図面 (/)

技術 リポ多糖混入量を低減した蛋白質合成用組成物、該組成物を用いた蛋白質製造方法

出願人 ジーンフロンティア株式会社国立大学法人東京大学
発明者 金森崇速水友紀古城周久上田卓也對比地久美子布施朋重中村美紀子加藤静恵
出願日 2011年3月10日 (9年8ヶ月経過) 出願番号 2011-053547
公開日 2012年10月4日 (8年1ヶ月経過) 公開番号 2012-187049
状態 特許登録済
技術分野 酵素、微生物を含む測定、試験 微生物による化合物の製造 突然変異または遺伝子工学 微生物・酵素関連装置
主要キーワード 再構成型 限外ろ過器 選択効率 エンドトキシン標準品 希釈反応 伸長過程 メチルアルカン エンドトキシン測定
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2012年10月4日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (7)

課題

リボソームディスプレイにおいて、目的とするポリペプチドをコードする核酸を、より効率的に取得可能な手段を提供すること。

解決手段

本発明によれば、リポ多糖混入が低減された、無細胞蛋白質合成活性を有する組成物及びこれを用いた蛋白質製造方法が提供される。本発明の組成物及び蛋白質製造方法を用いて、リボソームディスプレイを行うと、非特異的結合によるバックグラウンドが低減されるので、高精度かつ高効率で目的とするポリペプチドをコードする核酸を選択することができる。

概要

背景

近年、ヒトをはじめとした各種生物ゲノム情報解析により、膨大な数の遺伝情報蓄積されつつある。これらの情報は生命が作り上げてきた膨大な遺伝子ライブラリーである。ポストゲノム研究においては、その中から目的の機能を持つ蛋白質ポリペプチド)の遺伝情報を高精度で迅速に選択する技術の構築が強く望まれている。そのための方法論の1つがディスプレイ技術である。ディスプレイ技術とは、機能を担うポリペプチドとそれをコードする核酸が1対1に対応付けられている状態において、遺伝子ライブラリーをスクリーニングし、標的物質と特異的に結合するなどの特定の機能を有するポリペプチドをコードしている核酸を選択する技術をいう。

ディスプレイ技術を実用化するための方法の1つとして、リボソームディスプレイが開発されている(特許文献1-8、非特許文献1)。リボソームディスプレイは、翻訳反応中に形成されるmRNA-リボソーム-ポリペプチドから成る三者複合体の形でポリペプチドを提示させる技術である。三者複合体の形成により、遺伝子産物と遺伝情報のリンクが実現される。標的物質と上述の三者複合体とを接触させ、その標的物質へのポリペプチドの特異的結合を利用して、目的とするポリペプチドを含む三者複合体を選択し、この三者複合体に含まれるmRNAを増幅することにより、目的とするポリペプチドをコードする核酸を取得することができる。従って、標的物質やそれを結合するための担体に対する非特異的な三者複合体の結合を抑制することが、高精度かつ高効率で目的とするポリペプチドをコードする核酸を取得する上で重要である。

リボソームディスプレイにおいては、上述の三者複合体を形成させるために、通常、無細胞蛋白質合成系が利用される。無細胞蛋白質合成系は、大腸菌小麦胚芽ウサギ網状赤血球培養細胞などの細胞抽出液中に含まれている蛋白質合成に必要な因子を利用して、試験管内で蛋白質を合成する手法である(非特許文献2)。無細胞蛋白質合成系は、目的蛋白質の遺伝子(DNAやmRNA)を反応系に加えてインキュベーションするだけで合成でき、目的の蛋白質を取得する方法の中で、最も簡便な方法である。そのなかでも、大腸菌抽出液を利用した方法が、蛋白質合成量の多さなどから最も利用されている。しかし、細胞抽出液には、蛋白質合成に無関係な因子も多数混入しており、RNAや蛋白質の分解、エネルギーの過剰消費などの問題があった(非特許文献3、4)。

近年、本発明者を含むグループによって開発された再構成型無細胞蛋白質合成系は、蛋白質合成に関与する翻訳因子やリボソームなどの特定された因子のみからなる合成系である(特許文献9、非特許文献5)。再構成型無細胞蛋白質合成系は、独立に精製した因子を再構成した合成系であるため、細胞抽出液を使用した場合に観察されるRNA分解反応や、蛋白質合成に無関係な代謝反応などの酵素反応がほとんど検出されない。さらに、合成反応液組成を容易に改変することができるため、再構成型無細胞蛋白質合成系はリボソームディスプレイに最適な無細胞蛋白質合成系である(特許文献10、11、非特許文献6)。

概要

リボソームディスプレイにおいて、目的とするポリペプチドをコードする核酸を、より効率的に取得可能な手段を提供すること。本発明によれば、リポ多糖の混入が低減された、無細胞蛋白質合成活性を有する組成物及びこれを用いた蛋白質製造方法が提供される。本発明の組成物及び蛋白質製造方法を用いて、リボソームディスプレイを行うと、非特異的結合によるバックグラウンドが低減されるので、高精度かつ高効率で目的とするポリペプチドをコードする核酸を選択することができる。なし

目的

標的物質と上述の三者複合体とを接触させ、その標的物質へのポリペプチドの特異的結合を利用して、目的とする

効果

実績

技術文献被引用数
1件
牽制数
1件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

独立に精製された因子を含み、リポ多糖含有量が1.0×104 EU/ml以下である、無細胞蛋白質合成活性を有する、組成物

請求項2

リポ多糖含有量が1.0×103 EU/ml以下である、請求項1記載の組成物。

請求項3

リポ多糖含有量が1.0×102 EU/ml以下である、請求項1記載の組成物。

請求項4

独立に精製された因子が、少なくとも開始因子伸長因子アミノアシルtRNA合成酵素リボソームアミノ酸ヌクレオシド三リン酸及びtRNAを含む、請求項1記載の組成物。

請求項5

独立に精製された因子が、リポ多糖含有量が、リボソーム1 pmolあたり7EU以下であるリボソームを含む、請求項1〜4のいずれか1項記載の組成物。

請求項6

リボソームが、界面活性剤を含む緩衝液を用いた洗浄操作により得られる、リポ多糖含量が低減されたリボソームである、請求項5記載の組成物:

請求項7

リボソームが、以下の工程を含む方法により得られる、リポ多糖含量が低減されたリボソームである、請求項5記載の組成物:(I)界面活性剤とリポ多糖混入物を含むリボソームとを混合すること、(II)得られた混合物を当該界面活性剤の曇点以上に加熱すること、(III)当該加熱後の混合物を遠心分離に付し、相分離を行うこと、及び(IV)リボソームを含む相を単離し、リポ多糖含量が低減されたリボソームを得ること。

請求項8

界面活性剤が、ポリオキシエチレンソルビタンアルキルエーテル(Tween)類、ポリオキシエチレンアルキルエーテル(Brij)類、ポリオキシエチレンオクチルフェニルエーテル(TritonX)類、アルキルグルコシド類、N-グルコ-N-メチルアルカンアミド類胆汁酸塩類、アミンオキシド類アルキル-N,N-ジメチルアンモニオプロパンスルホネート類からなる群から選ばれる1又は2以上の界面活性剤を含む、請求項6または7のいずれかに記載の組成物。

請求項9

独立に精製された因子が、リポ多糖含有量が、1Abs単位当たり100EU以下であるtRNAを含む、請求項1〜8のいずれか1項記載の組成物。

請求項10

独立に精製された因子が、更にメチオニルtRNAトランスフォルミラーゼ及び10-フォルミル5,6,7,8-テトラヒドロ葉酸を含む、請求項1〜9のいずれか1項記載の組成物。

請求項11

独立に精製された因子が、更に解離因子を含む、請求項1〜10のいずれか1項記載の組成物。

請求項12

解離因子を含まない、請求項1〜11のいずれか1項記載の組成物。

請求項13

独立に精製された因子の少なくとも1つが原核生物から抽出された因子である、請求項1〜12のいずれか1項記載の組成物。

請求項14

原核生物が大腸菌である、請求項13記載の組成物。

請求項15

独立に精製された因子からなる、請求項1〜14のいずれか1項記載の組成物。

請求項16

無細胞蛋白質合成用である、請求項1〜15のいずれか1項に記載の組成物。

請求項17

リボソームディスプレイ用である、請求項1〜15のいずれか1項に記載の組成物。

請求項18

請求項1〜17のいずれか1項に記載の組成物中でmRNAからポリペプチド翻訳することを含む、ポリペプチドの製造方法。

請求項19

次の工程を含む標的物質と結合するポリペプチドをコードする核酸単離方法:(a) 請求項1〜17のいずれか1項に記載の組成物中でmRNAをポリペプチドに翻訳し、当該mRNAとポリペプチドを含む複合体を形成する工程、(b) (a)で形成された複合体を標的物質と接触させる工程、及び、(c) 標的物質に結合した複合体を回収し、回収された複合体を構成するmRNA又はそのcDNAを、標的物質と結合するポリペプチドをコードする核酸として単離する工程。

請求項20

mRNAとポリペプチドを含む複合体を、mRNAがポリペプチドコード配列の3'末端側に終止コドンを含み、かつ請求項12記載の組成物中でmRNAをポリペプチドに翻訳する工程によって形成する請求項19記載の方法。

請求項21

標的物質が、固相に結合しているか、又は固相に捕捉される結合パートナーで標識されている請求項19又は20に記載の方法。

請求項22

次の要素を含む、標的物質と結合するポリペプチドをコードする核酸を単離するためのキット:(1)請求項1〜17のいずれか1項に記載の組成物、及び(2)標的物質を固定化するための固相担体

請求項23

界面活性剤によりリボソームを洗浄することを含む、リポ多糖の含有量がリボソーム1 pmolあたり7 EU以下にまで除去されたリボソームの製造方法。

請求項24

以下の工程を、リポ多糖の含有量が、リボソーム1 pmolあたり、7 EU以下となるまで繰り返すことを含む、リポ多糖の含有量が、リボソーム1 pmolあたり、7 EU以下であるリボソームの製造方法:(I)界面活性剤とリポ多糖混入物を含むリボソームとを混合すること、(II)得られた混合物を当該界面活性剤の曇点以上に加熱すること、(III)当該加熱後の混合物を遠心分離に付し、相分離を行うこと、及び(IV)リボソームを含む相を単離し、リポ多糖含量が低減されたリボソームを得ること。

請求項25

界面活性剤が、ポリオキシエチレンソルビタンアルキルエーテル類、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンオクチルフェニルエーテル類、アルキルグルコシド類、N-グルコ-N-メチルアルカンアミド類、胆汁酸塩類、アミンオキシド類、及びアルキル-N,N-ジメチルアンモニオプロパンスルホネート類からなる群から選ばれる1又は2以上の界面活性剤を含む、請求項23または24のいずれかに記載の方法。

技術分野

0001

本発明は、リポ多糖混入量を低減した蛋白質合成組成物、該組成物を用いた蛋白質製造方法等に関する。

背景技術

0002

近年、ヒトをはじめとした各種生物ゲノム情報解析により、膨大な数の遺伝情報蓄積されつつある。これらの情報は生命が作り上げてきた膨大な遺伝子ライブラリーである。ポストゲノム研究においては、その中から目的の機能を持つ蛋白質(ポリペプチド)の遺伝情報を高精度で迅速に選択する技術の構築が強く望まれている。そのための方法論の1つがディスプレイ技術である。ディスプレイ技術とは、機能を担うポリペプチドとそれをコードする核酸が1対1に対応付けられている状態において、遺伝子ライブラリーをスクリーニングし、標的物質と特異的に結合するなどの特定の機能を有するポリペプチドをコードしている核酸を選択する技術をいう。

0003

ディスプレイ技術を実用化するための方法の1つとして、リボソームディスプレイが開発されている(特許文献1-8、非特許文献1)。リボソームディスプレイは、翻訳反応中に形成されるmRNA-リボソーム-ポリペプチドから成る三者複合体の形でポリペプチドを提示させる技術である。三者複合体の形成により、遺伝子産物と遺伝情報のリンクが実現される。標的物質と上述の三者複合体とを接触させ、その標的物質へのポリペプチドの特異的結合を利用して、目的とするポリペプチドを含む三者複合体を選択し、この三者複合体に含まれるmRNAを増幅することにより、目的とするポリペプチドをコードする核酸を取得することができる。従って、標的物質やそれを結合するための担体に対する非特異的な三者複合体の結合を抑制することが、高精度かつ高効率で目的とするポリペプチドをコードする核酸を取得する上で重要である。

0004

リボソームディスプレイにおいては、上述の三者複合体を形成させるために、通常、無細胞蛋白質合成系が利用される。無細胞蛋白質合成系は、大腸菌小麦胚芽ウサギ網状赤血球培養細胞などの細胞抽出液中に含まれている蛋白質合成に必要な因子を利用して、試験管内で蛋白質を合成する手法である(非特許文献2)。無細胞蛋白質合成系は、目的蛋白質の遺伝子(DNAやmRNA)を反応系に加えてインキュベーションするだけで合成でき、目的の蛋白質を取得する方法の中で、最も簡便な方法である。そのなかでも、大腸菌抽出液を利用した方法が、蛋白質合成量の多さなどから最も利用されている。しかし、細胞抽出液には、蛋白質合成に無関係な因子も多数混入しており、RNAや蛋白質の分解、エネルギーの過剰消費などの問題があった(非特許文献3、4)。

0005

近年、本発明者を含むグループによって開発された再構成型無細胞蛋白質合成系は、蛋白質合成に関与する翻訳因子やリボソームなどの特定された因子のみからなる合成系である(特許文献9、非特許文献5)。再構成型無細胞蛋白質合成系は、独立に精製した因子を再構成した合成系であるため、細胞抽出液を使用した場合に観察されるRNA分解反応や、蛋白質合成に無関係な代謝反応などの酵素反応がほとんど検出されない。さらに、合成反応液組成を容易に改変することができるため、再構成型無細胞蛋白質合成系はリボソームディスプレイに最適な無細胞蛋白質合成系である(特許文献10、11、非特許文献6)。

0006

米国特許第5658754号明細書
米国特許第5643768号明細書
特許第3127158号公報
国際公開第01/75097号パンフレット
米国特許第6348315号明細書
特表2001-521395号公報
米国特許第6620587号明細書
特表2002-500514号公報
特許4061043号公報
特開2008-271903号公報
特開2009-112286号公報

先行技術

0007

L.C. Mattheakis et al., Proc. Natl. Acad. Sci. USA (1994) vol.91, p.9022-9026
L. Jermutus et al., (1998) Curr. Opin. Biotechnol., vol.9, p.534-548
D.A. Steege, (2000) RNA, vol.6, p.1079-1090
S.V. Matveev, et al., (1996) Biochim. Biophys. Acta, vol.1293, p.207-212
Y. Shimizu et al., (2001) Nat. Biotechnol., vol.19, p.751-755
E. Osada et al., (2009) J. Biochem., vol.145, p.693-700

発明が解決しようとする課題

0008

本発明の目的は、リボソームディスプレイにおいて、目的とするポリペプチドをコードする核酸を、より効率的に取得可能な手段を提供することである。

課題を解決するための手段

0009

本発明者らは、上記課題を解決するべく、標的物質を固定化するための固相担体に対するmRNA-リボソーム-ポリペプチド三者複合体の非特異的な結合を抑制できる方法について鋭意検討を行った。その結果、意外にも、固相担体をブロッキングする蛋白質に対する三者複合体の非特異的な結合が、系に混入したリポ多糖(リポポリサッカライドLPS))により助長されていることを見出した。そして、このリポ多糖が無細胞蛋白質合成系に由来するものであり、無細胞蛋白質合成系からリポ多糖を除去することにより、上記非特異的結合を抑制し、より高い効率で目的とするポリペプチドをコードする核酸を選択できることを見出した。以上の知見に基づき、更に検討を重ね、本発明を完成した。

0010

即ち、本発明は以下に関する。
[1]独立に精製された因子を含み、リポ多糖含有量が1.0×104 EU/ml以下である、無細胞蛋白質合成活性を有する、組成物。
[2]リポ多糖含有量が1.0×103 EU/ml以下である、[1]記載の組成物。
[3]リポ多糖含有量が1.0×102 EU/ml以下である、[1]記載の組成物。
[4]独立に精製された因子が、少なくとも開始因子伸長因子アミノアシルtRNA合成酵素、リボソーム、アミノ酸ヌクレオシド三リン酸及びtRNAを含む、[1]記載の組成物。
[5]独立に精製された因子が、リポ多糖含有量が、リボソーム1 pmolあたり7EU以下であるリボソームを含む、[1]〜[4]のいずれか1つに記載の組成物。
[6]リボソームが、界面活性剤を含む緩衝液を用いた洗浄操作により得られる、リポ多糖含量が低減されたリボソームである、[5]記載の組成物:
[7]リボソームが、以下の工程を含む方法により得られる、リポ多糖含量が低減されたリボソームである、[5]記載の組成物:
(I)界面活性剤とリポ多糖混入物を含むリボソームとを混合すること、
(II)得られた混合物を当該界面活性剤の曇点以上に加熱すること、
(III)当該加熱後の混合物を遠心分離に付し、相分離を行うこと、及び
(IV)リボソームを含む相を単離し、リポ多糖含量が低減されたリボソームを得ること。
[8]界面活性剤が、ポリオキシエチレンソルビタンアルキルエーテル(Tween)類、ポリオキシエチレンアルキルエーテル(Brij)類、ポリオキシエチレンオクチルフェニルエーテル(TritonX)類、アルキルグルコシド類、N-グルコ-N-メチルアルカンアミド類胆汁酸塩類、アミンオキシド類アルキル-N,N-ジメチルアンモニオプロパンスルホネート類からなる群から選ばれる1又は2以上の界面活性剤を含む、[6]または[7]のいずれかに記載の組成物。
[9]独立に精製された因子が、リポ多糖含有量が、1Abs単位当たり100EU以下であるtRNAを含む、[1]〜[8]のいずれか1つに記載の組成物。
[10]独立に精製された因子が、更にメチオニルtRNAトランスフォルミラーゼ及び10-フォルミル5,6,7,8-テトラヒドロ葉酸を含む、[1]〜[9]のいずれか1つに記載の組成物。
[11]独立に精製された因子が、更に解離因子を含む、[1]〜[10]のいずれか1つに記載の組成物。
[12]解離因子を含まない、[1]〜[11]のいずれか1つに記載の組成物。
[13]独立に精製された因子の少なくとも1つが原核生物から抽出された因子である、[1]〜[12]のいずれか1つに記載の組成物。
[14]原核生物が大腸菌である、[13]記載の組成物。
[15]独立に精製された因子からなる、[1]〜[14]のいずれか1つに記載の組成物。
[16]無細胞蛋白質合成用である、[1]〜[15]のいずれか1つに記載の組成物。
[17]リボソームディスプレイ用である、[1]〜[15]のいずれか1つに記載の組成物。
[18][1]〜[17]のいずれか1つに記載の組成物中でmRNAからポリペプチドに翻訳することを含む、ポリペプチドの製造方法。
[19]次の工程を含む標的物質と結合するポリペプチドをコードする核酸の単離方法
(a) [1]〜[17]のいずれか1つに記載の組成物中でmRNAをポリペプチドに翻訳し、当該mRNAとポリペプチドを含む複合体を形成する工程、
(b) (a)で形成された複合体を標的物質と接触させる工程、及び、
(c) 標的物質に結合した複合体を回収し、回収された複合体を構成するmRNA又はそのcDNAを、標的物質と結合するポリペプチドをコードする核酸として単離する工程。
[20]mRNAとポリペプチドを含む複合体を、mRNAがポリペプチドコード配列の3'末端側に終止コドンを含み、かつ[12]記載の組成物中でmRNAをポリペプチドに翻訳する工程によって形成する[19]記載の方法。
[21]標的物質が、固相に結合しているか、又は固相に捕捉される結合パートナーで標識されている[19]又は[20]に記載の方法。
[22]次の要素を含む、標的物質と結合するポリペプチドをコードする核酸を単離するためのキット
(1)[1]〜[17]のいずれか1つに記載の組成物、及び
(2)標的物質を固定化するための固相担体。
[23]界面活性剤によりリボソームを洗浄することを含む、リポ多糖の含有量がリボソーム1 pmolあたり7 EU以下にまで除去されたリボソームの製造方法。
[24]以下の工程を、リポ多糖の含有量が、リボソーム1 pmolあたり、7 EU以下となるまで繰り返すことを含む、リポ多糖の含有量が、リボソーム1 pmolあたり、7 EU以下であるリボソームの製造方法:
(I)界面活性剤とリポ多糖混入物を含むリボソームとを混合すること、
(II)得られた混合物を当該界面活性剤の曇点以上に加熱すること、
(III)当該加熱後の混合物を遠心分離に付し、相分離を行うこと、及び
(IV)リボソームを含む相を単離し、リポ多糖含量が低減されたリボソームを得ること。
[25]界面活性剤が、ポリオキシエチレンソルビタンアルキルエーテル類、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンオクチルフェニルエーテル類、アルキルグルコシド類、N-グルコ-N-メチルアルカンアミド類、胆汁酸塩類、アミンオキシド類、及びアルキル-N,N-ジメチルアンモニオプロパンスルホネート類からなる群から選ばれる1又は2以上の界面活性剤を含む、[23]または[24]のいずれかに記載の方法。

発明の効果

0011

本発明によれば、リポ多糖の混入が低減された、蛋白質合成活性を有する組成物及びこれを用いた蛋白質製造方法が提供される。本発明の組成物及び蛋白質製造方法を用いて、リボソームディスプレイを行うと、非特異的結合によるバックグラウンドが低減されるので、高精度かつ高効率で目的とするポリペプチドをコードする核酸を選択することができる。

図面の簡単な説明

0012

蛋白質性因子中のリポ多糖混入量。リポ多糖除去前後における、再構成型無細胞蛋白質合成系に添加する36種類の蛋白質因子中のリポ多糖混入量を示す。
リボソーム中のリポ多糖混入量。界面活性剤で処理をしていないリボソーム(未処理)、コール酸で処理したリボソーム(処理A)、TritonX-114で処理したリボソーム(処理B)中のリポ多糖混入量を示す。
tRNA中のリポ多糖混入量。リポ多糖除去前後における、tRNA中のリポ多糖混入量を示す。
再構成型無細胞蛋白質合成系中のリポ多糖混入量。リポ多糖除去処理をしていない因子を混合することにより調製した蛋白質合成反応液、及びリポ多糖除去処理をした因子を混合することにより調製した蛋白質合成反応液におけるリポ多糖混入量を示す。あわせて、New England Biolabs社製のPURExpressキット(Kit)に含まれる蛋白質合成反応液中のリポ多糖混入量も示す。
蛋白質合成。リポ多糖除去処理をしていない蛋白質合成反応液、及びリポ多糖除去処理を行った蛋白質合成反応液を用いて大腸菌のジヒドロ葉酸還元酵素(DHFR)を合成した反応液電気泳動にかけ、SyproOrangeで染色した。合成したDHFR蛋白質のバンドを矢印で示した。
リボソームディスプレイにおけるリポ多糖量とバックグランドmRNA残存量。リポ多糖除去処理前と処理後における3種類の蛋白質性ブロッキング剤(ChemiBLOKER, Block ACE, Acetyl化BSA)で表面コーティングした磁性ビーズに非特異的に吸着したバックグラウンドmRNA残存量の比較。それぞれの縦軸は、磁性体ビーズに非特異的に吸着していたmRNA量FLAG M2担体によって精製したmRNA-リボソーム-ポリペプチド三者複合体からのmRNA量との比をRNA残存量の相対値として示した。
蛋白質合成反応液の培養細胞への影響。リポ多糖除去処理をしていない因子を混合することにより調製した蛋白質合成反応液(処理前)、リポ多糖除去処理をした因子を混合することにより調製した蛋白質合成反応液(処理後)、及びNew England Biolabs社製のPURExpress キットに含まれる蛋白質合成反応液の希釈系列培地中に添加した培養細胞を用いてレポーターアッセイを行った。リポ多糖が存在すると発現する分泌型アルカリホスファターゼによる呈色を、630 nmの吸光度で測定し、バックグラウンドの値を引いた値で示す。

0013

本発明は、独立に精製された因子を含み、リポ多糖含有量が1.0×104 EU/ml以下である、蛋白質合成活性を有する、組成物を提供するものである。

0014

本明細書において「無細胞蛋白質合成」とは、生細胞を必要とせず蛋白質合成に必要な因子を含む反応液を用いた蛋白質合成のことで、in vitro翻訳ともいう。すなわち、無細胞蛋白質合成は、mRNAからポリペプチドへの翻訳に生細胞を必要としないことを特徴とする。本発明における無細胞蛋白質合成は、翻訳、又は転写及び翻訳を行う系を含む。すなわち、本発明の無細胞蛋白質合成は、以下のいずれかを含む:
(1)mRNAからポリペプチドに翻訳すること;もしくは
(2)DNAからmRNAに転写し、更にmRNAからポリペプチドに翻訳すること。

0015

本明細書において「蛋白質合成活性」とは、ポリペプチドをコードするmRNA又はDNAを加えた場合に、
(1)該mRNAからポリペプチドへ翻訳し、又は
(2)該DNAからmRNAに転写し、更に該mRNAからポリペプチドへ翻訳する
活性を意味する。また、「無細胞蛋白質合成活性」とは、上記の活性に生細胞を必要としないことを意味する。

0016

本明細書において、無細胞蛋白質合成活性を有する組成物を「無細胞蛋白質合成系」と称する。

0017

本発明においてポリペプチドとは、2個以上のアミノ酸がペプチド結合によって結合したものを示し、ペプチドオリゴペプチドなどを含む。また、蛋白質も同等の内容を示す。

0018

本発明の組成物に含まれるリポ多糖の含有量は、1.0×104 EU/ml以下である。リポ多糖は、大腸菌等のグラム陰性菌外膜の構成成分であり、リピドAという糖脂質に多数の糖からなる糖鎖が結合した構造をしている。リポ多糖は、大腸菌を破砕する通常の条件で破砕液中に放出され、大腸菌から精製した蛋白質画分などに混入している場合が多い。本発明者らは、無細胞蛋白質合成系を用いたリボソームディスプレイにおいて、標的物質を固定化するための担体に対するmRNA-リボソーム-ポリペプチドからなる三者複合体の非特異的な結合が、反応液に混入したリポ多糖により助長されていること、そしてこのリポ多糖が無細胞蛋白質合成系に由来するものであることを見出した。従って、リポ多糖の含有量が低減された、本発明の組成物を用いてリボソームディスプレイを行うことにより、標的物質を固定化するための担体に対するmRNA-リボソーム-ポリペプチドからなる三者複合体の非特異的結合を抑制し、より高い効率で目的とするポリペプチドをコードする核酸を選択できる。このような観点から、本発明の組成物に含まれるリポ多糖の含有量は、より低いほうが好ましい。本発明の組成物に含まれるリポ多糖の含有量は、好ましくは1.0×103 EU/ml以下、より好ましくは1.0×102 EU/ml以下である。尚、リポ多糖の含有量は、市販のエンドトキシン測定キットで測定可能であるが、本明細書においては、リムスカラーKYテストワコー(和光純薬)を用いて測定した値で示す。

0019

本発明の組成物は、独立に精製された因子を含む再構成型の無細胞蛋白質合成系である。好ましくは、本発明の組成物は独立に精製された因子からなる。この再構成型無細胞蛋白質合成系は、細胞抽出液を使用する無細胞蛋白質合成系よりも核酸分解酵素蛋白質分解酵素などの三者複合体を不安定化させる因子の混入を顕著に抑制できる。このため、後述の方法により本発明の組成物を用いてリボソームディスプレイを行った場合、mRNAとポリペプチドを含む複合体が安定的に維持され、最終的に、目的とするポリペプチドをコードする核酸を効率よく単離できる。また、因子を独立に精製する段階で、各因子画分へ混入するリポ多糖を除去することにより、本発明の組成物全体に含まれるリポ多糖の混入量を低減することができる。このため、本発明の組成物を用いて、リボソームディスプレイを行った場合、標的物質を固定化するための固相担体をブロッキングする蛋白質に対する非特異的な三者複合体の結合を抑制し、高精度かつ高効率で目的とするポリペプチドをコードする核酸を取得することが可能となる。

0020

本明細書において「因子」とは、独立して精製することができる無細胞蛋白質合成系の構成単位を指す。因子は、単量体で機能する蛋白質や、基質類及び塩類などの低分子化合物を含む。更に、粗分画から単離できる各種の複合体や混合物も含む。例えば、複合体として精製される因子には、2量体の蛋白質、リボソームなどが含まれる。混合物としては、tRNA混合物等が含まれる。「独立に精製された因子」とは、他の因子から、それぞれ独立した操作によって精製された因子をいう。因子ごとに独立に精製された蛋白質合成に必要な因子類を、必要に応じて混合して再構成することによって無細胞蛋白質合成系を構築することができる。細胞抽出液から単離されずに複数種類の因子が混合した画分中に存在する各因子は、独立に精製された因子とはいわない。一方、複数の成分からなる複合体であっても、単独の因子として精製された場合は、本発明における「独立に精製された因子」である。例えば精製したリボソームは、いくつかの要素からなる複合体であるが、単独の因子として精製されるので「独立に精製された因子」である。

0021

本明細書において、「精製された状態」とは、目的因子を含む画分から、目的因子以外の物質をできるだけ除去する操作がなされていることを意味する。因子が蛋白質からなる場合、「精製された因子」における目的とする因子の純度全蛋白質重量に対する目的とする因子の重量の割合)は、例えば20%以上、好ましくは50%以上、より好ましくは70%以上、更に好ましくは90%以上、最も好ましくは99%以上(例えば、100%)である。因子が核酸からなる場合、「精製された因子」における目的とする因子の純度(全核酸重量に対する目的とする因子の重量の割合)は、例えば20%以上、好ましくは50%以上、より好ましくは70%以上、更に好ましくは90%以上、最も好ましくは99%以上(例えば、100%)である。因子が蛋白質及び核酸からなる複合体の場合(例えば因子がリボソームである場合)、「精製された因子」における目的とする因子の純度(蛋白質及び核酸の全重量に対する目的とする因子の重量の割合)は、例えば20%以上、好ましくは50%以上、より好ましくは70%以上、更に好ましくは90%以上、更により好ましくは99%以上(例えば、100%)である。

0022

独立に精製された因子は、化学合成、酵素反応、もしくは、これらの組み合せにより合成後、精製することによって得ることができる。

0023

独立に精製された因子は、種々の細胞の抽出液から精製することによっても得ることができる。因子を精製するための細胞は、例えば原核細胞、又は真核細胞を挙げることができる。原核細胞としては、大腸菌細胞高度好熱菌細胞、又は枯草菌細胞を挙げることができる。原核細胞は好ましくは大腸菌細胞である。真核細胞としては、酵母細胞植物細胞昆虫細胞、又は哺乳動物細胞を挙げることができる。特に、独立に精製された因子が蛋白質のみからなる場合には、各因子を以下のような方法によって得ることができる。
(1)各因子(蛋白質)をコードする遺伝子を単離し、発現ベクターに導入後、適当な宿主細胞形質転換して発現させ、該形質転換体から目的とする因子を抽出する。
(2)各因子をコードする遺伝子を単離し、無細胞蛋白質合成系で合成し、回収する。
(1)では、はじめに発現制御領域を含む発現ベクターに、該領域の制御により目的とする因子が発現されるように各因子の遺伝子を組み込んだ発現プラスミドを作成する。ベクターを構成する発現制御領域とは、例えば、エンハンサープロモーター、及びターミネーターなどを指す。発現ベクターは、薬剤耐性マーカーなどを含むこともできる。次に、この発現プラスミドで宿主細胞を形質転換し、各因子を発現させる。

0024

宿主細胞として、例えばJM109、DH5α、HB101、XL1-Blue、BL21(DE3)などの大腸菌を使用する場合には、lacZプロモーター(Ward et al., Nature (1989) vol.341, p.544-546,FASEB J. (1992) vol.6, p.2422-2427)、araBプロモーター(Better et al., Science (1988) vol.240, p.1041-1043)、及びT7プロモーターなどを例示できる。このようなプロモーターを持つ発現ベクターとしては、pGEX(GE Healthcare Biosciences製)、pQE(Qiagen製)、又はpET(Novagen製)を例示することができる。各因子をコードする遺伝子を導入した発現プラスミドは、例えば、塩化カルシウム法又はエレクトロポレーション法によって大腸菌に導入することができる。

0025

目的とする因子に相互に付着し合う関係にある物質の一方でラベルをすることで、発現(合成)した目的の因子を容易に精製することができる。例えばニッケルイオンなどを保持した金属アフィニティ樹脂カラムに付着するヒスチジンタググルタチオンセファロース樹脂カラムに付着するグルタチオンS-トランスフェラーゼ、又は抗体等のアフィニティ樹脂カラムに付着するエピトープタグで因子をラベルする。ラベルの方法は、例えば、これらのラベルをコードする塩基配列を含む発現ベクターに、目的とする因子をコードする遺伝子を組み込んで、両者の融合蛋白質を発現させることによって行うことができる。両者の間にプロテアーゼ認識配列を介在させておくこともできる。融合蛋白質をラベルに結合する固相に捕捉し、更に当該認識配列を切断するプロテアーゼを作用させて、目的とする因子を回収することもできる。このようにして因子を精製する方法は公知である(K. Boon et al., Eur. J. Biochem. (1992) vol.210, p.177-183、K. S. Wilson et al., Cell (1998) vol.92, p.131-139、Yu-Wen Hwang et al., Arch. Biochem. Biophy. (1997) vol.348, p.157-162)。

0026

好ましい態様において、本発明の組成物は、例えば、少なくとも以下の因子を独立に精製された状態で含む:
開始因子(Initiation Factor; IF)、
伸長因子(Elongation Factor; EF)、
アミノアシルtRNA合成酵素(Aminoacyl-tRNAsynthetase; AARS)、
リボソーム、
アミノ酸、
ヌクレオシド三リン酸、及び
tRNA。
これらの因子は、大腸菌等の原核細胞由来のものに限らず、真核細胞由来のものも使用できる。

0027

本発明の組成物において使用される開始因子は、翻訳開始複合体の形成に必須であるか、又は、これを著しく促進する因子であり、大腸菌由来のものとして、IF1、IF2及びIF3が知られている(Claudio O et al. (1990) Biochemistry, vol.29, p.5881-5889)。開始因子IF3は、翻訳の開始に必要な段階である、70Sリボソームの30Sサブユニットと50Sサブユニットへの解離を促進し、また、翻訳開始複合体の形成の際に、フォルミルメチオニルtRNA以外のtRNAのP部位への挿入を阻害する。開始因子IF2は、フォルミルメチオニルtRNAと結合し、30SリボソームサブユニットのP部位へフォルミルメチオニルtRNAを運び、翻訳開始複合体を形成する。開始因子IF1は開始因子IF2、IF3の機能を促進する。本発明において用いられる開始因子の好ましい例は、大腸菌由来のものであり、例えば大腸菌K12株由来のものを挙げることができるが、真核細胞由来のものも使用できる。大腸菌由来の開始因子を使用した場合、例えば、0.005μM-300μM、好ましくは、0.02μM-100μMで使用できる。開始因子としてIF1、IF2、及びIF3の全てを用いる場合には、各因子の使用量は、いずれも、先に例示した範囲から選択することができる。

0028

本発明の組成物で使用される伸長因子としては、大腸菌由来のものとして、EF-Tu、EF-Ts及びEF-Gが知られている。伸長因子EF-Tuは、GTP型とGDP型の2種類があり、GTP型はアミノアシルtRNAと結合してこれをリボソームのA部位へ運ぶ。EF-Tuがリボソームから離れる際にGTPが加水分解され、GDP型へ転換する(Pape T et al, (1998)EMBO J, vol.17, p.7490-7497)。伸長因子EF-Tsは、EF-Tu(GDP型)に結合し、GTP型への転換を促進する(Hwang YW et al. (1997) Arch. Biochem. Biophys., vol.348, p.157-162)。伸長因子EF-Gは、ペプチド鎖伸長過程において、ペプチド結合形成反応の後の転位(translocation)反応を促進する(Agrawal RK et al, (1999) Nat. Struct. Biol., vol.6, p.643-647, Rodnina MW. et al, (1999) FEMS Microbiology Reviews, vol.23, p.317-333)。本発明において用いられる伸長因子の好ましい例は、大腸菌由来のものであり、例えば大腸菌K12株由来のものを挙げることができるが、真核細胞由来のものも使用できる。大腸菌由来の伸長因子を使用した場合、例えば、0.005μM-300μM、好ましくは、0.02μM-100μMで使用できる。伸長因子としてEF-Tu、EF-Ts、及びEF-Gの全てを用いる場合には、各因子の使用量は、いずれも、先に例示した範囲から選択することができる。

0029

アミノアシルtRNA合成酵素は、ATPの存在下でアミノ酸とtRNAを共有結合させ、アミノアシルtRNAを合成する酵素であり、各アミノ酸に対応したアミノアシルtRNA合成酵素が存在している(Francklyn C et al, (1997) RNA, vol.3, p.954-960,蛋白質核酸酵素, vol.39, p.1215-1225 (1994))。本発明において用いられるアミノアシルtRNA合成酵素の好ましい例は、大腸菌由来のものであり、例えば大腸菌K12株由来のものを挙げることができるが、真核細胞由来のものも使用できる。また、非天然アミノ酸を認識する人工アミノアシルtRNA合成酵素(特許2668701号など)を用いることもできる。大腸菌由来のアミノアシルtRNA合成酵素を使用した場合、例えば、1 U/ml-1,000,000 U/ml、好ましくは、5 U/ml-500,000 U/mlで使用できる。もしくは、0.001μg/ml-10,000μg/ml、好ましくは、0.01μg/ml-1,000μg/mlで使用できる。ここに例示したアミノアシルtRNA合成酵素の使用量は、いずれも、各アミノ酸に対応したアミノアシルtRNA合成酵素に適用することができる。ここで、1分間に1 pmolのアミノアシルtRNAを形成する活性を1 Uとする。

0030

リボソームは、複数種類のリボソームRNAと数十種類のリボソーム蛋白質とで構成される巨大な複合体である。細胞内においては、リボソームが蛋白質合成の場となっている。基本的には大小2つのサブユニットからなり、原核生物と真核生物とでは、リボソームの成分の構成や大きさが相違している。リボソームやそれを構成するサブユニットは、ショ糖密度勾配などによって相互に分離することができ、その大きさは、沈降係数によって表される。具体的には、原核生物においては、リボソームとそれを構成するサブユニットは、それぞれ次のような大きさを有する。
リボソーム(70S)=大サブユニット(50S)+小サブユニット(30S)
分子量: 約2.5x106 約1.6x106 約0.9x106

0031

更に細かく見ると、50Sサブユニットと30Sサブユニットは、それぞれ次のような成分で構成されていることが明らかにされている。
50Sサブユニット;
L1〜L34の34種類の蛋白質(リボソーム蛋白質)
23S RNA(約3200ヌクレオチド
5S RNA(約120ヌクレオチド)
30Sサブユニット;
S1〜S21の21種類の蛋白質(リボソーム蛋白質)
16S RNA(約1540ヌクレオチド)
つまり各サブユニットは、これらの成分からなる複合体として単離されうる。更にリボソームは、各サブユニットの複合体として単離されうる。従って、本発明における独立して精製されたリボソームとは、例えば原核生物由来のリボソームにおいては、大小のサブユニットからなる70Sリボソームとして精製された複合体、又は、それぞれ精製された50Sサブユニットと30Sサブユニットを混合してできた複合体を指す。

0032

一方、真核細胞においては、リボソームとそれを構成するサブユニットは、それぞれ次のような大きさを有する。
リボソーム(80S)=大サブユニット(60S)+小サブユニット(40S)
従って、本発明における無細胞蛋白質合成系を真核細胞由来のリボソームで構成する場合には、80Sリボソームとして精製されたリボソームを利用することができる。

0033

リボソームは例えば、特開2008-271903に開示された方法で培養した大腸菌から精製することができる。大腸菌などの原核生物は容易に大量培養することができる。従って、大腸菌などの原核生物は、リボソームを大量に調製するうえで、好ましい生物である。特開2008-271903に開示された方法で精製されたリボソームは、核酸分解酵素活性を実質的に含まないため、本発明における独立に精製されたリボソームとして好ましい。上述のように、効率的なポリペプチドの合成や、リボソームディスプレイによるポリペプチドスクリーニングを行うためには、核酸分解酵素活性を実質的に含まない無細胞蛋白質合成系を用いることが望ましい。そのため、核酸分解酵素活性を実質的に含まないリボソームが本発明において好適に用いられる。本発明の組成物において大腸菌由来のリボソームを使用した場合、例えば、0.01μM-50μM、好ましくは0.05μM-10μMの濃度で使用できる。

0034

尚、本発明の組成物に用いられる各因子について、「生物X由来」とは、該因子のアミノ酸配列又は核酸配列が、生物Xにおいて天然に発現している該因子のアミノ酸配列又は核酸配列と実質的に同一のアミノ酸配列又は核酸配列を有することを意味する。「実質的に同一」とは、着目したアミノ酸配列又は核酸配列が、生物Xにおいて天然に発現している因子のアミノ酸配列又は核酸配列と70%以上(好ましくは80%以上、より好ましくは90%以上、更に好ましくは95%以上、最も好ましくは99%以上)の同一性を有しており、且つ当該因子の機能が維持されていることを意味する。

0035

アミノ酸としては、天然型アミノ酸に加え、非天然型アミノ酸も用いることができる。これらのアミノ酸は、無細胞蛋白質合成系を構成するアミノアシルtRNA合成酵素の作用によってtRNAに保持される。あるいは、予めアミノ酸をtRNAにチャージして無細胞蛋白質合成系に加えることができる。本発明において、tRNAへのアミノ酸のチャージとは、tRNAにアミノ酸を保持させ、リボソームにおける翻訳反応に利用される状態にすることを言う。非天然アミノ酸を認識する人工アミノアシル合成酵素存在下で非天然アミノ酸を添加したり、非天然アミノ酸でチャージされたtRNAを用いたりすることで、蛋白質の特定のコドンの部位に非天然アミノ酸を導入することが可能となる。天然のアミノ酸を使用した場合、例えば、0.001 mM-20 mM、好ましくは、0.01 mM-5 mMで使用できる。

0036

tRNAとしては、大腸菌等の原核生物、酵母等の真核生物の細胞から精製したtRNAを用いることができる。また、tRNAをコードするDNAから、RNAポリメラーゼを用いた転写反応により調製したtRNAも用いることができる。またアンチコドンやその他の塩基を任意に変更した人工tRNAも用いることができる(Hohsaka, T et al. (1996) J. Am. Chem. Soc., vol.121, p.34-40, Hirao I et al (2002) Nat. Biotechnol., vol.20, p.177-182)。例えば、CUAをアンチコドンとして持つtRNAに非天然のアミノ酸をチャージすることで、本来終止コドンであるUAGコドンを非天然アミノ酸に翻訳することが可能である。また、4塩基コドンをアンチコドンとして持つtRNAに非天然アミノ酸をチャージした人工アミノアシルtRNAを用いることにより、天然には存在しない4塩基コドンを非天然アミノ酸に翻訳することが可能である(Hohsaka et al. (1999) J.Am.Chem.Soc., vol.121, p.12194-12195)。このような人工アミノアシルtRNAを作製する方法としては、RNAを用いる方法も使用できる(特表2003-514572)。これらの方法により部位特異的に非天然アミノ酸を導入した蛋白質を合成することができる。大腸菌tRNA混合液を使用した場合、例えば、0.1A260/ml-1000 A260/ml、好ましくは、1 A260/ml-300 A260/mlで使用できる。

0037

ヌクレオシド三リン酸(ATP,GTP, CTP,UTPなど)は、転写及び/又は翻訳反応の基質及び/又はエネルギー源である。ヌクレオシド三リン酸は、通常、0.01 mM-500 mM、好ましくは、0.1 mM-50 mMで使用できる。無細胞蛋白質合成系が翻訳反応のみからなる場合は、ATP及びGTPのみを含んでもよい。

0038

上記の無細胞蛋白質合成系を構成する各因子を、転写や翻訳に好適なpHを維持する緩衝水溶液に加えることによって本発明の組成物とすることができる。好適なpHとしては、例えばpH6〜pH9、好ましくは、pH7〜8である。本発明に用いられる緩衝液としては、リン酸カリウム緩衝水溶液(pH 7.3)、Hepes-KOH(pH 7.6)などをあげることができる。Hepes-KOH(pH 7.6)を使用した場合、例えば、0.01 mM-200 mM、好ましくは、0.1 mM-100 mMで使用できる。

0039

本発明の組成物には、因子の保護や活性の維持を目的として塩類を加えることもできる。具体的には、グルタミン酸カリウム酢酸カリウム塩化アンモニウム酢酸マグネシウム塩化マグネシウム塩化カルシウムなどがあげられる。これらの塩類は、通常、0.01 mM-1000 mM、好ましくは、0.1 mM-300 mMで使用される。

0040

本発明の組成物には、酵素の基質として、及び/もしくは、各因子の活性の向上、維持を目的として、その他の低分子化合物を添加できる。具体的には、プトレシン(putrescine)、スペルミジン(spermidine)などのポリアミン類ジチオトレイトール(DTT)などの還元剤などを本発明の組成物に加えることができる。これらの低分子化合物は、通常、0.01 mM-1000 mM、好ましくは、0.1 mM-200 mMで使用できる。

0041

大腸菌等の原核細胞由来の因子を用いた反応系である場合は、本発明の組成物は、更にメチオニルtRNAトランスフォルミラーゼ及び、10-フォルミル5,6,7,8-テトラヒドロ葉酸(FD)を含むことが好ましい。

0042

メチオニルtRNAトランスフォルミラーゼ(MTF)は、原核生物における蛋白質合成において開始tRNAに共有結合したメチオニンアミノ基にフォルミル基がついたN-フォルミルメチオニル(fMet)開始tRNAを合成する酵素である。即ち、メチオニルtRNAトランスフォルミラーゼは、FDのフォルミル基を、開始コドンに対応するメチオニル開始tRNAのアミノ基に転移させ、fMet-開始tRNAにする(Ramesh V et al, (1999) Proc.Natl.Acad.Sci.USA, vol.96, p.875-880)。付加されたフォルミル基は開始因子IF2により認識され、蛋白質合成の開始シグナルとして作用する。真核生物の細胞質における蛋白質合成系にはMTFが存在していないが、真核生物のミトコンドリア及び葉緑体における蛋白質合成系には存在する。本発明において用いられるMTFの好ましい例は、大腸菌由来のものであり、例えば大腸菌K12株由来のものである。大腸菌由来のMTFを使用した場合、例えば、100 U/ml-1,000,000 U/ml、好ましくは、500 U/ml-400,000 U/mlで使用できる。ここで、1分間に1 pmolのfMet-開始tRNAを形成する活性を1 Uとする。もしくは、0.01μg/ml-10,000μg/ml、好ましくは、0.05μg/ml-1,000μg/mlで使用できる。また、MTFの基質であるフォルミルドナー(FD)は、例えば、0.1μg/ml-1000μg/ml、好ましくは、1μg/ml-100μg/mlで使用できる。

0043

一態様において、本発明の組成物は、解離因子(Release Factor; RF)及び/又はリボソーム再生因子RRF)を含む。解離因子は、蛋白質合成の終結、翻訳されたペプチド鎖の解離に必須である。また、リボソーム再生因子は、次のmRNAの翻訳開始へのリボソームの再生に必須である。従って、解離因子及び/又はリボソーム再生因子を含む本発明の組成物を用いて、無細胞蛋白質合成反応を行うことにより、より多量のポリペプチドを製造することができる。本発明の組成物で使用される解離因子としては、大腸菌由来のものとして、RF1、RF2及びRF3が知られている。解離因子RF1及びRF2は、リボソームのA部位がmRNA上の終止コドン(UAA,UAG,UGA)に達した時、A部位に入ってペプチジルtRNA(P部位にある)からのペプチド鎖の解離を促進する。RF1は終止コドンのうちUAA及びUAGを認識し、RF2はUAA及びUGAを認識する。解離因子RF3は、RF1、RF2によるペプチド鎖の解離反応後の、RF1、RF2のリボソームからの解離を促進する。また、リボソーム再生因子は、合成されたペプチド鎖の解離後、P部位に残っているtRNAの脱離と、次の蛋白質合成へのリボソームの再生を促進する。なお、解離因子RF1、RF2、RF3及びRRFの機能については、Freistroffer DV et al, (1997)EMBO J., vol.16, p.4126-4133、Pavlov MY et al. (1997) EMBO J., vol.16, p.4134-4141に解説されている。本発明において用いられる解離因子の好ましい例は、大腸菌由来のものであり、例えば大腸菌K12株由来のものを挙げることができるが、真核細胞由来のものも使用できる。また、本発明において用いられるリボソーム再生因子の好ましい例は、大腸菌由来のものであり、例えば大腸菌K12株由来のものを挙げることができる。大腸菌由来の解離因子及び/又はリボソーム再生因子を使用した場合、例えば、0.005μM-200μM、好ましくは、0.02μM-50μMで使用できる。RF1、RF2、RF3、及びRRFの全てを用いる場合には、各因子の使用量は、いずれも、先に例示した範囲から選択することができる。

0044

一態様において、本発明の組成物は、解離因子及び/又はリボソーム再生因子を含まない。解離因子及び/又はリボソーム再生因子がないと、翻訳されたペプチド鎖の解離、及び次のmRNAの翻訳開始へのリボソームの再生が生じないため、mRNA-リボソーム-ポリペプチドからなる三者複合体を安定に形成させることができる。従って、解離因子及び/又はリボソーム再生因子を含まない本発明の組成物を用いて、リボソームディスプレイを行うことにより、高い効率で、標的物質と結合するポリペプチドをコードする核酸を単離することができる。

0045

本発明の組成物を用いて、DNAからmRNAに転写し、更に該mRNAからポリペプチドに翻訳する場合には、mRNAに転写するためのRNAポリメラーゼを含むことができる。具体的には、次のようなRNAポリメラーゼを本発明に利用することができる。これらのRNAポリメラーゼは市販されている。
T7 RNAポリメラーゼ
T3 RNAポリメラーゼ
SP6 RNAポリメラーゼ
T7 RNAポリメラーゼを使用した場合、例えば、0.01μg/ml-5000μg/ml、好ましくは、0.1μg/ml-1000μg/mlで使用できる。

0046

本発明の組成物は、転写や翻訳のための因子に加え、更に付加的な因子を含むことができる。付加的な因子として、例えば、次のような因子を示すことができる。
反応系においてエネルギーを再生するための酵素:
クレアチンキナーゼ
ミヨキナーゼ;及び
ヌクレオシドジホスフェートキナーゼなど
反応系においてエネルギーを再生するための酵素の基質:
クレアチンリン酸など
転写・翻訳で生じる無機ピロリン酸の分解のための酵素:
無機ピロホスファターゼなど
上記酵素は、例えば、0.001μg/ml-2000μg/ml、好ましくは、0.05μg/ml-500μg/mlで使用できる。また、上記基質は、通常、0.01 mM-1000 mM、好ましくは、0.1 mM-200 mMで使用できる。

0047

本発明の組成物に含まれる因子のうち、リボソームの精製方法は、特開2008-271903に、それ以外の因子の精製方法は、特開2003-102495に、それぞれ開示されており公知であるが、本発明の組成物から、できる限りリポ多糖の混入を除くことができるように、各因子の精製過程において、リポ多糖をできる限り除去することが好ましい。例えば、蛋白質溶液からのリポ多糖の除去は、Petsch and Anspach (2000) J. Biotechnol., vol.76, p.97-119、Magalhaes et al. (2007) J. Pharm. Pharm.Sci., vol. 10, p.388-404などに示されている方法が利用できる。

0048

この場合、本発明の組成物に含まれる、蛋白質のみからなる因子の全てについて、リポ多糖含有量は、蛋白質1μgあたり、好ましくは10EU以下、より好ましくは1EU以下、更に好ましくは0.1EU以下である。蛋白質溶液からのリポ多糖の除去は、例えば、アフィニティカラムに目的とする蛋白質を結合させ、これをリポ多糖を除去する濃度(例えば0.05〜1(v/v)%)のTritonX-114等の界面活性剤を含む緩衝液(ただし、リポ多糖を含まない)により洗浄し、その後、該カラムから目的とする蛋白質を適切な緩衝液で溶出することにより実施することができる(Reichelt et al., (2006) Protein Expr Purif., vol. 46, p. 483)。リポ多糖混入量が、蛋白質1μgあたり、好ましくは10EU以下、より好ましくは1EU以下、更に好ましくは0.1EU以下にできる方法であれば、上述の方法以外の方法も使用することができる。

0049

tRNAについては、1Abs単位あたり、通常100 EU以下、好ましくは10 EU以下、より好ましくは1 EU以下、更に好ましくは0.1 EU以下、最も好ましくは0.01 EU以下である。ここで、1Abs単位とは、260 nmの吸光度の値として、1.0を与えるtRNAの量を意味する。市販されている大腸菌などの原核生物から抽出したtRNA混合物には、多量のリポ多糖が混入している(1Abs単位あたり100EU以上)ため、本発明の組成物に添加するためには、リポ多糖を除去する必要がある。tRNA混合物からのリポ多糖の除去は、蛋白質溶液からのリポ多糖の除去方法を参考に行うことができる。例えば、界面活性剤であるTritonX-114を使用した相分離法によりリポ多糖の混入量を極めて低減させたtRNA混合物を得ることができる。具体的には、10(v/v)% TritonX-114を含む緩衝液をtRNA溶液と1:9の体積比で混合して均一にした後、TritonX-114の曇点(23℃)以上に加温して遠心分離することにより相分離を行い、tRNAを含む画分を回収する操作を繰り返すことにより可能である。リポ多糖混入量が、tRNA 1Abs単位あたり、通常100 EU以下、好ましくは10 EU以下、より好ましくは1 EU以下、更に好ましくは0.1 EU以下、最も好ましくは0.01 EU以下にできる方法であれば、上述の方法以外の方法も使用することができる。

0050

本発明の組成物に含まれる、リボソームに混入するリポ多糖の含有量は、1 pmolあたり、通常7EU以下、好ましくは1EU以下、より好ましくは0.1EU以下である。特に、原核生物(好ましくはグラム陰性菌、より好ましくは大腸菌)から抽出されたリボソームを用いる場合には、リボソームがリポ多糖混入の主要な原因となる可能性があるため、リボソームからリポ多糖を念入りに取り除くことが好ましい。生化学的特性の異なる数種類のRNAと数十種の蛋白質からなる巨大な複合体であるリボソームから、蛋白質合成活性を維持した状態で、混入したリポ多糖を除去する方法は、報告されていない。本発明者らは、複数の方法を検討した結果、界面活性剤による洗浄が有効であることを見出した。

0052

非イオン性界面活性剤としては、ポリオキシエチレンソルビタンモノラウレート(Tween20)、ポリオキシエチレンソルビタンモノオレエート(Tween80)等のポリオキシエチレンソルビタンアルキルエーテル(Tween)類、ポリオキシエチレンラウリルエーテル(Brij35)、ポリオキシエチレンセチルエーテル(Brij58)等のポリオキシエチレンアルキルエーテル(Brij)類、ポリオキシエチレン(7〜8)オクチルフェニルエーテル(TritonX-114)、ポリオキシエチレン(9〜10)オクチルフェニルエーテル(TritonX-100)等のポリオキシエチレンオクチルフェニルエーテル(TritonX)類、n-オクチル-β-グルコシド、n-ドデシル-β-マルトシド、n-オクチル-β-チオグルコシド、n-ヘプチル-β-チオグルコシド等のアルキルグルコシド類、N-オクタノイル-N-メチルアルカンアミド(Mega-8)、N-ノナノイル-N-メチルアルカンアミド(Mega-9)、N-デカノイル-N-メチルアルカンアミド(Mega-10)等のN-グルコ-N-メチルアルカンアミド類等が挙げられる。

0053

陰イオン性界面活性剤としては、コール酸ナトリウムデオキシコール酸ナトリウムタウロコール酸ナトリウムグリココール酸ナトリウム等の胆汁酸塩類等が挙げられる。

0054

両性イオン性界面活性剤としては、3-[(3-コルアミドプロピル)-ジメチルアンモニオ]-1-プロパンスルホネートCHAPS)、3-[(3-コルアミドプロピル)-ジメチルアンモニオ]-2-ヒドロキシプロパンスルホネート(CHAPSO)、N,N-ジメチルドデシルアミンN-オキシド等のアミンオキシド類、N,N-ジメチルドデシルアンモニオプロパンスルホネート、N,N-ジメチルミリスチルアンモニオプロパンスルホネート等のアルキル-N,N-ジメチルアンモニオプロパンスルホネート類等が挙げられる。

0055

界面活性剤の添加量は、リボソームからリポ多糖混入物を除去可能であり、且つリボソームの蛋白質合成活性を消失させない限り特に限定されず、界面活性剤の種類により適宜設定されるが、界面活性剤とリポ多糖混入物を含むリボソームとの混合溶液中の界面活性剤濃度として、通常0.001〜10(v/v)%、好ましくは0.01〜5(v/v)%、さらに好ましくは0.05〜2(v/v)%である。

0056

一態様において、界面活性剤によるリボソームの洗浄は、リボソームを界面活性剤を含む適切な緩衝液中に分散し、リボソームに含まれるリポ多糖を当該緩衝液中に移行させた後、この分散物ショ糖密度勾配遠心分離に付し、リボソームを含む画分を回収することにより行うことが出来る。

0057

別の態様において、界面活性剤を用いた洗浄方法として、例えば、ポリオキシエチレン(7〜8)オクチルフェニルエーテル(TritonX-114)を用いた以下の方法が挙げられる:
(I)界面活性剤とリポ多糖混入物を含むリボソームとを混合すること、
(II)得られた混合物を当該界面活性剤の曇点以上に加熱すること、
(III)当該加熱後の混合物を遠心分離に付し、相分離を行うこと、及び
(IV)リボソームを含む相を単離し、リポ多糖含量が低減されたリボソームを得ること
更に、工程(IV)で得られたリポ多糖含量が低減されたリボソームを、工程(I)に戻すことにより、リポ多糖含有量が所定の濃度以下(例えば、リボソーム1pmolあたり、7EU以下、好ましくは1EU以下、より好ましくは0.1EU以下)となるまで工程(I)〜(IV)を繰り返してもよい。

0058

具体的には、10(v/v)%のTritonX-114を含む緩衝液をリボソームと1:9の体積比で混合して均一にした後、TritonX-114の曇点(23℃)以上に加温して遠心分離することにより相分離を行い、リボソームを含む画分を分離する操作(洗浄操作)を繰り返すことによって、混入するリポ多糖を低減させることが可能である。

0059

界面活性剤によるリボソームの洗浄方法は、上述の方法に限られるものではなく、リポ多糖含有量が所定の濃度以下(例えば、リボソーム1pmolあたり、7EU以下、好ましくは1EU以下、より好ましくは0.1EU以下)にまで減少させることが可能な限り、その他の洗浄方法を用いることもできる。

0060

上記工程を経て得られたリポ多糖含量が低減されたリボソームを、リボソーム以外の上述の独立に精製された因子(例、開始因子、伸長因子、アミノアシルtRNA合成酵素、アミノ酸、ヌクレオシド三リン酸及びtRNA)と混合することにより、本発明の組成物を製造することができる。本発明はこのような、上述の本発明の組成物の製造方法をも提供する。

0061

一態様において、本発明の組成物は、以下の独立に精製された因子の組み合わせを含む:
開始因子(Initiation Factor; IF)、
伸長因子(Elongation Factor; EF)、
アミノアシルtRNA合成酵素、
リボソーム、
アミノ酸、
ヌクレオシド三リン酸、
tRNA、
メチオニルtRNAトランスフォルミラーゼ、及び
10-フォルミル5,6,7,8-テトラヒドロ葉酸。

0062

一態様において、本発明の組成物は、以下の独立に精製された因子の組み合わせを含む:
開始因子(Initiation Factor; IF)、
伸長因子(Elongation Factor; EF)、
アミノアシルtRNA合成酵素、
リボソーム、
アミノ酸、
ヌクレオシド三リン酸、
tRNA、
メチオニルtRNAトランスフォルミラーゼ、
10-フォルミル5,6,7,8-テトラヒドロ葉酸、
解離因子、及び
リボソーム再生因子。

0063

本発明の組成物のより具体的な組成は、リポ多糖含有量が1.0×104 EU/ml以下であることを除き、Shimizuら(Shimizu et al., Nat. Biotechnol. (2001) vol.19, p.751-755、Shimizu et al., Methods(2005) vol.36, p.299-304)、あるいはYingら(Ying et al., Biochem. Biophys. Res. Commun. (2004) vol.320, p.1359-1364)の記載を元に調製することができる。具体的には、例えば次のような組成を例示することができるが、上述のとおり、因子の濃度は、精製した因子の比活性や目的などに応じて適宜増減できる。例えば、エネルギー消費が大きくなる場合はATPを増やすことができる。また、翻訳されるmRNAのコドンの使用頻度に応じて、特定のtRNAを添加することも可能である。
1.2 μM Ribosome、
2.70 μM IF1、
0.40 μM IF2、
1.50 μM IF3、
0.26 μM EF-G、
0.92 μM EF-Tu、
0.66 μM EF-Ts、
0.25 μM RF1、
0.24 μM RF2、
0.17 μM RF3、
0.50 μMRRF、
1900 U/ml AlaRS、
2500 U/ml ArgRS、
20 μg/ml AsnRS、
2500 U/ml AspRS、
630 U/ml CysRS、
1300 U/ml GlnRS、
1900 U/ml GluRS、
5000 U/ml GlyRS、
630 U/ml HisRS、
2500 U/ml IleRS、
3800 U/ml LeuRS、
3800 U/ml LysRS、
6300 U/ml MetRS、
1300 U/ml PheRS、
1300 U/ml ProRS、
1900 U/ml SerRS、
1300 U/ml ThrRS、
630 U/ml TrpRS、
630 U/ml TyrRS、
3100 U/ml ValRS、
10 μg/ml T7 RNA polymerase、
4500 U/ml Methionyl-tRNA transformylase (MTF)、
4.0 μg/ml Creatine kinase(クレアチンキナーゼ)、
3.0 μg/ml Myokinase(ミヨキナーゼ)、
1.1 μg/ml Nucleoside-diphosphate kinase(ヌクレオシドジホスフェートキナーゼ)、
1.3 μg/ml Pyrophosphatase(ピロホスファターゼ)、
0.3 mM 各アミノ酸、
56 A260/ml tRNA、
50 mM Hepes-KOH, pH 7.6、
100 mM Potassium glutamate(グルタミン酸カリウム)、
13 mM Magnesium acetate(酢酸マグネシウム)、
2 mM Spermidine(スペルミジン)、
1 mM DTT、
2 mM ATP、
2 mMGTP、
1 mM CTP、
1 mMUTP、
20 mM Creatine phosphate(クレアチンリン酸)、
10 μg/ml 10-formyl-5,6,7,8-tetrahydrofolic acid (FD)。

0064

本発明の組成物においては、好ましくは、独立に精製された因子の少なくとも1つが原核生物から抽出されたものである。一態様において、本発明の組成物に含まれる、開始因子、伸長因子、アミノアシルtRNA合成酵素、リボソーム及びtRNAからなる群から選択される少なくとも1つ、好ましくは全てが原核生物(例えばグラム陰性菌、好ましくは大腸菌)から抽出されたものである。一態様において、本発明の組成物が解離因子及びリボソーム再生因子を含む場合、開始因子、伸長因子、アミノアシルtRNA合成酵素、リボソーム、解離因子、リボソーム再生因子及びtRNAからなる群から選択される少なくとも1つ、好ましくは全てが原核生物(例えばグラム陰性菌、好ましくは大腸菌)から抽出されたものである。一態様において、本発明の組成物に含まれるリボソームが原核生物(例えばグラム陰性菌、好ましくは大腸菌)から抽出されたものである。一態様において、本発明の組成物に含まれるtRNAが原核生物(例えばグラム陰性菌、好ましくは大腸菌)から抽出されたものである。

0065

本発明の組成物の組成は、上記基本組成に加え、合成(提示)するポリペプチド(蛋白質)に合わせて、適宜調節可能である。例えば、高次構造を形成しにくい蛋白質の場合、分子シャペロンと呼ばれる一群の蛋白質を添加した無細胞蛋白質合成系を使用することもできる。具体的には、Hsp100、Hsp90、Hsp70、Hsp60、Hsp40、Hsp10、低分子量Hsp及び、それらのホモログ、さらに大腸菌のトリガーファクターなどを添加した無細胞蛋白質合成系があげられる。分子シャペロンは、細胞内で蛋白質の高次構造形成を助け、蛋白質の凝集を防ぐことが知られている蛋白質である(Bukau and Horwich, Cell (1998) vol.92, p.351-366、Young et al., Nat. Rev. Mol. Cell Biol (2004) vol.5, p.781)。

0066

また、抗体分子のように、分子内でジスルフィド結合を形成する蛋白質(ポリペプチド)の場合は、反応液の酸化還元電位が重要である。そのため、反応液から、還元剤であるDTTを除去したり、さらには、グルタチオンを添加した組成物を使用したりすることもできる。さらには、ジスルフィド結合を促進したり、正しい結合に組み替える酵素を添加した組成物を使用したりすることができる。具体的には、このような酵素としては、真核細胞のERに存在するプロテインジスルフィドイソメラーゼPDI)や、大腸菌由来のDsbA、DsbC等が挙げられる。

0067

本発明において好適な無細胞蛋白質合成系である、独立に精製された因子からなる無細胞蛋白質合成系は、上記の分子シャペロンやPDI等の蛋白質を全く、もしくはほとんど含まない。そのため、上記分子シャペロン、ジスルフィドイソメラーゼなどの蛋白質を最適な種類、濃度で添加することが可能である。従来用いられてきた細胞抽出液による無細胞蛋白質合成系では、系内に蛋白質合成に必要な蛋白質以外に上記のような蛋白質も元々含んでいるため、系の調節を行うことが難しかった。この点も、独立に精製された因子からなる再構成型無細胞蛋白質合成系が、本発明において好適な無細胞蛋白質合成系であることを示している。

0068

本発明の組成物中でmRNAからポリペプチドに翻訳することにより、該mRNAにコードされたポリペプチドを製造することができる。本発明はこのようなポリペプチドの製造方法をも提供する。

0069

本発明の組成物を用いたポリペプチドの製造は、例えば以下の工程によって実施することができる。
(1)本発明の組成物に鋳型となるmRNAを加えてインキュベートすることにより、mRNAからポリペプチドへの翻訳反応を行うこと;
(2)氷冷した緩衝液を加えて翻訳反応を停止すること;及び
(3)反応混合物から翻訳されたポリペプチドを回収すること。
無細胞蛋白質合成系を構成する因子類が、結合性パートナー(後述)でラベルされている場合には、翻訳反応終了後に、結合性パートナーに対応するリガンドを有する固相に捕捉することによって反応液から除去することができる。その結果、製造されたポリペプチドを、無細胞蛋白質合成系を構成する因子類から容易に回収することができる。また、無細胞蛋白質合成系を構成する因子類が、結合性パートナーでラベルされていない場合には、製造する目的のポリペプチドを結合パートナーでラベルしておくことにより、翻訳終了後に、対応するリガンドを有する固相で捕捉することにより目的とするポリペプチドを単離することができる。目的のポリペプチドと結合パートナーとの間にプロテアーゼの認識配列を介在させておくこともできる。融合蛋白質を結合パートナーに対応するリガンドを有する固相で捕捉し、更に当該認識配列を切断するプロテアーゼを作用させて、目的とする因子を回収することもできる。このようにして因子を精製する方法は公知である(K. Boon et al., Eur. J. Biochem. (1992) vol.210, p.177-183、K. S. Wilson et al., Cell (1998) vol.92, p.131-139、Yu-Wen Hwang et al., Arch. Biochem. Biophy. (1997) vol.348, p.157-162)。その他、当業者に周知の蛋白質精製技術(例えば、カラムクロマトグラフィー等)を用いて、反応混合物から適宜目的とするポリペプチドを単離することができる。

0070

ポリペプチドの収量を上げる観点から、上記製造方法において用いられる本発明の組成物は解離因子及びリボソーム再生因子を含むことが好ましい。解離因子及びリボソーム再生因子により、蛋白質合成の終結、翻訳されたペプチド鎖の解離、及び次のmRNAの翻訳開始へのリボソームの再生が生じるからである。

0071

本発明の組成物を用いてポリペプチドに翻訳されるmRNAは、ポリペプチドの製造効率を上げるために、例えば、無細胞蛋白質合成系として大腸菌などの原核生物由来のリボソームを利用する場合には、開始コドンの上流にShine-Dalgarno(SD)配列を含むことが好ましい。細胞内の蛋白質合成と同様、開始コドンの上流にリボソーム結合配列であるSD配列を含むことにより、翻訳反応の効率が上昇する。

0072

このような構造を備えたmRNAは、例えば、プロモーター配列及びSD配列を含む5'UTR配列を備えた発現ベクターに目的の遺伝子を挿入し、RNAポリメラーゼにより転写することにより得ることができる。一般に、RNAポリメラーゼは、プロモーターと呼ばれる特定の配列を含む領域を認識し、その下流に配置されたDNAの塩基配列に基づいてmRNAを合成する。発現ベクターを使用せずに、PCRを利用して目的の構造を有する転写鋳型を構築することもできる(Split-PrimerPCR法、Sawasaki et al., PNAS (2002) vol.99, p.14652-14657)。

0073

RNAポリメラーゼによって転写されたmRNAを必要に応じて回収し、本発明の組成物を用いた無細胞蛋白質合成に利用することができる。転写されたmRNAは、フェノール処理後、エタノール沈殿により回収することができる。また、mRNAの回収には、RNeasy(Qiagen製)などの市販のRNA抽出用キットを利用することもできる。

0074

また、遺伝子に転写及び翻訳に必要な塩基配列を組み込んだ上記DNA自体を鋳型として用いることもできる。この場合、RNAポリメラーゼを含む本発明の組成物を用いてDNAからmRNAに転写し、更に該mRNAからポリペプチドに翻訳する。

0075

本発明の組成物においては、リポ多糖の含有量が一定量以下に抑制されているため、本発明の組成物を用いて製造されたポリペプチドにおいても、同様にリポ多糖の含有量が抑制されている。得られるポリペプチドにおけるリポ多糖の含有量は、本発明の組成物におけるリポ多糖の含有量に準じて、通常1.0×104 EU/ml以下、好ましくは1.0×103 EU/ml以下、より好ましくは1.0×102 EU/ml以下である。上述のように、リポ多糖は、非特異的な分子間相互作用を助長する可能性があるが、本発明の組成物を用いて製造されたポリペプチドにおいてはリポ多糖の含有量が抑制されている。従って、本発明の製造方法を用いれば、リポ多糖混入による非特異的相互作用の影響を抑制して、他の分子や細胞との間の相互作用を精密に評価することが可能なポリペプチドを容易に製造することができる。

0076

また、リポ多糖は、エンドトキシンとも呼ばれ、ヒトなどの細胞に作用して、細胞レベル、個体レベルで多彩生物活性を発現するため、ヒトに投与する医薬品ではリポ多糖の除去が必須である。また、ヒトなど哺乳類由来の培養細胞を用いた実験においても、できるかぎり、エンドトキシンを除去した試薬を用いることが求められている。本発明の製造方法を用いれば、精製することなく細胞を用いた実験に直接使用でき、医薬品等への適用が可能なリポ多糖の混入が低減されたポリペプチドを製造することができる。また、本発明の製造方法により得られたポリペプチドを、該ポリペプチドからリポ多糖を除去することなく、細胞レベル、個体レベルでの薬理試験に直接適用することにより、該ポリペプチドについてリポ多糖の影響が抑制された薬理評価を簡便に実施することができる。

0077

また、本発明は、上記本発明の組成物を用いたリボソームディスプレイ技術を提供する。本発明において「リボソームディスプレイ」とは、無細胞蛋白質合成系においてmRNA-リボソーム-ポリペプチドからなる三者複合体を形成させ、特定の機能を持ったポリペプチド(蛋白質)をコードする核酸を選択する手法である。複合体と標的物質を結合させ、他の複合体から分離することにより、目的の結合特性を有するポリペプチドをコードするmRNAを得ることができる。リボソームディスプレイでは、無細胞蛋白質合成系を利用するため、生物や細胞を傷害する活性を持つポリペプチド、あるいは生物や細胞の増殖を阻害する可能性のあるポリペプチドをコードする核酸であっても選択することができる。

0078

本発明のリボソームディスプレイにおいては、具体的には以下の工程を実施することにより、標的物質と結合するポリペプチドをコードする核酸が単離される:
(a) 本発明の組成物中でmRNAをポリペプチドに翻訳し、当該mRNAとポリペプチドを含む複合体を形成する工程、
(b) (a)で形成された複合体を標的物質と接触させる工程、及び、
(c) 標的物質に結合した複合体を回収し、回収された複合体を構成するmRNA又はそのcDNAを、標的物質と結合するポリペプチドをコードする核酸として単離する工程。

0079

本発明における「核酸」は、主としてデオキシリボヌクレオチド、及びリボヌクレオチド重合体をいう。すなわち、デオキシリボ核酸(DNA)、又は、リボ核酸(RNA)である。更に、本発明における核酸は、人工塩基を有するヌクレオチド誘導体を含むこともできる。また、ペプチド核酸(PNA)を含むこともできる。目的とする遺伝情報が保持される限り、核酸の構成単位は、これらの核酸のいずれか、あるいはこれらの混成とすることもできる。従って、DNA-RNAのハイブリッドヌクレオチドは本発明における核酸に含まれる。あるいはDNAとRNAのような異なる核酸が1本鎖に連結されたキメラ核酸も本発明における核酸に含まれる。本発明における核酸の構造も、目的とする遺伝情報が維持できる限り限定されない。具体的には、一本鎖二本鎖、あるいは三本鎖などの構造をとりうる。核酸の長さは、少なくとも3ヌクレオチド、あるいは6ヌクレオチドであり、好ましくは9ヌクレオチド以上である。核酸の長さは、通常10〜10000ヌクレオチド、あるいは100〜5000ヌクレオチドであり、例えば200〜3000ヌクレオチドである。

0080

本発明の、標的物質と結合するポリペプチドをコードする核酸を単離する方法は、まず無細胞蛋白質合成系においてmRNAをポリペプチドに翻訳し、当該mRNAと新生ポリペプチド、及びリボソームを含む複合体を形成する工程を含む。この工程では、鋳型となるmRNAを本発明の組成物に加え、一定時間翻訳反応させることで、mRNA、リボソーム及び新生ポリペプチドからなる複合体を形成させることができる。

0081

翻訳反応は、例えば以下の工程によって実施することができる:
(1)本発明の組成物に鋳型となるmRNAを加えてインキュベートすることにより、mRNAからポリペプチドへの翻訳反応を行うこと;
(2)氷冷した緩衝液を加えて翻訳反応を停止すること。
さらに、無細胞蛋白質合成系を構成する因子類が、結合パートナーでラベルされている場合には、翻訳反応終了後に、リガンドを有する固相に捕捉することによって反応液から除去することができる。その結果、製造されたポリペプチドとmRNAを含む複合体を、無細胞蛋白質合成系を構成するその他の因子類から容易に回収することができる。また、無細胞蛋白質合成系を構成する因子類が、結合パートナーでラベルされていない場合には、製造する目的のポリペプチドを結合パートナーでラベルしておくことにより、翻訳終了後に、対応するリガンドを有する固相で捕捉することにより目的とするポリペプチドとmRNAを含む複合体を単離することができる。その他、当業者に周知の蛋白質精製技術(例えば、カラムクロマトグラフィー等)を用いて、反応混合物から適宜目的とするポリペプチドとmRNAを含む複合体を単離することができる。

0082

ポリペプチドとmRNAを含む複合体の収量を上げる観点から、上記方法において用いられる本発明の組成物は解離因子及び/又はリボソーム再生因子を含まないことが好ましい。解離因子及び/又はリボソーム再生因子がないと、翻訳されたペプチド鎖の解離、及び次のmRNAの翻訳開始へのリボソームの再生が生じないため、mRNA-リボソーム-ポリペプチドからなる三者複合体を安定に形成させることができるので、高い効率で、標的物質と結合するポリペプチドをコードする核酸を単離することができるからである。

0083

本発明のリボソームディスプレイにおいて、本発明の組成物中でポリペプチドに翻訳されるmRNAは、リボソームディスプレイによる選択効率を上げるために以下のような配列を含むことが好ましい。
(1)開始コドンの上流にSD配列(大腸菌由来のリボソームを使用する場合)
(2)目的遺伝子下流のスペーサーをコードする配列
(3)スペーサーの下流のSecMの部分配列
例えば、無細胞蛋白質合成系として大腸菌由来のリボソームを利用する場合には、通常の蛋白質合成と同様、開始コドンの上流にリボソーム結合配列であるShine-Dalgarno(SD)配列を含むことにより、翻訳反応の効率が上昇する。さらに、リボソームディスプレイでは、目的遺伝子の下流にスペーサーをコードする配列を含む必要がある。スペーサーは、翻訳されたポリペプチドが、リボソームの外側で正確に折り畳まれるための十分な空間を提供することによって、新生ポリペプチドとリボソームとのあいだの立体障害を防止する。ここで、十分な長さのスペーサーがないと、目的のポリペプチドがリボソームの外に完全に出ることができず、リボソームディスプレイによる選択を効率よく行うことができない。スペーサーは、少なくとも20アミノ酸からなり、好ましくは、30アミノ酸以上、さらに好ましくは40アミノ酸以上の長さからなる。具体的には、ファージのgeneIIIの部分配列などを用いることができる。さらに、mRNA-リボソーム-ポリペプチド三者複合体を安定化するために、大腸菌SecMの翻訳伸長停止配列(アミノ酸残基148〜170)をコードする配列をスペーサー配列の下流に配置したmRNAも使用することができる。この翻訳伸長停止配列は、リボソームのペプチドトンネルと堅固に相互作用することが示されており(Nakatogawa et al., Cell (2002) vol.108, p.629-636)、再構成型無細胞蛋白質合成系を用いた場合、効率よく翻訳の伸長を停止させることが証明されている(Nakatogawa et al., Mol. Cell (2006) vol.22, p.545-552)。

0084

このような構造を備えたmRNAは、例えば、プロモーター配列及びSD配列を含む5'UTR配列や、3'側のスペーサー配列を備えた発現ベクターに目的の遺伝子を挿入し、RNAポリメラーゼにより転写することにより得ることができる。一般に、RNAポリメラーゼは、プロモーターと呼ばれる特定の配列を含む領域を認識し、その下流に配置されたDNAの塩基配列に基づいてmRNAを合成する。発現ベクターを使用せずに、PCRを利用して目的の構造を有する転写鋳型を構築することもできる(Split-PrimerPCR法、Sawasaki et al., PNAS (2002) vol.99, p.14652-14657)。この方法は、目的のDNAにPCRによって5'UTR配列及びスペーサー配列を付加した鋳型DNAを構築する。DNAライブラリーからmRNAのライブラリーを調製するにあたり、上記のようなベクターにクローニングする必要がない。このため、時間と労力を節約することができる。

0085

PCRによって、鋳型DNAを構築する方法を具体的に例示する。
(1)適当なライブラリーなどから、目的のポリペプチドをコードするDNA領域を、5'UTR配列(プロモーター及びSD配列を含む)を含むプライマーと、スペーサー配列の一部を含むプライマーを使用したPCRで増幅する。
(2)増幅したDNAを、5'UTR部分のプライマーと、スペーサー部分とSecM配列を含むプライマーで再度増幅する。
このように構築したDNAを必要に応じてさらに増幅し、それを鋳型としてRNAポリメラーゼで転写することにより、翻訳反応の鋳型となるmRNAを得ることができる。

0086

RNAポリメラーゼによって転写されたmRNAを必要に応じて回収し、本発明の組成物を用いた無細胞蛋白質合成に利用することができる。転写されたmRNAは、フェノール処理後、エタノール沈殿により回収することができる。また、mRNAの回収には、RNeasy(Qiagen製)などの市販のRNA抽出用キットを利用することもできる。

0087

また、遺伝子に転写及び翻訳に必要な塩基配列を組み込んだ上記DNA自体を鋳型として用いることもできる。この場合、RNAポリメラーゼを含む本発明の組成物を用いてDNAからmRNAに転写し、更に該mRNAからポリペプチドへの翻訳を行って三者複合体を形成させる。

0088

本発明においては、ポリペプチドをコードする核酸として、核酸のライブラリーを用いることができる。本発明において、「ライブラリー」とは、複数のクローン化された核酸からなる多様性をもった集団をいう。リボソームディスプレイ等のin vitro選択系によって、ライブラリーから、所望の性質を有する蛋白質(ポリペプチド)をコードする核酸を得ることができる。本発明における核酸のライブラリーとしては、cDNAライブラリー、mRNAライブラリー、又はゲノムDNAライブラリーを挙げることができる。原核細胞や酵母細胞においては、通常、ほとんどの遺伝子にイントロンが存在しない。従って、原核細胞や酵母細胞の場合、当該細胞由来の蛋白質から所望の性質を有する蛋白質をコードする核酸を直接スクリーニングするために、ゲノムDNAライブラリーを利用することができる。ほ乳類等の高等真核生物では、逆にほとんどの遺伝子にイントロンが存在するため、通常はcDNAライブラリーを利用する。

0089

ライブラリーを構成する核酸の塩基配列は、天然由来の配列のみならず、人為的に導入された配列を含むこともできる。例えば、変異を導入されたライブラリーは、本発明におけるライブラリーに含まれる。あるいは、天然由来の配列に人為的な配列を連結した配列を含むライブラリーも、本発明におけるライブラリーに含まれる。さらに、完全に人為的に設計した配列を含むライブラリーも本発明におけるライブラリーに含まれる。

0090

ライブラリーを構成する核酸がコードする蛋白質は任意である。具体的には、抗体、リガンド、接着因子ポンプチャンネル、あるいは受容体などの、細胞外分泌される蛋白質や細胞膜上の蛋白質、シグナル伝達因子、核内受容体転写因子などの細胞内の蛋白質、あるいはそれらの部分配列をコードする核酸をライブラリーに利用することができる。あるいは、特定の機能に限らず、複数種類の蛋白質をコードする核酸をライブラリーとして利用することもできる。その他、ランダムなアミノ酸配列からなる、多様なランダムペプチドをコードする核酸をライブラリーとして利用することもできる。ランダムペプチドは、そのアミノ酸配列及び長さのいずれか、又は両方に違いを有するペプチドを含む。

0091

本発明の方法は、mRNAとポリペプチドを含む複合体を標的物質と接触させる工程を含む。本発明において「標的物質」とは、目的とするポリペプチドが結合することができる物質をいう。いいかえると、ライブラリーの中から選択すべきポリペプチドが結合する物質が標的物質である。本発明においては、ポリペプチドが結合する可能性のあるあらゆる物質を標的物質として利用することができる。本発明の標的物質には、例えば核酸、ポリペプチド、有機化合物無機化合物、低分子化合物、糖鎖、脂肪、脂質を挙げることができる。更に具体的には、抗原ハプテンとして機能する物質を標的物質として利用することができる。この場合は、抗体ライブラリーから目的とする抗体をスクリーニングすることができる。あるいは受容体を標的物質として、そのリガンドをスクリーニングすることができる。また、受容体等の標的物質を提示する細胞の膜分画を標的物質として利用することもできる。

0092

更に、標的物質、及び核酸ライブラリーとして、それぞれ、抗体、及びランダムペプチドライブラリーをコードする核酸ライブラリーを用いることにより、抗体のエピトープを決定することができる。エピトープとは、抗原上の抗体が結合する部分のことである。抗原が蛋白質の場合、通常、5〜10残基程度のペプチドがエピトープとなりうる。特定の抗体に対するエピトープを決定することをエピトープマッピング(Epitope mapping)という。従来のリボソームディスプレイをエピトープマッピングに応用できることは既に報告されている(L.C. Mattheakis et al., Proc. Natl. Acad. Sci. USA (1994) vol.91, p.9022-9026)。また、再構成型無細胞蛋白質合成系を用いたリボソームディスプレイでもエピトープマッピングが可能であることもすでに示されている(Osada et al., J.Biochem. (2009) vol.145, p.693-700)。すなわち、本発明に基づいてエピトープマッピングを実施することもできる。

0093

mRNA、リボソーム、及び翻訳されたポリペプチドからなる複合体と標的物質を接触させ、結合を可能にする条件は、リポ多糖含有量を低減させた本発明の組成物を用いることを除き公知であり(WO95/11922、WO93/03172、WO91/05058)、当業者にとって過度の負担なしに確立することができる。標的物質に結合した複合体を回収するには、標的物質と結合した複合体を、標的物質と結合していない複合体の中からスクリーニングする必要がある。これはパニングとよばれる既知の方法に従って行う(Coomber, Method Mol. Biol. (2002) vol.178, p.133-145)。パニングの基本的な手順は以下のとおりである。
(1)固相担体に固定化した標的物質に複合体を接触させる。もしくは、固相担体に捕捉される結合パートナーで標識されている標的物質に複合体を接触させ、その後に複合体と結合した標的物質を固相担体に固定化する。
(2)標的物質に結合しなかった複合体を除去する。例えば、洗浄により除去することができる。
(3)除去されなかった複合体を回収する。
(4)必要に応じ(1)から(3)の操作を複数回繰り返す。

0094

一連の工程を繰り返す場合には、(1)の工程の前に、回収された複合体を構成するmRNAを増幅することもできる。mRNAは、例えばRT-PCRによって増幅することができる。RT-PCRによって、mRNAを鋳型としてDNAが合成される。DNAを再びmRNAに転写し、複合体の形成のために利用することができる。mRNAの転写のためには、DNAをベクターに挿入することができる。あるいは、転写に必要な構造をDNAに連結することによって、mRNAに転写することもできる。

0095

本明細書において、「スクリーニング」とは、化学合成、酵素反応、もしくは、これらの組み合せにより合成された物質、種々の細胞の抽出液から調製された物質、又は天然に存在する物質より所望の性質を有するものを選び出すことをいう。また、「クローニング」とは特定の遺伝子を単離することをいう。

0096

上述の様に、本発明の組成物においては、リポ多糖の含有量が一定量以下に抑制されているため、本発明の組成物を用いて製造されたmRNA及びポリペプチドを含む複合体においても、同様にリポ多糖の含有量が抑制されており、該複合体におけるリポ多糖の含有量は、本発明の組成物におけるリポ多糖の含有量に準じて、通常1.0×104 EU/ml以下、好ましくは1.0×103 EU/ml以下、より好ましくは1.0×102 EU/ml以下である。リポ多糖は、標的物質を固定化するための固相担体に対する上記複合体の非特異的な結合を助長するが、本発明の組成物を用いて製造されたmRNA及びポリペプチドを含む複合体においてはリポ多糖の含有量が低減されている。従って、本発明の組成物を用いれば、標的物質を固定化するための固相担体に対するmRNA-リボソーム-ポリペプチドからなる三者複合体の非特異的結合を抑制し、より高精度かつ高効率で目的とするポリペプチドをコードする核酸を選択できる。

0097

従って、本発明の方法においては、当該ポリペプチドと結合する標的物質が、固相担体に結合しているか、又は固相担体に捕捉される結合パートナーで標識されていることが好ましい。標的物質と結合して保持し、スクリーニングに用いる媒体から分離できる素材を固相担体として利用することができる。固相担体は標的物質と結合できる物であればよく、固相の形状は板状、棒状、粒子状、又はビーズ状のいずれをも含む。固相担体は、スクリーニングに用いる媒体である水や有機溶媒不溶な素材を用いることができる。例えばプラスチックガラスポリスチレン等の樹脂多糖等のゲルシリカ金薄膜、磁性体などの金属を固相担体に利用する素材として挙げることができる。

0098

また、パニングの際には、これら固相担体はブロッキング剤によって、予めその表面をコーティングすることが好ましい。固相担体をブロッキングしない場合、無細胞蛋白質合成系の成分や、上記複合体がこれら固相担体に非特的に結合してしまうため、それら自身が選択系内における非特異抗原となり、本来の標的物質の選択が妨げられる可能性があるためである。ブロッキング剤は、RNaseの混入が比較的少ないもの、又はRNaseの混入が実質的にないものが好ましい。一般的なブロッキング剤としては蛋白質を挙げることができる。蛋白質としては、RNaseの混入が比較的少ないブロッキング用蛋白質(例えばChemiBLOCKERやBlock ACEなど)や、RNaseの不活化処理を施したAcetyl化BSAなどが好適に用いられるが、これらに特に限定されるものではない。

0099

ブロッキング剤による固相担体のコーティングは、固相担体をブロッキング剤を含む緩衝液中に、コーティングに十分な時間(例、30分〜12時間)静置することにより実施することが出来る。緩衝液中のブロッキング剤の濃度は、ブロッキング剤による固相担体のコーティングが可能である限り特に限定されないが、ブロッキング剤が蛋白質である場合、通常0.1〜10(w/v)%程度である。

0100

標的物質は、直接的又は間接的に固相担体に結合する。直接的な結合とは、例えば化学的結合、又は物理的吸着をいう。間接的な結合とは、例えば結合パートナーとリガンドを利用した結合をいう。例えば、蛋白質などの親水性物質は、プラスチック表面に吸着される。このような結合を物理的吸着と呼ぶ。従って、蛋白質が標的物質の場合、プラスチックからできているプレートチューブ内壁に、物理吸着によって結合することができる。あるいは、熱処理による蛋白質の固相担体への吸着も物理吸着に含まれる。標的物質は、固相担体に化学的に結合することもできる。化学的な結合とは、例えば、共有結合などによる結合を含む。具体的には、カルボキシル基やアミノ基などの官能基を表面に有する固相担体が知られている。これらの官能基に、ポリペプチド、糖、又は脂質などを共有結合によって結合させることができる。一般に、物理吸着に比べて、化学結合の結合は強固である。

0101

標的物質は、物理吸着や化学結合などの直接的な結合の他に、間接的に固相担体と結合することもできる。間接的な結合に利用する「結合パートナー」とは、相互に付着しあう関係にある物質の一方であり、標的物質を標識する物質をいう。また、「リガンド」とは、相互に付着しあう関係にある物質の他方をいう。すなわち、相互に付着しあう関係にある物質をそれぞれ[A]、[B]としたとき、標的物質を標識する物質が[A]であれば[A]を「結合パートナー」といい、[B]は「リガンド」である。これらの物質の関係を次の一般式で表すことができる。
[固相担体]-[リガンド]-[結合パートナー][標的物質]

0102

標的物質が結合パートナーで標識されているときは、当該結合パートナーのリガンドを有する固相担体を利用することができる。すなわち、標的物質を、結合パートナーとそのリガンドの結合を介して固相担体に保持することができる。以下に本発明に利用することができる結合パートナーとそのリガンドの組み合わせを例示する。
His tag とニッケル錯体コバルト錯体等の金属錯体(Bornhorst and Falke, MethodsEnzymol. (2000), vol.326, p.245-254)
thioredoxin とPAO(Alejo et al., J. Biol. Chem. (1997) vol.272, p.9417-9423)
T7-tagとT7-tagに特異的なモノクローナル抗体(Deora et al., J. Bacteriol. (1997) vol.179, p.6355-6359)
FLAGペプチドtag(Sigma)とanti-FLAG抗体(Sigma)(Woodring and Garrison, J. Biol. Chem. (1997) vol.272, 30447-30454)
Staphylococal Protein A (SPA)と抗体(IgG)(Nilsson and Abrahmsen, Methods Enzymol. (1990) vol.185, p.144-161)
Strep-Tag とストレプトアビジン(Skerra and Schmidt, Methods Enzymol. (2000) vol.326, p.271-311)
ビオチンアビジン(又は、ストレプトアビジンあるいはそれらの誘導体)(Alche and Dickinson, Prot. Express. Purif. (1998) vol.12, p.138-143)

0103

従って、標的物質が「結合パートナーで標識されている」とは、例えば、標的物質が結合パートナーであるビオチンで標識されていることを挙げることができる。このとき、リガンドであるアビジン、ストレプトアビジン、あるいはそれらの誘導体を固相担体に固定化しておく。ビオチンとアビジン、ストレプトアビジン、あるいはそれらの誘導体を結合させることにより、ビオチンを介して間接的に標的物質を固相担体に固定することができる。アビジンやストレプトアビジンの誘導体には、ニュートラアビジン(Neutraavidin、Pierce社)やストレプタクチン(Strep-Tactin、IBA社)などが知られており、購入して使用することが可能である。

0104

標的物質が直接的もしくは間接的に固定化された固相担体は、本発明の標的物質と結合するポリペプチドをコードする核酸の単離方法に用いることができる。あるいは、標的物質と標的物質と結合するポリペプチドを接触させた後に、標的物質を固相担体に捕捉して、単離することもできる。これらの方法は、上記のいずれの方法によっても本発明に適用することができる。

0105

ファージディスプレイにおいては、標的物質と結合しなかったファージを洗浄により除去した後に、標的物質に結合するポリペプチドを提示するファージを溶出し、大腸菌へ感染させ、ファージを増殖させる工程が必要になる。パニングを繰り返す場合であれば、大腸菌への感染及びファージの増殖の工程も繰り返し行う必要がある。しかし、本発明においては、これらの工程を必要としない。パニングを繰り返す場合であっても、標的物質と結合した複合体のmRNAからcDNAを合成し、PCRにより増幅させた後、再び転写・翻訳反応を行なって、mRNA-リボソーム-ポリペプチド三者複合体を作成すればよい。従って、本発明による方法は、ファージディスプレイによる方法よりも迅速にスクリーニングを実施することができる。

0106

目的のポリペプチドを提示する複合体を選択した後、ポリペプチドをコードする核酸の配列を同定することができる。複合体を選択した段階では、ポリペプチドをコードする核酸はmRNAである。このmRNAを鋳型として逆転写酵素によりcDNAを合成し、シーケンサーで塩基配列を読み取ることによって、その塩基配列を決定することができる。これらの手法は公知である。

0107

また、本発明は、次の要素を含む、標的物質と結合するポリペプチドをコードする核酸を単離するためのキットを提供する:
(1)本発明の組成物、及び
(2)標的物質を固定化するための固相担体。

0108

本発明のキットには、固相担体の表面をコーティングするためのブロッキング剤を更に含むことができる。該ブロッキング剤は、好ましくは蛋白質である。

0109

また、本発明のキットには、本発明のリボソームディスプレイを実施する際に用いる核酸のライブラリーを更に含むことができる。

0110

また、本発明のキットには、本発明のリボソームディスプレイを実施する際に用いる標的物質を更に含むことができる。

0111

本発明のキットを用いて、上記本発明のリボソームディスプレイを行うことにより、効率的に標的物質と結合するポリペプチドをコードする核酸を単離することができる。

0112

尚、本発明のキットに関する各用語の定義及び態様は、上述の通りである。

0113

刊行物、特許文献等を含む、本明細書に引用されたすべての参考文献は、引用により、それらが個々に具体的に参考として援用されかつその内容全体が具体的に記載されているのと同程度まで、本明細書に援用される。

0114

以下、実施例を示して本発明をより具体的に説明するが、本発明は以下に示す実施例によって何ら限定されるものではない。

0115

実施例1
蛋白質性因子溶液からのリポ多糖の除去
Reichelt et al., (2006) Protein Expr Purif., vol. 46, p. 483を参考にして、既に精製された蛋白質性の因子からリポ多糖を除去した。具体的には、以下のように行なった。特許4061043号に従って独立に精製したHis-tag付き蛋白質因子0.5〜1 mgを含む溶液を、結合バッファー(50 mM Tris-HCl pH8, 500 mM NaCl, 20 mM imidazole, 7 mM 2-mercaptoethanol)で450 μlに希釈した。希釈した蛋白質溶液に、50% (v/v) Ni-SepharoseFF(GE Healthcare)懸濁液 100 μlを加え、4℃で1時間混合した後、混合液をマイクロバイオスピンカラム(Bio-Rad)に添加した。樹脂を、0.1% TritonX-114を加えた結合バッファー500 μlで10回、結合バッファーで5回洗浄した後、溶出バッファー(50 mM Tris-HCl pH8, 500 mM NaCl, 400 mM imidazole, 7 mM 2-mercaptoethanol)200 μlで蛋白質を溶出した。溶出液を、限外ろ過器(AmiconUltra-0.5(Millipore))で50 μl以下まで濃縮した後、保存バッファー(20 mMHEPES-KOH pH7.6, 100 mM KCl, 7 mM 2-mercaptoethanol, 30% glycerol)450 μlを加え、再度濃縮操作を行った。この操作を4回繰り返して、保存バッファーに置換した。蛋白質濃度を、Bradford法(Protein Assay, Bio-Rad)で決定した。

0116

実施例2
コール酸を用いたリボソームからのリポ多糖の除去(処理A)
特開2008-271903に示されている方法の一部を、以下のように改変して大腸菌からリボソームを調製した。疎水カラムの溶出液に、0.5% (w/v)になるようにコール酸ナトリウムを加えて4℃で1時間反応した後、ショ糖バッファー(20 mMHEPES-KOH pH7.6, 10 mM Mg(OAc)2, 30 mM NH4Cl, 30% sucrose, 7 mM 2-mercaptoethanol)の上に静かにのせ、4℃、100,000xgで一晩遠心してリボソームを沈殿として回収した。沈殿を70S バッファー(20 mM HEPES-KOH pH7.6, 6 mM Mg(OAc)2, 30 mM KCl, 7 mM 2-mercaptoethanol)に溶解し、260 nmでの吸光度を測定してリボソーム溶液の濃度を決定した。

0117

実施例3
TritonX-114を用いたリボソームからのリポ多糖の除去(処理B)
特開2008-271903に示されている方法で大腸菌からリボソームを調製した。調製した約30 μMのリボソーム画分100 μlに、氷冷した1% TritonX-114を加えた70Sバッファーを900 μl加え、穏やかに混合した。5分間放置後、30℃の恒温槽でさらに5分間放置した。白濁した混合液を、室温、20,000xgで5分間遠心し、2層に分離させた。約900 μlの上層を回収し、上に移した後、氷冷した10% TritonX-114を加えた70S バッファー100 μlを加え、穏やかに混合した。氷上で5分間放置後、30℃の恒温槽でさらに5分間放置した。白濁した混合液を、室温、20,000xgで5分間遠心し、2層に分離させた。この操作を合計5回繰り返し、最終的に約800 μlの上層を回収した。回収したリボソームを含む画分を、ショ糖バッファーの上に静かにのせ、4℃、100,000xgで一晩遠心し、リボソームを沈殿として回収した。沈殿を70S バッファーに溶解し、260 nmでの吸光度を測定してリボソーム溶液の濃度を決定した。

0118

実施例4
tRNA混合物からのリポ多糖の除去
市販されている大腸菌のtRNA混合物(Roche社製)をRNaseフリー水に溶解し、260 nmでの吸光度を測定して、約800 A260/mlの濃度のtRNA溶液を調製した。調製したtRNA溶液100 μlに、氷冷した50 mM Tris-HCl pH8、1% TritonX-114溶液900 μlを加え、穏やかに混合した。氷上で5分間放置後、30℃の恒温槽でさらに5分間放置した。白濁した混合液を、室温、20,000xgで5分間遠心し、2層に分離させた。約900 μlの上層を回収し、氷上に移した後、氷冷した50 mM Tris-HCl pH8、10% TritonX-114溶液100 μlを加え、穏やかに混合した。氷上で5分間放置後、30℃の恒温槽でさらに5分間放置した。白濁した混合液を、室温、20,000xgで5分間遠心し、2層に分離させた。この操作を合計5回繰り返し、最終的に約800 μlの上層を回収した。回収した上層から、通常のエタノール沈殿によって、tRNAを沈殿として回収し、RNaseフリー水に溶解した。260 nmでの吸光度を測定してtRNA溶液の濃度を決定した。この操作によるtRNAの回収率は、約80%だった。

0119

実施例5
蛋白質合成反応液の調製
Shimizu et al., (2005) Methods, vol.36, p.299-304に示されている組成及び濃度に従い、TritonX-114で処理した因子を使用して蛋白質合成反応液を調製した。対照として、未処理の因子を混合した合成反応液も同様に調製した。

0120

実施例6
リポ多糖の定量
市販されているエンドトキシン測定試薬(リムルスカラーKYテストワコー、和光純薬)を用い、付属マニュアルに従って、蛋白質因子(図1)、リボソーム(図2)、tRNA(図3)、合成反応液(図4)に混入しているリポ多糖量を測定した。合成反応液のリポ多糖混入量を測定する際には、対照としてPURExpressキット(New England Biolabs)のリポ多糖混入量も測定した。リポ多糖濃度は、測定試薬に付属しているエンドトキシン標準品の濃度をもとに、エンドトキシン単位(EU)で算出した。
その結果、各蛋白質因子(図1)、リボソーム(図2)、tRNA(図3)、及び蛋白質合成反応液(図4)のそれぞれについて、上記操作によりリポ多糖含有量が減少したことが確認された。

0121

実施例7
ジヒドロ葉酸還元酵素(DHFR)の合成
実施例4で調製した蛋白質合成反応液を用い、特許4061043号及びShimizu et al., (2005) Methods, vol.36, p.299-304に従って、大腸菌のDHFR蛋白質を、それをコードするDNAから合成した。合成後の反応液を、それぞれSDS-PAGEにかけた後、ゲルをSyproOrange(Invitrogen)で染色し、蛍光イメージャー(FLA-3000(FujiFilm))で蛋白質のバンドを検出した。
その結果、図5に示すように、リポ多糖除去処理を行った蛋白質合成反応液を用いても、目的蛋白質が合成できることが示された。

0122

実施例8
リボソームディスプレイ
1.リボソームディスプレイ用ドメイン抗体遺伝子の調製
市販のヒトVHドメイン抗体ファージディスプレイライブラリー(Human Domain Antibody Library:DNAFORM)より予め選択した抗Erk2抗体遺伝子をリボソームディスプレイ用に再構築した。すなわち、N末端にFLAGタグ配列を含むFLAG_Dab-F(配列番号1:ATGGACTATAAAGATGACGATGACAAAGGCcaggtgcagctgttggagtctgggggagg)の5’側プライマー、及びC末端にC-Mycタグ配列を含むmyc(E1)His-R(配列番号2:gatggtgacctccgctgccaccgaattccagatcctcttctgagatgagtttttgttc)の3’側プライマーを使用してKOD-Plus- DNA Polymerase (TOYOBO)によるPCR増幅後(変性: 94℃, 10秒、アニーリング: 57℃, 30秒、伸張: 68℃, 60秒、サイクル: 25回)、QIAquickPCRPurification Kit (QIAGEN)を用いて精製した。また、リボソームディスプレイを実施する上で必要となる3’末端にFLAG配列を付加したT7プロモーター及びSD配列を含む5’UTR配列も化学合成した(FASMAC)。
5’UTR(配列番号3:gaaattaatacgactcactatagggagaccacaacggtttccctctagaaataattttgtttaactttaagaaggagatataccaatggactataaagatgacgatgacaaa)
M13ファージのgeneIII(g3p)部分の断片は、M13KO7由来ファージゲノムを鋳型とし、
プライマーg3p(配列番号4:GAATATCAAGGCCAATCGTCTGAC)、及び、
プライマーg3p-SecMstop(配列番号5:CTCGAGTTATTCATTAGGTGAGGCGTTGAGGGCCAGCACGGATGCCTTGCGCCTGGCTTATCCAGACGGGCGTGCTGAATTTTGCGCCGGAAACGTCACCAATGAAAC)
を用いてKOD-Plus- DNA Polymerase (TOYOBO)によってPCR増幅後(変性: 94℃, 10秒、アニーリング: 57℃, 30秒、伸張: 68℃, 60秒、サイクル: 25回)、QIAquick PCR Purification Kit (QIAGEN)を用いて精製した。
合成した5’UTR及び精製した抗Erk2ドメイン抗体遺伝子と g3p遺伝子断片を、それぞれ1 pmolと、5’プライマー(配列番号6:GAAATTAATACGACTCACTATAGGGAGACCACAACGCTTTCCCTCTAG)10 pmol 及び 3’プライマーSecMstop(配列番号7: GGATTAGTTATTCATTAGGTGAGGCGTTGAGG) 10 pmol、KOD-Plus- DNA polymerase 1 μlを反応液に添加し、10 サイクルのPCR 反応(変性: 94℃, 10秒、アニーリング: 57℃, 30秒、伸張: 68℃, 60秒)を実行した。1%アガロースゲルを用いた電気泳動によって、すべての断片がつながった産物のバンドを確認後、目的のバンドを切り出し、MinElute Gel Extraction Kit (QIAGEN)で精製し、リボソームディスプレイ用遺伝子とした。

0123

2.In vitro transcription
精製したリボソームディスプレイ用抗Erk2ドメイン抗体遺伝子 1 μgから、in vitro transcription kit (RiboMAXTM Large Scale RNA Production System-T7 (Promega))を用いてmRNAを合成し、RNeasy mini kit (QIAGEN)で精製した。

0124

3.無細胞蛋白質合成反応液を用いたin vitro translation
実施例4で調製した10 μlの蛋白質合成反応液(tRNAとリボソームのみTritonX-114処理したもの、すべての因子についてリポ多糖除去処理したもの、未処理のもの)に、1 pmolのmRNAと1 μM のリボソームを加え、37℃で30分間インキュベートした。氷冷した反応停止液(50 mM Tris-HCl pH7.5、150 mM NaCl、50 mM Mg(OAc)2、0.5% Tween20、10 mg/ml Saccharomyces cerevisiae total RNA (Sigma))を250 μl加え、反応を停止した。

0125

4.mRNA-リボソーム-蛋白質複合体(リボソームディスプレイ複合体)の精製
FLAG M2担体(5μlスラリー,Sigma)を500 μl Wash緩衝液(50 mM Tris-HCl pH7.5、150 mM NaCl、50 mM Mg(OAc)2、0.5% Tween 20、10 mg/ml Saccharomyces cerevisiae total RNA (Sigma))で2回洗浄後、回収したFLAG M2 担体に翻訳反応液を加え4℃で1時間ローテーションによって攪拌した。MicroSpin(登録商標)カラム(GEヘルスケア社製)によって上清廃棄し、回収したFLAG M2 担体に200 μL のWash緩衝液を加え、4℃で5分ローテーションによって攪拌した。この洗浄操作を10回繰り返した後、100μl FLAG peptide Elution緩衝液(50mM Tris-OAc, pH7.5,150 mM NaCl,50 μg FLAGペプチド(Sigma))を回収したFLAG M2担体に加え、4℃で15分静置した。ここで、リボソームディスプレイ複合体を形成している分子がFLAG peptideによる抗原溶出によってFLAG M2担体から遊離される。MicroSpin(登録商標)カラム(GEヘルスケア社製)によって上清を回収し、リボソームディスプレイ複合体溶液とした。またこのうち1μlをRT-PCR用に-20℃で保存した。

0126

5.In vitro selection
予めDynabeadsMyOne Streptavidin C1磁性体ビーズ(5 μlスラリー、Invitrogen)をBlocking緩衝液(50 mM Tris-HCl pH7.5、150 mM NaCl、15 mM Mg(OAc)2)で希釈した1×ChemiBLOCKER(Millipore)、4% Block ACE(DS Pharma Biomedical) 、0.1% Acetyl化BSA (sigma) のそれぞれ200μlによって4℃で一晩ローテーションによる攪拌によってブロッキングした。ブロッキング済みの磁性体ビーズを500μlのWash緩衝液で3回洗浄し、洗浄済み磁性体ビーズに精製したリボソームディスプレイ複合体を含む溶液を加え4℃で1時間ローテーションによって撹拌した。Magnetic Particle Concentratorを用いて上清を廃棄した後、回収した磁性体ビーズを Wash緩衝液100 μlで洗浄した。この操作を16回繰り返した後、EDTAElution 緩衝液(50 mM Tris-HCl pH7.5、150 mM NaCl、50 mM EDTA)を回収した磁性体ビーズに添加し、室温で15分間静置することで、mRNAを磁性体ビーズから遊離させた。Magnetic Particle Concentratorを用いて上清を回収し、RNeasy MinElute Cleanup kit (QIAGEN)でmRNAを精製した。

0127

6.回収mRNA量の定量
In vitro selection操作後、回収したmRNA溶液1 μl、
プライマーFLAG-(G)(配列番号8:ATGGACTATAAAGATGACGATGACAAAGG)、及び、
プライマーDab_216-97_335R(配列番号9:gacactaatgcctgatacccactctagacc)
とRNA-direct SYBR Green RealtimePCRMaster Mix (TOYOBO)を含む反応液を調製し、LightCycler (Roche)を用いるSYBR Greenアッセイの標準プロコトールに従い、FLAG peptide溶出(実施例7-4)及びEDTA溶出(実施例7-5)によって回収したmRNA量を定量した。図6はリポ多糖除去処理前と処理後における3種類の性質の異なる蛋白質性ブロッキング剤、すなわち、非動物性蛋白質成分からなるChemiBLOCKER、乳蛋白質成分からなるBlock ACE、さらに単一蛋白質からなるAcetly化BSAでブロッキングした磁性体ビーズに非特異的に吸着したバックグラウンドmRNA残存量の比較を示した。なお、縦軸は、磁性体ビーズに非特異的に吸着していたmRNA量とFLAG M2担体によって精製したmRNA-リボソーム-ポリペプチド三者複合体からのmRNA量との比をRNA残存量の相対値として示した。結果として、リポ多糖除去処理前と処理後でChemiBLOCKERの場合約25%、Block ACEおよびAcetyl化BSAの場合で約50%のバックグラウンドの低減が認められた。この結果より、より積極的に蛋白質合成反応液からリポ多糖を除去することで、リボソームディスプレイ複合体の非特異的な蛋白質への吸着が抑制され、効率よくリボソームディスプレイを実施可能であることを示すものである。

実施例

0128

実施例9
ヒト由来細胞への影響
培養細胞に対する影響を、HEK-BlueLPSDetection Kit (Invivogen社)を用いて確認した。この測定キットでは、サンプルにリポ多糖が含まれていると分泌型アルカリホスファターゼが発現する培養細胞を用いて、培地の呈色反応でリポ多糖の混入量を測定することができる。リポ多糖除去処理をしていない因子を混合した蛋白質合成反応液、除去処理をした因子を混合した蛋白質合成反応液、及びNew England Biolabs社製のPURExpressキットの5倍希釈系列をサンプルとして用い、測定キットのマニュアルに従ってリポ多糖の混入量を測定した。リポ多糖除去処理前の蛋白質合成反応液、及び市販キットでは、100,000倍希釈した反応液を添加した場合でも細胞が応答したのに対して、リポ多糖除去処理を行なった反応液では、500倍希釈反応液で細胞の応答がほぼ無くなることが示された(図7)。

0129

本発明によれば、リポ多糖の混入が低減された、無細胞蛋白質合成活性を有する組成物及びこれを用いた蛋白質製造方法が提供される。本発明の組成物及び蛋白質製造方法を用いて、リポ多糖の混入量を低減させた蛋白質を得ることができる。さらに、本発明の組成物及び蛋白質製造方法を用いてリボソームディスプレイを行うと、非特異的結合によるバックグラウンドが低減されるので、高精度かつ高効率で目的とするポリペプチドをコードする核酸を選択することができる。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ