図面 (/)

技術 記憶媒体、再生方法、記録方法、再生装置及び記録装置

出願人 株式会社東芝
発明者 安東秀夫森田成二高澤孝次
出願日 2012年9月12日 (7年9ヶ月経過) 出願番号 2012-200294
公開日 2012年12月6日 (7年6ヶ月経過) 公開番号 2012-238392
状態 特許登録済
技術分野 光学的記録担体およびその製造 デジタル記録再生の信号処理 光学的記録再生1
主要キーワード Zより 特定幅 構造分解 相殺作用 形成形状 用目印 目標条件 シュミットトリガー
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2012年12月6日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題

本発明は620nm以下の波長の光で記録/再生できる有機色素材料を用いた記憶媒体、及びそれを用いる記録方法記録装置を提供することである。

解決手段

一般的な有機色素材料の吸収分光特性の影響で620nmよりも短い波長の光では大幅に光吸収率が低下して記録感度が下がる。記録された部分(記録マーク)内で非記録部分より反射率が上がる“L→H”有機色素記録材料を採用する事で、電子結合の分離による脱色作用を用いた記録マークの形成により基板変形を不要とし、記録感度が向上する。

概要

背景

有機色素材料記録材料に用いた追記光ディスクとして、記録/再生用レーザ光波長780nmを用いたCD−Rディスクと、記録/再生用レーザ光源波長650nmを用いたDVD−Rディスクが既に市販されている。比較的長波長、例えば、790nmの光で物性変化し得るシアニン色素薄膜記録層に用いることが提案されている(例えば、特許文献1参照)。

一方、原理的には記録/再生用レーザ光源波長の二乗反比例して密度が上げられるので、記録/再生用に用いられるレーザ光源波長は短い方が望ましい。高密度化した次世代の光ディスクが近年開発されているが、ここでは、記録または再生用のレーザ光光源波長は405nm近傍(つまり355nmから455nmの範囲)が使われる事を想定している。650nmの光で最適化された有機色素記録材料は使用する光が620nmより短くなると、記録/再生特性が歴然と変化する。そのため、次世代の光ディスクの記録材料として620nm用の有機色素材料を用いることができない。

概要

本発明は620nm以下の波長の光で記録/再生できる有機色素材料を用いた記憶媒体、及びそれを用いる記録方法記録装置を提供することである。一般的な有機色素材料の吸収分光特性の影響で620nmよりも短い波長の光では大幅に光吸収率が低下して記録感度が下がる。記録された部分(記録マーク)内で非記録部分より反射率が上がる“L→H”有機色素記録材料を採用する事で、電子結合の分離による脱色作用を用いた記録マークの形成により基板変形を不要とし、記録感度が向上する。

目的

本発明の目的は620nm以下の波長の光で記録/再生できる記憶媒体、再生方法、記録方法、再生装置及び記録装置を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

リードイン領域と前記リードイン領域より外周側に設けられたデータ領域を具備する記憶媒体において、前記リードイン領域は、前記記憶媒体が関係する規格バージョン情報拡張されたバージョン情報、最高記録速度を規定したリビジョン番号最低記録速度を規定したリビジョン番号を含み、前記規格のバージョン情報、前記拡張されたバージョン情報、前記最高記録速度を規定したリビジョン番号、前記最低記録速度を規定したリビジョン番号は、前記リードイン領域内の再生専用領域と記録可能領域の両方に記録され、前記最高記録速度を規定したリビジョン番号のバイト位置及び前記最低記録速度を規定したリビジョン番号のバイト位置は、前記規格のバージョン情報のバイト位置より後であり、前記拡張されたバージョン情報のバイト位置は、前記最高記録速度を規定したリビジョン番号のバイト位置及び前記最低記録速度を規定したリビジョン番号のバイト位置より後であり、前記最高記録速度を規定したリビジョン番号のバイト位置は、前記最低記録速度を規定したリビジョン番号のバイト位置より前であり、前記最低記録速度を規定したリビジョン番号のバイト位置よりも後のバイト位置にリビジョン毎のピークパワーが記録され、前記最高記録速度を規定したリビジョン番号及び前記最低記録速度を規定したリビジョン番号とは別で、リビジョン番号テーブルが前記リードイン領域に記録できることを特徴とする記憶媒体。

請求項2

請求項1に記載の記憶媒体に光を照射し、前記記憶媒体からデータを再生する再生方法

請求項3

請求項1に記載の記憶媒体に光を照射し、前記記憶媒体にデータを記録する記録方法

請求項4

請求項1に記載の記憶媒体に光を照射する光学ヘッドと、前記記憶媒体からデータを再生する再生手段を具備する再生装置

請求項5

請求項1に記載の記憶媒体に光を照射する光学ヘッドと、前記記憶媒体にデータを記録する記録手段を具備する記録装置

技術分野

0001

本発明は光ディスク等の記憶媒体、その再生方法記録方法再生装置及び記録装置に関する。

背景技術

0002

有機色素材料記録材料に用いた追記形光ディスクとして、記録/再生用レーザ光波長780nmを用いたCD−Rディスクと、記録/再生用レーザ光源波長650nmを用いたDVD−Rディスクが既に市販されている。比較的長波長、例えば、790nmの光で物性変化し得るシアニン色素薄膜記録層に用いることが提案されている(例えば、特許文献1参照)。

0003

一方、原理的には記録/再生用レーザ光源波長の二乗反比例して密度が上げられるので、記録/再生用に用いられるレーザ光源波長は短い方が望ましい。高密度化した次世代の光ディスクが近年開発されているが、ここでは、記録または再生用のレーザ光光源波長は405nm近傍(つまり355nmから455nmの範囲)が使われる事を想定している。650nmの光で最適化された有機色素記録材料は使用する光が620nmより短くなると、記録/再生特性が歴然と変化する。そのため、次世代の光ディスクの記録材料として620nm用の有機色素材料を用いることができない。

先行技術

0004

特公平6−43147号公報

発明が解決しようとする課題

0005

このように従来の有機色素材料を用いた記憶媒体は620nm以下の波長の光で記録/再生できないという欠点がある。

0006

本発明の目的は620nm以下の波長の光で記録/再生できる記憶媒体、再生方法、記録方法、再生装置及び記録装置を提供することにある。

課題を解決するための手段

0007

上記した課題を解決し目的を達成するために、本発明は以下に示す手段を用いる。

0008

(1)本発明の記憶媒体は波長が620nm以下の光で記録される。

0009

(2)本発明の記憶媒体は、リードイン領域と、前記リードイン領域より外周側に設けられたデータ領域とを具備し、前記リードイン領域はバージョン情報と、拡張されたパート情報と、リビジョン番号テーブルと、クラス情報を含む。

0010

(3)本発明の再生方法は、リードイン領域と、前記リードイン領域より外周側に設けられたデータ領域とを具備し、前記リードイン領域はバージョン情報と、拡張されたパート情報と、リビジョン番号テーブルと、クラス情報を含む記憶媒体から情報を再生する再生方法であって、前記記憶媒体に光を照射し、前記記憶媒体から前記情報を再生する。

0011

(4)本発明の記録方法は、リードイン領域と、前記リードイン領域より外周側に設けられたデータ領域とを具備し、前記リードイン領域はバージョン情報と、拡張されたパート情報と、リビジョン番号テーブルと、クラス情報を含む記憶媒体に情報を記録する記録方法であって、前記記憶媒体に光を照射し、前記記憶媒体に前記情報を記録する。

0012

(5)本発明の再生装置は、リードイン領域と、前記リードイン領域より外周側に設けられたデータ領域とを具備し、前記リードイン領域はバージョン情報と、拡張されたパート情報と、リビジョン番号テーブルと、クラス情報を含む記憶媒体から情報を再生する再生装置であって、前記記憶媒体に光を照射する光学ヘッドと、前記記憶媒体から前記情報を再生する再生手段とを具備する。

0013

(6)本発明の記録装置は、リードイン領域と、前記リードイン領域より外周側に設けられたデータ領域とを具備し、前記リードイン領域はバージョン情報と、拡張されたパート情報と、リビジョン番号テーブルと、クラス情報を含む記憶媒体に情報を記録する記録装置であって、前記記憶媒体に光を照射する光学ヘッドと、前記記憶媒体に前記情報を記録する記録手段とを具備する。

発明の効果

0014

以上説明したように本発明によれば、620nm以下の波長の光で記録/再生できる記憶媒体、再生方法、記録方法、再生装置及び記録装置を提供することができる。

図面の簡単な説明

0015

本実施形態における情報記憶媒体構成要素内容組み合わせ方法の説明図。
標準的な相変化記録膜構造と有機色素記録膜構造を示す図。
図1に示した情報記憶媒体構成要素の具体的内容“(A3)アゾ金属錯体+Cu”の具体的な構造式を示す図。
現行DVD−Rディスクに用いられている有機色素記録材料の光吸収スペクトル特性の一例の説明図。
相変化記録膜と有機色素記録膜でのプリピット領域またはプリグルーブ領域10での記録膜形成形状比較を示す図。
従来の有機色素材料を用いた追記形情報記憶媒体における記録マーク9位置での具体的な透明基板2−2の塑性変形状況を示す図。
記録原理を起こし易くする記録膜に関する形状や寸法に関する説明図。
記録膜の形状と寸法の特徴説明図。
“H→L”記録膜における未記録状態での光吸収スペクトル特性の説明図。
“H→L”記録膜における記録マーク内での光吸収スペクトル特性の説明図。
本発明の情報記録再生装置の一実施形態の構造説明図。
図11に示した同期コード位置抽出部145を含む周辺部の詳細構造を示す図。
スライスレベル検出方式を用いた信号処理回路を示す図。
図13スライサ310内の詳細構造を示す図。
PRML検出法を用いた信号処理回路を示す図。
図11または図15に示したビタビ復号器156内の構造を示す図。
PR(1,2,2,2,1)クラスにおける状態遷移を示す図。
ドライブテストゾーン試し書きを行う記録パルス波形ライトストラテジ)を示す図。
記録パルス形状の定義を示す図。
記録パルスタイミングパラメータ設定テーブルの説明図。
最適な記録パワーを調べる時に用いた各パラメータの値に関する説明図。
“H→L”記録膜と“L→H”記録膜の光反射率範囲を示す図。
“H→L”記録膜と“L→H”記録膜から検出される検出信号極性説明図。
“H→L”記録膜と“L→H”記録膜の光反射率の比較を示す図。
“L→H”記録膜における未記録状態での光吸収スペクトル特性の説明図。
“L→H”記録膜における既記録状態と未記録状態での光吸収スペクトル特性変化を表す図。
“L→H”記録膜のカチオン部に利用されるシアニン色素の一般構造式
“L→H”記録膜のカチオン部に利用されるスチリル色素の一般構造式。
“L→H”記録膜のカチオン部に利用されるモノメチンシアニン色素の一般構造式。
“L→H”記録膜のアニオン部に利用されるホルマザン金属錯体の一般構造式。
情報記憶媒体内の構造及び寸法の一例を示す図。
再生専用形情報記憶媒体における一般パラメータの値を示す図。
追記形情報記憶媒体における一般パラメータの値を示す図。
書替え専用形情報記憶媒体における一般パラメータの値を示す図。
種情報記憶媒体におけるシステムリードイン領域SYLDIとデータリードイン領域DTLDI内の詳細なデータ構造を比較する図。
追記形情報記憶媒体内にあるRMDディプリケーションゾーンRDZと記録位置管理ゾーンRMZ内のデータ構造を示す図。
各種情報記憶媒体におけるデータ領域DTAとデータリードアウト領域DTLDO内のデータ構造の比較を示す図。
記録位置管理データRMD内のデータ構造を示す図。
追記形情報記憶媒体におけるボーダー領域の構造に関する図38とは異なる他の実施形態を示す図。
追記形情報記憶媒体におけるボーダー領域の構造についての説明図。
制御データゾーンCDZとR物理情報ゾーンRIZ内のデータ構造を示す図。
物理フォーマット情報PFIとR物理フォーマット情報R_PFI内の具体的な情報内容を示す図。
データ領域DTAの配置場所情報内に記録される詳細な情報の内容比較を示す図。
記録位置管理データRMD内の詳細なデータ構造を示す図。
記録位置管理データRMD内の詳細なデータ構造を示す図。
記録位置管理データRMD内の詳細なデータ構造を示す図。
記録位置管理データRMD内の詳細なデータ構造を示す図。
記録位置管理データRMD内の詳細なデータ構造を示す図。
記録位置管理データRMD内の詳細なデータ構造を示す図。
データID内のデータ構造を示す図。
記録位置管理データRMD内のデータ構造に対する他の実施形態を説明するための図。
記録位置管理データRMD内のデータ構造に対する他の実施形態を説明するための図。
RMDフィールド1内の他のデータ構造を示す図。
物理フォーマット情報とR物理フォーマット情報に関する他の実施形態の説明図。
制御データゾーン内のデータ構造に関する他の実施形態の説明図。
物理セクタ構造を構成するまでの変換手順の概略を示す図。
データフレーム内の構造を示す図。
スクランブル後フレームを作成する時のシフトレジスタに与える初期値フィードバックシフトレジスタ回路構成を示す図。
ECCブロック構造の説明図。
スクランブル後のフレーム配列の説明図。
POのインターリーブ方法の説明図。
物理セクター内の構造の説明図。
同期コードパターン内容の説明図。
図61に示したPOインターリーブ後ECCブロックの詳細構造を示す図。
“H→L”記録膜における記録前後の光吸収スペクトル特性変化例の説明図。
“L→H”記録膜における記録前後の光吸収スペクトル特性変化例の説明図。
アゾ金属錯体内の分子構造変化状況説明図。
“L→H”記録膜における記録前後の光吸収スペクトル特性変化の他の例の説明図。
“H→L”記録膜における記録前後の光吸収スペクトル特性変化の他の例の説明図。
“H→L”記録膜における記録前後の光吸収スペクトル特性変化の別の例の説明図。
システムリードイン領域SYLDI内でのプリピット断面形状説明図。
参照コードパターンの説明図。
各種情報記憶媒体毎のデータ記録形式フォーマット)の比較を示す図。
各種情報記憶媒体におけるデータ構造の従来例との比較説明図。
各種情報記憶媒体におけるデータ構造の従来例との比較説明図。
ウォブル変調における180度位相変調NRZ法の説明図。
アドレスビット領域内でのウォブル形状とアドレスビットの関係説明図。
ウォブルシンクパターンウォブルデータユニット内の位置関係の比較説明図。
追記形情報記憶媒体でのウォブルアドレス情報内のデータ構造に関する説明図。
追記形情報記憶媒体上における変調領域の配置場所の説明図。
追記形情報記憶媒体上における物理セグメント内の変調領域の配置場所の説明図。
レコーディングクラスタ内レイアウト説明図。
書替え形情報記憶媒体上に記録される書替え可能データのデータ記録方法を示す図。
書替え形情報記憶媒体上に記録される書替え可能データのデータランダムシフト説明図。
追記形情報記憶媒体上に記録される追記形データの追記方法の説明図。
Bフォーマットの光ディスクの仕様説明図。
Bフォーマットにおけるピケットコード誤り訂正ブロック)の構成を示す図。
Bフォーマットにおけるウォブルアドレスの説明図。
MSK方式とSTW方式を組み合わせたウォブルアドレスの詳細な構造を示す図。
56個のウォブルのひとまとまりの単位であり、“0”または“1”の1ビット表現するADIPユニットを示す図。
83個のADIPユニットからなり、1つのアドレスを示すADIワードを示す図。
ADIPワードを示す図。
ADIPワードに含まれる15個のニブルを示す図。
Bフォーマットのトラック構造を示す図。
Bフォーマットの記録フレームを示す図。
記録ユニットブロックの構造を示す図。
データ・ランインとデータ・ラン・アウトの構造を示す図。
ウォブルアドレスに関するデータの配置を示す図。
データ・ラン・アウト領域の最後に配置されるガード3領域の説明図。

実施例

0016

以下、図面を参照して本発明による記憶媒体、再生方法、記録方法、再生装置及び記録装置の実施の形態を説明する。

0017

《本発明の実施形態の特徴と効果のまとめ》
(1)トラックピッチ/ビットピッチ最適記録パワーの関係
… 従来のように基板形状変化を伴う記録原理の場合、トラックピッチが詰まると“クロスライト”“クロスイレーズ”が発生し、ビットピッチを詰めると符号間クロストークが発生する。本実施形態のように基板形状変化を伴わない記録原理を考案する事で、トラックピッチ/ビットピッチを詰められて高密度化が可能となる。また、同時に上記の記録原理では記録感度が向上し、最適記録パワーを小さく設定できるため高速記録化と記録膜の多層化が可能となる
(2)620nm以下の短波長光記録で、ECCブロックが複数の小ECCブロックの組み合わせで構成されると共に連続する2セクター内の各データID情報が互いに異なる小ECCブロック内に配置
… 本実施形態に依れば、図2(b)に示すように、記録層3-2内での局所的な光学特性変化を記録原理とするため、記録時の記録層3-2内での到達温度が透明基板2-2の塑性変形又は有機色素記録材料の熱分解気化蒸発)による従来の記録原理よりも低い。従って、再生時の記録層3-2内での到達温度と記録温度の差が小さい。本実施形態では1ECCブロック内で小ECCブロック間のインターリーブ処理とデータIDの配置を工夫する事で繰り返し再生時に記録膜が万一劣化した場合の再生信頼性を向上させている。

0018

(3)620nmよりも短い波長の光で記録され、記録された部分が非記録部分より反射率が上がる
… 一般的な有機色素材料の吸収分光特性の影響で620nmよりも短い波長の光では大幅に光吸収率が低下して記録感度が下がる。そのため従来のDVD−Rの記録原理である基板変形を発生させるには非常に大きな露光量を必要とする。本実施形態のように記録された部分(記録マーク)内で非記録部分より反射率が上がる“L→H”有機色素記録材料を採用する事で、“電子結合の分離による脱色作用”を用いた記録マークの形成により基板変形を不要とし、記録感度が向上する。

0019

4.“L→H”有機色素記録膜とPSKFSK変調ウォブルグルーブ
…再生時のウォブル同期が取り易く、ウォブルアドレスの再生信頼性が向上する 5.“L→H”有機色素記録膜と再生信号変調度規定
…記録マークからの再生信号に関する高いC/N比が確保でき、記録マークからの再生信頼性が向上
6.“L→H”有機色素記録膜とミラー部での光反射率範囲
…システムリードイン領域SYLDIからの再生信号に関する高いC/N比が確保でき、高い再生信頼性が確保できる
7.“L→H”有機色素記録膜とオントラック時の未記録領域からの光反射率範囲
… 未記録領域内でのウォブル検出信号に関する高いC/N比が確保でき、ウォブルアドレス情報に対する高い再生信頼性を確保できる
8.“L→H”有機色素記録膜とウォブル検出信号振幅範囲
… ウォブル検出信号に関する高いC/N比が確保でき、ウォブルアドレス情報に対する高い再生信頼性を確保できる
《 目 次 》
第0章使用波長と本実施形態との関係説明
… 本実施形態適用範囲の使用波長説明
第1章 本実施形態における情報記憶媒体構成要素の組み合わせ説明
図1に本実施形態における情報記憶媒体構成要素内容と組み合わせ方法の説明図を示す。

0020

第2章相変化記録膜と有機色素記録膜との再生信号の違い説明
2-1)記録原理/記録膜構造の違いと再生信号生成に関する基本的な考え方の違い…λmax writeの定義
2-2)プリピット/プリグルーブ領域内での光反射層形状の違い
光反射層形状(スピンコートスパッタ蒸着の違い)、再生信号に及ぼす影響
第3章 本実施形態における有機色素記録膜の特徴説明
3-1)従来の有機色素材料を用いた追記記録膜(DVD−R)での高密度化に対する問題点
3-2)本実施形態における有機色素記録膜に共通する基本的特徴説明
…記録層厚みの下限値、本実施形態で効果が生まれるチャネルビット長/トラックピッチ、繰り返し再生可能回数、最適な再生パワー
グルーブ幅ランド幅比率…ウォブルアドレスフォーマットとの関係、
グルーブ部とランド部での記録層厚みの関係、
記録情報エラー訂正能力の向上技術やPRMLとの組み合わせ
3-3)本実施形態における有機色素記録膜に共通する記録特性…最適記録パワーの上限値
3-4)本実施形態における“H→L”記録膜に関する特徴説明
… 未記録での反射率の上限値、
λmax writeの値とλlmaxの値(未記録/既記録位置での吸光度最大波長)の関係
未記録/既記録位置での反射率と変調度再生波長での吸光値相対値範囲…n・k範囲
要求解像度特性と記録層厚みの上限値の関係
第4章再生装置または記録再生装置記録条件再生回路の説明
4-1)本実施形態での再生装置もしくは記録再生装置の構造と特徴説明
使用波長範囲、NA値、RIM Intensity
4-2)本実施形態での再生回路の説明
4-3)本実施形態での記録条件の説明
第5章 本実施形態における有機色素記録膜の具体的実施形態説明
5-1)本実施形態における“L→H”記録膜に関する特徴説明
… 記録原理、未記録/既記録位置での反射率と変調度
5-2)本実施形態の“L→H”記録膜に関する光吸収スペクトルの特徴
最大吸収波長λmax writeの値、Al405の値とAh405の値の設定条件
5-3)アニオン部:アゾ金属錯体+カチオン部:色素
5-4)アゾ金属錯体+中心金属として“銅”使用
… 記録後での光吸収スペクトルが“H→L”記録膜では広がり、“L→H”記録膜では狭くなる
記録前後での極大(最大)吸収波長変化量の上限値
記録前後での極大(最大)吸収波長変化量が少なく極大(最大)吸収波長での吸光度が変化する
第6章 塗布形有機色素記録膜と光反射層界面でのプリグルーブ形状/プリピット形状に関する説明
6-1)光反射層(材質と厚み)
厚み範囲不動態化構造… 記録原理と劣化防止(基板変形や空洞より信号劣化し易い)
6-2)塗布形有機色素記録膜と光反射層界面でのプリピット形状に関する説明
…システムリードイン領域でトラックピッチ/チャネルビットピッチを広げた効果 システムリードイン領域での再生信号振幅値解像度
光反射層4-2でのランド部とプリピット部での段差量の規定
6-3)塗布形有機色素記録膜と光反射層界面でのプリグルーブ形状に関する説明
… 光反射層4-2でのランド部とプリグルーブ部での段差量の規定
プッシュプル信号振幅範囲
ウォブル信号振幅範囲 …ウォブル変調方式との組み合わせ
第7章 第1の次世代光ディスク:HD DVD方式(以下、Hフォーマットと称する)の説明
… 記録原理と再生信号劣化対策(基板変形や空洞より信号劣化し易い)…誤り訂正符号(Error correction code)ECC構造、PRML(Partial Response Maximum Likelihood)方式
グルーブ領域内広い平坦領域とウォブルアドレスフォーマットの関係
追加記録時には非データ部であるVFO領域多重書きする
… 多重書き領域でのDC成分変化の影響が軽減。特に“L→H”記録膜で効果が顕著。

0021

第8章 第2の次世代光ディスク:Bフォーマットの説明
…記録原理と再生信号劣化対策(基板変形や空洞より信号劣化し易い)
グルーブ領域内広い平坦領域とウォブルアドレスフォーマットの関係
追加記録時には非データ部であるVFO領域で多重書きする
… 多重書き領域でのDC成分変化の影響が軽減。特に“L→H”記録膜で効果が顕著。

0022

以下に本実施形態の説明を行う。

0023

第0章使用波長と本実施形態との関係説明
有機色素材料を記録材料に用いた追記形情報記憶媒体として、記録/再生用レーザ光源波長780nmを用いたCD−Rディスクと、記録/再生用レーザ光源波長650nmを用いたDVD−Rディスクが既に市販されている。さらに、高密度化した次世代の追記形情報記憶媒体では、後述する図1のHフォーマット(D1)またはBフォーマット(D2)のいずれのフォーマットでも記録または再生用のレーザ光光源波長は405nm近傍(つまり355nmから455nmの範囲)が使われる事を想定している。有機色素材料を用いた追記形情報記憶媒体では、使用光源波長がわずかに変化するだけで記録/再生特性が敏感に変化する。原理的には記録/再生用レーザ光源波長の二乗に反比例して密度が上げられるので、記録/再生用に用いられるレーザ光源波長は短い方が望ましいが、上記の理由からCD−RディスクやDVD−Rディスクに利用される有機色素材料を405nm用の追記形情報記憶媒体として使うことができない。しかも、405nmは紫外線波長に近いので、“405nm光で容易に記録可能”な記録材料は紫外線照射により特性変化し易く、長期安定性欠ける欠点が生じやすい。利用される有機色素材料により特性が大幅に異なるので一般論として断定し辛いが、一例として具体的な波長で上記の特徴を説明する。650nm光で最適化された有機色素記録材料は使用する光が620nmより短くなると、記録/再生特性が歴然と変化する。従って、620nmよりも短い光で記録/再生を行う場合には、記録光または再生光の光源波長に最適な有機色素材料の新規開発が必要となる。530nmより短い光で記録が容易な有機色素材料は紫外線照射による特性劣化を起こし易く、長期安定性に欠ける。本実施形態では、405nm近傍での使用に適した有機記録材料に付いての実施形態について説明を行うが、半導体レーザ光源メーカーによる発光波長の変動も考慮に入れた355〜455nmの範囲で安定に使用可能な有機記録材料に関する実施形態を説明する。すなわち、本実施形態の適応範囲は、620nm以下の光源適合したもの、望ましくは530nmより短い光(最も狭い範囲の定義では355〜455nmの範囲)に対応している。

0024

また、有機色素材料の光吸収スペクトルによる光記録感度記録波長の影響を大きく受ける。長期安定性に適した有機色素材料は一般的に波長が短い光に対する吸光度が小さくなる傾向が有る。特に、620nmより短い光に対して吸光度が大幅に低下し、530nmより短い光では特に激減する。従って、最も厳しい条件として355〜455nmの範囲のレーザ光で記録する場合には、吸光度が低いために記録感度が悪く、本実施形態に示すような新たな記録原理を採用すると言う新規考案が必要となる。

0025

記録または再生に用いられる集光スポットのサイズは使用される光の波長に比例して小さくなる。従って、集光スポットサイズの観点のみから考えると、波長を上述した値まで短くすると、従来技術である現行DVD−Rディスク(使用波長:650nm)に対して波長分だけトラックピッチやチャネルビット長を短くしたい。しかし“3−2−A〕本実施形態の技術の適用を必要とする範囲”で後述するように、DVD−Rディスクなど従来の追記形情報記憶媒体の記録原理を使用している限りトラックピッチやチャネルビット長を短くできないと言う問題が有る。下記に説明する本実施形態で考案した技術を利用する事で初めて上述した波長に比例してトラックピッチやチャネルビット長を短くできる。

0026

第1章 本実施形態における情報記憶媒体構成要素の組み合わせ説明
本実施形態では620nm以下の光源に適合した有機記録材料(有機色素材料)を考案した所に大きな技術的特徴が有るが、その有機記録材料(有機色素材料)には記録マーク内で光反射率が増加すると言う従来のCD−RディスクやDVD−Rディスクには存在しない独自な特徴(Low to High特性)を有している。従って、本実施形態に示す有機記録材料(有機色素材料)の特徴をより効果的に生かす情報記憶媒体の構造、寸法あるいはフォーマット(情報記録形式)を組み合わせた所にも本実施形態の技術的な特徴とそれにより発生する新規な効果が生まれる。本実施形態での新たな技術的特徴と効果を生み出す組み合わせを図1に示す。すなわち、本実施形態における情報記憶媒体では構成要素としては
A〕有機色素記録膜、
B〕プリフォーマット(プリグルーブ形状/寸法やプリピット形状/寸法など)、
C〕ウォブル条件(ウォブル変調方法やウォブル変化形状、ウォブル振幅、ウォブル配置方法など)
D〕フォーマット(情報記憶媒体に記録する/予め記録されたデータの記録形式など)などが有り、各構成要素毎の具体的な実施形態が図1の各列に記載された内容となっている。そして、図1に示した各構成要素毎の具体的な実施形態の組み合わせ方に本実施形態の技術的な特徴と独自な効果が発生している。以下に実施形態を説明する段階で個々の実施形態の組み合わせ状態を記載するが、特に組み合わせを指定しない構成要素に関しては A5)任意の塗布記録膜、
B3)任意グルーブ形状と任意ピット形状
C4)任意変調方式
C6)任意振幅量と、
D4)任意の追記方法とフォーマット
を採用している事を意味する。

0027

第2章相変化記録膜と有機色素記録膜との再生信号の違い説明
2−1)記録原理/記録膜構造の違いと再生信号生成に関する基本的な考え方の違い
図2の(a)に標準的な相変化記録膜構造(主に書替え形情報記憶媒体に使用されている)を示し、図2の(b)に標準的な有機色素記録膜構造(主に追記形情報記憶媒体に使用されている)を示す。本実施形態の説明文内では図2に示した透明基板2−1、2−2を除いた記録膜構造全体を(光反射層4−1、4−2を含めて)“記録膜”と定義し、記録材料が配置されている記録層単体3−1、3−2とは区別する。相変化を用いた記録材料では一般的に既記録領域(記録マーク内)と未記録領域(記録マーク外)での光学的な特性変化量が小さいので、再生信号の相対的な変化率を強調するためのエンハンス構造を採用している。そのため相変化記録膜構造では図2(a)に示すように透明基板2−1と相変化形記録層3−1との間に下地中間層5を配置し、光反射層4−2と相変化形記録層3−1との間に上側中間層6を配置している。本実施形態では透明基板2−1、2−2の材料として透明プラスチック材料であるポリカーボネートPCあるいはアクリルPMMAポリメチルメタクリレート)を採用している。本実施形態で使用されるレーザ光7の中心波長は405nmであり、この波長におけるポリカーボネートPCの屈折率n21、n22は1.62近傍になっている。相変化形記録材料として最も一般的に用いられているGeSbTe(ゲルマニウムアンチモンテルル)での405nmにおける標準的な屈折率n31と吸収係数k31は結晶領域ではn31≒1.5、k31≒2.5に対して非晶質領域ではn31≒2.5、k31≒1.8となっている。このように相変化形記録材料における(非晶質領域内での)屈折率は透明基板2−1の屈折率と大きく異なり、相変化記録膜構造では各層の界面でのレーザ光7の反射が起こり易くなっている。上記のように(1)相変化記録膜構造がエンハンス(強調)構造を取っている、(2)各層間の屈折率差が大きいなどの理由から相変化記録膜に記録された記録マークからの再生時における光反射量変化(記録マークからの光反射量と未記録領域からの光反射量の差分値)は下地中間層5、記録層3−1、上側中間層6、光反射層4−2のそれぞれの界面で発生する多重反射光干渉結果として得られる。図2(a)ではレーザ光7が下地中間層5と記録層3−1との間の界面、記録層3−1と上側中間層6との間の界面、上側中間層6と光反射層4−2との間の界面のみで反射しているように見えるが、実際には複数回の多重反射光間の干渉結果で光反射光量変化が得られている。

0028

それに対して有機色素記録膜構造は有機色素記録層3−2と光反射層4−2のみの非常に簡素な積層構造を取っている。この有機色素記録膜を使用した情報記憶媒体(光ディスク)は追記形情報記憶媒体と呼ばれ、1回のみの記録が可能であるが、前記相変化記録膜を用いた書替え形情報記憶媒体のように一度記録した情報の消去処理や書き替え処理はできない。一般的な有機色素記録材料の405nmでの屈折率はn32≒1.4(各種の有機色素記録材料の405nmでの屈折率範囲としてもn32=1.4〜1.9)、吸収係数k32≒0.2(各種の有機色素記録材料の405nmでの吸収係数範囲としてもk32≒0.1〜0.2)近傍が多い。有機色素記録材料と透明基板2−2間の屈折率差が小さいので記録層3−2と透明基板2−2との間の界面での光反射量はほとんど生じない。従って、有機色素記録膜からの光学的再生原理(反射光量変化を発生する理由)は上述したような相変化記録膜内での“多重干渉”では無く、“光反射層4−2で反射して戻って来るレーザ光7に対する光路途中での(干渉も含めた)光量損失”が主な要因となっている。光路途中での光量損失を引き起こす具体的な理由は“レーザ光7内で部分的に引き起こされる位相差による干渉現象”や“記録層3−2内での光吸収現象”が有る。プリグルーブやプリピットの無い鏡面上での未記録領域における有機色素記録膜の光反射率は光反射層4−2におけるレーザ光7の光反射率から記録層3−2内を通過する時の光吸収量を差し引いた値で単純に求まる所に特徴がある。上述したように“多重干渉”の計算により光反射率を求める相変化記録膜とは大きな違いが有る。

0029

まず始めに従来技術として現行DVD−Rディスクで解釈されている記録原理について説明する。現行DVD−Rディスクでは記録膜にレーザ光7を照射すると、記録層3−2が局所的にレーザ光7のエネルギーを吸収して高熱になる。特定温度を越えると、透明基板2−2が局所的に変形する。透明基板2−2の変形を誘発するメカニズムはDVD−Rディスクの製造メーカーにより異なるが、
(1)記録層3−2の気化エネルギーによる局所的に透明基板2−2が塑性変形や
(2)記録層3−2から熱が透明基板2−2に伝わり、その熱により局所的に透明基板2−2が塑性変形
が原因と言われている。透明基板2−2が局所的に塑性変形すると、透明基板2−2を通過して光反射層4−2で反射し、再度透明基板2−2を通過して戻って来るレーザ光7の光学的距離が変化する。局所的に塑性変形した透明基板2−2の部分を通過して戻ってくる記録マーク内からのレーザ光7と、変形して無い透明基板2−2の部分を通過して戻ってくる記録マーク周辺部からのレーザ光7との間に位相差が生じるので、両社間の干渉により反射光の光量変化が生じる。また、特に、上記(1)のメカニズムが生じた場合には、記録層3−2の記録マーク内が気化(蒸発)により空洞化して生じる実質的な屈折率n32の変化、あるいは記録マーク内での有機色素記録材料の熱分解により生じる屈折率n32の変化も上記の位相差発生に寄与する。現行DVD−Rディスクでは、透明基板2−2が局所的に変形するまで記録層3−2が高温(上記(1)のメカニズムでは記録層3−2の気化温度、(2)のメカニズムでは透明基板2−2を塑性変形させるために必要な記録層3−2内温度)になる必要や、記録層3−2の一部を熱分解または気化(蒸発)させるために高温にする必要が有り、記録マークを形成させるためにはレーザ光7の大きなパワーが必要となる。

0030

記録マークを形成するには第1段階として記録層3−2がレーザ光7のエネルギーを吸収できる必要が有る。記録層3−2内の光吸収スペクトルが有機色素記録膜の記録感度に大きく影響を及ぼす。記録層3−2を形成する有機色素記録材料内での光の吸収原理を本実施形態の(A3)を用いて説明する。

0031

図3図1に示した情報記憶媒体構成要素の具体的内容“(A3)アゾ金属錯体+Cu”の具体的な構造式を示している。図3に示したアゾ金属錯体の中心金属Mを中心とした円形の周辺領域が発色領域8となる。この発色領域8をレーザ光7が通過すると、この発色領域8内の局在電子がレーザ光7の電場変化に共鳴共振)してレーザ光7のエネルギーを吸収する。この局在電子が最も共鳴(共振)してエネルギーを吸収し易い電場変化の周波数に対してレーザ光7の波長に換算した値を最大吸収波長と呼び、λmaxで表す。図3に示すような発色領域8(共鳴範囲)の長さが長くなる程、最大吸収波長λmaxが長波長側にシフトする。また、図3において中心金属Mの原子を代える事で中心金属M周辺の局在電子の局在範囲(中心金属Mが局在電子をどれだけ中心付近に引き寄せられるか)が変化し、最大吸収波長λmaxの値が変化する。

0032

絶対零度でかつ純度が高く発色領域8が一箇所しか無い場合の有機色素記録材料の光吸収スペクトルは最大吸収波長λmax近傍で幅の狭い線スペクトルを描く事が予想されるが、常温不純物を含み更に、複数の光吸収領域を含んだ一般的な有機色素記録材料の光吸収スペクトルは最大吸収波長λmaxを中心とした光の波長に対する幅の広い吸光特性を示している。現行DVD−Rディスクに用いられている有機色素記録材料の光吸収スペクトルの一例を図4に示す。図4において有機色素記録材料を塗布して形成した有機色素記録膜に対して照射する光の波長を横軸に取り、それぞれの波長の光を有機色素記録膜に照射した時の吸光度を縦軸に取ってある。吸光度とは追記形情報記憶媒体として完成した状態(あるいは透明基板2−2上に記録層3−2が形成されたのみの状態(図2(b)の構造に対して光反射層4−2が形成される前の状態))に対して透明基板2−2側から入射強度Ioのレーザ光を入射させ、反射したレーザ光強度Ir(記録層3−2側から透過したレーザ光の光強度It)を測定して得られる値で有る。吸光度Ar(At)は
Ar≡−log10(Ir/Io) (A−1)
At≡−log10(It/Io) (A−2)
で表される。今後特に断らない限り吸光度としては(A−1)式で表させる反射形の吸光度Arの事を示して説明を行うが、本実施形態においてはそれに限らず、(A−2)式で表させる透過形の吸光度Atとして考える事も出来る。図4に示した実施形態では発色領域8を含む光吸収領域が複数存在しているため、吸光度が極大になる位置が複数存在する。この場合には、吸光度が極大値を取る時の最大吸収波長λmaxが複数存在する。現行DVD−Rディスクにおける記録用レーザ光の波長は650nmになっている。本実施形態において最大吸収波長λmaxが複数存在した場合には、記録用レーザ光の波長に最も波長が近い最大吸収波長λmaxの値が重要になって来る。従って、本実施形態説明文中に限り、記録用レーザ光の波長に最も近い位置にある最大吸収波長λmaxの値を“λmax write”と定義し、他のλmax(λmax 0)と区別する。

0033

2−2)プリピット/プリグルーブ領域内での光反射層形状の違い
プリピット領域またはプリグルーブ領域10での記録膜の形成形状比較を図5に示す。図5(a)は相変化記録膜に対する形状を示している。下地中間層5、記録層3−1、上側中間層6、光反射層4−1いずれの層を形成する場合にも真空中でスパッタ蒸着、真空蒸着またはイオンプレーティングのいずれかの方法を用いる。その結果、全ての層で透明基板2−1の凹凸形状を比較的忠実に複製する。例えば、透明基板2−1のプリピット領域またはプリグルーブ領域10での断面形状が矩形または台形になっていた場合には、記録層3−1と光反射層4−1の断面形状も概略矩形または台形となる。

0034

図5(b)は有機色素記録膜を用いた場合の記録膜として従来技術である現行DVD−Rディスクの一般的記録膜断面形状を示す。この場合の記録膜3−2の形成方法としては図5(a)とは異なりスピンコーティング(またはスピナーコーディング)と言う全く異なる方法を用いる。スピンコーティングとは記録層3−2を形成する有機色素記録材料を有機溶剤に溶かして透明基板2−2上に塗布した後、透明基板2−2を高速で回転させて遠心力で塗布剤を透明基板2−2の外周側へ広げ、有機溶剤を気化させる事で記録層3−2を形成する方法である。この方法を用いると有機溶剤の塗布工程を用いるため、記録層3−2表面(光反射層2−2との界面)が平坦になり易い。その結果、光反射層2−2と記録層3−2との間の界面での断面形状は透明基板2−2の表面(透明基板2−2と記録層3−2との界面)形状とは異なった形状となる。例えば、透明基板2−2の表面(透明基板2−2と記録層3−2との界面)の断面形状が矩形または台形となっているプリグルーブ領域では光反射層2−2と記録層3−2との間の界面での断面形状は概略V字形溝形状に、プリピット領域では概略円錐の側面形状になる。更に、スピンコーティング時に有機溶剤が凹部に溜まり易いため、プリピット領域またはプリグルーブ領域10内での記録層3−2の厚みDg(図5(b)に示すようにプリピット領域またはプリグルーブ領域10の底面から光反射層2−2との界面の最も低くなった位置までの距離)がランド領域12内での厚みDlよりも大幅に厚く(Dg>Dlと)なる。その結果、プリピット領域またはプリグルーブ領域10での透明基板2−2と記録層3−2との界面の凹凸量が透明基板2−2と記録層3−2との界面での凹凸量より大幅に少なくなっている。

0035

このように光反射層2−2と記録層3−2との間の界面での凹凸形状が鈍るとともに凹凸量も大幅に小さくなるため、記録膜形成方法の違いにより透明基板2表面(プリピット領域またはプリグルーブ領域10)の凹凸形状と寸法が同じ場合には、レーザ光を照射した時の有機色素記録膜からの反射光の回折強度が相変化記録膜からの反射光の回折強度より大幅に劣化する。その結果、透明基板2表面(プリピット領域またはプリグルーブ領域10)の凹凸形状と寸法が同じ場合には、従来の有機色素記録膜を用いた場合には相変化記録膜を用いた場合に比べて
(1)プリピット領域からの光再生信号の変調度が小さく、プリピット領域からの信号再生信頼性が悪い
(2)プリグルーブ領域からのプッシュプル法による充分大きなトラックずれ検出信号が得辛い
(3)プリグルーブ領域がウォブリング蛇行)した場合の充分に大きなウォブル検出信号が得辛い
と言う特徴が有る。

0036

また、DVD−Rディスクではアドレス情報等の特定情報がランド領域12に微少な凹凸(ピット)形状で記録されているため、プリピット領域またはプリグルーブ領域10の幅Wgよりもランド領域12の幅Wlが広く(Wg>Wl)なっている。

0037

第3章 本実施形態における有機色素記録膜の特徴説明
3−1)従来の有機色素材料を用いた追記記録膜(DVD−R)での高密度化に対する問題点
“2−1)記録原理/記録膜構造の違いと再生信号生成に関する基本的な考え方の違い”で既に説明したように、従来の有機色素材料を用いた追記形情報記憶媒体である現行のDVD−RとCD−Rの一般的な記録原理は“透明基板2−2の局所的な塑性変形”あるいは“記録層3−2内の局所的な熱分解や気化”を伴っている。従来の有機色素材料を用いた追記形情報記憶媒体における記録マーク9位置での具体的な透明基板2−2の塑性変形状況を図6に示す。代表的な塑性変形状況は2種類存在し、図6(a)に示すように記録マーク9位置でのプリグルーブ領域の底面14の深さ(隣接するランド領域12との間の段差量)が未記録領域でのプリグルーブ領域11の底面の深さと異なる場合(図6(a)に示した例では記録マーク9位置でのプリグルーブ領域の底面14の深さが未記録領域よりも浅くなっている)と、図6(b)に示すように記録マーク9位置でのプリグルーブ領域の底面14が歪み微少に湾曲する(底面14の平坦性崩れる:図6(b)に示した例では記録マーク9位置でのプリグルーブ領域の底面14が下側に向かって微少に湾曲している)場合が有る。いずれの場合でも記録マーク9位置での透明基板2−2の塑性変形範囲が広い領域に及ぶ特徴が有る。従来技術である現行のDVD−Rディスクではトラックピッチが0.74μm、チャネルビット長が0.133μmとなっている。この程度の大きな値の場合には記録マーク9位置での透明基板2−2の塑性変形範囲が広い領域に及んでも比較的安定な記録処理再生処理が行える。

0038

しかし。トラックピッチを上記の0.74μmより狭くしていくと、記録マーク9位置での透明基板2−2の塑性変形範囲が広い領域に及ぶために隣接トラックへの悪影響が現れ、隣接トラックまで記録マーク9が広がる“クロスライト”や多重書きにより既に存在している隣接トラックの記録マーク9を実質的に消してしまう(再生不能にする)“クロスイレーズ”の現象が発生する。また、トラックに沿った方向(円周方向)においてチャネルビット長を0.133μmより狭くすると、符号間干渉が現れ、再生時のエラーレイトが大幅に増加して再生の信頼性が低下するという問題が発生する。

0039

3−2)本実施形態における有機色素記録膜に共通する基本的特徴説明
3−2−A〕本実施形態の技術の適用を必要とする範囲
図6に示すように透明基板2−2の塑性変形あるいは記録層3−2内の局所的な熱分解や気化現象を伴う従来の追記形情報記憶媒体(CD−RやDVD−R)においてどの程度トラックピッチを詰めると悪影響が現れるか、あるいはどの程度チャネルビット長を詰めると悪影響が現れるか、及びその理由について技術的な検討を行った結果を以下に説明する。従来の記録原理を利用した場合に悪影響が出始める範囲が本実施形態に示す新規の記録原理により効果を発揮する(高密度化に適した)範囲を示している。

0040

(1)記録層3−2の厚みDgの条件
許容チャネルビット長の下限値や許容トラックピッチの下限値を理論的割り出すために熱解析を行おうとすると、実質的に可能な記録層3−2の厚みDgの範囲が重要となる。図6に示すような透明基板2−2の塑性変形を伴う従来の追記形情報記憶媒体(CD−RやDVD−R)において、情報再生用集光スポットが記録マーク9内に有る場合と、記録層3−2の未記録領域内に有る場合の光反射量の変化は“記録マーク9内と未記録領域内での光学的距離の違いによる干渉効果”の要因が最も大きい。また、その光学的距離の違いは主に“透明基板2−2の塑性変形による物理的な記録層3−2の厚みDg(透明基板2−2と記録層3−2の界面から記録層3−2と光反射層4−2の界面までの物理的な距離)の変化”と、“記録マーク9内での記録層3−2の屈折率n32の変化”が起因している。従って、記録マーク9内と未記録領域内との間で充分な再生信号(光反射量の変化)を得るためには、レーザ光の真空中の波長をλとした時、未記録領域での記録層3−2の厚みDgの値がλ/n32と比較して有る程度の大きさを持っている必要が有る。そうで無いと、記録マーク9内と未記録領域内との間での光学的距離の差(位相差)が現れず、光の干渉効果が薄くなる。実際には最低でも
Dg≧λ/8n32 (1)
望ましくは
Dg≧λ/4n32 (2)
の条件が必要となる。

0041

取りあえず、現在の検討の時点ではλ=405nm近傍を仮定する。405nmにおける有機色素記録材料の屈折率n32の値は一般的に1.3〜2.0の範囲に有る。従って、記録層3−2の厚みDgの値としては(1)式にn32=2.0を代入する結果、
Dg≧25nm (3)
が必須の条件となる。なお、ここでは透明基板2−2の塑性変形を伴う従来の追記形情報記憶媒体(CD−RやDVD−R)の有機色素記録層を405nmの光に対応させた時の条件について検討を行っている。後述するように本実施形態では透明基板2−2の塑性変形を起こさず、吸収係数k32の変化を記録原理の主要因として説明するが、記録マーク9からDPD(Differential Phase Detection)法を用いてトラックずれ検出をする必要が有るので、実際には記録マーク9内で屈折率n32の変化を起こしている。従って、(3)式の条件は透明基板2−2の塑性変形を起こさない本実施形態に於いても満たすべき条件となっている。

0042

別の観点からも記録層3−2の厚みDgの範囲を指定できる。図5(a)に示した相変化記録膜の場合には透明基板の屈折率をn21とした時、プッシュプル法を用いて最もトラックずれ検出信号が大きく出る時のプリピット領域とランド領域間の段差量はλ/(8n21)となる。しかし、図5(b)に示した有機色素記録膜の場合には前述したように、記録層3−2と光反射層4−2の界面での形状が鈍り段差量も小さくなるので、透明基板2−2上でのプリピット領域とランド領域間の段差量はλ/(8n22)より大きくする必要が有る。透明基板2−2の材質として例えば、ポリカーボネートを用いた場合の405nmでの屈折率はn22≒1.62なので、プリピット領域とランド領域間の段差量は31nmより大きくする必要が有る。スピンコーティング法を用いる場合、プリグルーブ領域内の記録層3−2の厚みDgを透明基板2−2上でのプリピット領域とランド領域間の段差量より大きくしないとランド領域12での記録層3−2の厚みDlが無くなる危険性が有る。したがって上記の検討結果から
Dg≧31nm (4)
と言う条件も満足する必要が有る。(4)式の条件も透明基板2−2の塑性変形を起こさない本実施形態に於いても満たすべき条件となっている。(3)式、(4)式で下限値の条件を示したが、熱解析に用いた記録層3−2の厚みDgとしては(2)式の等号部にn32=1.8を代入して得た値Dg≒60nmを利用した。

0043

そして、透明基板2−2の材料として標準的に用いられているポリカーボネートを仮定し、透明基板2−2側の熱変形温度見積もり値としてポリカーボネートのカラス転移温度である150℃を設定した。熱解析を用いた検討には405nmにおける有機色素記録膜3−2の吸収係数の値としてk32=0.1〜0.2の値を想定した。さらに、集光用対物レンズのNA値及び対物レンズ通過時の入射光強度分布を従来のDVD−Rフォーマットでの前提条件であるNA=0.60及びHフォーマット(図1(D1):NA=0.65)とBフォーマット(図1(D2):NA=0.85)の場合を検討した。

0044

(2)チャネルビット長の下限値条件
記録パワーを変化させた時の記録層3−2に接する透明基板2−2側の熱変形温度に達する領域のトラックに沿った方向での長さ変化を調べ、再生時のウィンドマージンも考慮した許容チャネルビット長さの下限値を検討した。その結果、チャネルビット長を105nmより小さくするとわずかな記録パワーの変化に応じて透明基板2−2側の熱変形温度に達する領域のトラックに沿った方向での長さ変化が発生して充分なウィンドマージンが取れないと考えられる。熱解析の検討上ではNAの値として0.60、0.65、0.85いずれの場合も類似した傾向を示している。NA値を変える事で集光スポットサイズは変化するが、熱の広がり範囲が広い(記録層3−2に接する透明基板2−2側の温度分布勾配が比較的なだらか)のが原因と考えられる。上記熱解析では記録層3−2に接する透明基板2−2側の温度分布を検討しているため、記録層3−2の厚みDgの影響は現れない。

0045

更に、図6に示す透明基板2−2の形状変化が生じた場合には基板変形領域の境界位置がぼやけている(曖昧)ため、より一層ウィンドマージンを低下させている。記録マーク9が形成されている領域の断面形状を電子顕微鏡で観察すると、基板変形領域の境界位置のぼけ量は記録層3−2の厚みDgの値が大きくなるほど広がると考えれる。上記記録パワー変化による熱変形領域長さの影響にこの基板変形領域の境界位置のぼけを考慮すると、充分なウィンドマージンが確保できるための許容されるチャネルビット長の下限値は記録層3−2の厚みDgの2倍程度が必要と考えられ、120nmより大きい事が望ましい。

0046

上記では透明基板2−2の熱変形が生じる場合の熱解析による検討に付いて主に説明した。従来の追記形情報記憶媒体(CD−RやDVD−R)での他の記録原理(記録マーク9の形成メカニズム)として透明基板2−2の塑性変形が非常にわずかで記録層3−2内での有機色素記録材料の熱分解や気化(蒸発)が中心の場合も存在するので、その場合についても付加説明する。有機色素記録材料の気化(蒸発)温度は有機色素材料により異なるが、一般的には220℃〜370℃の範囲内に有り、熱分解温度はそれより低い。上記検討では基板変形時の到達温度としてポリカーボネート樹脂ガラス転移温度150℃を前提としていたが、150℃と220℃との間の温度差は小さく、透明基板2−2が150℃に到達する時には記録層3−2内部では220℃を越えている。従って、有機色素記録材料による例外は有るが、透明基板2−2の塑性変形が非常にわずかで記録層3−2内での有機色素記録材料の熱分解や気化(蒸発)が中心の場合でも上記検討結果とほぼ同じ結果が得られている。

0047

上記チャネルビット長に関する検討結果をまとめると透明基板2−2の塑性変形を伴う従来の追記形情報記憶媒体(CD−RやDVD−R)ではチャネルビット長を120nmより狭くして行くとウィンドマージンの低下が発生し、更に、105nmより小さいと安定な再生が難しくなると考えられる。すなわち、チャネルビットが120nm(105nm)より小さくなる時には本実施形態に示す新規記録原理を用いる事の効果が発揮される。

0048

(3)トラックピッチの下限値条件
記録パワーで記録層3−2を露光すると、記録層3−2内でエネルギーを吸収して高温になる。従来の追記形情報記憶媒体(CD−RやDVD−R)では透明基板2−2側が熱変形温度に達するまで記録層3−2内でエネルギーを吸収させる必要が有る。記録層3−2内で有機色素記録材料の構造変化が起こり屈折率n32や吸収係数k32の値が変化を開始する温度は透明基板2−2が熱変形を開始するための到達温度より遙かに低い。従って、透明基板2−2側が熱変形している記録マーク9の周辺の記録層3−2内の比較的広い領域で屈折率n32や吸収係数k32の値が変化し、これが隣接トラックへの“クロスライト”や“クロスイレーズ”の原因と思われる。透明基板2−2側が熱変形温度を超えた時の記録層3−2内での屈折率n32や吸収係数k32を変化させる温度に到達する領域の広さで“クロスライト”や“クロスイレーズ”を起こさないトラックピッチの下限値を設定できる。上記の視点からトラックピッチが500nm以下の所で“クロスライト”や“クロスイレーズ”が生じる考えられる。更に、情報記憶媒体の反りや傾きの影響や記録パワーの変化(記録パワーマージン)も考慮すると、透明基板2−2側が熱変形温度に達するまで記録層3−2内でエネルギーを吸収させる従来の追記形情報記憶媒体(CD−RやDVD−R)ではトラックピッチを600nm以下にするのは難しいと結論できる。上述したようにNA値を0.60、0.65、0.85と変化させても、中心部で透明基板2−2側が熱変形温度に達した時の周囲の記録層3−2内での温度分布の勾配が比較的なだらかで熱の広がり範囲が広いためほぼ同様の傾向を示している。従来の追記形情報記憶媒体(CD−RやDVD−R)での他の記録原理(記録マーク9の形成メカニズム)として透明基板2−2の塑性変形が非常にわずかで記録層3−2内での有機色素記録材料の熱分解や気化(蒸発)が中心の場合でも、既に“(2)チャネルビット長の下限値条件”の所で説明したように“クロスライト”や“クロスイレーズ”が始まるトラックピッチの値はほぼ類似した結果が得られる。以上の理由からトラックピッチを600nm(500nm)以下にする時に本実施形態に示す新規記録原理を用いる事の効果が発揮される。

0049

3−2−B〕本実施形態における有機色素記録材料に共通する基本的特徴
上述したように従来の追記形情報記憶媒体(CD−RやDVD−R)での記録原理(記録マーク9の形成メカニズム)として透明基板2−2の塑性変形を伴う場合や記録層3−2内で局所的に熱分解や気化(蒸発)が発生する場合には、記録マーク9の形成時に記録層3−2内部や透明基板2−2表面が高温に達するためにチャネルビット長やトラックピッチを狭くできないと言う問題が発生する。上記問題の解決策として本実施形態では基板変形や記録層3−2内での気化(蒸発)を起こす事無く
『比較的低温で発生する記録層3−2内での局所的な光学特性変化を記録原理とする』“有機色素材料の発明”と上記記録原理が生じ易い“環境(記録膜構造や形状)の設定”を行った所に大きな特徴が有る。本実施形態の具体的な特徴として以下の内容を上げることができる。

0050

α〕記録層3−2内部の光学特性変化方法として
発色特性変化
…発色領域8(図3)の質的変化による光吸収断面積の変化やモル分子吸光係数の変化
発色領域8が部分的に破壊されたり、発色領域8のサイズが変わる事により実質的な光吸収断面積が変化する事で光吸収スペクトル(図4プロファイル(特性)自体は保存されたままλmax write位置での振幅(吸光度)が記録マーク9内で変化する
・発色現象に寄与する電子に対する電子構造電子軌道)の変化
…局所的な電子軌道の切断(局所的な分子結合解離)による脱色作用や発色領域8(図3)の寸法や構造の変化に基付く光吸収スペクトル(図4)変化
分子内(または分子間)の配向や配列の変化
… 例えば、図3に示したアゾ金属錯体内部の配向変化に基付く光学特性変化 ・分子内部での分子構造変化
… 例えば、アニオン部とカチオン部との間の結合解離や、アニオン部またはカチオン部のどちらか一方の熱分解、あるいは分子構造自体が破壊され、炭素原子析出するタール化黒色コールタール変質する)のいずれかを起こす有機色素材料を考案する。その結果、記録マーク9内の屈折率n32や吸収係数k32を未記録領域に対して変化させて光学的再生を可能にする。

0051

β〕上記〔α〕の光学特性変化を安定に起こし易い記録膜構造や形状の設定を行う
… この技術に関する具体的内容については“3−2−C〕本実施形態に示した記録原理を発生させ易い理想的な記録膜構造”以降で詳細に説明する。

0052

γ〕記録層内や透明基板表面が比較的低温の状態で記録マークを形成させるために記録パワーを下げ
… 上記〔α〕で示す光学特性変化は透明基板2−2の変形温度や記録層3−2内での気化(蒸発)温度より低い温度で生じる。そのため、記録時の露光量(記録パワー)を低くして透明基板2−2表面で変形温度を越えたり記録層3−2内で気化(蒸発)温度を越えるのを防止する。この内容については“3−3)本実施形態における有機色素記録膜に共通する記録特性”で詳細に後述する。また、逆に記録時の最適パワーの値を調べる事で上記〔α〕で示す光学特性変化が起きているかの判定も可能となる。

0053

δ〕発色領域での電子構造を安定化させ、紫外線や再生光照射に対する構造分解が生じ辛くする
…記録層3−2に対して紫外線を照射したり、再生時に再生光を記録層3−2に照射すると記録層3−2内の温度上昇が起きる。その温度上昇に対する特性劣化を防止すると共に、基板変形温度や記録層3−2内での気化(蒸発)温度より低い温度で記録すると言う温度特性上は一見矛盾する性能が要求される。本実施形態では“発色領域での電子構造を安定化”させる事で上記の一見矛盾する性能を確保する。この具体的技術内容については“第4章 本実施形態における有機色素記録膜の具体的実施形態説明”の所で説明を行う。

0054

ε〕紫外線や再生光照射による再生信号劣化が万一発生した場合に備えて再生情報の信頼性を向上させる
… 本実施形態では“発色領域での電子構造を安定化”させるための技術的工夫を行っているが、透明基板2−2表面の塑性変形や気化(蒸発)により生じた記録層3−2内の局所的な空洞から比べると本実施形態に示した記録原理で形成される記録マーク9の信頼性は原理的に低下すると言わざるを得ない。その対策として本実施形態では“第7章 Hフォーマットの説明”と“第8章 Bフォーマットの説明”で後述するように強力なエラー訂正能力(新規なECCブロック構造)との組み合わせにより高密度化と記録情報の信頼性確保を同時に達成する効果を発揮する。更に、本実施形態では“4−2)本実施形態での再生回路の説明”で説明するように再生方法としてPRML(Pertial Response Maximum Likelyhood)法を採用し、ML復調時のエラー訂正技術と組み合わせる事でより一層の高密度化と記録情報の信頼性確保を同時に達成している。

0055

上記の本実施形態の具体的な特徴の中で〔α〕〜〔γ〕は“狭トラックピッチ化”と“狭チャネルビット長化”を実現するために本実施形態で新規に考案した技術的工夫内容になっている事は既に説明した。また、“狭チャネルビット長化”は“最小記録マーク長縮小化”の実現にも繋がる。残りの〔δ〕と〔ε〕に関する本実施形態の意味(目的)について詳細に説明する。本実施形態におけるHフォーマットでの再生時に記録層3−2を通過する集光スポットの通過速度(線速)を6.61m/sに設定し、Bフォーマットでの線速は5.0〜10.2m/sの範囲で設定する。いずれの場合でも、本実施形態における再生時の線速は5m/s以上になっている。図31に示すように、Hフォーマットでのデータリードイン領域DTLDIの開始位置は直径47.6mmであり、Bフォーマットを視野に入れた場合でも直径45mm以上の所でユーザーデータが記録される。直径45mmの円周は0.141mなので、この位置を線速5m/sで再生する時の情報記憶媒体の回転数は35.4回転/sとなる。本実施形態の追記形情報記憶媒体の利用方法の一つとしてTV番組などの映像情報録画が有る。例えば、ユーザーが録画した映像の再生時にユーザーが“ポーズ一時停止)ボタン”を押すと、再生用集光スポットはその一時停止位置のトラック上に留まる。一時停止位置のトラック上に止まっていればユーザーが“再生開始ボタン”を押した直後に一時停止した位置から再生を開始できる。例えば、ユーザーが“ポーズ(一時停止)ボタン”を押して用足しに立ち上がった直後に来客が来た場合、接客対応で1時間ポーズボタンを押したままで放置される事もある。1時間の間で追記形情報記憶媒体は
35.4×60×60≒13万回転
しており、集光スポットはその間中ずっと同一トラック上をトレース(13万回繰り返し再生)する。もしその間に記録層3−2が繰り返し再生劣化して映像情報の再生が不可能になると、1時間後で戻って来たユーザーは一部分の映像が見れ無いので怒り心頭に発し、最悪の場合には裁判沙汰になる危険性が有る。従って、1時間程度放置(同一トラック内の連続再生)しても録画した映像情報が破壊され無い条件として最低でも10万回繰り返し再生しても再生劣化しない事を保証する必要が有る。一般的なユーザー使用状況として同一場所に対して1時間のポーズ放置(繰り返し再生)を10回繰り返す事はほとんど無い。従って、本実施の追記形情報記憶媒体として望ましくは100万回の繰り返し再生が保証されれば、一般的なユーザー利用には問題が生じず、記録層3−2が劣化しない繰り返し再生回数の上限値としては100万回程度に設定すれば充分と考えられる。繰り返し再生回数の上限値を100万回を大幅に越えた値に設定すると、“記録感度が低下する”とか“媒体価格が上昇する”などの不都合が発生する。

0056

上記繰り返し再生回数の上限値を保証する場合に、再生パワー値が重要な要因となる。本実施形態において記録パワーは後述する(8)式〜(13)式で設定する範囲に規定される。半導体レーザの特性として最大使用パワーの80分の1以下の値では連続発光が安定しないと言われている。最大使用パワーの1/80のパワーではやっと発光を開始する(モードが立ち始める)所のため、モードホップし易い状況にある。従って、この発光パワーでは情報記憶媒体の光反射層4−2で反射した光が半導体レーザ光源に戻ると発光量が常に変動すると言う“戻り光ノイズ”が発生するためである。従って、本実施形態では再生パワーの値は(12)式または(13)式の右辺に記載されている値の1/80の値を基準として
[最適な再生パワー]
>0.19×(0.65/NA)2×(V/6.6) (B−1)
[最適な再生パワー]
>0.19×(0.65/NA)2×(V/6.6)1/2 (B−2)
に設定している。

0057

また、最適な再生パワーの値としてはパワーモニター用光検出器ダイナミックレンジにより制約される。図11の情報記録再生部141内に図示してないが記録/再生用の光学ヘッドが存在する。この光学ヘッド内には半導体レーザ光源の発光量をモニターする光検出器が内蔵されている。本実施形態では再生時の再生パワーの発光精度を向上させるため、この光検出器で発光量を検出し発光時の半導体レーザ光源に供給する電流量フィードバック掛けている。光学ヘッドの価格を下げるためには非常に安価な光検出器を使う必要が有る。市販されている安価な光検出器は樹脂モールドされている(光検出部が囲まれている)場合が多い。

0058

“第0章使用波長と本実施形態との関係説明”で示したように本実施形態での光源波長は530nm以下(特に455nm以下)を使用する。この波長領域の場合、光検出部をモールドしている樹脂(主にエポキシ系)は前記波長光を照射すると紫外線を照射した時に生じるような劣化(黄濁色に変色またはクラック(細かな白い筋)の発生など)が起こり光検出特性を悪化させてしまう。特に、本実施形態に示す追記形情報記憶媒体の場合には、図8に示すようなプリグルーブ領域11を持つのでモールド樹脂劣化を起こし易い。光学ヘッドの焦点ぼけ検出方式としてこのプリグルーブ領域11からの回折光による悪影響を除去するため情報記憶媒体に対する結像位置結像倍率Mは3〜10倍程度)に光検出器を配置する“ナイフエッジ法”を採用する場合が最も多い。結像位置に光検出器を配置すると、光検出器上に光が集光するためモールド樹脂上に照射される光密度が高くなり、この光照射による樹脂劣化を起こし易くする。このモールド樹脂の特性劣化は主にフォトンモード光学的作用)により生じるが、サーマルモード(熱励起)の光照射量との対比で許容照射量の上限値を予想できる。最悪の状態を想定して光学ヘッドとして結像位置に光検出器を配置する光学系を想定する。

0059

“3−2−A〕本実施形態の技術の適用を必要とする範囲”内の“(1)記録層3−2の厚みDgの条件”に記載した内容から本実施形態における記録時に記録層3−2内で光学特性変化(サーマルモード)が発生している時には記録層3−2内では一時的に80℃〜150℃の範囲に温度上昇していると考えている。室温を15℃前後と考えると、温度差ΔTwriteは65℃〜135℃となる。記録時にはパルス発光しているが再生時には連続発光しているので、再生時にも記録層3−2内で温度上昇し、温度差ΔTreadが発生している。光学ヘッド内の検出系の結像倍率をMとすると、光検出器上に集光する検出光の光密度は記録層3−2上に照射される収束光の光密度の1/M2になるので、再生時の光検出器上での温度上昇量は粗い見積もりとしてΔTread/M2となる。モールド樹脂劣化がフォトンモードで発生する事を考えると、光検出器上で照射可能な光密度の上限値を温度上昇量で換算すると、ΔTread/M2≦1℃程度と考えられる。光学ヘッド内の検出系の結像倍率をMは一般的に3〜10倍程度なので暫定的にM2≒10と見積もると、
ΔTread/ΔTwrite≦20 (B−3)
になるように再生パワーを設定する必要が有る。記録時の記録パルスのデューティ比を仮に50%と見積もると
[最適な再生パワー]≦[最適な記録パワー]/10 (B−4)
が要求される。従って、後述する(8)式〜(13)式と上記(B−4)式を加味すると最適な再生パワーは
[最適な再生パワー]
<3×(0.65/NA)2×(V/6.6) (B−5)
[最適な再生パワー]
<3×(0.65/NA)2×(V/6.6)1/2 (B−6)
[最適な再生パワー]
<2×(0.65/NA)2×(V/6.6) (B−7)
[最適な再生パワー]
<2×(0.65/NA)2×(V/6.6)1/2 (B−8)
[最適な再生パワー]
<1.5×(0.65/NA)2×(V/6.6) (B−9)
[最適な再生パワー]
<1.5×(0.65/NA)2×(V/6.6)1/2 (B−10)
(各パラメーターの定義は“3−2−E〕本実施形態における記録層の厚み分布に関する基本的特徴”を参照。)
で与えられる。例えば、NA=0.65、V=6.6m/sの時には
[最適な再生パワー]<3mW、
[最適な再生パワー]<2mW、
または
[最適な再生パワー]<1.5mW
となる。実際には情報記憶媒体は回転して相対的に移動しているのに比べて光検出器は固定されているので、更に、それを考慮に入れて最適な再生パワーを上記式の1/3程度以下にする必要が有る。本実施形態における情報記録再生装置では再生パワーの値として0.4mWに設定している。

0060

3−2−C〕本実施形態に示した記録原理を発生させ易い理想的な記録膜構造
本実施形態において上記記録原理が生じ易い“環境(記録膜構造や形状)の設定”方法に付いて説明する。

0061

上記説明した記録層3−2内部の光学特性変化を起こし易い環境として
『記録マーク9形成領域内では光学特性変化が発生する臨界温度を超えると共に記録マーク9の中心部では気化(蒸発)温度を越えず、記録マーク9の中心部近傍の透明基板2−2表面が熱変形温度を超えない』
ように記録膜構造や形状に技術的工夫を行っている所に本実施形態の次の特徴が有る。

0062

上記に関する具体的な内容について図7を用いて説明する。図7において中抜きの矢印は照射レーザ光7の光路を示し、破線の矢印は熱流を表している。図7(a)に示した記録膜構造が本実施形態に対応した記録層3−2内部の光学特性変化を最も起こし易い環境を示している。すなわち、図7(a)において有機色素記録材料からなる記録層3−2は(2)式、または(4)式に示す範囲の(充分に厚い)至る所均一な厚みを持ち、記録層3−2に対して垂直な方向からレーザ光7の照射を受ける。“6−1)光反射層(材質と厚み)”で詳しく後述するように、本実施形態では光反射層4−2の材質として銀合金を使用する。銀合金に限らず光反射率の高い金属を含む材質は一般に熱伝導率が高く放熱特性を持つ。従って、照射されたレーザ光7のエネルギーを吸収して記録層3−2の温度は上昇するが、放熱特性を持つ光反射層4−2へ向けて熱が放出される。図7(a)に示した記録膜は至る所均一な形状をしているため、記録層3−2内部では比較的均一な温度上昇が起き、中心部α点、及びβ点とγ点での温度差は比較的少ない。従って、記録マーク9の形成時にはβ点とγ点で光学特性変化が発生する臨界温度を超える時には中心部α点では気化(蒸発)温度を越える事無く、中心部α点に最も近い位置にある透明基板(図示して無い)表面が熱変形温度を超える事も無い。

0063

それに比べて、図7(b)に示すように記録膜3−2の一部に段差が有ると、δ点とε点では記録層3−2が配列されている方向に対して斜め方向からレーザ光7の照射を受けるため、単位面積当たりのレーザ光7の照射量が中心部α点に比べて相対的に低下し、その結果、δ点とε点での記録層3−2内の温度上昇量が低下する。δ点とε点でも光反射層4−2へ向かう熱放出が有るので、中心部α点に比べてδ点とε点での到達温度は大幅に低下する。そのため、β点からδ点へ向けて熱が流れると共にγ点からε点へ向けて熱が流れるので、中心部α点に対するβ点とγ点での温度差が非常に大きくなる。記録時にβ点とγ点での温度上昇量が低く、β点とγ点でなかなか光学特性変化が発生する臨界温度を超え無い。その対策としてβ点とγ点で光学特性変化を起こすため(臨界温度以上にするため)、レーザ光7の露光量(記録パワー)を上げる必要が有る。図7(b)に示す記録膜構造ではβ点とγ点に対する中心部α点での温度差が非常に大きいため、β点とγ点で光学特性変化が起こる温度に上昇した時には中心部α点で気化(蒸発)温度を越えるか、中心部α点近傍の透明基板(図示して無い)表面が熱変形温度を越え易くなっている。

0064

また、レーザ光7の照射を受ける側の記録層3−2の表面が至る所レーザ光7の照射方向に対して垂直になっていても、記録層3−2の厚みが場所により変化する場合には本実施形態の記録層3−2内部の光学特性変化を起こし辛い構造となる。例えば、図7(c)に示すように中心部α点での記録層3−2の厚みDgに対して周辺部の厚みDlが大幅に薄い(例えば、(2)式や(4)式を満足しない)場合を考える。中心部α点でも光反射層4−2へ向けた熱の放出は有るが、記録層3−2の厚みDgが充分に厚いために熱の蓄積が行え高温に達する事が出来る。それに比べて記録層3−2の厚みがDl大幅に薄いζ点とη点では充分な熱の蓄積を行う事無く光反射層4−2へ向けて熱が放出されるため、温度上昇量が少ない。その結果、光反射層4−2へ向けた熱の放出のみで無くβ点→δ点→ζ点へ向かう熱の放出、あるいはγ点→ε点→η点へ向かう熱の放出が起きるため、図7(b)と同様にβ点とγ点に対する中心部α点での温度差が非常に大きくなる。β点とγ点で光学特性変化を起こすため(臨界温度以上にするため)にレーザ光7の露光量(記録パワー)を上げると、中心部α点で気化(蒸発)温度を越えるか、中心部α点近傍の透明基板(図示して無い)表面が熱変形温度を越え易くなる。

0065

上記説明した内容に基づき本実施形態の記録原理が生じ易い“環境(記録膜構造や形状)の設定”を行うためのプリグルーブ形状/寸法に関する本実施形態における技術的工夫内容と記録層の厚み分布に関する本実施形態における技術的工夫内容に付いて図8を用いて説明する。図8(a)はCD−RやDVD−Rなどの従来の追記形情報記憶媒体における記録膜構造を示し、図8(b)、(c)に本実施形態における記録膜構造を示す。本説明において図8に示すようにプリグルーブ領域11内に記録マーク9を形成する。

0066

3−2−D〕本実施形態におけるプリグルーブ形状/寸法に関する基本的特徴
図8(a)に示すようにCD−RやDVD−Rなどの従来の追記形情報記憶媒体ではプリグルーブ領域11が“V溝”形状をしている場合が多かった。この構造の場合には、図7(b)で説明したようにレーザ光7のエネルギー吸収効率が低く、記録層3−2内の温度分布ムラが非常に大きく出る。図7(a)の理想状態に近付けるため、少なくとも“透明基板2−2側にプリグルーブ領域11内に入射レーザ光7の進行方向に直行する平面領域を設ける”所に本実施形態の特徴が有る。図7(a)を用いて説明したように、この平面領域はなるべく広くする事が望ましい。従って、プリグルーブ領域11内に平面領域を設けるだけでなく、プリグルーブ領域の幅Wgをランド領域の幅Wlよりも広くする(Wg>Wl)所に本実施形態の次の特徴が有る。本説明上ではプリグルーブ領域の幅Wgとランド領域の幅Wlをプリグルーブ領域の平面位置での高さとランド領域の最も高くなった位置での高さとの中間高さを持つ平面とプリグルーブ内の斜面とが交差する位置でのそれぞれの幅として定義する。

0067

熱解析による検討と実際に試作した追記形情報記憶媒体にデータを記録し、記録マーク9位置での断面SEM走査形電子顕微鏡)像による基板変形観察や記録層3−2内の気化(蒸発)により生じた空洞の有無観察を繰り返した結果、プリグルーブ領域の幅Wgをランド領域の幅Wlよりも広くする(Wg>Wl)事で効果が有る事が分かった。更に、プリグルーブ領域幅Wgとランド領域幅Wlの比率をWg:Wl=6:4、望ましくはWg:Wl=7:3より大きくする事で、記録時により一層安定して記録層3−2内での局所的な光学特性変化が起き易くなると考えられる。このようにプリグルーブ領域幅Wgとランド領域幅Wlの違いを大きくすると、図8(c)のようにランド領域12上に平坦面が無くなる。従来のDVD−Rディスクではランド領域12にプリピット(ランドプリピット:図示して無い)を形成し、ここにアドレス情報などを予め記録するフォーマットになっていた。そのためランド領域12に平坦領域を形成する事が必須条件となり、結果的にプリグルーブ領域11で“V溝”形状になる場合が多かった。また、従来のCD−Rディスクでは周波数変調によりプリグルーブ領域11にウォブル信号を入れていた。従来のCD−Rディスクでの周波数変調方式では、スロット間隔(詳細については各フォーマット説明の所で後述する)が一定せずウォブル信号検波時の位相合わせPLL:PhaseLockLoopの同期化)が比較的難しかった。そのため、再生用集光スポットの強度が最も高い中心付近にプリグルーブ領域11の壁面を集中させる(V溝に近くさせる)と共にウォブル振幅量を大きくしてウォブル信号検出精度を保証していた。図8(b)、(c)に示すように本実施形態でのプリグルーブ領域11内の平坦領域を広げ、プリグルーブ領域11の斜面を再生用集光スポットの中心位置より相対的に外側へ移動させるとウォブル検出信号が得辛くなる。本実施形態では上述したプリグルーブ領域の幅Wgを広げると共にウォブル検出時のスロット間隔が常に固定に保たれる位相変調(PSK:Phase Shift Keying)を利用したHフォーマットまたはFSK(Frequency Shift Keying)やSTW(Saw Tooth Wobble)を利用したBフォーマットを組み合わせる事で、低い記録パワーで安定な記録特性を保証(高速記録や多層化に適する)と共に安定なウォブル信号検出特性を保証している所にも大きな特徴が有る。特に、Hフォーマットでは上記組み合わせに加えて“ウォブル変調領域の比率を無変調領域よりも下げる”事でウォブル信号検出時の同期合わせをより一層容易にして更に、より一層ウォブル信号検出特性を安定化させている。

0068

3−2−E〕本実施形態における記録層の厚み分布に関する基本的特徴
本説明では図8(b)、(c)に示すようにランド領域12内での最も記録層3−2が厚い部分での厚みをランド領域での記録層厚みDlと定義し、プリグルーブ領域11内での最も記録層3−2が厚い部分での厚みをプリグルーブ領域での記録層厚みDgと定義する。既に図7(c)を用いて説明したように、相対的にランド領域での記録層厚みDlを厚くする事で記録時に記録層3−2内で局所的な光学特性変化を安定に起こし易くなる。

0069

上記と同様に熱解析による検討と実際に試作した追記形情報記憶媒体にデータを記録し、記録マーク9位置での断面SEM(走査形電子顕微鏡)像による基板変形観察や記録層3−2内の気化(蒸発)により生じた空洞の有無観察を繰り返した結果、プリグルーブ領域での記録層厚みDgとランド領域での記録層厚みDlとの比率は最大でもDg:Dl=4:1以下にする必要が有る。更に、Dg:Dl=3:1以下、望ましくはDg:Dl=2:1以下にすると本実施形態における記録原理の安定性が保証できる。

0070

3−3)本実施形態における有機色素記録膜に共通する記録特性
“3−2−B〕本実施形態における有機色素記録材料に共通する基本的特徴”の一つとして〔γ〕で記載したように記録パワー制御が本実施形態における大きな特徴になっている。

0071

記録層3−2内での局所的な光学特性変化による記録マーク9形成は従来の透明基板2−2の塑性変形温度や記録層3−2内での熱分解温度や気化(蒸発)温度よりも遙かに低い温度で起きるため、記録時に透明基板2−2が局所的に塑性変形温度を越えたり記録層3−2内で局所的に熱分解温度や気化(蒸発)温度を越えないように記録パワーの上限値を制限する。

0072

熱解析による検討と平行して“4−1)本実施形態での再生装置もしくは記録再生装置の構造と特徴説明”で後述する装置を用い、“4−3)本実施形態での記録条件の説明”で後述する記録条件を用いて本実施形態に示した記録原理で記録が行われている場合の最適パワーの値の実証も行った。実証実験に用いた記録再生装置内の対物レンズNA(Numerical Apperture)値は0.65、記録時の線速は6.61m/sであった。後で“4−3)本実施形態での記録条件の説明”で定義する記録パワー(Peak Power)の値として ◎30mWでほとんどの有機色素記録材料で気化(蒸発)し、記録マーク内に空洞が生じる
…記録層3−2近傍位置での透明基板2−2温度はガラス転移温度を大幅に超えている
◎20mWで記録層3−2近傍位置での透明基板2−2温度が塑性変形温度(ガラス転移温度)に達する
◎情報記憶媒体の面ブレ・反りや記録パワー変動などのマージンを見越して15mW以下が望ましい
と言う事が分かった。

0073

上記で説明した“記録パワー”とは記録層3−2に照射される露光量の総和を意味している。集光スポット中心部で有り最も光強度密度の高い部分での光エネルギー密度が本実施形態での検討対象パラメータとなる。集光スポットサイズはNA値に反比例するので、集光スポット中心部での光エネルギー密度はNA値の2乗に比例して増加する。従って、 [異なるNAにも適応可能な記録パワー]
=[NA=0.65時の記録パワー]×0.652/NA2 (5)
関係式を用いて後述するBフォーマットや図1(D3)に示した別のフォーマット(別のNA値)での最適な記録パワーの値に換算できる。

0074

更に、最適な記録パワーは記録時の線速Vに依存して変化する。一般的に最適な記録パワーは相変化形記録材料では線速Vの1/2乗に比例して変化し、有機色素記録材料では線速Vに比例して変化すると言われている。従って、線速Vも考慮に入れた最適な記録パワーの換算式は(5)式を拡張させた
[一般的な記録パワー]
=[NA=0.65;6.6m/s時の記録パワー]
×(0.65/NA)2×(V/6.6) (6)
または
[一般的な記録パワー]
=[NA=0.65;6.6m/s時の記録パワー]
×(0.65/NA)2×(V/6.6)1/2 (7)
で得られる。以上の検討結果をまとめると本実施形態に示した記録原理を保証するための記録パワーとして
[最適な記録パワー]
<30×(0.65/NA)2×(V/6.6) (8)
[最適な記録パワー]
<30×(0.65/NA)2×(V/6.6)1/2 (9)
[最適な記録パワー]
<20×(0.65/NA)2×(V/6.6) (10)
[最適な記録パワー]
<20×(0.65/NA)2×(V/6.6)1/2 (11)
[最適な記録パワー]
<15×(0.65/NA)2×(V/6.6) (12)
[最適な記録パワー]
<15×(0.65/NA)2×(V/6.6)1/2 (13)
と言う上限値を設定する事が望ましい。上記各式の内、(8)式または(9)式の条件は必須条件となり、(10)式または(11)式が目標条件、(12)式または(13)式が望ましい条件となる。

0075

3−4)本実施形態における“H→L”記録膜に関する特徴説明
記録マーク9内の光反射量が未記録領域での光反射量よりも低くなる特性を有した記録膜を“H→L”記録膜と呼び、逆に高くなる記録膜を“L→H”記録膜と呼ぶ。この中で“H→L”記録膜は
(1)光吸収スペクトルのλmax write位置での吸光度に対する再生波長での吸光度の比に上限値を設ける
(2)光吸収スペクトルプロファイルを変化させて記録マークを形成させる
所に本実施形態の大きな特徴が有る。

0076

図9図10を用いて上記内容に関する詳細な説明を行う。本実施形態におけるH→L記録膜では図9に示すようにλmax writeの波長が記録/再生に利用される使用波長(405nm近傍)よりも短い。図10から分かるように、λmax writeの波長近傍では未記録と既記録間で吸光度の変化が少ない。未記録と既記録間で吸光度の変化が少ないと再生信号振幅が大きく取れない。記録又は再生用レーザ光源の波長変動が生じても安定に記録または再生ができる事も視野に入れると、本実施形態においては図9に示すようにλmax writeの波長が355nm〜455nmの範囲の外側、すなわち355nmよりも短波長側に来るように記録膜3−2の設計を行っている。

0077

既に“2−1)記録原理/記録膜構造の違いと再生信号生成に関する基本的な考え方の違い”で定義したλmax write位置での吸光度を“1”と規格化した時の“第0章使用波長と本実施形態との関係説明”で説明した355nm、455nm、405nmにおける相対的な吸光度をAh355、Ah455、Ah405と定義する。

0078

Ah405=0.0の場合には未記録状態での記録膜からの光反射率は光反射層4−2での405nmにおける光反射率に一致する。光反射層4−2の光反射率については“6−1)光反射層”の所で詳細に後述するが、ここでは説明の簡素化のために光反射層4−2の光反射率を100%として説明を進める。

0079

本実施形態における“H→L”記録膜を用いた追記形情報記憶媒体では片側単層膜の場合の再生専用情報記憶媒体(HD DVD−ROMディスク)を用いた場合と再生回路を共通化させている。従って、この場合の光反射率を片側単層膜の再生専用情報記憶媒体(HD DVD−ROMディスク)の光反射率に合わせて40〜85%とする。そのためには未記録位置での光反射率を40%以上に設定する必要が有る。1−0.4=0.6なので、405nmにおける吸光度Ah405として
Ah405≦0.6 (14)
とすれば良い事が直感的に理解できる。上記(14)式を満足する場合には未記録位置での光反射率を40%以上にできる事が容易に理解できるので、本実施形態では未記録場所において(14)式を満足する有機色素記録材料を選定している。上記(14)式は図9においてλmax writeの波長光で記録層3−2越しに光反射層4−2を反射させた時の光反射率が0%になる事を仮定している。しかし、実際にはこの時の光反射率は0%にならず、有る程度の光反射率を持つので、厳密には(14)式に対する補正が必要となる。図9においてλmax writeの波長光で記録層3−2越しに光反射層4−2を反射させた時の光反射率をRλmax writeで定義すると、未記録位置での光反射率を40%以上に設定する厳密な条件式
1−Ah405×(1−Rλmax write)≧0.4 (15)
となる。“H→L”記録膜では多くの場合、Rλmax write≧0.25なので(15)式は
Ah405≦0.8 (16)
となる。本実施形態の“H→L”記録膜では(16)式を満足する事が必須条件となる。上記(14)式の特性を持たせ、更に、記録層3−2の膜厚として(3)式または(4)式の条件を満足する事を条件として詳細な光学的な膜設計を行った結果、膜厚変動や再生光の波長変動などの各種マージンを考慮に入れると
Ah405≦0.3 (17)
が望ましい。(14)式を前提とすると、
Ah455≦0.6 (18)
あるいは
Ah355≦0.6 (19)
に設定すると、一層記録/再生特性が安定する。なぜなら(14)式が成り立つ上で少なくとも(18)式と(19)式のいずれかを満足する場合には、355nmから405nmの範囲、又は405nmから455nmの範囲に亘り(場合によっては355nmから455nmの範囲で)Ahの値が0.6以下になるので記録用レーザ光源(または再生用レーザ光源)の発光波長にばらつきが生じても吸光度の値が大きく変化しないためである。

0080

本実施形態における“H→L”記録膜の具体的な記録原理としては既に説明した“3−2−B〕本実施形態における有機色素記録材料に共通する基本的特徴”内の〔α〕に列記した記録メカニズムの内“分子間の配列変化”または“分子内部での分子構造変化”の現象を利用する。その結果、上述した(2)に記載されているように光吸収スペクトルプロファイルを変化させる。本実施形態における記録マーク内での光吸収スペクトルプロファイルを図10中の実線で示し、未記録場所での光吸収スペクトルプロファイルを破線で重ね合わせる事で両者の比較が出来るようにした。本実施形態では記録マーク内での光吸収スペクトルプロファイルが比較的ブロードに変化しており、分子内部での分子構造変化が生じ一部炭素原子の析出(コールタール化)の可能性が有る。記録マーク内での吸光度が最大になる波長λlmaxの値を未記録位置での波長λmax writeの値よりも再生波長405nmに近付ける事により“H→L”記録膜での再生信号を発生している所に本実施形態の特徴が有る。これにより、吸光度が最も高くなる波長λlmaxでの吸光度が“1”よりも小さく再生波長405nmにおける吸光度Al405の値がAh405の値よりも大きくなる。その結果、記録マーク内でのトータル的な光反射率が低下する。

0081

本実施形態におけるHフォーマットでは変調方式としてETM(Eight to Twelve:8ビットのデータコードを12チャネルビットに変換する)、RLL(1,10)(変調後のコード列の中でチャネルビット長Tに対する最小反転長が2T、最大反転長が11T)を採用している。“4−2)本実施形態での再生回路の説明”で後述する再生回路の性能評価を行った所、前記再生回路で安定に再生するには〔充分に長い長さ(11T)の未記録領域からの再生信号量I11H〕に対する〔前記I11Hと充分に長い長さ(11T)を持つ記録マークからの再生信号量I11Lとの差分値I11≡I11H−I11L〕の比率が最低でも
I11/I11H≧0.4 (20)
望ましくは
I11/I11H>0.2 (21)
を満足する必要が有る事が分かった。本実施形態では高密度に記録された信号再生時にPRML法を利用し、図15図17に示す(詳細説明は後述する)信号処理回路と状態遷移図を使用する。PRML法で精度良く検出するためには再生信号の線形性リニアリティー)が要求される。図17に示した状態遷移図を基に図15図16に示した信号処理回路特性を解析した結果、上記再生信号の線形性(リニアリティー)を確保するためには3Tの長さを持つ記録マークと未記録スペース繰り返し信号からの再生信号振幅をI3とした時のこの値の上記I11に対する比率が
I3/I11≧0.35 (22)
望ましくは
I3/I11>0.2 (23)
を満足する必要が有る事も分かった。上記(16)式の条件を視野に入れながら(20)式、(21)式を満足するようにAl405の値を設定した所に本実施形態の技術的特徴が有る。(16)式を参照し
1−0.3=0.7 (24)
となる。(24)式を視野に入れ、(20)式との対応関係から
(Al405−0.3)/0.7≧0.4 すなわち、
Al405≧0.58 (25)
の条件が導かれる。(25)式は非常に粗い検討結果から導かれた式で基本的な考え方を示したに過ぎない。Ah405の設定範囲を(16)式で規定しているので、本実施形態ではAl405の条件として少なくとも
Al405>0.3 (26)
が必須となる。

0082

具体的な“H→L”記録膜に適した有機色素材料の選定方法として本実施形態では光学的な膜設計を元に未記録状態での屈折率範囲がn32=1.3〜2.0、吸収係数範囲がk32=0.1〜0.2、望ましくはn32=1.7〜1.9、吸収係数範囲がk32=0.15〜0.17の有機色素材料を選定し、上記説明した一連の条件を満足させている。

0083

図9または図10に示した“H→L”記録膜では未記録領域での光吸収スペクトルにおいてλmax writeの波長が再生光または記録/再生光の波長(例えば、405nm)よりも短くなっているが、本発明においてそれに限らず例えば、λmax writeの波長が再生光または記録/再生光の波長(例えば、405nm)よりも長くても良い。

0084

上記(22)式または(23)式を満足させるためには記録層3−2の厚みDgが大きく影響する。例えば、記録層3−2の厚みDgが許容値を大幅に越えると、記録マーク9形成後の状態として記録層3−2内での透明基板2−2に接する一部のみの光学特性が変化するだけでその場所に隣接する光反射層4−2に接する部分の光学特性が他の未記録領域と同じ値のままになる。その結果、再生光量変化が低下して(22)式または(23)式におけるI3の値が小さくなり、(22)式または(23)式の条件が満足できなくなる。従って、(22)式を満足させるためには、図8(b)、(c)に示すように記録マーク9内の光反射層4−2に接する部分の光学特性まで変化させる必要が有る。さらに、記録層3−2の厚みDgが許容値を大幅に越えると記録マーク形成時に記録層3−2内の厚み方向で温度勾配が発生し、記録層3−2内の光反射層4−2に接する部分で光学特性変化温度に達する前に透明基板2−2に接する部分の気化(蒸発)温度を越えるか、透明基板2−2内で熱変形温度を超えてしまう。上記理由から本実施形態では熱解析検討により(22)式を満足させるために記録層3−2の厚みDgを“3T”以下とし、(23)式を満足させる条件として記録層3−2の厚みDgを“3×3T”以下にしている。基本的には記録層3−2の厚みDgが“3T”以下の場合には(22)式を満足させる事が出来るが、追記形情報記憶媒体の面ブレ・反りによるチルトの影響や焦点ぼけに対するマージンを考慮すると“T”以下にする場合もある。既に説明した(1)式と(2)式の結果も考慮すると、本実施形態における記録層3−2の厚みDgの範囲は必要最低な条件としては
9T≧Dg≧λ/8n32 (27)
望ましい条件としては
3T≧Dg≧λ/4n32 (28)
で与えられる範囲で記録層3−2の厚みDgを設定している。それに限らず、最も厳しい条件としては
T≧Dg≧λ/4n32 (29)
とする事も可能である。後述するようにチャネルビット長Tの値はHフォーマットでは102nm、Bフォーマットでは69nm〜80nmになっているので、3Tの値はHフォーマットでは306nm、Bフォーマットでは207nm〜240nm、9Tの値はHフォーマットでは918nm、Bフォーマットでは621nm〜720nmとなる。ここでは“H→L”記録膜に関して説明しているが、(27)式〜(29)式の条件はそれに限らず、“L→H”記録膜に対しても適用できる。

0085

第4章再生装置または記録再生装置と記録条件/再生回路の説明
4−1)本実施形態での再生装置もしくは記録再生装置の構造と特徴説明
情報記録再生装置の実施形態における構造説明図を図11に示す。図11において制御部143より上側が主に情報記憶媒体への情報記録制御系を表し、情報再生装置の実施形態では図11における前記情報記録制御系を除いた構造が該当する。図11に於いて太い実線矢印が再生信号または記録信号を意味するメイン情報の流れを示し、細い実線矢印が情報の流れ、一点鎖線矢印が基準クロックライン、細い破線矢印がコマンド指示方向を意味する。

0086

図11に示した情報記録再生部141の中に図示してないが光学ヘッドが配置されている。本実施形態では光学ヘッド内に用いられる光源(半導体レーザ)の波長は405nmで有るが、それに限らず本実施形態として前述したように使用波長が620nm以下または530nm以下の光源あるいは355〜455nmの範囲の光源を使用する事が可能である。また、光学ヘッド内で上記波長の光を情報記憶媒体上に集光させるために用いられる対物レンズは2個搭載され、Hフォーマットの情報記憶媒体に対して記録/再生する場合はNA値が0.65の対物レンズを使用し、Bフォーマットの情報記憶媒体に記録/再生する場合にはNA=0.85の対物レンズを使用するように対物レンズが切り替えられるような構造になっている。対物レンズに入射する直前入射光強度分布として、中心強度を“1”とした時の対物レンズ周辺(開口部境界位置)での相対的な強度を“RIM Intensity”と呼ぶ。Hフォーマットにおける前記RIM Intensityの値は55〜70%になるように設定してある。この時の光学ヘッド内での波面収差量使用波長λに対して最大0.33λ(0.33λ以下)になるように光学設計されている。

0087

本実施形態では情報再生にPRML(Partial Response Maximum Likelihood)を用い、情報記憶媒体の高密度化を図っている(図1〔A〕)。種々の実験の結果、使用するPRクラスとしてはPR(1,2,2,2,1)を採用すると線密度が高くできるとともに再生信号の信頼性(例えば、焦点ぼけやトラックずれなどサーボ補正誤差が発生した時の復調信頼性)を高くできるので、本実施形態ではPR(1,2,2,2,1)を採用している(図1(A1))。本実施形態では(d,k;m,n)変調規則(前述した記載方法ではm/n変調のRLL(d,k)を意味している)に従って変調後のチャネルビット列を情報記憶媒体に記録している。具体的には変調方式としては8ビットデータを12チャネルビットに変換(m=8,n=12)するETM(Eight to Twelve Modulation)を採用し、変調後のチャネルビット列の中で“0”が続く長さに制限を掛けるランレングスリミテッドRLL制約として“0”が連続する最小値をd=1とし、最大値をk=10としたRLL(1,10)の条件を課している。本実施形態では情報記憶媒体の高密度化を目指して極限近くまでチャネルビット間隔を短くしている。その結果、例えば、d=1のパターンの繰り返しである“101010101010101010101010”のパターンを情報記憶媒体に記録し、そのデータを情報記録再生部141で再生した場合には再生光学系MTF特性遮断周波数に近付いているため、再生生信号信号振幅はほとんどノイズに埋もれた形に成る。従って、そのようにMTF特性の限界(遮断周波数)近くまで密度を詰めた記録マークまたはピットを再生する方法としてPRML(Partial Response Maximum Likelihood)の技術を使っている。すなわち、情報記録再生部141から再生された信号はPR等化回路130により再生波形補正を受ける。AD変換器169で基準クロック発生回路160から送られてくる基準クロック198のタイミングに合わせてPR等化回路130通過後の信号をサンプリングしてデジタル量に変換し、ビタビ復号器156内でビタビ復号処理を受ける。ビタビ復号処理後のデータは従来のスライスレベルで2値化されたデータと全く同様なデータとして処理される。PRMLの技術を採用した場合、AD変換器169でのサンプリングタイミングがずれると、ビタビ復号後のデータのエラー率は増加する。従って、サンプリングタイミングの精度を上げるため、本実施の形態の情報再生装置ないしは情報記録再生装置では特にサンプリングタイミング抽出用回路シュミットトリガー2値回路155とPLL回路174の組み合わせ)を別に持っている。このシュミットトリガー回路は2値化するためのスライス基準ベルに特定の幅(実際にはダイオード順方向電圧値)を持たせ、その特定幅を越えた時のみ2値化される特性を持っている。従って、例えば、上述したように“101010101010101010101010”のパターンが入力された場合には、信号振幅が非常に小さいので2値化の切り替わりが起こらず、それよりも疎のパターンである例えば、“1001001001001001001001”などが入力された場合に再生生信号の振幅が大きくなるので、シュミットトリガー2値化回路155で“1”のタイミングに合わせて2値化信号の極性切り替えが起きる。本実施の形態ではNRZI(Non Return to Zero Invert)法を採用しており、上記パターンの“1”の位置と記録マークまたはピットのエッジ部(境界部)が一致している。

0088

PLL回路174ではこのシュミットトリガー2値化回路155の出力である2値化信号と基準クロック発生回路160から送られる基準クロック198信号との間の周波数と位相のずれを検出してPLL回路174の出力クロックの周波数と位相を変化させている。基準クロック発生回路160ではこのPLL回路174の出力信号とビタビ復号器156の復号特性情報(具体的には図示してないが、ビタビ復号器156内のパスメトリックメモリ内の収束長(収束までの距離)の情報)を用いてビタビ復号後のエラーレートが低くなるように基準クロック198(の周波数と位相)にフィードバックを掛ける。この基準クロック発生回路160で発生される基準クロック198は再生信号処理時の基準タイミングとして利用される。

0089

同期コード位置抽出部145はビタビ復号器156の出力データ列の中に混在している同期コード(シンクコード)の存在位置を検出し、上記出力データの開始位置の抽出役目を担っている。この開始位置を基準としてシフトレジスタ回路170に一時保存されたデータに対して復調回路152で復調処理を行う。本実施形態では12チャネルビット毎に復調用変換テーブル記録部154内に記録された変換テーブルを参照して元のビット列に戻す。その後はECCデコーディング回路162によりエラー訂正処理が施され、デスクランブル回路159によりデスクランブルされる。本実施形態の記録形(書替え形または追記形)情報記憶媒体ではウォブル変調によりアドレス情報が事前に記録されている。ウォブル信号検出部135で、このアドレス情報を再生し(すなわち、ウォブル信号の内容を判別し)希望場所へのアクセスに必要な情報を制御部143に対して供給する。

0090

制御部143より上側に有る情報記録制御系について説明する。情報記憶媒体上の記録位置に合わせてデータID発生部165からデータID情報が生成され、CPR_MAIデータ発生部167でコピー制御情報が発生されるとデータID、IED、CPR_MAI、EDC付加部168により記録すべき情報にデータID、IED、CPR_MAI、EDCの各種情報が付加される。その後、デスクランブル回路157でデスクランブルされた後、ECCエンコーディング回路161でECCブロックが構成され、変調回路151でチャネルビット列に変換された後、同期コード生成・付加部146で同期コードが付加されて情報記録再生部141内で情報記憶媒体にデータが記録される。変調時にはDSV(Digital Sum Value)値計算部148で変調後のDSV値が逐次計算され、変調時のコード変換にフィードバックされる。

0091

図11に示した同期コード位置検出部145を含む周辺部の詳細構造を図12に示す。同期コードは固定パターンを持った同期位置検出用コード部と可変コード部から構成されている。ビタビ復号器156から出力されたチャネルビット列の中から同期位置検出用コード検出部182により上記固定パターンを持った同期位置検出用コード部の位置を検出し、その前後に存在する可変コードのデータを可変コード転送部183、184が抽出してシンクフレーム位置識別用コード内容の識別部185により検出された同期コードが後述するセクター内のどのシンクフレームに位置するかを判定する。情報記憶媒体上に記録されたユーザー情報はシフトレジスタ回路170、復調回路152内の復調処理部188、ECCデコーディング回路162の順に順次転送される。

0092

本実施形態の内、Hフォーマットではデータ領域、データリードイン領域、データリードアウト領域では再生にPRML方式を使う事で情報記憶媒体の高密度化(特に線密度が向上する)を達成すると共に、システムリードイン領域、システムリードアウト領域では再生にスライスレベル検出方式を使う事で、現行DVDとの互換性を確保するとともに再生の安定化を確保している。(詳細については“第7章 Hフォーマットの説明”の所で後述する。)
4−2)本実施形態での再生回路の説明
図13にシステムリードイン領域、システムリードアウト領域での再生時に使用されるスライスレベル検出方式を用いた信号再生回路の実施形態を示す。図13における4分割光検出器302は図11における情報記録再生部141内に存在する光学ヘッド内に固定されている。4分割光検出器302の各光検出セル1a、1b、1c、1dから得られる検出信号の総和を取った信号をここでは“リードチャンネル1信号”と呼ぶ。図13プリアンプ304からスライサ310までが図11スライスレベル検出回路132内の詳細構造に対応し、情報記憶媒体から得られた再生信号は再生信号周波数帯よりも低い周波数成分を遮断するハイパスフィルタ306を通過後にプリイコライザ308により波形等化処理が行われる。実験によると、このプリイコライザ308は7タップイコライザを用いると最も回路規模が少なく、かつ精度良く再生信号の検出が出来る事が分かったので、本実施形態でも7タップのイコライザを使用している。図13のVFO回路・PLL312部分が図11のPLL回路に対応し、図13の復調回路、ECCデコーディング回路314が図11の復調回路152とECCデコーディング回路162に対応する。

0093

図13のスライサ310回路内の詳細構造を図14に示す。スライス後の2値化信号を比較器316を使って発生させている。本実施形態ではデューティフィードバック法を用い、2値化後のバイナリーデータ反転信号に対してローパスフィルター出力信号を2値化時のスライスレベルに設定している。本実施形態ではこのローパスフィルターの遮断周波数を5KHzに設定している。この遮断周波数が高いとスライスレベル変動が早いためにノイズの影響を受け易く、逆に遮断周波数が低いとスライスレベルの応答が遅いので情報記憶媒体上のゴミや傷の影響を受けやすい。前述したRLL(1,10)とチャネルビットの基準周波数の関係も考慮位して5KHzに設定している。

0094

データ領域、データリードイン領域、データリードアウト領域で信号再生に用いられるPRML検出法を用いた信号処理回路を図15に示す。図15における4分割光検出器302は図11における情報記録再生部141内に存在する光学ヘッド内に固定されている。4分割光検出器302の各光検出セル1a、1b、1c、1dから得られる検出信号の総和を取った信号をここでは“リードチャンネル1信号”と呼ぶ。図11におけるPR等化回路130内の詳細な構造が図15プリアンプ回路304からタップ制御器332、イコライザ330、オフセットキャンセラ336までの各回路で構成されている。図15内のPLL回路334は図11のPR等化回路130内の一部であり、図11のシュミットトリガー2値化回路155とは別の物を意味する。図15におけるハイパスフィルタ回路306の1次の遮断周波数は1KHzに設定している。プリイコライザ回路308は図13と同様7タップのイコライザーを用いている(7タップを使用すると最も回路規模が少なく、かつ精度良く再生信号の検出が出来るためである)。A/Dコンバータ回路324のサンプルクロック周波数は72MHz、デジタルは8ビット出力になっている。PRML検出法では再生信号全体のレベル変動DCオフセット)の影響を受けると、ビタビ復調時に誤差が発生し易くなる。その影響を除去するためにイコライザー出力から得た信号を用いてオフセットキャンセラ336によりオフセットを補正する構造になっている。図15に示した実施形態ではPR等化回路130内で適応等化処理がなされている。そのため、ビタビ復号器156の出力信号を利用してイコライザ330内の各タップ係数自動修正するためのタップ制御器が利用されている。

0095

図11または図15に示したビタビ復号器156内の構造を図16に示す。入力信号に対して予想し得る全てのブランチに対するブランチメトリックをブランチメトリック計算部340で計算し、その値をACS342へ送る。ACS342はAdd Compare Selectの略称で、ACS342の中で予想し得る各パスに対応してブランチメトリックを加算して得られるパスメトリックを計算すると共にその計算結果をパスメトリックメモリ350へ転送する。この時、ACS342内ではパスメトリックメモリ350内の情報も参照して計算処理を行う。パスメモリ346内では予想し得る各パス(遷移)状況とその各パスに対応しACS342で計算したパスメトリックの値を一時保存する。出力切替え部348で各パスに対応したパスメトリックを比較し、パスメトリック値が最小となるパスを選択する。

0096

図17に本実施形態におけるPR(1,2,2,2,1)クラスにおける状態遷移を示す。PR(1,2,2,2,1)クラスにおける取り得る状態(ステート)の遷移は図17に示す遷移のみが可能なので、図17の遷移図を元にビタビ復号器156内では復号時の存在し得る(予想し得る)パスを割り出している。

0097

4−3)本実施形態での記録条件の説明
“3−3)本実施形態における有機色素記録膜に共通する記録特性”で本実施形態における最適な記録パワー(ピークパワー)の説明を行ったが、その最適な記録パワーを調べる時に使用した記録波形(記録時の露光条件)に付いて図18を用いて説明する。

0098

記録時の露光レベルとして記録パワー(ピークパワー:Peak power)、バイアスパワー1(Bias power 1)、バイアスパワー2(Bias power 2)、バイアスパワー3(Bias power 3)の4レベルを持ち、長さの長い(4T以上の)記録マーク9形成時には記録パワー(ピークパワー:Peak power)とバイアスパワー3(Bias power 3)の間でマルチパルスの形で変調される。本実施形態では“Hフォーマット”、“Bフォーマット”いずれの方式もチャネルビット長Tに対する最小マーク長は2Tとなっている。この2Tの最小マークを記録する場合には図18に示すようにバイアスパワー1(Bias power 1)の後で記録パワー(ピークパワー:Peak power)レベルの1個のライトパルスを使用し、ライトパルスの直後は一度バイアスパワー2(Bias power 2)になる。3Tの長さの記録マーク9を記録する場合にはバイアスパワー1(Bias power 1)の後に来る記録パワー(ピークパワー:Peak power)レベルのファーストパルスラストパルスの2個のライトパルスを露光した後一旦バイアスパワー2(Bias power 2)になる。4T以上の長さの記録マーク9を記録する場合にはマルチパルスとラストパルスで露光した後、バイアスパワー2(Bias power 2)になる。

0099

図18における縦の破線はチャネルクロック周期を示す。2Tの最小マークを記録する場合にはクロックエッジからTSF遅れた位置から立ち上がり、その1クロック後のエッジからTEL後ろの位置で立ち下がる。その直後のバイアスパワー2(Bias power2)になる期間をTLCと定義する。TSFPとTELP及びTLCの値はHフォーマットの場合には後述するように制御データゾーンCDZ内の物理フォーマット情報PFI内に記録されている。3T以上の長い記録マーク形成時の場合にはクロックエッジからTSFP遅れた位置から立ち上がり、最後にラストパルスで終わる。ラストパルスの直後はTLCの期間バイアスパワー2(Bias power 2)になるが、ラストパルスの立ち上がり/立ち下がりタイミングのクロックエッジからのずれ時間をTSLP,TELPで定義する。また、先頭パルスの立ち下がりタイミングのクロックエッジから図った時間をTEFPで、さらに1個のマルチパルスの間隔をTMPで定義する。

0100

TELP−TSFP、TMP、TELP−TSLP、TLCの各間隔は図19に示すように最大値に対する半値幅で定義する。また、本実施形態では上記パラメーターの設定範囲を
0.25T≦TSFP≦1.50T (30)
0.00T≦TELP≦1.00T (31)
1.00T≦TEFP≦1.75T (32)
−0.10T≦TSLP≦1.00T (33)
0.00T≦TLC ≦1.00T (34)
0.15T≦TMP ≦0.75T (35)
とする。さらに本実施形態では記録マークの長さ(Mark length)とその直前/直後のスペース長(Leading/Trailing space length)に応じて図20に示すように上記各パラメーターの値を変化できるようにしている。既に“3−3)本実施形態における有機色素記録膜に共通する記録特性”の所で説明した、本実施形態に示した記録原理で記録される追記形情報記憶媒体の最適な記録パワーを調べた時の各パラメーターの値を図21に示す。この時のバイアスパワー1(Bias power 1)、バイアスパワー2(Bias power 2)、バイアスパワー3(Bias power 3)の値は2.6mW、1.7mW、1.7mWであり、再生パワーは0.4mWだった。

0101

第5章 本実施形態における有機色素記録膜の具体的説明
5−1)本実施形態における“L→H”記録膜に関する特徴説明
未記録領域に比べて記録マーク内で光反射量が低下する特性を有する“L→H”記録膜に関する説明を行う。この記録膜を用いた場合の記録原理としては“3−2−B〕本実施形態における有機色素記録材料に共通する基本的特徴”で説明した記録原理の中で主に ・発色特性変化
・発色現象に寄与する電子に対する電子構造(電子軌道)の変化〔脱色作用など〕
・分子間の配列変化
のいずれかを利用し、吸光スペクトルの特性を変化させる。“L→H”記録膜に関しては、特に未記録場所と既記録場所での反射量範囲を片面2層構造を持った再生専用情報記憶媒体の特性を視野に入れて規定した所に大きな特徴が有る。本実施形態で規定している“H→L”記録膜と“L→H”記録膜の未記録領域(非記録部)における光反射率範囲を図22に示す。本実施形態では“H→L”記録膜の非記録部での反射率下限値δが“L→H”記録膜の非記録部での上限値γより高くなるように規定している。情報記録再生装置あるいは情報再生装置に上記情報記憶媒体を装着した時、図11のスライスレベル検出部132またはPR等化回路130で非記録部の光反射率を測定し、瞬時に“H→L”記録膜か“L→H”記録膜の判別が出来るので、記録膜の種別判別が非常に容易になる。多くの製造条件を変えて作成した“H→L”記録膜と“L→H”記録膜を作成して測定した結果、“H→L”記録膜の非記録部での反射率下限値δと“L→H”記録膜の非記録部での上限値γの間の光反射率αを32%〜40%の範囲以内にすると、記録膜の製造性が高く、媒体の低価格化が容易である事が分かった。“L→H”記録膜非記録部(“L”部)の光反射率範囲801を再生専用形情報記憶媒体における片面2記録層の光反射率範囲803に一致させ、“H→L”記録膜の非記録部(“H”部)の光反射率範囲802を再生専用形情報記憶媒体における片面単層の光反射率範囲804に一致させると、再生専用形情報記憶媒体との互換性が良く情報再生装置の再生回路を兼用化出来るので情報再生装置を安価に作ることができる。多くの製造条件を変えて作成した“H→L”記録膜と“L→H”記録膜を作成して測定した結果、記録膜の製造性を高めて媒体の低価格化を容易にするために本実施形態では“L→H”記録膜の非記録部(“L”部)の光反射率の下限値βを18%、上限値γを32%とし、“H→L”記録膜の非記録部(“H”部)の光反射率下限値δを40%、上限値εを85%にした。

0102

本実施形態における各種記録膜での非記録位置と既記録位置での反射率を図23図24に示す。Hフォーマット(“第7章 Hフォーマットの説明”を参照の事)を採用した場合、図22のように非記録部での光反射率範囲を規定する事でグルーブレベルを基準として“L→H”記録膜ではエンボス領域(システムリードイン領域SYLDIなど)と記録マーク領域(データリードイン領域DTLDI、データリードアウト領域DTLDOやデータ領域DTA)で同じ方向に信号が現れる。同様に“H→L”記録膜ではグルーブレベルを基準としてエンボス領域(システムリードイン領域SYLDIなど)と記録マーク領域(データリードイン領域DTLDI、データリードアウト領域DTLDOやデータ領域DTA)で反対方向に信号が現れる。この現象を利用し、“L→H”記録膜と“H→L”記録膜間での記録膜識別に使えるだけでなく、“L→H”記録膜と“H→L”記録膜に対応した検出回路設計が容易となる。また、本実施形態に示した“L→H”記録膜上に記録した記録マークから得られる再生信号特性を“H→L”記録膜から得られる信号特性に合わせて(20)式〜(23)式を満足させる。これにより、“L→H”記録膜と“H→L”記録膜いずれの記録膜を用いた場合にも同一の信号処理回路が使え、信号処理回路の簡素化と低価格化が図れる。

0103

5−2)本実施形態の“L→H”記録膜に関する光吸収スペクトルの特徴
“3−4)本実施形態における“H→L”記録膜に関する特徴説明”で説明したように“H→L”記録膜では未記録領域での相対的な吸光度が基本的に低いため、再生時に再生光を照射された時にその再生光のエネルギーを吸収して生じる光学特性変化が起こりにくい。仮に吸光度が高い記録マーク内で再生光のエネルギーを吸収して光学特性変化(記録作用更新)が生じたとしても記録マーク内からの光反射率が下がる一方なので、再生信号の振幅(I11≡I11H−I11L)が増加する方向に働き、再生信号処理への悪影響は少ない。

0104

それに比べて、“L→H”記録膜は“未記録部の光反射率が記録マーク内より低い”と言う光学的特性を持つ。この事は図2(b)を用いて説明した内容から分かるように、記録マーク内より未記録部の吸光度が高い事を意味している。そのため、“L→H”記録膜は“H→L”記録膜に比べると再生時の信号劣化が起こり易い。“3−2−B〕本実施形態における有機色素記録材料に共通する基本的特徴”内で説明したように、“ε〕紫外線や再生光照射による再生信号劣化が万一発生した場合に備えて再生情報の信頼性を向上させる”必要が有る。

0105

有機色素記録材料の特性を詳細に調べた結果、再生光のエネルギーを吸収して光学特性変化を起こすメカニズムと紫外線照射による光学特性変化のメカニズムがほぼ類似している事が分かった。その結果、未記録領域での紫外線照射に対する耐久性を向上させる構造を持たせると再生時の信号劣化が起き辛くなる。そのため、“L→H”記録膜ではλmax write(記録光の波長に最も近い極大吸収波長)の値を記録光または再生光の波長(405nm近傍)よりも長くした所に本実施形態の大きな特徴がある。これにより紫外線に対する吸収率を低くでき、紫外線照射に対する耐久性を大幅に向上できる。図26から分かるように、λmax write近傍での既記録部と未記録部間での吸光度の違いが小さく、λmax write近傍の波長光で再生した場合の再生信号変調度(信号振幅)が小さくなる。半導体レーザ光源の波長変動も視野に入れると、355nm〜455nmの範囲では充分に大きな再生信号変調度(信号振幅)を取れる事が望ましい。従って、本実施形態においてλmax writeの波長は355nm〜455nmの範囲外(すなわち、455nmよりも長波長側)に存在するように記録膜3−2の設計を行っている。

0106

本実施形態での“L→H”記録膜における光吸収スペクトルの一例を図25に示す。“5−1)本実施形態における“L→H”記録膜に関する特徴説明”で説明したように、本実施形態では“L→H”記録膜の非記録部(“L”部)の光反射率の下限値βを18%、上限値γを32%に設定している。1−0.32=0.68より上記条件を満足するためには405nmにおける未記録領域での吸光度の値Al405として
Al405≧68% (36)
を満足すべきなのが直感的に理解できる。図2における光反射層4−2の405nmにおける光反射率は100%より若干低下するが、説明の簡略化のためほぼ100%に近いと仮定する。従って、吸光度Al=0の時の光反射率はほぼ100%になる。図25においてλmax writeの波長での記録膜全体としての光反射率をRλmax writeで表す。この時の光反射率がゼロ(Rλmax write≒0)と仮定して(36)式を導いているが、実際には“0”とはならないので、より厳密な式を導く必要が有る。“L→H”記録膜の非記録部(“L”部)の光反射率の上限値γを32%に設定する厳密な条件式は
1−Al405×(1−Rλmax write)≦0.32 (37)
で与えられる。従来の追記形情報記憶媒体は全て“H→L”記録膜を使用しており、“L→H”記録膜に関する情報の蓄積が無いが、“5−3)アニオン部:アゾ金属錯体+カチオン部:色素”と“5−4)アゾ金属錯体+中心金属として“銅”使用”で後述する本実施形態を使用した場合には(37)式を満たす最も厳しい条件として
Al405≧80% (38)
となる。上記実施形態で後述する有機色素記録材料を使用した場合には、製造時の特性ばらつきや記録層3−2の厚み変化などのマージンも含めて記録膜の光学設計を行うと“5−1)本実施形態における“L→H”記録膜に関する特徴説明”で説明した反射率を満足する最低限の条件としては
Al405≧40% (39)
を満足すれば良い事が分かった。さらに
Al355≧40% (40)
Al455≧40% (41)
のいずれかを満足する事で355nmから405nmの範囲あるいは405nmから455nmの範囲(両方の式が同時に満足する場合には355nmから455nmの範囲)で光源の波長が変化しても安定な記録特性または再生特性を確保できる。

0107

本実施形態の“L→H”記録膜における記録後の光吸収スペクトル変化状況を図26に示す。記録マーク内での最大吸収波長λlmaxの値がλmax writeの波長からずれており、分子間の配列変化(例えば、アゾ金属錯体同士の配列変化)が生じていると考えられる。更に、λlmaxの所での吸光度と405nmでの吸光度Al405のいずれもが低下していると共に光吸収スペクトルの広がり自体が広がっている所から平行して脱色作用(局所的な電子軌道の切断(局所的な分子結合の解離))が起きていると考えられる。

0108

本実施形態の“L→H”記録膜においても(20)、(21)、(22)、(23)の各式を満足させる事で“L→H”記録膜と“H→L”記録膜どちらに対しても同一の信号処理回路を使えるようにして信号処理回路の簡素化と低価格化を図っている。(20)式において
I11/I11H≡(I11H−I11L)/I11H≧0.4 (42)
を変形すると
I11H≧/I11L/0.6 (43)
となる。既に説明したように本実施形態において“L→H”記録膜の未記録部(“L”部)の光反射率の下限値βを18%に設定しており、この値がI11Lに対応する。更に、概念的に
I11H≒1−Ah405×(1−Rλmax write) (44)
と対応するので、(43)式と(44)式から
1−Ah405×(1−Rλmax write)≧0.18/0.6 (45)となる。1−Rλmax write≒0の時は(45)式は
Ah405≦0.7 (46)
で得られる。上記(46)式と(36)式を比較すると吸光度の値として68%〜70%近傍を境にAl405とAh405の値を設定すれば良さそうな事が分かる。更に、Al405の値として(39)式の範囲になる場合と、信号処理回路の性能安定性を考えると、厳しい条件として
Ah405≦0.4 (47)
がある。なお、可能で有れば
Ah405≦0.3 (48)
を満足する事が望ましい。

0109

5−3)アニオン部:アゾ金属錯体+カチオン部:色素
“5−1)本実施形態における“L→H”記録膜に関する特徴説明”で説明した特徴を有し、“5−2)本実施形態の“L→H”記録膜に関する光吸収スペクトルの特徴”で示した条件を満足する本実施形態における具体的に有機色素材料について説明する。記録層3−2の厚みは(3)、(4)、(27)、(28)の各式で示した条件を満足し、スピナーコーティング(スピンコーティング)により形成する。比較のために一例を上げると、“食塩”の結晶はプラス帯電する“ナトリウムイオン”とマイナスに帯電する“塩素イオン”との間の“イオン結合”で組み立てられている。それと同様、高分子においても“イオン結合”に近い形で異なる複数の高分子が組み合わさり有機色素材料を構成する場合が有る。本実施形態における有機色素記録膜3−2はプラス側に帯電する“カチオン部”とマイナス側に帯電する“アニオン部”で構成されている。特にプラス側に帯電する“カチオン部”に発色特性を有する“色素”を利用し、対イオン部を意味しマイナス側に帯電する“アニオン部”に有機金属錯体を利用する事で結合の安定性を高め、“3−2−B〕本実施形態における有機色素記録材料に共通する基本的特徴”の中で示した“δ〕発色領域での電子構造を安定化させ、紫外線や再生光照射に対する構造分解が生じ辛くする”の条件を満足させた所に技術的な大きな特徴が有る。具体的な内容として本実施形態では有機金属錯体として図3に一般構造式を示した“アゾ金属錯体”を利用している。アニオン部とカチオン部の組み合わせからなる本実施形態においてこのアゾ金属錯体の中心金属Mとしてコバルトまたはニッケルを使用して光安定性を高めているが、それに限らずスカンジウムイットリウムチタンジルコニウムハフニウムバナジウムニオブタンタルクロムモリブデンタングステンマンガンテクネチウムレニウム、鉄、ルテニウムオスミウムロジウムイリジウムパラジウム白金、銅、銀、金、亜鉛カドミウム、水銀などを使っても良い。本実施形態ではカチオン部に使用する色素として図27に一般構造式を示したシアニン色素、図28に一般構造式を示したスチリル色素、図29に一般構造式を示したモノメチンシアニン色素のいずれかを使用する。本実施形態ではアニオン部にアゾ金属錯体を使用しているが、それに限らず例えば、図30に一般構造式を示すホルマザン金属錯体を使用しても良い。上記アニオン部とカチオン部からなる有機色素記録材料は最初粉末状になっている。記録層3−2を形成する場合にはこの粉末状の有機色素記録材料を有機溶剤に溶かした後、透明基板2−2上にスピンコーティングを行う。この時に使用する有機溶剤として例えば、フッ素アルコール系のTFP(テトラフルオロプロパノール)やペンタンヘキサンシクロヘキサン石油エーテル石油ベンジンなどの炭化水素類アルコール類フェノール類エーテル類ニトリル類ニトロ化合物含硫化合物のいずれかかまたはそれらの組み合わせを使用する。

0110

5−4)アゾ金属錯体+中心金属として“銅”使用
記録原理として本実施形態の光学特性変化を用いた“H→L”記録膜と“L→H”記録膜における記録(記録マーク形成)前後での光吸収スペクトル変化の一例を図65図66に示す。記録前(未記録領域内で)のλmax write波長をλbmax write、このλbmax writeを中心とした光吸収スペクトル(b)の半値幅(λbmax writeでの吸光度Aを“1”とした時の“A≧0.5”の範囲を満足する波長領域の幅)をWas、記録後(記録マーク内で)の光吸収スペクトル(a)のλmaxwrite波長をλamax writeと定義する。図65図66に示した特性を有する記録膜3−2は“3−2−B〕本実施形態における有機色素記録材料に共通する基本的特徴”の〔α〕に示した記録原理の内、“発色現象に寄与する電子に対する電子構造(電子軌道)の変化”と“分子内部での分子構造変化”を利用している。“発色現象に寄与する電子に対する電子構造(電子軌道)の変化”が生じると、例えば、図3に示すような発色領域8の寸法や構造が変化する。例えば、発光領域8の寸法が変化すると、そこの局在電子の共鳴吸収波長が変化するので、光吸収スペクトルの極大(最大)吸収波長がλbmax writeからλamax writeに変化する。同様に“分子内部での分子構造変化”が生じると発色領域8の構造も変化するので、同様に光吸収スペクトルの極大(最大)吸収波長が変化する。ここで極大(最大)吸収波長の変化量をΔλmaxと定義すると
Δλmax≡|λamax write−λbmax write| (49)
の関係が成り立つ。このように光吸収スペクトルの極大(最大)吸収波長が変化すると、連動して光吸収スペクトルの半値幅Wasも変化する。このように光吸収スペクトルの極大(最大)吸収波長と光吸収スペクトルの半値幅Wasが同時に変化した時に、記録マーク位置から得られる再生信号への影響を説明する。図65図66)において記録前/未記録領域における光吸収スペクトルは(b)で与えられるので、405nm再生光での吸光度はAh405(Al405)になっている。もし仮に記録後(記録マーク内)の光スペクトルとして極大(最大)吸収波長のみがλamax writeに変化し、半値幅Wasの変化が無かった場合には光吸収スペクトルは図65図66)の(c)のようになり、405nm再生光での吸光度はA*405に変化するが、実際には半値幅が変化するために記録後(記録マーク内)の吸光度はAl405(Ah405)になってしまう。記録前後での吸光度の変化量|Al405−Ah405|は再生信号振幅値に比例するので、図65図66)に示した例では極大(最大)吸収波長変化と半値幅変化が再生信号振幅増加に対する相殺作用をするため、再生信号のC/N比を悪化させるという問題が生じる。その問題を解消するための本実施形態の第1の応用例として極大(最大)吸収波長変化と半値幅変化が再生信号振幅増加に対して相乗的に働くように記録層3−2の特性を設定(膜設計)する所に大きな特徴が有る。すなわち、図65図66)での変化から容易に予想が付くように
“H→L”記録膜では記録前のλbmax writeに対する記録後のλamax writeの移動方向に依らず
半値幅が広がり、
“L→H”記録膜では記録前のλbmax writeに対する記録後のλamax writeの移動方向に依らず
半値幅が狭くなる方向に変化するように記録層3−2の特性を設定(膜設計)する。

0111

次に、本実施形態における第2の応用例について説明する。前述したように極大(最大)吸収波長変化と半値幅Was変化によりAh405とAl405との間の開きを相殺させて再生信号のC/N比を下げる場合がある。更に、上記第1の応用例や図65または図66に示した実施形態では極大(最大)吸収波長変化と光吸収スペクトルの半値幅Wasが同時に変化するため、記録後(記録マーク内で)の吸光度Aの値は極大(最大)吸収波長変化量Δλmaxと半値幅変化量の両方の影響を受ける。追記形情報記憶媒体12を量産した時にこの極大(最大)吸収波長変化量Δλmaxと半値幅変化量の両方の値を同時に精度良く制御する事が難しく、量産された追記形情報記憶媒体12に情報を記録した時の再生信号振幅のばらつきが大きくなり、図11に示した情報再生装置で再生した時の再生信号の信頼性が低下する。それに対して本実施形態における第2の応用例に示す記録層3−2の材質として記録前後(記録マーク内と未記録領域で)の極大(最大)吸収波長が変化しないように工夫する事で記録後(記録マーク内で)の吸光度Aの値のばらつきを抑え、そこからの再生信号振幅の個体間ばらつきを少なくする事で再生信号の信頼性を向上させた所に大きな特徴が有る。この第2の応用例では記録前後(記録マーク内と未記録領域で)の極大(最大)吸収波長が変化しないので、吸光度Aの値は記録前後(記録マーク内と未記録領域で)の光吸収スペクトルの広がりのみで決まる。数多く追記形情報記憶媒体12を量産した時に記録前後(記録マーク内と未記録領域で)の光吸収スペクトルの広がりのみを制御すれば良いので媒体間の特性のばら付きを小くできる。記録前後(記録マーク内と未記録領域で)の極大(最大)吸収波長が変化しないように工夫したとしても、厳密には図68に示すように完全にλbmax writeとλamax writeの値を完全に合わせるのは難しい。図65図66に示すλbmax writeを中心とした光吸収スペクトルの半値幅Wasは一般的な有機色素記録材料では100nm〜200nmの範囲に入る場合が多い。従って、極大(最大)吸収波長変化量Δλmaxの値として100nmを越えると(b)の特性から得られる吸光度Ah405(Al405)と(c)の特性から得られる吸光度A*405との値に大きな開きが生じる事が図65図66から容易に予想できる。従って、第2の応用例として“極大(最大)吸収波長が変化しない”と言う意味は
Δλmax≦100nm (50)
の条件を満足する事を意味している。さらに極大(最大)吸収波長変化量Δλmaxが(50)式の1/3
Δλmax≦30nm (51)
の条件になると(b)の特性から得られる吸光度Ah405(Al405)と(c)の特性から得られる吸光度A*405との間の差は非常に少なくなり、量産した時に媒体間の再生信号特性のばら付きが小さくできる。

0112

(50)式または(51)式を満たす“L→H”記録膜特性を図68に示す。記録前(未記録領域で)の光吸収スペクトルは図68の特性(b)のように幅の広いスペクトルになっており、405nmの再生波長での吸光度Ah405は充分に小さな値になっている。記録後(記録マーク内で)の光吸収スペクトルは図68の特性(a)のように幅が狭くなり、405nmの再生波長での吸光度Al405が上昇する。

0113

(50)式または(51)式を満たすために本実施形態では記録原理として“3−2−B〕本実施形態における有機色素記録材料に共通する基本的特徴”の〔α〕の中で“分子内の配向の変化”を利用する。以下に本実施形態(第2の応用例)に付いての具体的内容を説明する。図3に示したアゾ金属錯体において、ベンゼン核環内はラジカル結合しているために複数のベンゼン核環どうしは同一平面上に配置されている。すなわち、図3において中心金属Mよりも上側に有る4個のベンゼン核環はベンゼン核グループが作るU(up側)平面を形成し、中心金属Mよりも下側に有る4個のベンゼン核環はベンゼン核グループが作るD(down側)平面を形成する。上記U平面とD平面の間はどんな場合でも(記録前後に関わらず)常に互いに平行な関係を保っている。上記U平面とD平面に直交する形でR1とR3の各側鎖基が配置されている。中心金属原子Mと酸素原子Oとの間(実線部)はイオン結合で結合され、O−M−Oを結ぶ線が形成する平面は上記U平面とD平面に対して平行に配置されている。図3の丸い領域で囲まれた発色領域8はこのような立体構造をしている。今後の説明のため、U平面内でR4の方向からR5の方向に向かう方向を暫定的に“Yu方向”と定義し、D平面内でR4の方向からR5の方向に向かう方向を暫定的に“Yd方向”と定義する。U平面もしくはD平面内に含まれる窒素原子Nとその2面の間に挟まれた中心金属原子Mとの間(破線部)は配位結合で結合され、中心金属原子Mを中心とした窒素原子Nの位置が回転可能になっている。すなわち、上記U平面とD平面の間は互いに平行な関係を保ちながらYu方向に対してYd方向が回転できる構造になっている。図3に示したアゾ金属錯体は図67(a)に示すようにYu方向とYd方向が互いに平行になったり(向きは図67(a)のように反対向きになったり同じ向きになれる)、図67(b)のようにYu方向とYd方向が互いにねじれの関係になったりする。当然、図67(a)と図67(b)の間の任意の角度関係にもなる。前述したように、図3に示したR1とR3の各側鎖基は上記U平面とD平面に直交する形で配置されているため、図67(a)の構造では上下のR1またはR3の側鎖基または他のR4等の側鎖基間で衝突し易い。従って、図67(b)のようにYu方向とYd方向が互いにねじれの(U平面の遙か上の方から見るとYu方向とYd方向が互いに直交しているように見える)関係にある時が最も構造的に安定する。この図67(b)の状態になっている時の発色領域8での光吸収波長図68におけるλamax write=λbmax writeの値に一致する。Yu方向とYd方向の関係が図67(b)の状態からずれ出すと発色領域8内の電子構造および光吸収電子の局在距離(局在領域のサイズ)が微妙に変化して光吸収波長がλamax write=λbmax writeの値からずれる。スピナーコーティングにより透明基板2−2上に形成直後(未記録状態)の記録層3−2内部では上記Yu方向とYd方向の関係が任意に配向されている。そのため、図68の特性(b)に示すように光吸収スペクトルの分布幅は広くなっている。記録マーク形成のため記録層3−2内の温度を局所的に上げると、高温のため分子配向動き出し、最終的にはほとんどが構造的に安定する図67(b)の状態になる。すると、記録マーク内の至る所で発色領域8内の電子構造が一致し、図68の特性(a)に示すように分布幅の狭い光吸収スペクトルに変化する。その結果、再生波長(例えば、405nm)における吸光度がAl405からAh405に変化する。

0114

図3に示すようにアゾ金属錯体内の発色領域8を使用する別の効果について説明する。前述したアニオン部とカチオン部の組み合わせを利用する場合にはカチオン部に色素を利用する。図27から図29に示した各色素内の発色領域は各色素構造内の一部分を占めているが、発色領域に寄与しないアニオン部と組み合わせる事で記録層3−2内での発色領域の相対的な占有容積が減少する。そのため相対的に光吸収断面積が低くなりモル分子吸光係数が低下する結果、図25に示すλmax write位置での吸光度の値が小さくなり記録感度が低下する。それに比べてここで説明するアゾ金属錯体単体の中心金属周辺での発色特性を利用する場合には、アゾ金属錯体自体で発光するため前述したアニオン部のような発色領域に寄与しない余分な部分が存在しない。そのため発色領域の相対的な占有容積が減少する不要な要因が無く、さらに図3に示すようにアゾ金属錯体内での発色領域8の占有容積も広いので、光吸収断面積が高くなりモル分子吸光係数値が上昇する。その結果、図25に示すλmax write位置での吸光度の値が高くなり記録感度が向上すると言う効果を持つ。

0115

“3−2−B〕本実施形態における有機色素記録材料に共通する基本的特徴”で説明した“δ〕発色領域での電子構造を安定化させ、紫外線や再生光照射に対する構造分解が生じ辛くする”ための具体的な方法として上記アゾ金属錯体の中心金属を最適化して発色領域の構造安定化を実現した所に本実施形態の大きな特徴が有る。

0116

金属イオンにはそれぞれ独自のイオン化傾向特性を持っている事が知られている。この各金属原子をイオン化傾向の強い順に並べると
Na>Mg>Al>Zn>Fe>Ni>Cu>Hg>Ag>Au
となっている。この金属原子のイオン化傾向は“金属が電子を放出して陽イオンになる性質”を表している。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ