、焼成量の制限が発生するのを防ぐことができる。

0043

また、焼成工程S12は、H2ガス濃度が80%以下、より好ましくはH2ガス濃度が4%以下で行われることが好ましい。これにより、H2ガス濃度が爆発限界値の4%を超える強還元雰囲気で熱処理するための安全装置が不要となる。また、本実施の形態では、H2ガス濃度が0%の窒素雰囲気での焼成も可能である。

0044

また、焼成工程S12は、1400℃以上1800℃以下の温度範囲で行われることが好ましい。この温度範囲で焼成することにより、高いピーク強度を有する赤色蛍光体を得ることができる。

0045

また、焼成工程S12は、1次焼成工程と2次焼成工程の2段階で行ってもよい。この場合、1次焼成工程後に第1粉砕工程を行うことにより、赤色蛍光体の組成ムラを防ぐことができる。

0046

この焼成工程S12では、例えば炭素含有還元剤としてメラミンを用い、元素Aの化合物として炭酸ストロンチウムを用いた場合、メラミンが熱分解され、炭素(C)、水素(H)が炭酸ストロンチウムに含まれる一部の酸素(O)と結合して、炭酸ガス(COもしくはCO2)やH2Oとなる。そして、炭酸ガスやH2Oは、気化されるので、焼成物の炭酸ストロンチウム中より一部の酸素が取り除かれる。また、分解されたメラミンに含まれる窒素(N)によって、還元と窒化とが促される。

0047

次に、粉砕工程S13を行う。この粉砕工程では、例えば窒素雰囲気中のグローボックス内で、メノウ乳鉢を用いて、焼成物を粉砕し、例えば#420メッシュ(目開きが約26μm)を用いて粉砕する。

0048

以上により、原料混合工程S11において混合した原子数比で各元素を含有する組成式(1)で表される赤色蛍光体を得ることができる。この赤色蛍光体は、実施例で示すように優れた発光特性を有する。

0049

<4.発光特性が良好な赤色蛍光体の構成>
本件発明者らは、前述したユーロピウム(Eu)、シリコン(Si)、アルミニウム(Al)、炭素(C)、酸素(O)、及び窒素(N)を含有する赤色蛍光体において、X線回折(XRD)スペクトルにおいて、特定の回折パターンを示すことにより、良好な発光強度が得られることを見出した。

0050

具体的には、斜方晶系空間点群Pmn21(112)面(以下(112)面と表記する。)に由来する回折角(2θ)が36°〜36.6°の位置に存在するピーク強度が、斜方晶系空間点群Pmn21(113)面(以下(113)面と表記する。)に由来する回折角が35°〜36°の位置に存在するピーク強度に対して大きい場合に、高い発光強度が得られることを見出した。

0051

すなわち、本実施の形態における赤色蛍光体は、元素(A)、ユーロピウム(Eu)、シリコン(Si)、アルミニウム(Al)及び炭素(C)が、前記組成式(1)の原子数比となるように、元素(A)、窒素非含有ユーロピウム、シリコン含有化合物、アルミニウム含有化合物及び炭素含有還元剤を混合して混合物を生成し、混合物の焼成と、該焼成によって得られた焼成物の粉砕とを行うことで得られ、X線回折パターンにおいて、回折角が36°〜36.6°の位置に存在するピークの強度が、回折角が35°〜36°の位置に存在するピークの強度の0.65倍以上を示す。

0052

このような回折ピークの強度比を示す結晶構造を有することにより、1.5以上の発光ピークの強度比(YAG基準)を得ることができる。なお、回折ピークの強度比が異なることは、赤色蛍光体の結晶構造が異なることを意味する。

0053

また、本実施の形態における赤色蛍光体は、前記組成式(1)に示す赤色蛍光体の炭素の含有量(z)が0.072以下の低い値であっても、X線回折パターンにおいて、回折角が36°〜36.6°の位置に存在するピークの強度が、回折角が35°〜36°の位置に存在するピークの強度の0.65倍以上を示し、優れた発光特性を示す。

0054

すなわち、本実施の形態における赤色蛍光体の製造時において、メラミンの仕込量を削減することができるため、メラミンにより装置の配管を詰まらせる等の悪影響を抑えることができる。

0055

また、本件発明者らは、赤色蛍光体において、PLE(Photoluminescence Excitation)スペクトルが所定の発光特性を示す場合、高い量子効率が得られることを見出した。すなわち、本実施の形態における赤色蛍光体は、PLE(Photoluminescence Excitation)スペクトルにおいて、励起波長400nmの発光強度を1としたときにおける励起波長550nmの発光強度の相対値(以下、550nmPLE強度/400nmPLE強度と表記する)が0.48以上である。

0056

また、本実施の形態における赤色蛍光体は、前記組成式(1)中、0.05≦x≦0.15を満たすことが好ましい。組成式(1)に示す赤色蛍光体は、Eu(ユーロピウム)の濃度(x)によって発光強度のピークが変化するが、このようなEuの濃度(x)の範囲とすることにより、高い外部量子効率を得ることができる。

0057

<5.白色光源の構成例>
次に、本発明の一実施の形態に係る白色光源を、図3に示す概略断面図を用いて説明する。

0058

図3に示すように、白色光源1は、素子基板11上に形成されたパッド部12上に青色発光ダイオード21を有している。素子基板11には、青色発光ダイオード21を駆動するための電力を供給する電極13、14が絶縁性を保って形成され、それぞれの電極13、14は、例えばリード線15、16によって青色発光ダイオード21に接続されている。

0059

また、青色発光ダイオード21の周囲には、例えば樹脂層31が設けられ、その樹脂層31には、青色発光ダイオード21上を開口する開口部32が形成されている。この開口部32には、青色発光ダイオード21の発光方向開口面積が広くなる傾斜面に形成され、その傾斜面には反射膜33が形成されている。すなわち、すり状の開口部32を有する樹脂層31において、開口部32の壁面反射膜33で覆われ、開口部32の底面に青色発光ダイオード21が配置された状態となっている。そして、開口部32内に、赤色蛍光体と緑色蛍光体とを透明樹脂に混線した混練物43が、青色発光ダイオード21を覆う状態で埋め込まれて白色光源1が構成されている。

0060

赤色蛍光体には、上述した組成式(1)で表される赤色蛍光体が用いられる。この赤色蛍光体は、赤色波長帯(例えば、620nm〜770nmの波長帯)でピーク発光波長が得られ、発光強度が強く、輝度が高い。そのため、青色LEDの青色光、緑色蛍光体による緑色光、および赤色蛍光体による赤色光からなる光の3原色による色域が広い明るい白色光を得ることができる。

0061

<6.照明装置の構成例>
次に、本発明の一実施の形態に係る照明装置を、図4の概略平面図を用いて説明する。

0062

図4に示すように、照明装置5は、照明基板51上に図3を用いて説明した白色光源1が複数配置されている。その配置例は、例えば、図4(A)に示すように、正方格子配列としてもよく、または図4(B)に示すように、1行おきに例えば1/2ピッチずつずらした配列としてもよい。また、ずらすピッチは、1/2に限らず、1/3ピッチ、1/4ピッチであってもよい。さらには、1行ごとに、もしくは複数行(例えば2行)ごとにずらしてもよい。

0063

また、図示はしていないが、1列おきに例えば1/2ピッチずつずらした配列としてもよい。ずらすピッチは、1/2に限らず、1/3ピッチ、1/4ピッチであってもよい。さらに、1行ごとに、もしくは複数行(例えば2行)ごとにずらしてもよい。すなわち、白色光源1のずらし方は、限定されるものではない。

0064

白色光源1は、図3を参照して説明したのと同様な構成を有するものである。すなわち、白色光源1は、青色発光ダイオード21上に、赤色蛍光体と緑色蛍光体を透明樹脂に混練した混練物43を有するものである。赤色蛍光体には、上述した組成式(1)で表される赤色蛍光体が用いられる。

0065

また、照明装置5は、点発光とほぼ同等の白色光源1が照明基板51上に、縦横に複数配置されていることから、面発光と同等になるので、例えば液晶表示装置のバックライトとして用いることができる。また、照明装置5は、通常の照明装置、撮影用の照明装置、工事現場用の照明装置等、種々の用途の照明装置に用いることができる。

0066

照明装置5は、白色光源1を用いているため、色域が広い明るい、白色光を得ることができる。例えば、液晶表示装置のバックライトに用いた場合に、表示画面において輝度の高い純白色を得ることができ、表示画面の品質の向上を図ることができる。

0067

<7.液晶表示装置の構成例>
次に、本発明の一実施の形態に係る液晶表示装置を、図5の概略構成図を用いて説明する。

0068

図5に示すように、液晶表示装置100は、透過表示部を有する液晶表示パネル110と、その液晶表示パネル110を裏面(表示面とは反対側の面)側に備えたバックライト120とを有する。このバックライト120には、図4を参照して説明した照明装置5を用いる。

0069

液晶表示装置100では、バックライト120に照明装置5を用いるため、光の3原色による色域が広い明るい白色光で、液晶表示パネル110を照明することができる。よって、液晶表示パネル110の表示画面において輝度の高い純白色を得ることができ、色再現性が良好で表示画面の品質の向上を図ることができる。

0070

<8.実施例>
以下、実施例を挙げて、本発明を具体的に説明するが、本発明は、これらの実施例に限定されるものではない。

0071

<8.1 Eu原料による発光特性の影響>
賦活剤であるユーロピウムの供給源として、酸化ユーロピウム(Eu2O3)、酢酸ユーロピウム(Eu(CH3COO)3・nH2O)、炭酸ユーロピウム(Eu2(CO3)3)、又は窒化ユーロピウム(EuN)を用いて、各赤色蛍光体を作製し、発光特性を評価した。

0072

[Eu供給源:酸化ユーロピウム]
図6は、赤色蛍光体の製造方法の具体例を示すフローチャートである。この製造方法では、Euの供給源として、酸化ユーロピウム(Eu2O3)を用いた。また、フラックスとしてメラミンを、酸化ユーロピウム、炭酸ストロンチウム、窒化シリコン、及び窒化アルミニウムの全モル数の合計に対して所定割合で添加した。

0073

テップS21の原料混合工程では、液相法(湿式法)を用い、溶媒にエタノールを使用し、各原料化合物を30分間撹拌し、吸引ろ過した。そして、沈殿物を80℃、8hの条件で乾燥後、#110メッシュに通して前駆体混合物を得た。

0074

ステップS22の1次焼成工程では、前駆体混合物を所定量秤量して窒化ホウ素(BN)製坩堝に充填し、H2ガス濃度を4%、熱処理温度を1400℃に設定し、2時間の焼成を行った。

0075

ステップS23の第1粉砕工程では、メノウ乳鉢を用いて1次焼成による焼成物を粉砕し、その後、#100メッシュ(目開きが約200μm)に通して第1粉末を得た。

0076

ステップS24の2次焼成工程では、窒化ホウ素(BN)製坩堝内に前記第1粉末を入れて、常圧条件でH2ガス濃度を4%として、熱処理温度を1750℃に設定し、2時間の焼成を行った。

0077

ステップS25の第2粉砕工程では、メノウ乳鉢を用いて2次焼成による焼成物を粉砕し、さらに#420メッシュ(目開きが約26μm)を用いて粉砕した。

0078

以上の常圧2段階焼成により、組成式(2)で表される赤色蛍光体が得られた。各赤色蛍光体をICP(Inductively Coupled Plasma)発光分析装置にて分析した結果、原材料化合物中に含まれる組成式(2)を構成するストロンチウム、ユーロピウム、アルミニウム及びシリコンは、ほぼそのままのモル比(原子数比)で赤色蛍光体中に含有されることが確認された。また、各赤色蛍光体の炭素の含有量(z)をICP発光分析装置及び酸素気流燃焼−NDIR検出方式(装置:EMIA−U511(堀場製作所製))にて分析したところ、炭素の含有量(z)は、0<z<1の範囲であることが確認された。

0079

0080

この組成式(2)において、m=3.79、x=0.0663、y=0.474である。

0081

[Eu供給源:酢酸ユーロピウム]
Euの供給源として、酢酸ユーロピウム(Eu(CH3COO)3・nH2O)を用いた以外は、前述の酸化ユーロピウムを用いた赤色蛍光体の製造方法と同様に、図6に示すフローチャート(常圧2段階焼成)によって、組成式(2)で表される赤色蛍光体(m=3.79、x=0.0663、y=0.474)を得た。

0082

この常圧2段階焼成により得られた各赤色蛍光体をICP発光分析装置にて分析した結果、原材料化合物中に含まれる組成式(2)を構成するストロンチウム、ユーロピウム、アルミニウム及びシリコンは、ほぼそのままのモル比(原子数比)で赤色蛍光体中に含有されることが確認された。また、各赤色蛍光体の炭素の含有量(z)をICP発光分析装置及び酸素気流中燃焼−NDIR検出方式にて分析したところ、炭素の含有量(z)は、0<z<1の範囲であることが確認された。

0083

[Eu供給源:炭酸ユーロピウム]
図7は、赤色蛍光体の製造方法の具体例を示すフローチャートである。この製造方法では、Euの供給源として、炭酸ユーロピウム(Eu2(CO3)3)を用いた。また、フラックスとしてメラミンを、炭酸ユーロピウム、炭酸ストロンチウム、窒化シリコン、及び窒化アルミニウムの全モル数の合計に対して所定割合で添加した。

0084

ステップS31の原料混合工程では、液相法(湿式法)を用い、溶媒にエタノールを使用し、各原料化合物を30分間撹拌し、吸引ろ過した。そして、沈殿物を80℃、8hの条件で乾燥後、#110メッシュに通して前駆体混合物を得た。

0085

ステップS32の1次焼成工程では、前駆体混合物を所定量秤量して窒化ホウ素(BN)製坩堝に充填し、H2ガス濃度を75%、熱処理温度を1400℃に設定し、2時間の焼成を行った。

0086

ステップS33の第1粉砕工程では、メノウ乳鉢を用いて1次焼成による焼成物を粉砕し、その後、#100メッシュ(目開きが約200μm)に通して第1粉末を得た。

0087

ステップS34の2次焼成工程では、窒化ホウ素(BN)製坩堝内に前記第1粉末を入れて、0.85MPaの加圧条件の窒素(N2)雰囲気で熱処理温度を1750℃に設定し、2時間の焼成を行った。

0088

ステップS35の第2粉砕工程では、メノウ乳鉢を用いて2次焼成による焼成物を粉砕し、さらに#420メッシュ(目開きが約26μm)を用いて粉砕した。

0089

以上の加圧2段階焼成により、組成式(2)で表される赤色蛍光体(m=3.79、x=0.0663、y=0.474)が得られた。この加圧2段階焼成により得られた各赤色蛍光体をICP発光分析装置にて分析した結果、原材料化合物中に含まれる組成式(2)を構成するストロンチウム、ユーロピウム、アルミニウム及びシリコンは、ほぼそのままのモル比(原子数比)で赤色蛍光体中に含有されることが確認された。また、各赤色蛍光体の炭素の含有量(z)をICP発光分析装置及び酸素気流中燃焼−NDIR検出方式にて分析したところ、炭素の含有量(z)は、0<z<1の範囲であることが確認された。

0090

[Eu供給源:窒素ユーロピウム]
Euの供給源として、窒化ユーロピウム(EuN)を用いた場合、湿式混合が困難なため、図1に示す従来の製造方法で赤色蛍光体を製造した。

0091

すなわち、ステップS101の原料混合工程において、フラックスとしてメラミンを、窒化ユーロピウム、炭酸ストロンチウム、窒化シリコン、及び窒化アルミニウムの全モル数の合計に対して所定割合で添加し、窒素雰囲気のグローブボックス内でメノウ乳鉢内で各原料化合物を粉砕混合した。

0092

ステップS102の1次焼成工程では、混合物を所定量秤量して窒化ホウ素(BN)製坩堝に充填し、H2ガス濃度を75%、熱処理温度を1400℃に設定し、2時間の熱処理を行った。

0093

ステップS103の第1粉砕工程では、窒素雰囲気のグローボックス内でメノウ乳鉢を用いて1次焼成による焼成物を粉砕し、その後、#100メッシュ(目開きが約200μm)に通して第1粉末を得た。

0094

ステップS104の2次焼成工程では、窒化ホウ素(BN)製坩堝内に前記第1粉末を入れて、0.85MPaの加圧条件の窒素(N2)雰囲気で熱処理温度を1750℃に設定し、2時間の焼成を行った。

0095

ステップS105の第2粉砕工程では、窒素雰囲気のグローボックス内でメノウ乳鉢を用いて2次焼成による焼成物を粉砕し、さらに#420メッシュ(目開きが約26μm)を用いて粉砕した。

0096

以上の従来の製造方法により、組成式(2)で表される赤色蛍光体(m=3.79、x=0.0663、y=0.474)が得られた。この従来の製造方法により得られた各赤色蛍光体をICP発光分析装置にて分析した結果、原材料化合物中に含まれる組成式(2)を構成するストロンチウム、ユーロピウム、アルミニウム及びシリコンは、ほぼそのままのモル比(原子数比)で赤色蛍光体中に含有されることが確認された。また、各赤色蛍光体の炭素の含有量(z)をICP発光分析装置及び酸素気流中燃焼−NDIR検出方式にて分析したところ、炭素の含有量(z)は、0<z<1の範囲であることが確認された。

0097

[発光特性の評価]
図8及び図9は、それぞれユーロピウムの供給源として、酸化ユーロピウム(Eu2O3)、酢酸ユーロピウム(Eu(CH3COO)3・nH2O)、炭酸ユーロピウム(Eu2(CO3)3)、又は窒化ユーロピウム(EuN)を用いて作製された各赤色蛍光体のピーク強度比(YAG基準)及び内部量子効率を示すグラフである。なお、赤色蛍光体のピーク強度比は、日本分光社製分光蛍光光度計FP−6500を用い、専用セル蛍光体粉末を充填し、波長450nmの青色励起光照射させて測定した。また、内部量子効率は、日本分光社製分光蛍光光度計FP−6500を用いて測定した。赤色蛍光体の内部量子効率は、蛍光スペクトルの結果から分光蛍光光度計付属の量子効率測定ソフトを用いて算出した。

0098

賦活剤であるユーロピウムの供給源を大気中において不安定な窒化ユーロピウムから酸化ユーロピウム、酢酸ユーロピウム、又は炭酸ユーロピウムに代えて赤色蛍光体を作製した場合、メラミン量の最適値がそれぞれ異なることが分かった。また、ピーク強度比(YAG基準)の最大値は、窒化ユーロピウムが1.91であるのに対して炭酸ユーロピウムが1.75、酢酸ユーロピウムが2.03、酸化ユーロピウムが2.03であり、窒素非含有ユーロピウムから得られた赤色蛍光体は、窒化ユーロピウムから得られた赤色蛍光体と同程度もしくは同等以上のピーク強度を有することが分かった。また、最大内部量子効率は、窒化ユーロピウムが82.2%であるのに対して炭酸ユーロピウムが78.3%、酢酸ユーロピウムが83.3%、酸化ユーロピウムが81.4%であり、窒素非含有ユーロピウムから得られた赤色蛍光体は、窒化ユーロピウムから得られた赤色蛍光体と同程度の最大内部量子効率を有することが分かった。

0099

また、酸化ユーロピウム、酢酸ユーロピウム、及び炭酸ユーロピウムは、大気中で安定であるため、通常のデシケータによる保管、秤量・混合時のグローボックスを不要とし、作業性が向上した。

0100

<8.2混合方法による発光特性の影響>
次に、ユーロピウムの供給源として、酸化ユーロピウム(Eu2O3)を用い、湿式混合と乾式混合の比較を行った。湿式混合では、溶媒にエタノールを使用し、各原料化合物を30分間撹拌し、吸引ろ過し、沈殿物を80℃、8hの条件で乾燥後、#110メッシュに通して前駆体混合物を得た。また、乾式混合では、各原料化合物を乳鉢により粉砕混合し、混合物を得た。その後、図6に示すフローチャートと同様の常圧2段階焼成を行うことにより、組成式(2)で表される赤色蛍光体(m=3.79、x=0.0663、y=0.474)が得られた。

0101

このように湿式混合又は乾式混合を行い、常圧2段階焼成により得られた各赤色蛍光体をICP発光分析装置にて分析した結果、原材料化合物中に含まれる組成式(2)を構成するストロンチウム、ユーロピウム、アルミニウム及びシリコンは、ほぼそのままのモル比(原子数比)で赤色蛍光体中に含有されることが確認された。また、各赤色蛍光体の炭素の含有量(z)をICP発光分析装置及び酸素気流中燃焼−NDIR検出方式にて分析したところ、炭素の含有量(z)は、0<z<1の範囲であることが確認された。

0102

図10及び図11は、それぞれ湿式混合又は乾式混合によって作製された各赤色蛍光体のピーク強度比(YAG基準)及び内部量子効率を示すグラフである。

0103

湿式混合又は乾式混合によって赤色蛍光体を作製した場合、メラミン量の最適値がそれぞれ異なることが分かった。また、ピーク強度比(YAG基準)の最大値は、乾式混合の場合が2.03であるのに対して湿式混合の場合が1.99であり、湿式混合で得られた赤色蛍光体は、乾式混合で得られた赤色蛍光体とほぼ同程度のピーク強度を有することが分かった。また、最大量子効率は、乾式混合の場合が81.5%であるのに対して湿式混合の場合が80.7%であり、湿式混合で得られた赤色蛍光体は、乾式混合で得られた赤色蛍光体とほぼ同程度の最大内部量子効率を有することが分かった。

0104

<8.3焼成時の加圧による発光特性の影響>
次に、ユーロピウムの供給源として、酸化ユーロピウム(Eu2O3)を用い、焼成時の加圧の有無の比較を行った。加圧焼成は、図7に示すフローチャートと同様の加圧2段階焼成により行った。すなわち、1次焼成工程では、H2ガス濃度を75%、熱処理温度を1400℃に設定し、2時間の焼成を行い、2次焼成工程では、0.85MPaの加圧条件の窒素(N2)雰囲気で熱処理温度を1750℃に設定し、2時間の焼成を行った。これにより、組成式(2)で表される赤色蛍光体(m=3.79、x=0.0663、y=0.474)が得られた。

0105

この加圧焼成により得られた各赤色蛍光体をICP発光分析装置にて分析した結果、原材料化合物中に含まれる組成式(2)を構成するストロンチウム、ユーロピウム、アルミニウム及びシリコンは、ほぼそのままのモル比(原子数比)で赤色蛍光体中に含有されることが確認された。また、各赤色蛍光体の炭素の含有量(z)をICP発光分析装置及び酸素気流中燃焼−NDIR検出方式にて分析したところ、炭素の含有量(z)は、0<z<1の範囲であることが確認された。

0106

ここで、1次焼成工程において、H2ガス濃度を75%、熱処理温度を1400℃に設定し、2時間の焼成を行い、2次焼成工程において、大気圧(常圧)条件の窒素(N2)雰囲気(H2ガス濃度0%)で熱処理温度を1750℃に設定し、2時間の焼成を行ったところ、坩堝に投入した内容物が溶融してしまった。そこで、常圧条件下でH2ガス濃度が4%である還元雰囲気としたところ、坩堝の内容物は溶融せずに赤色蛍光体を得ることができた。

0107

すなわち、この常圧焼成では、1次焼成工程において、H2ガス濃度を75%、熱処理温度を1400℃に設定し、2時間の焼成を行い、2次焼成工程では、常圧条件のH2ガス濃度4%の還元雰囲気で熱処理温度を1750℃に設定し、2時間の焼成を行った。これにより、組成式(2)で表される赤色蛍光体(m=3.79、x=0.0663、y=0.474)が得られた。

0108

この常圧焼成により得られた各赤色蛍光体をICP発光分析装置にて分析した結果、原材料化合物中に含まれる組成式(2)を構成するストロンチウム、ユーロピウム、アルミニウム及びシリコンは、ほぼそのままのモル比(原子数比)で赤色蛍光体中に含有されることが確認された。また、各赤色蛍光体の炭素の含有量(z)をICP発光分析装置及び酸素気流中燃焼−NDIR検出方式にて分析したところ、炭素の含有量(z)は、0<z<1の範囲であることが確認された。

0109

図12及び図13は、それぞれ加圧焼成又は常圧焼成によって作製された各赤色蛍光体のピーク強度比(YAG基準)及び内部量子効率を示すグラフである。

0110

加圧焼成又は常圧焼成によって赤色蛍光体を作製した場合、メラミン量の最適値がそれぞれ異なることが分かった。また、ピーク強度比(YAG基準)の最大値は、加圧焼成の場合が1.91であるのに対して常圧焼成の場合が2.04であり、常圧焼成で得られた赤色蛍光体は、加圧焼成で得られた赤色蛍光体と同等以上の最大ピーク強度を有することが分かった。また、最大内部量子効率も、加圧焼成の場合が82.2%であるのに対して常圧焼成の場合が83.3%であり、加圧焼成と同等以上の内部量子効率を有することが分かった。

0111

また、2次焼成時のH2ガス濃度が0%の条件でも、メラミン量を50mol%以下とすることにより、内容物が溶融せずに赤色蛍光体が得られることが分かった。

0112

<8.4焼成時のH2ガス濃度による発光特性の影響>
次に、ユーロピウムの供給源として、酸化ユーロピウム(Eu2O3)を用い、1次焼成時のH2ガス濃度の影響について評価した。1次焼成時のH2ガス濃度をそれぞれ4%、50%、75%とした以外は、図7に示すフローチャートと同様の加圧2段階焼成により、組成式(2)で表される赤色蛍光体(m=3.79、x=0.0663、y=0.474)が得られた。

0113

この加圧2段階焼成により得られた各赤色蛍光体をICP発光分析装置にて分析した結果、原材料化合物中に含まれる組成式(2)を構成するストロンチウム、ユーロピウム、アルミニウム及びシリコンは、ほぼそのままのモル比(原子数比)で赤色蛍光体中に含有されることが確認された。また、各赤色蛍光体の炭素の含有量(z)をICP発光分析装置及び酸素気流中燃焼−NDIR検出方式にて分析したところ、炭素の含有量(z)は、0<z<1の範囲であることが確認された。

0114

図14は、1次焼成時のH2ガス濃度を4%、50%、又は75%としたときの各赤色蛍光体のピーク強度比(YAG基準)を示すグラフである。

0115

1次焼成時のH2ガス濃度を4%、50%、又は75%として赤色蛍光体を作製した場合、メラミン量の最適値がそれぞれ異なることが分かった。また、ピーク強度比(YAG基準)の最大値は、低濃度(4%)H2ガス条件下の場合、メラミン量が少なくても得られ、高濃度(75%)H2ガス条件下の場合、メラミン量を多くすることで得られることが分かった。

0116

また、1次焼成時のH2ガス濃度は0〜4%においても可能であり、1次焼成時のH2ガス濃度を0%として得られた赤色蛍光体は、1次焼成時のH2ガス濃度を75%として得られた赤色蛍光体と同等以上のピーク強度比(YAG基準)を有することが確認できた。

0117

<8.5焼成時の焼成回数による発光特性の影響>
次に、ユーロピウムの供給源として、酸化ユーロピウム(Eu2O3)を用い、焼成時の焼成回数について評価した。図6に示すフローチャートと同様の常圧2段階焼成、及び図7に示すフローチャートと同様の加圧2段階焼成により、それぞれ組成式(2)で表される赤色蛍光体(m=3.79、x=0.0663、y=0.474)が得られた。

0118

この常圧2段階焼成、又は加圧2段階焼成により得られた各赤色蛍光体をICP発光分析装置にて分析した結果、原材料化合物中に含まれる組成式(2)を構成するストロンチウム、ユーロピウム、アルミニウム及びシリコンは、ほぼそのままのモル比(原子数比)で赤色蛍光体中に含有されることが確認された。また、各赤色蛍光体の炭素の含有量(z)をICP発光分析装置及び酸素気流中燃焼−NDIR検出方式にて分析したところ、炭素の含有量(z)は、0<z<1の範囲であることが確認された。

0119

また、製法をより短時間とするため、常圧2段階焼成における1次焼成(1400℃、2h)を省略し、1段階焼成による赤色蛍光体の合成を実施した。図15に、常圧1段階焼成のフローチャートを示す。

0120

ユーロピウムの供給源として、酸化ユーロピウム(Eu2O3)を用いた。また、フラックスとしてメラミンを、酸化ユーロピウム、炭酸ストロンチウム、窒化シリコン、及び窒化アルミニウムの全モル数の合計に対して所定割合で添加した。

0121

ステップS41の原料混合工程では、液相法(湿式法)を用い、溶媒にエタノールを使用し、各原料化合物を30分間撹拌し、吸引ろ過した。そして、沈殿物を80℃、8hの条件で乾燥後、#110メッシュに通して前駆体混合物を得た。

0122

ステップS42の焼成工程では、前駆体混合物を所定量秤量して窒化ホウ素(BN)製坩堝に充填し、常圧条件でH2ガス濃度を4%として、熱処理温度を1750℃に設定し、2時間の焼成を行った。

0123

ステップS43の粉砕工程では、メノウ乳鉢を用いて焼成物を粉砕し、さらに#420メッシュ(目開きが約26μm)を用いて粉砕した。

0124

以上の常圧1段階焼成により、組成式(2)で表される赤色蛍光体が得られた。この常圧1段階焼成により得られた各赤色蛍光体をICP発光分析装置にて分析した結果、原材料化合物中に含まれる組成式(2)を構成するストロンチウム、ユーロピウム、アルミニウム及びシリコンは、ほぼそのままのモル比(原子数比)で赤色蛍光体中に含有されることが確認された。また、各赤色蛍光体の炭素の含有量(z)をICP発光分析装置及び酸素気流中燃焼−NDIR検出方式にて分析したところ、炭素の含有量(z)は、0<z<1の範囲であることが確認された。

0125

これにより常圧2段階焼成における1次焼成(1400℃、2h)の省略が可能であることが確認され、より短時間での製造が可能であることが分かった。また、前駆体の混合後に例えば#110メッシュパスを行うことにより、常圧1段階焼成においても均一な組成が得られることが分かった。

0126

図16及び図17は、それぞれ加圧2段階焼成、常圧2段階焼成、又は常圧1段階焼成によって作製された各赤色蛍光体のピーク強度比(YAG基準)及び内部量子効率を示すグラフである。

0127

加圧2段階焼成、常圧2段階焼成、又は常圧1段階焼成によって赤色蛍光体を作製した場合、メラミン量の最適値がそれぞれ異なることが分かった。また、ピーク強度比(YAG基準)の最大値は、加圧2段階焼成の場合が1.91、常圧2段階焼成の場合が2.03、及び常圧1段階焼成の場合が1.99となり、常圧焼成で得られた赤色蛍光体は、加圧焼成で得られた赤色蛍光体よりも高いピーク強度を有することが分かった。また、常圧2段階焼成で得られた赤色蛍光体及び常圧1段階焼成で得られた赤色蛍光体は、ほぼ同程度のピーク強度が得られた。また、最大内部量子効率は、加圧2段階焼成の場合が82%、常圧2段階焼成の場合が81%、及び常圧1段階焼成の場合が81%であり、常圧焼成又は加圧焼成のどちらで作製しても、同程度の内部量子効率を示すことが分かった。また、メラミン量を、炭酸ストロンチウム、窒素非含有ユーロピウム、窒化シリコン、及び窒化アルミニウムの全モル数に対して65%以下とすることにより、常圧条件下やH2ガス低濃度雰囲気下で最大のピーク強度比や内部量子効率を得ることができることが分かった。

0128

<8.6焼成時の温度による発光特性の影響>
次に、ユーロピウムの供給源として、酸化ユーロピウム(Eu2O3)を用い、2次焼成時における焼成温度の影響について評価した。図6に示すフローチャートと同様の常圧2段階焼成において、前駆体熱処理工程及び1次焼成工程のH2ガス濃度を75%とし、2次焼成工程の焼成温度を1500℃、1600℃、1700℃、1750℃、又は1800℃とすることにより、組成式(2)で表される赤色蛍光体(m=3.79、x=0.0663、y=0.474)が得られた。

0129

各赤色蛍光体をICP発光分析装置にて分析した結果、原材料化合物中に含まれる組成式(2)を構成するストロンチウム、ユーロピウム、アルミニウム及びシリコンは、ほぼそのままのモル比(原子数比)で赤色蛍光体中に含有されることが確認された。また、各赤色蛍光体の炭素の含有量(z)をICP発光分析装置及び酸素気流中燃焼−NDIR検出方式にて分析したところ、炭素の含有量(z)は、0<z<1の範囲であることが確認された。

0130

図18は、焼成温度を1500℃、1600℃、1700℃、1750℃、又は1800℃として作製された赤色蛍光体のピーク強度比(YAG基準)を示すグラフである。2次焼成工程の焼成温度が変わることにより、メラミン量の最適値がそれぞれ異なることが分かった。また、焼成温度の上昇とともにピーク強度比(YAG基準)が増大することが分かった。

0131

また、図19は、1500℃、1600℃、1700℃、1750℃、又は1800℃の各焼成温度における最大ピーク強度比(YAG基準)を示すグラフである。前述した常圧2段階焼成の条件では、2次焼成工程の焼成温度は1750℃において最大のピーク強度が得られることが分かった。

0132

<8.7 他の組成の赤色蛍光体の作製>
次に、図20に示すフローチャートにより、他の組成の赤色蛍光体を作製した。この製造方法では、Euの供給源として、酸化ユーロピウム(Eu2O3)を用いた。また、フラックスとしてメラミンを、酸化ユーロピウム、炭酸ストロンチウム、炭酸カルシウム、窒化シリコン、及び窒化アルミニウムの全モル数の合計に対して所定割合で添加した。

0133

ステップS51の原料混合工程では、液相法(湿式法)を用い、溶媒にエタノールを使用し、各原料化合物を30分間撹拌し、吸引ろ過した。そして、沈殿物を80℃、8hの条件で乾燥後、#110メッシュに通して前駆体混合物を得た。

0134

ステップS52の1次焼成工程では、前駆体混合物を所定量秤量して窒化ホウ素(BN)製坩堝に充填し、窒素ガス濃度を100%(H2ガス濃度0%)、熱処理温度を1400℃に設定し、2時間の焼成を行った。

0135

ステップS53の第1粉砕工程では、メノウ乳鉢を用いて1次焼成による焼成物を粉砕し、その後、#100メッシュ(目開きが約200μm)に通して第1粉末を得た。

0136

ステップS54の2次焼成工程では、窒化ホウ素(BN)製坩堝内に前記第1粉末を入れて、常圧条件で窒素ガス濃度を100%(H2ガス濃度0%)として、熱処理温度を1700℃に設定し、2時間の焼成を行った。

0137

ステップS55の第2粉砕工程では、メノウ乳鉢を用いて2次焼成による焼成物を粉砕し、さらに#420メッシュ(目開きが約26μm)を用いて粉砕した。

0138

以上の窒素雰囲気常圧2段階焼成により、組成式(3)で表される赤色蛍光体が得られた。各赤色蛍光体をICP(Inductively Coupled Plasma)発光分析装置にて分析した結果、原材料化合物中に含まれる組成式(3)を構成するストロンチウム、カルシウム、ユーロピウム、アルミニウム及びシリコンは、ほぼそのままのモル比(原子数比)で赤色蛍光体中に含有されることが確認された。また、各赤色蛍光体の炭素の含有量(z)をICP発光分析装置及び酸素気流中燃焼−NDIR検出方式(装置:EMIA−U511(堀場製作所製))にて分析したところ、炭素の含有量(z)は、0<z<1の範囲であることが確認された。

0139

0140

この組成式(3)において、m=3.79、x=0.142、y=0.473である。

0141

図21は、組成式(3)で表される赤色蛍光体(メラミン量26mol%)の発光・励起スペクトルである。図21に示すスペクトルにより、この赤色蛍光体は、青色光を吸収し、650nm付近に発光ピークを有する赤色発光であることが確認され、青色LED励起による白色LED用蛍光体として適用可能であることが確認された。

0142

図22及び図23は、メラミン量に対する赤色蛍光体のピーク強度比(YAG基準)及び内部量子効率を示すグラフである。

0143

前述の窒素雰囲気常圧2段階焼成により組成式(3)で表される赤色蛍光体を作製する場合、メラミン量が少ないほどピーク強度比(YAG基準)及び内部量子効率が高くなることが分かった。図22及び図23に示す結果では、メラミン量26mol%において最大ピーク強度1.77及び最大内部量子効率80.9%が得られた。

0144

<8.8発光強度とX線回折スペクトルとの関係>
また、本件発明者らは、前述したユーロピウム(Eu)、シリコン(Si)、炭素(C)、酸素(O)、及び窒素(N)を含有する赤色蛍光体において、X線回折(XRD)スペクトルにおいて、特定の回折パターンを示すことにより、良好な発光強度が得られることを見出した。

0145

具体的には、斜方晶系空間点群Pmn21(112)面(以下(112)面と表記する。)に由来する回折角(2θ)が36°〜36.6°の位置に存在するピーク強度が、斜方晶系空間点群Pmn21(113)面(以下(113)面と表記する。)に由来する回折角が35°〜36°の位置に存在するピーク強度に対して大きい場合に、高い発光強度が得られることを見出した。

0146

この発光強度とX線回折スペクトルとの関係について、図1に示す従来の製造方法により作製したサンプル1(Eu:3.75mol%、Al:0mol%、Ca:0mol%)、サンプル2(Eu:3.75mol%、Al:0mol%、Ca:20mol%)、サンプル3(Eu:3.75mol%、Al:5mol%、Ca:0mol%)及びサンプル4(Eu:3.75mol%、Al:10mol%、Ca:25mol%)を用いて説明する。

0147

下記組成式(4)において、サンプル1は、α=0、m=3.6、x=0.135、y=0、サンプル2は、α=0.2、m=3.6、x=0.135、y=0、サンプル3は、α=0、m=3.79、x=0.142、y=0.47、及びサンプル4は、α=0.25、m=4.0、x=0.15、y=1.0である。

0148

0149

ただし、組成式(1)中のz、nは、0<z<1、0<n<10なる関係を満たす。

0150

これらのサンプル1〜4の各赤色蛍光体について、メラミン添加量を変化させたときの発光スペクトル及びX線回折スペクトルを測定した。発光スペクトルは、日本分光社製分光蛍光光度計FP−6500を用いて測定した。専用セルに蛍光体粉末を充填し、波長450nmの青色励起光を照射し、発光スペクトルを測定した。そして、発光スペクトルの最大ピーク高さより発光ピークの強度を求めた。X線回折スペクトルは、Cu−Kα線のX線の粉末X線解析計(株式会社リガク製)を用いて測定した。

0151

図24は、メラミン添加量を変化させたときの各赤色蛍光体(サンプル1)の発光スペクトルを示す図である。図24に示すように、メラミンの添加量を増加させるにつれて、発光強度が向上し、発光が短波長側にシフトすることが分かった。

0152

図25は、メラミン添加量を変化させたときの各赤色蛍光体(サンプル1)のXRDスペクトルについて、回折角が35°〜36°の位置に存在するピーク強度で規格化したスペクトルを示す図である。また、図26は、回折角が35.0°〜36.0°の位置に存在するピーク強度に対する各回折角でのピーク強度の回折ピークの強度比を示すグラフである。また、図27は、回折角が35.0°〜36.0°の位置に存在するピーク強度に対する回折角が36.0°〜36.6°の位置に存在するピーク強度の回折ピークの強度比と、発光ピークの強度比(YAG基準)との関係を示す図である。

0153

図25図27に示すように、サンプル1の赤色蛍光体は、(113)面に起因する回折ピークに対する(112)面に起因する回折ピークの強度比と、発光ピークの強度比(YAG基準)とが正比例の関係にあることが分かった。

0154

図28は、メラミン添加量を変化させたときの各赤色蛍光体(サンプル2)の発光スペクトルを示す図である。図28に示すように、メラミンの添加量を増加させるにつれて、発光強度が向上し、発光が短波長側にシフトすることが分かった。

0155

図29は、メラミン添加量を変化させたときの各赤色蛍光体(サンプル2)のXRDスペクトルについて、回折角が35°〜36°の位置に存在するピーク強度で規格化したスペクトルを示す図である。また、図30は、回折角が35.0°〜36.0°の位置に存在するピーク強度に対する各回折角でのピーク強度の回折ピークの強度比を示すグラフである。また、図31は、回折角が35.0°〜36.0°の位置に存在するピーク強度に対する回折角が36.0°〜36.6°の位置に存在するピーク強度の回折ピークの強度比と、発光ピークの強度比(YAG基準)との関係を示す図である。

0156

図29図31に示すように、サンプル2の赤色蛍光体は、(113)面に起因する回折ピークに対する(112)面に起因する回折ピークの強度比と、発光ピークの強度比(YAG基準)とが正比例の関係にあることが分かった。

0157

図32は、メラミン添加量を変化させたときの各赤色蛍光体(サンプル3)の発光スペクトルを示す図である。図32に示すように、メラミンの添加量を増加させるにつれて、発光強度が向上し、発光が短波長側にシフトすることが分かった。

0158

図33は、メラミン添加量を変化させたときの各赤色蛍光体(サンプル3)のXRDスペクトルについて、回折角が35°〜36°の位置に存在するピーク強度で規格化したスペクトルを示す図である。また、図34は、回折角が35.0°〜36.0°の位置に存在するピーク強度に対する各回折角でのピーク強度の回折ピークの強度比を示すグラフである。また、図35は、回折角が35.0°〜36.0°の位置に存在するピーク強度に対する回折角が36.0°〜36.6°の位置に存在するピーク強度の回折ピークの強度比と、発光ピークの強度比(YAG基準)との関係を示す図である。

0159

図33図35に示すように、サンプル3の赤色蛍光体は、(113)面に起因する回折ピークに対する(112)面に起因する回折ピークの強度比と、発光ピークの強度比(YAG基準)とが正比例の関係にあることが分かった。

0160

図36は、メラミン添加量を変化させたときの各赤色蛍光体(サンプル4)の発光スペクトルを示す図である。図36に示すように、メラミンの添加量を増加させるにつれて、発光強度が向上し、発光が短波長側にシフトすることが分かった。

0161

図37は、メラミン添加量を変化させたときの各赤色蛍光体(サンプル4)のXRDスペクトルについて、回折角が35°〜36°の位置に存在するピーク強度で規格化したスペクトルを示す図である。また、図38は、回折角が35.0°〜36.0°の位置に存在するピーク強度に対する各回折角でのピーク強度の回折ピークの強度比を示すグラフである。また、図39は、回折角が35.0°〜36.0°の位置に存在するピーク強度に対する回折角が36.0°〜36.6°の位置に存在するピーク強度の回折ピークの強度比と、発光ピークの強度比(YAG基準)との関係を示す図である。

0162

図37図39に示すように、サンプル4の赤色蛍光体は、(113)面に起因する回折ピークに対する(112)面に起因する回折ピークの強度比と、発光ピークの強度比(YAG基準)とが正比例の関係にあることが分かった。

0163

以上のように、サンプル1〜4の各赤色蛍光体の(113)面に起因する回折ピークに対する(112)面に起因する回折ピークの強度比と、発光ピークの強度比(YAG基準)とが、Alの有無やCaの有無に関わらず、正比例の関係にあることが分かった。

0164

特に、(113)面に起因する回折ピークに対する(112)面に起因する回折ピークの強度比が、0.65以上を示す結晶構造を有する赤色蛍光体は、1.5以上の発光ピークの強度比(YAG基準)を得ることができることが分かった。

0165

<8.9 本製法による赤色蛍光体>
次に、本製法による赤色蛍光体と従来の製法による赤色蛍光体とを組成を同様にして比較した。実施例1の赤色蛍光体は、ユーロピウムの供給源として酸化ユーロピウム(Eu2O3)を用いて、図6に示すフローチャートと同様の湿式混合を用いた常圧2段階焼成を行って作製した。メラミン仕込量は29mol%とした。また、実施例2の赤色蛍光体は、ユーロピウムの供給源として酸化ユーロピウム(Eu2O3)を用いて、図15に示すフローチャートと同様の湿式混合を用いた常圧1段階焼成を行って作製した。メラミン仕込量は29mol%とした。

0166

また、従来の製法による赤色蛍光体は、ユーロピウムの供給源として窒化ユーロピウム(EuN)を用いて、図1に示す従来の製造方法で赤色蛍光体を製造した。すなわち、ステップS101の原料混合工程では乾式混合を用い、ステップS102の1次焼成工程では、H2ガス濃度を75%とし、ステップS104の2次焼成工程では0.85MPaの加圧条件で焼成を行った。メラミン仕込量は30mol%とし、それ以外のSr、Eu、Al、Siの原料仕込量は、本製法による赤色蛍光体の組成と同様になるようにした。

0167

これらの赤色蛍光体について、Sr、Eu、Al、Siの元素測定をICP発光分析装置、Nの元素測定をインパルス加熱融解CD法、Oの元素測定をインパルス加熱融解ND−IR法、及びCの元素測定を酸素気流中燃焼ND−IR法にて行った。その結果、これらの赤色蛍光体は、組成式(2)において、m=3.79、x=0.0663、y=0.474の値となった。また、実施例1の赤色蛍光体の炭素含有量は、0.032wt%であり、組成式(2)のzの値に換算すると0.023であり、実施例2の赤色蛍光体の炭素含有量は、0.1wt%であり、組成式(2)のzの値に換算すると0.072であった。また、従来の製法による赤色蛍光体の炭素含有量は、0.038wt%であり、組成式(2)のzの値に換算すると0.027であった。

0168

図40は、実施例1の赤色蛍光体のXRDスペクトルについて、回折角が35°〜36°の位置に存在するピーク強度で規格化したスペクトルを示す図である。実施例1の赤色蛍光体の(113)面に起因する回折ピークに対する(112)面に起因する回折ピークの強度比は、0.93であった。また、実施例1の赤色蛍光体の発光ピークの強度比(YAG基準)は、1.99であった。

0169

また、実施例2の赤色蛍光体の(113)面に起因する回折ピークに対する(112)面に起因する回折ピークの強度比は、1.00であった。また、実施例2の赤色蛍光体の発光ピークの強度比(YAG基準)は、1.74であった。

0170

また、図41は、従来の製法による赤色蛍光体のXRDスペクトルについて、回折角が35°〜36°の位置に存在するピーク強度で規格化したスペクトルを示す図である。従来の製法による赤色蛍光体の(113)面に起因する回折ピークに対する(112)面に起因する回折ピークの強度比は、0.23であった。また、従来の製法による赤色蛍光体の発光ピークの強度比(YAG基準)は、0.82であった。

0171

これらの結果より、本製法によれば、炭素含有量が少ない(zの値が小さい)組成系の赤色蛍光体においても良好な発光を得ることができることが分かった。具体的には、炭素の含有量(z)が0.072以下の低い値であっても、斜方晶系空間点群Pmn21において(113)面に起因する回折ピークに対する(112)面に起因する回折ピークの強度比が0.65以上を示す結晶構造が得られることが分かった。

0172

一方、従来の製法では、炭素の含有量(z)が0.072以下の低い値の場合、斜方晶系空間点群Pmn21において(113)面に起因する回折ピークに対する(112)面に起因する回折ピークの強度比が0.65以上を示す結晶構造が得られない。

0173

すなわち、本製法による赤色蛍光体は、炭素の含有量(z)が0.072以下の低い値でも、斜方晶系空間点群Pmn21において(113)面に起因する回折ピークに対する(112)面に起因する回折ピークの強度比が0.65以上を示すことから、従来の製法による赤色蛍光体と結晶構造が異なっていることが分かった。

0174

<8.10PLE(Photoluminescence Excitation)スペクトルの発光特性>
図42は、メラミン添加量を変化させたときの各赤色蛍光体の励起波長400nmの発光強度を1としたときにおける励起波長550nmの発光強度(以下、550nmPLE強度/400nmPLE強度と表記する)と外部量子効率の関係を示すグラフである。550nmPLE強度/400nmPLE強度は、各赤色蛍光体のPLEスペクトルにおいて、励起波長400nmの発光強度を1としたときにおける励起波長550nmの発光強度の相対値とした。また、各赤色蛍光体の外部量子効率は、日本分光社製分光蛍光光度計FP−6500を用いて測定した。専用セルに蛍光体粉末を充填し、波長450nmの青色励起光を照射させて、蛍光スペクトルを測定し、その結果を、分光蛍光光度計付属の量子効率測定ソフトを用いて、赤色の外部量子効率を算出した。

0175

赤色蛍光体は、ユーロピウムの供給源として酸化ユーロピウム(Eu2O3)を用いて、図6に示すフローチャートと同様の湿式混合を用いた常圧2段階焼成を行ってサンプルA、Bを作製した。前記組成式(4)において、サンプルA(Eu:1.75mol%、Al:5mol%、Ca:0mol%)は、α=0、m=3.79、x=0.0663、y=0.4736である。また、サンプルB(Eu:3.75mol%、Al:5mol%、Ca:30mol%)は、α=0.3、m=3.79、x=0.142、y=0.4736である。

0176

また、メラミン添加量は、炭酸カルシウム、酸化ユーロピウム、窒化シリコン、及び窒化アルミニウムの全モル数に対して22%mol以上50%mol以下の範囲とした。

0177

図42に示すグラフより、550nmPLE強度/400nmPLE強度が0.48以上であることにより、高い外部量子効率が得られることが分かった。

0178

また、図42においてサンプルAとサンプルBとを比較すると、Eu濃度が1.75%の場合と3.75%の場合とでは、プロット平行移動するような形になることが分かった。この結果から、前記組成式(2)中、0.05≦x≦0.15の範囲において、Eu濃度(x)を変化させることにより、赤色蛍光体の外部量子効率を向上させることが可能であることが分かった。

0179

以上、説明したように、本実施の形態における赤色蛍光体は、X線回折パターンにおいて、回折角が36°〜36.6°の位置に存在するピークの強度が、回折角が35°〜36°の位置に存在するピークの強度の0.65倍以上を示し、優れた発光特性を示す。また、前記組成式(1)に示す赤色蛍光体の炭素の含有量(z)が0.072以下の低い値であっても、優れた発光特性を示す。また、赤色蛍光体の炭素の含有量(z)が低い値の場合、原料に使用するメラミン量が少なくて済むため、原料使用量が抑えられ、コストパフォーマンスが高い。

実施例

0180

また、本実施の形態における赤色蛍光体の製造方法は、メラミンの仕込量を削減することができ、メラミン使用量によるコストを抑えることができる。また、メラミン仕込量を削減により、メラミンによって装置の配管が詰まる等の悪影響を抑えることができ、装置の後段側にフィルターを設ける必要がなく、ランニングコストを抑えることができる。

0181

1白色光源、5照明装置、21青色発光ダイオード、43混練物、100 液
表示装置、110液晶表示パネル、120バックライト(照明装置5)

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ