図面 (/)

技術 非毒性の粘膜アジュバント

出願人 ジーエスケイヴァクシンズエス.アール.エル.
発明者 リノラポーリ
出願日 2012年9月20日 (8年1ヶ月経過) 出願番号 2012-206594
公開日 2012年12月13日 (7年10ヶ月経過) 公開番号 2012-246326
状態 未査定
技術分野 抗原、抗体含有医薬:生体内診断剤
主要キーワード 乳濁物 破傷風菌トキソイド サブユニット内 身体条件 pylori抗原 HAV サンプル血 不活化ウイルス粒子
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2012年12月13日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (5)

課題

経口または内のような粘膜表面投与された場合、抗原免疫原性を増大させるために使用され得る活性粘膜アジュバントの提供すること。

解決手段

非毒性の粘膜アジュバントを第2の抗原とともに混合して含有する薬学的組成物であって、1つの実施形態において、項上述の非毒性の粘膜アジュバントが細菌のADPリボシル化毒素無毒化された変異体である、組成物であって、別の実施形態において、上述の非毒性の粘膜アジュバントがCTまたはLTの無毒化された変異体である、組成物。

概要

背景

発明の背景
現在のワクチン接種技術は、大部分が専ら全身的なワクチン接種技術に基づいている。この技術では、ワクチンは、ワクチン接種される被験体に注射される。特定の生/弱毒化ワクチン(例えば、セービンポリオワクチン)が経口服用され得るのみである。

経口免疫技術の利点が幾倍かある。例えば、被験体に摂取され得るワクチンが、特に、取り扱うことまたは位置を確認することさえも難しいかもしれない被験体(例えば、家畜および野生動物)にとって、特殊化された装置が存在しなくても大規模投与することがより容易であることは自明である。発展途上国での注射針の再利用による感染の拡大は、それにより避けられる。さらに、経口ワクチンは、食用固体の形態で提供され得、これは、極端な条件下で取り扱うことがより容易であり、そして現在使用されている液体懸濁物よりも安定である。

さらに、粘膜への免疫原送達(例えば、経口または内ワクチン接種による)は、分泌免疫応答誘起を可能にする。

分泌免疫応答は、主にIgAに介され、全身的免疫応答とは実質上区別されるようである。全身的ワクチン接種は、分泌免疫応答の誘起には効果的でない。これは、しばしば被験体に腸またはなどの粘膜表面を横切って侵入する病原体に対する免疫を考慮した場合、無視できない欠点である。

不幸にも、大多数抗原に対して、このような抗原を粘膜表面に曝すだけでは分泌免疫応答を誘起させ得ない。さらに、所定の抗原に対して分泌免疫応答を誘起し得るアジュバントは現在入手可能ではない。

明らかに困難であるのは、主に経口寛容として既知現象のためである。腸および肺の内層は、本来、外来抗原に対して寛容であり、これが、摂取または吸入した物質(例えば、食物および空気中の粒子物質)に対する免疫応答を誘起させることを妨げる。

ADPリボシル化細菌毒素、すなわちジフテリア毒素百日咳毒素(PT)、コレラ毒素(CT)、大腸菌熱不安定性毒素LT1およびLT2)、Pseudomonasの内毒素A、ボツリヌス菌C2およびC3毒素、ならびにC.perfringens、C.spiriforma、およびC.difficile由来の毒素は、ヒトにおいて強力な毒素である。これらの毒素は、モノマーで、酵素的活性なAサブユニット(これは、GTP結合タンパク質のADPリボシル化を招く)、および非毒性のBサブユニット(これは、標的細胞の表面上のレセプターに結合し、そして細胞膜を横切ってAサブユニットを送達する)から構成される。CTおよびLTの場合、Aサブユニットは標的細胞の細胞cAMPベルを上昇させることが知られているが、Bサブユニットはペンタマーであり、そしてGM1ガングリオシドレセプターに結合する。

1975年および1978年の観察では、CTが、十二指腸に(すなわち粘膜表面に)投与された場合、それ自身に対する粘膜および全身的免疫を誘導し得ることが示された。CTの膜結合機能が、粘膜の免疫原性に必須であることが示されたが、CTのBサブユニット(CTB)としても公知であるコレラトキソイドは、単離すると不活性であった(PierceおよびGowans,J.Exp.Med1975;142: 1550; Pierce, J.Exp Med 1978; 148: 195-206)。

続いて、CTが、同時に投与した抗原に対する全身的および粘膜免疫を誘導すること、言い換えれば、粘膜アジュバントとして機能するということが示された(Elson,Curr.Top.Microbiol.Immunal,1989; 146: 29; ElsonおよびEalding,J.Immunol.1984; 133:2892-2897;ElsonおよびEalding,同上, 1984; 132:2736-2741; Elsonら,J.Immunol.Methods1984;67:101-118;LyckeおよびHomgren,Immunology 1986;59:301-338)。

上記の実験マウスで行った。これは、CTの毒性効果に対して比較的耐性を示す。対照的に、野生型CTは、ヒトに対して非常に毒性であり、何らかの実質的な残存毒性を有するCTを粘膜アジュバントとしてヒトに使用することは、全く問題外である。

従来技術において2つのアプローチが、CTの毒性の問題を提示してきた。第1のアプローチは、粘膜アジュバントとしてのCTBの使用に関する。CTBは、完全に非毒性である。

一連の実験で、CTBは、西ワサビペルオキシダーゼ(HRP)に共有結合しており、そしてマウスの十二指腸内に投与された。これにより、HRPに対する強力な粘膜免疫応答を生じた(McKenzieおよびHalsey,J.Immunol1984;133: 1818-1824)。

この結果は、実質的に他の抗原についても部分的に確認された(Liangら, J.Immunol 1988; 141:1495-1501;Czerkinskyら,Infect.Immun.1989;57: 1072-1077)。同じ原理はまた、CTBをコードする配列に遺伝子融合することにより産生されるキメラ抗原試験した場合に、効果的であることが確認された(DertzbaughおよびElson,Infect.Immun.1993;61:384-390; DertzbaughおよびElson, 同上 1993;61:48-55;Sanchezら,Res.Microbiol1990;141:971-979; Holmgrenら, Vaccine 1993; 11:1179-1184)。

しかし、キメラまたは結合した抗原の産生は、適切なワクチンの調製にさらなる工程を導入し、これは、本質的に、特に経口的に使用するためには、CTBに結合した形態で抗原が調製されることを必要とする。アジュバントが、抗原との単純混合物で投与され得る場合、より簡単でありそしてより経済的である。

同時投与されるCTBに対するアジュバントの効果は、多くの出版物で主張されている(Tamuraら,J.Immunol 1992; 149:981-988;Hirabayashiら, Immunology 1992; 75:493-498;Gizurarsonら, Vaccine1991; 9:825-832; Kikutaら, Vaccine 1970; 8:595-599; Hirabayahiら, 同上1990; 8;243-248; Tamuraら, 同上 1989; 7:314-32-; Tamuraら, 同上 1989; 7:257-262;Tamuraら, 同上 1988; 6:409-413; Hirabayashiら, Immunology 1991;72:329-335;Tamuraら, Vaccine1989; 7: 503-505)。

しかし、上記の報告された観察の多くの局面は、全体的に説得力がない。例えば、CTBに起因するアジュバントの効果が、H-2制限されないことに留意した。しかし、CTBに対する免疫応答が、H-2制限されることが公知である(ElsonおよびEalding,Eur.J.Immunol.1987;17:425-428)。さらに、主張されたアジュバント効果は、既にCTBに対して免疫した個体にさえも観察された。

他の群は、CTBに起因し得る何らかの粘膜アジュバント効果を観察し得なかった(LyckeおよびHolmgren,Immunology 1986; 59:301-308; Lyckeら, Eur.J.Immunol. 1992; 22:2277-2281)。組換えCTBでの実験(Holmgrenら,Vaccine1993; 11: 1179-1183)は、主張された効果が専らではない場合、主にCTB調製物への低レベルのCTの混入に起因し得ることを確証した。

従って、現在は、CTBが粘膜アジュバントとして有用ではないことが受け入れられている。

CTの毒性を取り除く第2のアプローチは、その毒性を減ずるまたは取り除くためにCTホロトキシンを変異させることであった。CTの毒性は、Aサブユニット、ならびに、CTおよびそのホモログであるLTの多くの変異体(当該分野で公知のAサブユニット内点変異を含む)に存在する。例えば、国際特許公開第WO92/19265号(Amgen)を参照のこと。当該分野では、CTおよびLTが一般に交換可能であり、かなりの相同性を示すことが受け入れられている。

しかし、これまで粘膜のアジュバント化性について試験した唯一の変異体である、112位でのGlu→Lys変異を有するLT変異体は、粘膜アジュバントとして不活性であることが見出された(Lyckeら,Eur.J.Immunol.1992;22:2277-2251;Holmgrenら,Vaccine 1993; 11:1179-1183)。これらの出版物の著者らは、CTおよび/またはLTのADPリボシル化活性とアジュバント活性との間に関連があると結論している。それゆえ、これらの出版物からは、CTBまたはCTもしくはLTの非毒性変異体が、粘膜アジュバントとして活性でないようである。

概要

経口または鼻内のような粘膜表面に投与された場合、抗原の免疫原性を増大させるために使用され得る活性な粘膜アジュバントの提供すること。非毒性の粘膜アジュバントを第2の抗原とともに混合して含有する薬学的組成物であって、1つの実施形態において、項上述の非毒性の粘膜アジュバントが細菌のADPリボシル化毒素の無毒化された変異体である、組成物であって、別の実施形態において、上述の非毒性の粘膜アジュバントがCTまたはLTの無毒化された変異体である、組成物。なし

目的

本発明は、非毒性の粘膜アジュバントを第2の抗原と混合して含有する薬学的組成物を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

明細書に記載の発明。

技術分野

0001

発明の分野
本発明は、生物ワクチン投与するために有用なアジュバントに関する。特に、本発明のアジュバントは、ワクチンを粘膜表面送達し、分泌応答および全身免疫応答誘起させ得る。

背景技術

0002

発明の背景
現在のワクチン接種技術は、大部分が専ら全身的なワクチン接種技術に基づいている。この技術では、ワクチンは、ワクチン接種される被験体に注射される。特定の生/弱毒化ワクチン(例えば、セービンポリオワクチン)が経口服用され得るのみである。

0003

経口免疫技術の利点が幾倍かある。例えば、被験体に摂取され得るワクチンが、特に、取り扱うことまたは位置を確認することさえも難しいかもしれない被験体(例えば、家畜および野生動物)にとって、特殊化された装置が存在しなくても大規模に投与することがより容易であることは自明である。発展途上国での注射針の再利用による感染の拡大は、それにより避けられる。さらに、経口ワクチンは、食用固体の形態で提供され得、これは、極端な条件下で取り扱うことがより容易であり、そして現在使用されている液体懸濁物よりも安定である。

0004

さらに、粘膜への免疫原の送達(例えば、経口または内ワクチン接種による)は、分泌免疫応答の誘起を可能にする。

0005

分泌免疫応答は、主にIgAに介され、全身的免疫応答とは実質上区別されるようである。全身的ワクチン接種は、分泌免疫応答の誘起には効果的でない。これは、しばしば被験体に腸またはなどの粘膜表面を横切って侵入する病原体に対する免疫を考慮した場合、無視できない欠点である。

0006

不幸にも、大多数抗原に対して、このような抗原を粘膜表面に曝すだけでは分泌免疫応答を誘起させ得ない。さらに、所定の抗原に対して分泌免疫応答を誘起し得るアジュバントは現在入手可能ではない。

0007

明らかに困難であるのは、主に経口寛容として既知現象のためである。腸および肺の内層は、本来、外来抗原に対して寛容であり、これが、摂取または吸入した物質(例えば、食物および空気中の粒子物質)に対する免疫応答を誘起させることを妨げる。

0008

ADPリボシル化細菌毒素、すなわちジフテリア毒素百日咳毒素(PT)、コレラ毒素(CT)、大腸菌熱不安定性毒素LT1およびLT2)、Pseudomonasの内毒素A、ボツリヌス菌C2およびC3毒素、ならびにC.perfringens、C.spiriforma、およびC.difficile由来の毒素は、ヒトにおいて強力な毒素である。これらの毒素は、モノマーで、酵素的活性なAサブユニット(これは、GTP結合タンパク質のADPリボシル化を招く)、および非毒性のBサブユニット(これは、標的細胞の表面上のレセプターに結合し、そして細胞膜を横切ってAサブユニットを送達する)から構成される。CTおよびLTの場合、Aサブユニットは標的細胞の細胞cAMPベルを上昇させることが知られているが、Bサブユニットはペンタマーであり、そしてGM1ガングリオシドレセプターに結合する。

0009

1975年および1978年の観察では、CTが、十二指腸に(すなわち粘膜表面に)投与された場合、それ自身に対する粘膜および全身的免疫を誘導し得ることが示された。CTの膜結合機能が、粘膜の免疫原性に必須であることが示されたが、CTのBサブユニット(CTB)としても公知であるコレラトキソイドは、単離すると不活性であった(PierceおよびGowans,J.Exp.Med1975;142: 1550; Pierce, J.Exp Med 1978; 148: 195-206)。

0010

続いて、CTが、同時に投与した抗原に対する全身的および粘膜免疫を誘導すること、言い換えれば、粘膜アジュバントとして機能するということが示された(Elson,Curr.Top.Microbiol.Immunal,1989; 146: 29; ElsonおよびEalding,J.Immunol.1984; 133:2892-2897;ElsonおよびEalding,同上, 1984; 132:2736-2741; Elsonら,J.Immunol.Methods1984;67:101-118;LyckeおよびHomgren,Immunology 1986;59:301-338)。

0011

上記の実験マウスで行った。これは、CTの毒性効果に対して比較的耐性を示す。対照的に、野生型CTは、ヒトに対して非常に毒性であり、何らかの実質的な残存毒性を有するCTを粘膜アジュバントとしてヒトに使用することは、全く問題外である。

0012

従来技術において2つのアプローチが、CTの毒性の問題を提示してきた。第1のアプローチは、粘膜アジュバントとしてのCTBの使用に関する。CTBは、完全に非毒性である。

0013

一連の実験で、CTBは、西ワサビペルオキシダーゼ(HRP)に共有結合しており、そしてマウスの十二指腸内に投与された。これにより、HRPに対する強力な粘膜免疫応答を生じた(McKenzieおよびHalsey,J.Immunol1984;133: 1818-1824)。

0014

この結果は、実質的に他の抗原についても部分的に確認された(Liangら, J.Immunol 1988; 141:1495-1501;Czerkinskyら,Infect.Immun.1989;57: 1072-1077)。同じ原理はまた、CTBをコードする配列に遺伝子融合することにより産生されるキメラ抗原試験した場合に、効果的であることが確認された(DertzbaughおよびElson,Infect.Immun.1993;61:384-390; DertzbaughおよびElson, 同上 1993;61:48-55;Sanchezら,Res.Microbiol1990;141:971-979; Holmgrenら, Vaccine 1993; 11:1179-1184)。

0015

しかし、キメラまたは結合した抗原の産生は、適切なワクチンの調製にさらなる工程を導入し、これは、本質的に、特に経口的に使用するためには、CTBに結合した形態で抗原が調製されることを必要とする。アジュバントが、抗原との単純混合物で投与され得る場合、より簡単でありそしてより経済的である。

0016

同時投与されるCTBに対するアジュバントの効果は、多くの出版物で主張されている(Tamuraら,J.Immunol 1992; 149:981-988;Hirabayashiら, Immunology 1992; 75:493-498;Gizurarsonら, Vaccine1991; 9:825-832; Kikutaら, Vaccine 1970; 8:595-599; Hirabayahiら, 同上1990; 8;243-248; Tamuraら, 同上 1989; 7:314-32-; Tamuraら, 同上 1989; 7:257-262;Tamuraら, 同上 1988; 6:409-413; Hirabayashiら, Immunology 1991;72:329-335;Tamuraら, Vaccine1989; 7: 503-505)。

0017

しかし、上記の報告された観察の多くの局面は、全体的に説得力がない。例えば、CTBに起因するアジュバントの効果が、H-2制限されないことに留意した。しかし、CTBに対する免疫応答が、H-2制限されることが公知である(ElsonおよびEalding,Eur.J.Immunol.1987;17:425-428)。さらに、主張されたアジュバント効果は、既にCTBに対して免疫した個体にさえも観察された。

0018

他の群は、CTBに起因し得る何らかの粘膜アジュバント効果を観察し得なかった(LyckeおよびHolmgren,Immunology 1986; 59:301-308; Lyckeら, Eur.J.Immunol. 1992; 22:2277-2281)。組換えCTBでの実験(Holmgrenら,Vaccine1993; 11: 1179-1183)は、主張された効果が専らではない場合、主にCTB調製物への低レベルのCTの混入に起因し得ることを確証した。

0019

従って、現在は、CTBが粘膜アジュバントとして有用ではないことが受け入れられている。

0020

CTの毒性を取り除く第2のアプローチは、その毒性を減ずるまたは取り除くためにCTホロトキシンを変異させることであった。CTの毒性は、Aサブユニット、ならびに、CTおよびそのホモログであるLTの多くの変異体(当該分野で公知のAサブユニット内点変異を含む)に存在する。例えば、国際特許公開第WO92/19265号(Amgen)を参照のこと。当該分野では、CTおよびLTが一般に交換可能であり、かなりの相同性を示すことが受け入れられている。

0021

しかし、これまで粘膜のアジュバント化性について試験した唯一の変異体である、112位でのGlu→Lys変異を有するLT変異体は、粘膜アジュバントとして不活性であることが見出された(Lyckeら,Eur.J.Immunol.1992;22:2277-2251;Holmgrenら,Vaccine 1993; 11:1179-1183)。これらの出版物の著者らは、CTおよび/またはLTのADPリボシル化活性とアジュバント活性との間に関連があると結論している。それゆえ、これらの出版物からは、CTBまたはCTもしくはLTの非毒性変異体が、粘膜アジュバントとして活性でないようである。

課題を解決するための手段

0022

本発明によって以下が提供される:
項目1)非毒性の粘膜アジュバントを第2の抗原とともに混合して含有する薬学的組成物
(項目2) 項目1に記載の組成物であって、前記非毒性の粘膜アジュバントが細菌のADPリボシル化毒素の無毒化された変異体である、組成物。
(項目3) 項目2に記載の組成物であって、前記非毒性の粘膜アジュバントがCTまたはLTの無毒化された変異体である、組成物。
(項目4) 項目2または3に記載の組成物であって、前記非毒性の粘膜アジュバントが、1またはそれより多いアミノ酸の付加、欠失、または置換を、ホロトキシンのAサブユニットに含有する、組成物。
(項目5) 前記非毒性の粘膜アジュバントがLTK7である、項目4に記載の組成物。
(項目6) 項目2から5のいずれかに定義される非毒性の変異体の、粘膜投与のため
の組成物の調製における粘膜アジュバントとしての使用。
(項目7) 前記組成物がワクチンである、項目6に記載の使用。
(項目8) 前記ワクチンが、予防または治療適用での使用のためである、項目7に記載の使用。
(項目9) 前記組成物がさらに第2の抗原を含有する、項目6から8のいずれかに記載の使用。
(項目10)被験体の疾患を防止または処置するための方法であって、該被験体に、項目2から5のいずれかに定義される非毒性の変異体とともにアジュバント化した免疫学的有効量の抗原を、該被験体の粘膜表面と該アジュバント化抗原とを接触させることにより投与する工程を包含する、方法。
(項目11) 項目10に記載の方法であって、項目1から5のいずれかに記載の組成物の投与を包含する、方法。
(項目12) 前記アジュバント化抗原が、経口または鼻内に投与される、項目10または11に記載の方法。
(項目13) 同時に別々に、または連続して投与するための非毒性の粘膜アジュバントおよび第2の抗原。
(項目14) 単一の媒体キャリア、または粒子中に組み合わせて同時に投与するための非毒性の粘膜アジュバントおよび第2の抗原。
(項目15)アジュバント化ワクチンを製造するための方法であって、
a)毒素を無毒化するために、部位特異的変異誘発を、細菌のADPリボシル化毒素のAサブユニットに行う、工程;および
b)粘膜アジュバントとして機能するように、該無毒化された毒素を、第2の抗原と結合させる工程、
を包含する、方法。
発明の要旨
従って、経口または鼻内のような粘膜表面に投与された場合、抗原の免疫原性を増大させるために使用され得る活性な粘膜アジュバントの必要が残されたままである。

0023

現在、当該分野で示される結果および結論とは完全に反対に、ADPリボシル化毒素の毒性とアジュバント活性とは分離し得ることが発見されている。このような毒素の完全に非毒性の変異体が、粘膜アジュバントとして活性であることが示されている。

0024

第1の局面では、本発明は、非毒性の粘膜アジュバントを第2の抗原と混合して含有する薬学的組成物を提供する。

0025

完全に毒性を欠くLT変異体が、粘膜アジュバントとして活性であり、そして致死用量の免疫原でのさらなる抗原投与に対して被験体を保護することが示されている。出願人らは、任意の特定の理論により結びつけられることを望まないが、上で引用したLyckeらおよびHolmgrenらの結果が、少なくとも部分的には反対であり得ると仮定する。なぜなら、作られている変異体の安定性を説明することができないからである。とりわけ、本発明の非毒性変異体が、送達部位で安定であることを確実にすることにより、CTおよび/またはLTのアジュバント効果が、その毒性効果を除去しても維持され得ることが示された。

0026

それゆえ、好ましくは、非毒性の粘膜アジュバントは、細菌のADPリボシル化毒素の無毒化された変異体であり、必要に応じて1またはそれより多いアミノ酸の付加、欠失、または置換を含む。

0027

CTまたはLTの無毒化された変異体が特に適切である。例えば、本発明による変異体LTは、Aサブユニットの7位でのArg7からLys7への置換を有し得、これはいわゆるLTK7変異体である。

0028

オルタナティブ変異体は、当業者に公知であり、そして本発明に使用するために好ましい分子である。例としては、129位で変異したPT、特に、Glu129→Gly変異を有するPTを包含する。さらなる変異体は、Trp26およびArg9の一方または両方で、必要に応じてGlu129
変異と組み合わせて変異させたPTを包含する。

0029

さらに、本発明で使用される変異体は、変異が分子の一部に影響して、その結果、毒素のAサブユニットのタンパク質分解を妨げて、酵素活性が現れない変異体であり得る。このような変異体は、Grantら,Inf.andImmunity (1994) 62(10) 4270-4278に記載されている。例えば、変異体は、Arg192→Gly変異をLTに、または対応する変異を別のADPリボシル化毒素に含み得る。

0030

本発明の変異体は、好ましくは、変異したAサブユニットおよびBサブユニットを含むホロトキシンの形態であり、野生型のホロトキシンのようにオリゴマーであり得る。Bサブユニットは、好ましくは変異されない。しかし、変異したAサブユニットをBサブユニットと別々に、本質的に純粋な形態または他の薬剤(これは、Bサブユニットおよび/またはその機能的寄与物と置換され得る)と複合した形態のいずれかで、使用され得ると考えられる。

0031

CTおよび/またはLTの変異体の設計および作成方法は、当該分野で公知である。適切な方法は、国際特許公開第WO93/13202号(BiocineSclavo)に記載されており、この開示は、同第WO92/19265号(Amgen)とともに本明細書中に参考として援用されている。

0032

本発明のアジュバントは、好ましくは、免疫応答を誘起させることが所望される適切な抗原とともに混合して投与される。抗原とアジュバントが混合されていない場合は、それらが互いに比較的短い時間内に、同じ投与部位に投与されることが好ましい。野生型CTにより提供されるアジュバント効果が、短期存続することが観察されている(LyckeおよびHomgren,Immunology1986;59: 301-308を参照のこと)。別の実施態様では、本発明の粘膜アジュバントは、必要に応じて他の抗原とは単独に、ワクチンの全身的な投与または粘膜投与に続いて、ブーストとして投与され得る。

0033

ワクチンの正確な処方物は、免疫原の性質により変化し得る。例えば、抗原が、徐放性マイクロスフェア中でリポソーム封入されている場合、粘膜アジュバントは同様に封入され得、抗原およびアジュバントは同時に粘膜免疫系相互作用し得る。あるいは、本発明のアジュバントの別々の粘膜投与は、非経口で投与されたワクチンへの粘膜応答を増強するために使用され得る。

0034

第2の局面では、本発明は、粘膜アジュバントとしての粘膜投与のための組成物の調製における、CTまたはLTの非毒性変異体の使用を提供する。

0035

好ましくは、組成物はワクチンであり、そして疾患に対する被験体の免疫または疾患に罹っている被験体の処置に有用である。

0036

好ましくは、変異体は1またはそれより多いアミノ酸の付加、置換、または欠失を、CTまたはLTのAサブユニットのアミノ酸配列中に含み、これは、毒素の毒性をなくすために効果的である。

0037

本発明の第3の局面によれば、被験体の疾患の予防または処置のための方法が提供され、これは、被験体の粘膜表面をアジュバント化した抗原と接触させることにより、免疫学的有効量の抗原を、非毒性のCTまたはLT変異体でアジュバント化して被験体に投与する工程を包含する。

0038

粘膜表面は、被験体の任意の適切な粘膜表面であり得る。例えば、投与は、吸入により、直腸または坐剤あるいはペッサリー摂食または他の口腔投与により、エアロゾルにより、鼻内送達または粘膜表面への直接適用により行われ得る。

0039

被験体は、免疫可能な任意の生物であり得る。特に、ヒトおよび他の哺乳動物(例えば、家畜、ペット、および野生動物)が示される。

0040

被験体が免疫され得る疾患は、免疫により処置または防止され得る全ての疾患を包含し、これには、ウイルス性疾患アレルギー発現、粘膜表面を通過するまたは粘膜表面に定住する細菌または他の病原体により引き起こされる疾患、AIDS、自己免疫疾患(例えば、全身性紅斑性狼瘡)、アルツハイマー症およびガンが挙げられる。本発明を使用して処置または予防され得るウイルス性感染の例は、EBVおよびVZVのようなDNAウイルス、および特にヘルペスウイルス(例えば、HSVおよびHCMV)、アデノウイルスパポーバウイルス(papovaviridae)(例えば、HPV)、ヘパドナウイルス(hepadnaviridae)(例えば、HBV)による感染、ピコルナウイルス(picorvaviridae)などのRNAウイルス、特にポリオウイルス(polivirus)およびHAVライノウイルス(rhinovirus)およびFMDV、トガウイルス(togaviridae)、フラビウイルス(flaviviridae)、コロナウイルス(coronaviridae)、パラミクソウイルス(paramyxoviridae)(例えば、RSV)、オルトミクソウイルス(orthomyoxoviridae)(例えば、インフルエンザウイルス)、およびレトロウイルス(特にHIV)による感染を包含する。HCVおよびHDVに対するワクチン接種もまた考えられる。

0041

本発明により処置または予防するに適切な細菌感染の例は、Helicobacter pylori、連鎖球菌(streptococci)、髄膜炎菌(meningococcus)A、B、およびC、百日咳菌(bordetellapertussis)、およびクラミジア(chlamydia)、およびトラコーマ(trachomatis)による感染を包含する。

0042

粘膜表面での送達に適切なワクチン処方物は、以下に記載のように調製され得るが、さらなる処方物は当業者に明らかである。適切な投与法は、同様に以下に記載したが、例示した値の改変は当業者には明らかである。

0043

さらに、本発明は、非毒性の粘膜アジュバントであるCTまたはLTの変異体、および同時に別々にまたは続けて投与するための第2の抗原を提供する。以下に例示したように、単一の媒体、キャリア、または粒子と組み合わせる場合、アジュバントと第2の抗原との同時投与は、特に好ましい。

0044

第2の抗原は、任意の抗原であり得、これに対して、被験体で免疫応答を誘起させることが所望される。適切な抗原は、病原性生物に由来する細菌、ウイルス、および原生動物の抗原、ならびに、アレルゲンアロゲン(allogen)、および腫瘍に由来する抗原、および自己抗原を包含する。代表的には、抗原は、タンパク質ポリペプチド、またはペプチド抗原であるが、他の抗原性構造(例えば、核酸抗原、炭水化物抗原、および全体または弱毒化または不活化生物(例えば、細菌、ウイルス、または原生動物))は、除外されない。本発明はさらに、以下の工程を包含するアジュバント化ワクチンの製造方法を提供する:a)毒素を無毒化するために、細菌のADPリボシル化毒素のAサブユニットにおいて、部位特異的変異誘発を行う工程;および
b)粘膜アジュバントとして機能させるように、無毒化した毒素を第2の抗原と結合させる工程。

0045

本発明で有用な抗原の特定の例は、HSVgD、gBおよび他の糖タンパク質;HIVgp120および他のタンパク質;CMV gBまたはgH;HCV抗原;HDVδ抗原;HAV抗原;EBVおよびVZV抗
原;B.pertussis抗原およびH.pylori抗原を包含する。

0046

一般に、第2の抗原は、注射を意図したワクチンの免疫原性成分であり得る。このようなワクチンおよびその免疫原性成分は、サブユニットワクチン、不活化または弱毒化された生物全体、あるいはポリヌクレオチドワクチンであり得る。

0047

本発明によるワクチンは、予防(感染を防止する)または治療(感染後に疾患を処置する)のいずれかであり得る。

0048

これらのワクチンは、予防(感染を防止する)または治療(感染後に疾患を処置する)のいずれかであり得る。

0049

このようなワクチンは、1つの抗原または複数の抗原を、通常は「薬学的に受容可能なキャリア」と組み合わせて含有し、これは、それ自身が、この組成物を受ける個体に有害な抗体の産生を誘導しない任意のキャリアを含有する。

0050

適切なキャリアは、代表的には大きくて、ゆっくり代謝される巨大分子であり、例えば、タンパク質、多糖ポリ酪酸ポリグリコール酸ポリマーアミノ酸、アミノ酸コポリマー脂質凝集体(例えば、油滴乳濁物またはリポソーム)、および不活化ウイルス粒子である。このようなキャリアは、当業者に周知である。本発明の好ましい局面では、これらのキャリアは免疫刺激剤(「アジュバント」)として機能し得る。さらに、抗原は、細菌のトキソイド(例えば、ジフテリア菌破傷風菌コレラ菌、H.pyloriなどの病原体由来のトキソイド)に結合させ得る。

0051

組成物の効果を増大させる好ましいアジュバントは、以下を包含するがそれに限定されない:(1)アルミニウム塩ミョウバン)(例えば、水酸化アルミニウムリン酸アルミニウム硫酸アルミニウムなど);(2)水中油型乳剤処方物(ムラミルペプチドのような他の特異的な免疫刺激剤(以下参照)または細菌の細胞壁成分を含むまたは含まない)、例えば、(a)Model110Yマイクロフルイダイザー(Microfluidics,Newton,MA)のようなマイクロフルイダイザーを使用してミクロン以下の粒子に処方された、5%スクアレン、0.5%Tween80、および0.5%Span 85(必要とされないが、適宜種々の量のMTP-PE(以下参照)を含有する)を含有するMF59(PCT公開第WO90/14837号)、(b)ミクロン以下の乳濁液マイクロ流動化された(microfluidized)か、またはより大きな粒子サイズの乳濁物を生成するためにボルテックスされたかのいずれかの、10%スクアレン、0.4%Tween80、5%プルロニックブロックされたポリマーL121、およびthr-MDP(以下参照)を含有するSAF、および(c)2%スクアレン、0.2%Tween80、ならびに、モノホスホリピッド(monophosphorylipid)A(MPL)、トレハロースジミコレート(TDM)、および細胞壁骨格(CWS)、好ましくはMPL+CWS(DetoxTM)よりなる群からの1またはそれより多い細菌細胞壁成分を含有するRibiTMアジュバントシステム(RAS)、(RibiImmunochem,Hamilton,MT);(3)サポニンアジュバント(例えば、StimulonTM(CambridgeBioscience,Worcester,MA)が使用され得、またはそれらから生成した粒子(例えば、ISCOM(免疫刺激複合体);(4)完全フロイントアジュバント(CFA)および不完全フロイントアジュバント(IFA);(5)インターロイキン(例えば、IL-1、IL-2、IL-4、IL-5、IL-6、IL-7、IL-12など)、インターフェロン(例えば、γインターフェロン)、マクロファージコロニー刺激因子(M-CSF)、腫瘍壊死因子(TNF)などのサイトカイン;および(6)組成物の効果を増強する免疫刺激剤として作用する他の物質である。ミョウバンおよびMF59が好ましい。

0052

上述のように、ムラミルペプチドは、N-アセチル-ムラミル-L-スレオニル-D-イソグルタミン(thr-MDP)、N-アセチル-ノルムラミル-l-アラニル-d-イソグルタミン(nor-MDP)、N-アセチルムラミル-l-アラニル-d-イソグルタミニル-l-アラニン-2-(1'-2'-ジパルミトイル-sn-グリセロ-3-ヒドロキシホスホリルオキシ)-エチルアミン(MTP-PE)などを包含するが、これらに限定されない。

0053

免疫原性組成物(例えば、抗原、薬学的に受容可能なキャリア、およびアジュバント)は、代表的には、希釈剤(例えば、水、生理食塩水グリセロールエタノールなど)を含有する。

0054

さらに、補助的物質(例えば、湿潤剤または乳化剤、pH緩衝物質など)は、このような媒体中に存在し得る。

0055

代表的には、免疫原性組成物は、液体溶液または懸濁液のいずれかの注射可能なものとして調製され;注射前に液体媒体中に溶解または懸濁するのに適切な固体形態もまた調製され得る。調製物はまた、アジュバントの効果を増強するために、上記のように薬学的に受容可能なキャリア下に、リポソームに乳濁または封入され得る。

0056

ワクチンとして使用される免疫原性組成物は、免疫学的有効量の抗原ポリペプチド、および必要に応じて任意の他の上記の成分を含有する。「免疫学的有効量」とは、その量の個体への投与が、単回の用量でまたは一連の投与の一部としてのいずれかでなされると、処置または予防に効果的であることを意味する。この量は、処置される個体の健康および身体条件、処置される個体の分類学的群(例えば、非ヒト霊長類霊長類など)、個体の免疫系の抗体合成能力、所望される防御の程度、ワクチンの処方、処置する医者による治療状況の評価、および他の関連因子に依存して変化する。この量が、通常の試験を通して決定し得る比較的広範な範囲に入ることが期待される。

0057

免疫原性組成物は、便宜上、非経口で投与される(例えば、皮下注射または筋肉内注射のいずれかによる)。他の投与様式に適切なさらなる処方物は、経口処方物および経肺処方物、坐剤、および経皮適用を包含する。用量処置は、単回用量スケジュール、または複数回用量スケジュールであり得る。ワクチンは、他の免疫制御剤とともに投与され得る。

0058

適切な免疫刺激剤の例は、インターロイキン(例えば、インターロイキン1、2、4〜7および12)、およびインターフェロン(特に、γインターフェロン)を包含する。
本発明は、以下に例示するためだけに、以下の図を参照して記載されている:

図面の簡単な説明

0059

図1aは、オボアルブミン単独またはオボアルブミンと毒素誘導体とともに、i/nまたはs/cで免疫したBALB/cマウスにおける、総オボアルブミン特異的抗体力価を示す。
図1bは、図1aのマウスにおける総毒素特異的抗体の力価を示す。
図2は、図1のように注射したマウスの鼻または肺の洗浄物中のオボアルブミン特異的IgAの測定を示す。
図2は、図1のように注射したマウスの鼻または肺の洗浄物中のオボアルブミン特異的IgAの測定を示す。
図3は、破傷風菌毒素のフラグメントC単独で、または毒素誘導体とともに、i/nまたはs/cで免疫したBALB/cマウスの血清中の、破傷風菌トキソイド特異的抗体の存在を示す。

実施例

0060

発明の詳細な説明
細胞結合活性を有するホロトキシンとしてなおも組み合わせ得る、非毒性のLT変異体を構築するために、部位特異的変異誘発を用いて、LTのAサブユニットの7位のアルギニン残基リジンで置換した。LTK7と名付けた、変異タンパク質を精製し、そしていくつかのアッセイADP-リボシルトランスフェラーゼおよび毒性活性について試験した。LTK7は、なおもGM1ガングリオシドレセプターを結合し得たが、出版されたデータと一致して、酵素活性の完全な消失を示した(Lobetら,Infect.Immun.1991;59: 2870-2879)。さらに、LTK7は、野生型のLTの107毒性単位と同等の用量を試験した場合でさえ、マウスの回腸係蹄アッセイおよびY1細胞におけるインビトロで不活性であった(表1)。

0061

LTおよびLTK-7変異体のインビボおよびインビトロ特性
表1

0062

0063

* データは、Lobetらにより出版され、そしてこの研究で確証された。
** この研究
>> 表に示す最高濃度で試験した場合に、LT-K7がなおも酵素学的に非活性または非毒性であったことを意味する。
<< 実際の差違は、示した数よりも大きいことを示し、この数は試験した差違を表す。

0064

粘膜アジュバントとして作用するLTK7の能力を、マウスで評価した。マウスを群に分けて、そしてレポーター抗原としてオボアルブミンを使用して免疫した。動物を、鼻から(i/n)または皮下から(s/c)、10μgのオボアルブミン単独またはオボアルブミンを1μgのCT、LT、またはLT7のいずれかと混合して使用して免疫した。マウスを、6匹のマウスの4つの群に分けた。各グループからの4匹のマウスを軽く麻酔して、そして10μgのオボアルブミン、または1μgの毒素とともに10μgのオボアルブミンを、総容量で30μl送達して免疫した。残った2匹のマウスを、同量のタンパク質をs/cにより総容量100μlで免疫した。皮下(subcut)に与えられるタンパク質を、まず、2%Al(OH)3に吸収させた。

0065

動物を、1、22、36、および61日目に免疫した。100μlのサンプル血液を、0、21、35、および56日目に収集し、そして76日目に動物を、心臓穿刺によって屠殺した。

0066

抗体の定量を、ELISAによって評価した。オボアルブミン特異的抗体の評価のために、96ウェルEIAプレート(costar)を、60μg/mlのオボアルブミンで一晩コートした。毒素特異的抗体の測定を、GM1捕獲ELISAを使用して行った。毒素特異的抗体を、免疫に使用した抗原に対して測定した。単一の毒素は、各群由来の毒素特異的抗体の測定に全く使用されず、そしてこれらの群間の力価それ自体を、直接比較し得ない。

0067

各群由来の血清を、それぞれ4匹のマウスおよび2匹のマウスからプールした。サンプルを1:50の希釈で2つずつ調製した。吸光度を、450nmで、kineticalcの2.13版のプログラム(Biotekinstruments)を使用して読み取った。このプログラムは、10秒毎の30時点にわたる基質変化速度を計算する。

0068

抗体のELISA力価を、450nmでの最大吸光度の半分の吸光度を与える血清の希釈として任意に測定した。同等の免疫前血清で観察されたよりも2.5倍よりも大きい450nmでの吸光度を示さなかった血清を、ネガティブであると考えた。図1aおよび1bに示す結果は、1回の実験の2つのウェルの平均力価の値を表す。バックグランドを越える有意なレベルのオボアルブミンに対する抗体は、オボアルブミン単独でi/nで免疫したマウスの血清には、s/cで免疫したマウスが効果的に血清転換したにもかかわらず、検出されなかった。オボアルブミンとCTまたはLTのいずれかとをi/nで受けたマウスは、非常に高いレベルの抗オボアルブミン抗体をその血清中に含んでいた。これらは、マウスをs/cで免疫した場合に観察されたのと同等であった。オボアルブミンとLTK7とを受けたマウスもまた、非常に高いレベルのオボアルブミンに対する抗体を示した。

0069

これらの同じ群の抗トキソイド応答のレベルを図1bに示す。変異体毒素で免疫したマウスを含む全てのマウスは、その血清中にこれらの毒素に対する高レベルの抗体を発現した。

0070

オボアルブミンに対する局所的な分泌抗体のレベルを、肺洗浄および鼻洗浄の両方を使用して測定した(図2)。簡単に述べると、動物を心臓穿刺によって屠殺し、そして気管露出するように切開した。次いで、超薄ピペットを気管の小さな切開部に挿入した。肺洗浄物を、1.5mlのPBS中の0.1%ウシ血清アルブミン(Sigma)の肺への流水洗浄および吸引を繰り返すことにより収集した。鼻洗浄物を、1mlのPBS中の0.1%BSAの鼻腔を通しての流水洗浄により収集した。

0071

オボアルブミン特異的IgA抗体を、抗マウスα鎖特異的結合抗体(Serotec)を使用するELISAにより測定した。サンプルを、個々の動物から調製し、そしてこの図中のカラムは、kineticalcを使用した、それぞれi/nおよびs/cで免疫した4匹および2匹のマウスについての基質の変化速度の平均を表す。図は、肺洗浄物に関する1:3希釈での吸光度の生データを使用して構築されている。これらは、鼻洗浄物の1:2と1:6との間の力価、および肺洗浄物の1:70と1:120との間の力価に対応する。これらの力価を、上記の方法を使用して計算した。s/cまたはi/nによりオボアルブミン単独で免疫したマウスは、検出可能なオボアルブミン特異的IgAをサンプルした洗浄物中に全く含有しなかった。オボアルブミンをCT、LT、またはLTK7と組み合わせて免疫した全ての個々のマウスは、検出可能なレベルの抗オボアルブミンIgAを示した。従って、局所的または全身的な抗オボアルブミン応答は、これらの動物で検出可能である。

0072

オボアルブミンでのこれらの奨励実験にもかかわらず、免疫を破傷風菌毒素の非毒性部分である50,000ダルトンのフラグメントC(これは、酵母Pichiapastorisで発現させて、そして精製した)を使用して繰り返した。マウスを、s/cまたはi/nのいずれかで、フラグメントC単独またはLTまたはLTK7のいずれかの個々のサンプルと混合して免疫した。マウスを10匹のマウスの4群と5匹のマウスの4群に分けた。10匹のマウスを、i/nで、a)10μgのフラグメントC単独;b)10μgのフラグメントC+1μgのLT;c)10μgのフラグメントC+1μgのLTK7、およびd)PBSのみ、全て30μlの最終容量で免疫した。5匹のマウスを、i/nにより、a)1μgのLT、およびb)1μgのLTK7で免疫した。残りの2群のマウスを、s/cにより、タンパク質なし、または10μgのフラグメントCのいずれかで、100μlの投与容量で免疫した。これらのワクチンを、図1に記載のように調製した。動物を1および22日目に免疫した。100μlのサンプル血液を0、21および35日目に収集した。フラグメントC特異的抗体を、ELISAにより破傷風菌毒素(10μg/ml)をコーティング抗原として使用して測定した。各群由来の血清をプールした。サンプルを、1:50希釈により2つずつ調製した。ELISA力価を上記のように計算した。s/cによりフラグメントCで免疫したマウスは、高レベルの抗フラグメントC抗体を産生して効果的に血清転換した(図3)。i/nによりフラグメントC単独で免疫したマウスは、顕著な血清転換を示さなかった。しかし、フラグメントCをLTまたはLTK7と組み合わせて免疫したマウスは、その血清中に高レベルの抗フラグメントC抗体を示した(図3)。フラグメントCに血清転換するマウスは、毒素の抗原投与に対して保護され得るので、これらの群を、活性な破傷風菌毒素を用いて抗原投与した。s/cによりフラグメントC単独で免疫したマウスは全て保護されたが、i/nにより免疫した全てのマウスは非常に感受性であった。i/nによりフラグメントCとLTまたはLTK7のいずれかとの組み合わせで免疫した全てのマウスは、抗原投与で生存していた(表2)。

0073

0074

マウス血清中の抗フラグメントC抗体の力価は、K7変異体+フラグメントCでワクチン接種したマウスで平均約1/3,000、およびLT+フラグメントCでワクチン接種したマウスで平均約1/12,000であった。

0075

これらの実験は、破傷風菌に対する保護免疫が、アジュバントとして非毒性LT変異体を使用することにより達成され得、そしてこの分子による粘膜免疫が、毒素および同時投与されたバイスタンダー抗原に対する局所的分泌免疫応答または全身的免疫応答の両方を生じ得ることを示す。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ