図面 (/)

技術 無機化合物膜のエッチング方法および半導体光素子の製造方法

出願人 住友電気工業株式会社
発明者 辻幸洋
出願日 2010年9月6日 (10年3ヶ月経過) 出願番号 2010-199171
公開日 2012年3月22日 (8年9ヶ月経過) 公開番号 2012-059780
状態 特許登録済
技術分野 半導体のドライエッチング 半導体レーザ
主要キーワード 直流バイアス電界 周期構造パターン 排気量調整バルブ 加工対象面 高周波電磁場 シリコン含有率 シリコン窒化酸化物 無機化合物膜
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2012年3月22日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (12)

課題

反転IL技術を使用した無機化合物膜エッチング方法および半導体光素子の製造方法において、エッチングマスクラインエッジラフネスを向上させる。

解決手段

この方法は、基板生産物30上に形成された絶縁膜25上に樹脂層27を形成したのち、所定パターンを有するモールドを樹脂層27に押し付ける工程と、Siを含む樹脂層28によって樹脂層27を覆ったのち、CF4ガス及び酸素ガスを用いたRIEによって樹脂層28をエッチングして樹脂層27を露出させるエッチバック工程と、樹脂層27を選択的にエッチングして絶縁膜25を露出させる工程と、樹脂層28をマスクとして絶縁膜25をエッチングすることにより、所定パターンを絶縁膜25に形成する工程とを含む。RIEは、自己バイアス印加しながら行うことにより、エッチングにより生じるSi生成物を除去しながら行われる。

概要

背景

特許文献1には、ナノインプリントリソグラフィ(Nanoimprint Lithography;NIL)技術を用いて微細パターンを形成する装置が記載されている。この文献に記載されたNIL技術においては、加工対象である基板上に塗布されたレジストに対し、凹凸による所定パターンを有するモールドの該凹凸を押し付けることによって該所定パターンをレジストに転写することにより、レジストマスクを形成している。

また、非特許文献1には、NIL技術を用いた微細加工方法が記載されている。この微細加工方法においては、加工対象である基板上に第1の樹脂層を形成し、この第1の樹脂層にモールドを押し付けることによって第1の樹脂層に凹凸パターンを転写する。次に、第1の樹脂層を覆うように第2の樹脂層を形成し、第2の樹脂層にエッチバックを施すことによって第1の樹脂層の凸部を露出させる。そして、第1の樹脂層の露出部分を、前記基板の表面に達するまで選択的にエッチングする。

概要

反転NIL技術を使用した無機化合物膜エッチング方法および半導体光素子の製造方法において、エッチングマスクラインエッジラフネスを向上させる。この方法は、基板生産物30上に形成された絶縁膜25上に樹脂層27を形成したのち、所定パターンを有するモールドを樹脂層27に押し付ける工程と、Siを含む樹脂層28によって樹脂層27を覆ったのち、CF4ガス及び酸素ガスを用いたRIEによって樹脂層28をエッチングして樹脂層27を露出させるエッチバック工程と、樹脂層27を選択的にエッチングして絶縁膜25を露出させる工程と、樹脂層28をマスクとして絶縁膜25をエッチングすることにより、所定パターンを絶縁膜25に形成する工程とを含む。RIEは、自己バイアス印加しながら行うことにより、エッチングにより生じるSi生成物を除去しながら行われる。

目的

本発明は、このような問題点に鑑みてなされたものであり、反転NIL技術を使用した無機化合物膜のエッチング方法および半導体光素子の製造方法において、エッチングマスクのラインエッジラフネスを向上させることを目的とする

効果

実績

技術文献被引用数
0件
牽制数
1件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

基板上に設けられた無機化合物膜エッチングして所定のパターンを形成する方法であって、前記無機化合物膜上に第1の樹脂層を形成したのち、前記所定のパターンを有するモールドを前記第1の樹脂層に押し付けることにより、前記所定のパターンの反転パターンを前記第1の樹脂層に形成するインプリント工程と、シリコンを含み、前記第1の樹脂層に対してエッチング選択性を有する第2の樹脂層によって前記第1の樹脂層を覆ったのち、CF4ガス及び酸素ガスを含むエッチングガスを用いた反応性イオンエッチングによって前記第2の樹脂層をエッチングすることにより前記第1の樹脂層を露出させるエッチバック工程と、前記第1の樹脂層を選択的にエッチングして前記無機化合物膜を露出させるブレイクスルーエッチング工程と、前記第2の樹脂層をマスクとして前記無機化合物膜をエッチングすることにより、前記所定のパターンを前記無機化合物膜に形成するパターン形成工程とを備え、前記エッチバック工程の際の前記反応性イオンエッチングは、自己バイアス印加しながら行うことにより、前記第2の樹脂層のエッチングと合わせて、エッチングにより生じるSi生成物を除去しながら行われることを特徴とする、無機化合物膜のエッチング方法

請求項2

前記エッチバック工程の際に、前記第2の樹脂層をエッチングするための前記反応性イオンエッチングにおいて印加される自己バイアス電圧の絶対値を130V以上とすることを特徴とする、請求項1に記載の無機化合物膜のエッチング方法。

請求項3

前記エッチバック工程の際に、前記CF4ガスの流量FLCF4と前記酸素ガスの流量FLO2との比(FLCF4/FLO2)を5以上10以下とすることを特徴とする、請求項1または2に記載の無機化合物膜のエッチング方法。

請求項4

前記エッチバック工程後の前記第2の樹脂層の表面粗さの最大高さRmaxが6nm以下であることを特徴とする、請求項1〜3のいずれか一項に記載の無機化合物膜のエッチング方法。

請求項5

前記ブレイクスルーエッチング工程後の前記第1の樹脂層のラインエッジラフネスが10nm以下であることを特徴とする、請求項1〜4のいずれか一項に記載の無機化合物膜のエッチング方法。

請求項6

回折格子を有する半導体光素子の製造方法であって、前記回折格子のための半導体層を基板上に成長させる半導体層成長工程と、前記半導体層上に絶縁膜を形成する絶縁膜形成工程と、前記絶縁膜上に第1の樹脂層を形成したのち、前記回折格子のパターンを有するモールドを前記第1の樹脂層に押し付けることにより、前記回折格子のパターンの反転パターンを前記第1の樹脂層に形成するインプリント工程と、シリコンを含み、前記第1の樹脂層に対してエッチング選択性を有する第2の樹脂層によって前記第1の樹脂層を覆ったのち、CF4ガス及び酸素ガスを含むエッチングガスを用いた反応性イオンエッチングによって前記第2の樹脂層をエッチングすることにより前記第1の樹脂層を露出させるエッチバック工程と、前記第1の樹脂層を選択的にエッチングして前記絶縁膜を露出させるブレイクスルーエッチング工程と、前記第2の樹脂層をマスクとして前記絶縁膜をエッチングすることにより、前記回折格子のパターンを前記絶縁膜に形成するパターン形成工程と、前記絶縁膜をマスクとして前記半導体層をエッチングすることにより前記回折格子を形成する回折格子形成工程とを備え、前記エッチバック工程の際の前記反応性イオンエッチングは、自己バイアスを印加しながら行うことにより、前記第2の樹脂層のエッチングと合わせて、エッチングにより生じるSi生成物を除去しながら行われることを特徴とする、半導体光素子の製造方法。

請求項7

前記エッチバック工程の際に、前記第2の樹脂層をエッチングするための前記反応性イオンエッチングにおいて印加される自己バイアス電圧の絶対値を130V以上とすることを特徴とする、請求項6に記載の半導体光素子の製造方法。

技術分野

0001

本発明は、無機化合物膜エッチング方法および半導体光素子の製造方法に関するものである。

背景技術

0002

特許文献1には、ナノインプリントリソグラフィ(Nanoimprint Lithography;NIL)技術を用いて微細パターンを形成する装置が記載されている。この文献に記載されたNIL技術においては、加工対象である基板上に塗布されたレジストに対し、凹凸による所定パターンを有するモールドの該凹凸を押し付けることによって該所定パターンをレジストに転写することにより、レジストマスクを形成している。

0003

また、非特許文献1には、NIL技術を用いた微細加工方法が記載されている。この微細加工方法においては、加工対象である基板上に第1の樹脂層を形成し、この第1の樹脂層にモールドを押し付けることによって第1の樹脂層に凹凸パターンを転写する。次に、第1の樹脂層を覆うように第2の樹脂層を形成し、第2の樹脂層にエッチバックを施すことによって第1の樹脂層の凸部を露出させる。そして、第1の樹脂層の露出部分を、前記基板の表面に達するまで選択的にエッチングする。

0004

特開2000−323461号広報

先行技術

0005

M.Miller, et. al., “Fabrication of Nanometer Sized Features on Non-FlatSubstrate Using a Nano-Imprint Lithography Process”, Proc. SPIE5751,994,pp.995-998, (2005)

発明が解決しようとする課題

0006

NIL技術は、例えばDFBレーザ素子の製造において、位相シフトを含む回折格子構造チャープ型回折格子構造を形成する際に好適に使用される。この回折格子構造は、200nm〜240nm程度の周期で、20〜50nm程度の深さの周期的な凹凸構造を含む。しかし、DFBレーザ素子の基板としてInP基板等の化合物半導体基板を使用する場合、化合物半導体基板の表面の平坦度は他種の半導体基板、例えばSi基板と比較して低いので、樹脂層にモールドを押し付けてパターンを転写すると、樹脂層の残膜の厚さにばらつきが生じる。この化合物半導体基板の表面の平坦度に起因する樹脂層の残膜の厚さのばらつきの課題は、上記のような微細パターンを含む回折格子構造を形成する際に無視することはできない。例えば、樹脂層の残膜の厚さにばらつきが生じた場合、残膜が比較的薄い領域のパターンが消失してしまい、所望の回折格子パターンを形成することが難しい。

0007

そこで、このような場合には、非特許文献1に記載されたようないわゆる反転NIL技術が用いられる。この技術によれば、加工対象面が露出するまで第1の樹脂層をエッチングできるので、基板の平坦度にかかわらず、回折格子構造のためのエッチングマスクを好適に形成できる。

0008

しかしながら、このような反転NIL技術において、本発明者は次の課題を見い出した。すなわち、第1の樹脂と第2の樹脂とのエッチング選択性を十分に確保するための一つの方法として、第1の樹脂としてシリコン(Si)非含有樹脂を使用し、第2の樹脂としてSi含有樹脂を使用する方法がある。しかし、反転NIL技術ではこの選択エッチングの前工程としてSi含有樹脂の全面をエッチング(エッチバック)する必要があるが、Si含有樹脂を均一にエッチングすることは難しいので、第1の樹脂の露出部分と第2の樹脂との境界線が歪み、エッチングマスクのラインエッジラフネスが悪化してしまう。これにより、例えばDFBレーザ素子においてはその出力特性個体差が生じ、製造歩留まりが低下してしまう。

0009

本発明は、このような問題点に鑑みてなされたものであり、反転NIL技術を使用した無機化合物膜のエッチング方法および半導体光素子の製造方法において、エッチングマスクのラインエッジラフネスを向上させることを目的とする。

課題を解決するための手段

0010

上述した課題を解決するために、本発明による無機化合物膜のエッチング方法は、基板上に設けられた無機化合物膜をエッチングして所定のパターンを形成する方法であって、無機化合物膜上に第1の樹脂層を形成したのち、所定のパターンを有するモールドを第1の樹脂層に押し付けることにより、所定のパターンの反転パターンを第1の樹脂層に形成するインプリント工程と、シリコンを含み、第1の樹脂層に対してエッチング選択性を有する第2の樹脂層によって第1の樹脂層を覆ったのち、CF4ガス及び酸素ガスを含むエッチングガスを用いた反応性イオンエッチングによって第2の樹脂層をエッチングすることにより第1の樹脂層を露出させるエッチバック工程と、第1の樹脂層を選択的にエッチングして無機化合物膜を露出させるブレイクスルーエッチング工程と、第2の樹脂層をマスクとして無機化合物膜をエッチングすることにより、所定のパターンを無機化合物膜に形成するパターン形成工程とを備え、エッチバック工程の際の反応性イオンエッチングは、自己バイアス印加しながら行うことにより、第2の樹脂層のエッチングと合わせて、エッチングにより生じるSi生成物を除去しながら行われることを特徴とする。

0011

また、無機化合物膜のエッチング方法は、エッチバック工程の際に、第2の樹脂層をエッチングするための反応性イオンエッチングにおいて印加される自己バイアス電圧の絶対値を130V以上とすることを特徴としてもよい。

0012

また、無機化合物膜のエッチング方法は、エッチバック工程の際に、CF4ガスの流量FLCF4と酸素ガスの流量FLO2との比(FLCF4/FLO2)を5以上10以下とすることを特徴としてもよい。

0013

また、無機化合物膜のエッチング方法は、エッチバック工程後の第2の樹脂層の表面粗さの最大高さRmaxが6nm以下であることを特徴としてもよい。

0014

また、無機化合物膜のエッチング方法は、ブレイクスルーエッチング工程後の第1の樹脂層のラインエッジラフネスが10nm以下であることを特徴としてもよい。

0015

また、本発明による半導体光素子の製造方法は、回折格子を有する半導体光素子の製造方法であって、回折格子のための半導体層を基板上に成長させる半導体層成長工程と、半導体層上に絶縁膜を形成する絶縁膜形成工程と、絶縁膜上に第1の樹脂層を形成したのち、回折格子のパターンを有するモールドを第1の樹脂層に押し付けることにより、回折格子のパターンの反転パターンを第1の樹脂層に形成するインプリント工程と、シリコンを含み、第1の樹脂層に対してエッチング選択性を有する第2の樹脂層によって第1の樹脂層を覆ったのち、CF4ガス及び酸素ガスを含むエッチングガスを用いた反応性イオンエッチングによって第2の樹脂層をエッチングすることにより第1の樹脂層を露出させるエッチバック工程と、第1の樹脂層を選択的にエッチングして絶縁膜を露出させるブレイクスルーエッチング工程と、第2の樹脂層をマスクとして絶縁膜をエッチングすることにより、回折格子のパターンを絶縁膜に形成するパターン形成工程と、絶縁膜をマスクとして半導体層をエッチングすることにより回折格子を形成する回折格子形成工程とを備え、エッチバック工程の際の反応性イオンエッチングは、自己バイアスを印加しながら行うことにより、第2の樹脂層のエッチングと合わせて、エッチングにより生じるSi生成物を除去しながら行われることを特徴とする。

0016

また、半導体光素子の製造方法は、エッチバック工程の際に、第2の樹脂層をエッチングするための反応性イオンエッチングにおいて印加される自己バイアス電圧の絶対値を130V以上とすることを特徴としてもよい。

発明の効果

0017

本発明によれば、反転NIL技術を使用した無機化合物膜のエッチング方法および半導体光素子の製造方法において、エッチングマスクのラインエッジラフネスを向上させることができる。

図面の簡単な説明

0018

図1は、本発明の一実施形態に係る半導体光素子の製造方法によって製造される半導体光素子の構成を示す断面図である。
図2は、DFBレーザ素子の製造方法を示す図である。
図3は、エッチングマスクの形成方法(無機化合物膜のエッチング方法)を説明するための図である。
図4は、エッチングマスクの形成方法(無機化合物膜のエッチング方法)を説明するための図である。
図5は、本実施形態において用いられるエッチング装置を模式的に示す構成図(一部断面図)である。
図6は、従来の反転NIL技術の課題を説明するための図である。
図7は、従来の反転NIL技術の課題を説明するための図である。
図8は、従来の反転NIL技術の課題を説明するための図である。
図9は、図9は、エッチバック工程における自己バイアス電圧と、エッチングレート及びアンダーカットとの関係を示すグラフである。
図10は、本実施形態による効果を説明するための図である。
図11は、本実施形態による効果を説明するための図である。

実施例

0019

以下、添付図面を参照しながら本発明による無機化合物膜のエッチング方法および半導体光素子の製造方法の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。

0020

図1は、本発明の一実施形態に係る半導体光素子の製造方法によって製造される半導体光素子の構成を示す断面図である。図1には、半導体光素子の一例として、DFBレーザ素子1Aが示されている。このDFBレーザ素子1Aは、半導体基板2、下部クラッド層3、下部光閉じ込め層4、活性層5、回折格子層(上部光閉じ込め層)6、埋込領域7a及び7b、上部クラッド層8、コンタクト層9、アノード電極21、並びにカソード電極22を備える。

0021

半導体基板2は、第1導電型(例えばn型)の半導体基板であり、例えばSn(錫)がドープされたInP基板等のIII−V族化合物半導体基板である。下部クラッド層3は、半導体基板2上の全面に設けられている。下部クラッド層3は、第1導電型の半導体層であり、例えばSiがドープされたInP等のIII−V族化合物半導体からなる。下部光閉じ込め層4は、下部クラッド層3上の一部の領域(光導波方向に沿ったストライプ状の領域)上に設けられている。下部光閉じ込め層4は、アンドープ半導体層であり、例えばGaInAsP等のIII−V族化合物半導体からなる。活性層5は、下部光閉じ込め層4上に設けられている。活性層5は、例えば、MQW多重量子井戸)構造やSQW(単一量子井戸)構造を有する。活性層5は、例えば、GaInAsPやAlGaInAs等のIII−V族化合物半導体からなる。回折格子層6は、活性層5上に設けられている。回折格子層6は、第2導電型(第1導電型がn型の場合、p型)の半導体層であり、例えば、ZnがドープされたGaInAsP等のIII−V族化合物半導体からなる。回折格子層6の上面には、所定の周期でもって形成された凹凸からなる回折格子(図1では図示しない)が形成されている。

0022

下部光閉じ込め層4、活性層5、及び回折格子層6は、所定の光導波方向に延びるメサストライプ構造20を構成している。メサストライプ構造20は、一対の側面20a及び20bを有する。埋込領域7a及び7bは、メサストライプ構造20の両側面20a,20bをそれぞれ埋め込む。埋込領域7aは、下部クラッド層3上に設けられたp型InP層71と、p型InP層71上に設けられたn型InP層72とを含む。同様に、埋込領域7bは、下部クラッド層3上に設けられたp型InP層73と、p型InP層73上に設けられたn型InP層74とを含む。埋込領域7a及び7bは、DFBレーザ素子1Aに供給された電流を、メサストライプ構造20に集中させるための電流ブロック領域である。

0023

上部クラッド層8は、メサストライプ構造20上及び埋込領域7a及び7b上に設けられている。上部クラッド層8は、第2導電型の半導体層であり、例えばZnがドープされたInP等のIII−V族化合物半導体からなる。上部クラッド層8の屈折率は回折格子層6の屈折率より小さくなっており、上部クラッド層8の構成材料は、回折格子層6の上面に形成された回折格子のための凹凸を埋め込んでいる。

0024

コンタクト層9は、上部クラッド層8上に設けられている。コンタクト層9は、第2導電型の半導体層であり、例えばZnが高濃度にドープされたGaInAs等のIII−V族化合物半導体からなる。コンタクト層9の上にはアノード電極21が設けられており、コンタクト層9は、このアノード電極21とオーミック接触を成している。なお、カソード電極22は半導体基板2の裏面上に設けられており、カソード電極22と半導体基板2とは互いにオーミック接触を成している。

0025

ここで、上述したDFBレーザ素子1Aの製造方法について説明する。図2(a)〜図2(c)は、DFBレーザ素子1Aの製造方法を示す図である。なお、図2(a)〜図2(c)は、光導波方向に沿った側断面(すなわち、図1に対して垂直な側断面)を示している。

0026

まず、図2(a)に示されるように、半導体基板2上に下部クラッド層3、下部光閉じ込め層4、活性層5をエピタキシャル成長させる。次に、回折格子のための半導体層23を半導体基板2上(本実施形態では活性層5上)にエピタキシャル成長させる(半導体層成長工程)。半導体層23は、第2導電型の半導体からなり、例えば、ZnがドープされたGaInAsP等のIII−V族化合物半導体からなる。なお、以下の説明において、半導体基板2、下部クラッド層3、下部光閉じ込め層4、活性層5、及び半導体層23からなる生産物を、基板生産物30ということがある。

0027

次に、回折格子のためのエッチングマスク24を半導体層23に形成する。本実施形態のエッチングマスク24は、例えばSiO2といった絶縁膜からなる。このエッチングマスク24には、回折格子の凹部に対応する開口が所定の周期でもって形成されている。例えば、DFBレーザ素子1Aが光通信に用いられる場合、回折格子の好適な周期は200nm〜240nmである。

0028

続いて、図2(b)に示されるように、エッチングマスク24を介して半導体層23のエッチングを行うことにより、20〜50nm程度の深さの周期的な凹凸を有する回折格子を形成する(回折格子形成工程)。このとき、例えば酸性溶液を用いたウェットエッチング、若しくはCH4ガス及びH2ガスを含むエッチングガスを用いたドライエッチング(反応性イオンエッチング)のいずれかによってエッチングを行うことができる。この工程によって、回折格子6aのための凹凸を上面に有する回折格子層6が形成される。

0029

続いて、エッチングマスク24を除去したのち、図2(c)に示されるように、上部クラッド層8の一部となる半導体層8aを回折格子層6上に成長させる。このとき、例えば有機金属気相成長法によって半導体層8aを成長させるとよい。

0030

この工程の後、メサストライプ構造20の平面形状に応じたエッチングマスクを半導体層8a上に形成し、下部光閉じ込め層4、活性層5、及び回折格子層6のうちエッチングマスクに覆われていない部分を除去することによってメサストライプ構造20を形成する。そして、エッチングマスクを残したまま、メサストライプ構造20を除く領域にp型InP層71及び73を成長させ、その上にn型InP層72及び74を成長させることによって、埋込領域7a及び7bを形成する。その後、メサストライプ構造20上及び埋込領域7a及び7b上に上部クラッド層8の残りの部分を成長させ、次いでコンタクト層9を成長させ、最後にアノード電極21及びカソード電極22を形成することによって、DFBレーザ素子1Aが完成する。

0031

一般的に、図2(a)及び図2(b)に示されたエッチングマスク24の形成には、二光束干渉露光法電子線描画法が使用される。しかし、本実施形態では、例えば位相シフトの導入といった回折格子パターンの自在性やエッチングマスク形成時間の短縮の為、ステップアンドリピート方式による光ナノインプリント法を使用してエッチングマスク24を形成する。以下、本実施形態によるエッチングマスク24の形成方法(すなわち、無機化合物膜のエッチング方法)について説明する。

0032

図3及び図4は、本実施形態によるエッチングマスク24の形成方法(無機化合物膜のエッチング方法)を説明するための図である。

0033

まず、図3(a)に示されるように、基板生産物30上(すなわち、図2(a)に示された半導体層23上)に、例えばプラズマ気相成長法によって、無機化合物膜である絶縁膜25を形成する(絶縁膜形成工程)。絶縁膜25の厚さは、例えば、20nm〜50nmとすることができる。絶縁膜25を構成する材料としては、例えば、酸化シリコン(SiO2)等のシリコン酸化物窒化シリコン(SiN)等のシリコン窒化物窒化酸化シリコン(SiON)等のシリコン窒化酸化物を用いることができる。

0034

次に、図3(b)に示されるように、絶縁膜25の上に密着層26を形成する。密着層26は、後述する第1の樹脂層27と絶縁膜25との密着性を高めるための層である。密着層26の形成は、絶縁膜25の表面にスピン塗布法を用いて樹脂材料を塗布することによって行う。密着層26の樹脂材料としては、例えばノボラック樹脂が好適である。密着層26の厚さは、例えば50nm以上80nm以下とすることができる。

0035

続いて、図3(c)に示されるように、密着層26上に第1の樹脂層27を形成する。本実施形態の第1の樹脂層27は、シリコンを実質的に含まない樹脂(シリコン非含有樹脂)からなる。第1の樹脂層27の形成は、例えば、密着層26の表面上にシリコン非含有樹脂27aを滴下し、スピン塗布法を用いてシリコン非含有樹脂27aを密着層26の表面上に塗布することによって行うことができる。シリコン非含有樹脂27aとしては、例えば、アクリルUV硬化樹脂等のシリコンを実質的に含まないUV硬化樹脂が好適である。ここで、第1の樹脂層27のシリコン含有率が0.1原子%以下であれば、第1の樹脂層27はシリコンを実質的に含まないとみなすことができる。

0036

第1の樹脂層27の厚さは、半導体基板2の主面の凹凸に起因して生じる絶縁膜25の表面の凹凸を補償できる厚さ、即ち、絶縁膜25の表面のRMS(二乗平均根)粗さ以上の厚さとすることが好ましい。一般に、半導体基板2の主面の凹凸に起因して生じる絶縁膜25の表面のRMS粗さは、ほぼ半導体基板2の主面の凹凸のRMS粗さと同程度であり、例えば0.3μm程度である。

0037

次に、図3(d)に示されるように、図2(c)に示された回折格子6aのパターン(ラインアンドスペースパターン)に応じた凹凸を有するモールドMを第1の樹脂層27に押し付けることによって第1の樹脂層27をパターニングすることにより、回折格子6aの周期構造パターンの反転パターンに応じた凹凸を第1の樹脂層27の表面に形成する(インプリント工程)。そして、この状態で紫外光UVを照射する。紫外光UVは、モールドMを透過して第1の樹脂層27に達する。これにより、第1の樹脂層27が上記反転パターンを保ったまま硬化する。

0038

続いて、図4(a)に示されるように、第1の樹脂層27からモールドMを引き離す。そして、図4(b)に示されるように、第2の樹脂層28によって第1の樹脂層27を覆う。第2の樹脂層28は、第1の樹脂層27に対してエッチング選択性を有するシリコン含有樹脂からなる。このようなシリコン含有樹脂としては、例えば有機シリコン化合物が好適である。また、第2の樹脂層28は、例えばSiをモル濃度比で20%含有する。第2の樹脂層28の形成は、例えば、第1の樹脂層27上にスピン塗布法を用いてシリコン含有樹脂を塗布することによって行うことができる。

0039

続いて、図4(c)に示されるように、第1の樹脂層27が有する反転パターンの凸部表面が露出するまで第2の樹脂層28をエッチングする(エッチバック工程)。これにより、第2の樹脂層28は、第1の樹脂層27の反転パターンの凹部にのみ残存することとなり、回折格子6aの周期構造に対応した周期構造パターンが得られる。なお、第2の樹脂層28が有する周期構造パターンの周期は、図2に示された回折格子6aの周期と略同一である。

0040

このエッチバック工程における第2の樹脂層28のエッチングは、CF4ガス及びO2ガスを含むエッチングガスを用いた反応性イオンエッチング法(Reactive Ion Etching;RIE)によって行われる。ここで、このエッチバック工程、及び、以下の反応性イオンエッチング法によるエッチングが行われる工程において使用される反応性イオンエッチング装置の例について説明する。

0041

図5は、本実施形態において用いられるエッチング装置を模式的に示す構成図(一部断面図)である。図5に示されるエッチング装置10は、その内部に誘導結合プラズマ(Inductively Coupled Plasma;ICP)を発生させるための真空チャンバ13を備えている。この真空チャンバ13の内部には、エッチング対象試料12が載置されるサセプタ11が設けられている。また、真空チャンバ13は、ガス導入口Kin、ガス排出口Kout、及び高周波導入窓14を有している。

0042

ガス導入口Kinは、CF4ガス及びO2ガスを含むエッチングガスを真空チャンバ13内に導入するための開口部である。このガス導入口Kinには、各ガスの供給源及びそれらの個々に接続された質量流コントローラーMFC)を有するガス導入系G(ガス供給部)が接続されている。また、ガス排出口Koutは、真空チャンバ13内のガスを排気するための開口部である。このガス排出口Koutには、ターボポンプ及び排気コンダクタンスを調整する排気量調整バルブを含む図示しない排気系が接続されている。

0043

さらに、サセプタ11は、図示しないヒータを内蔵する。サセプタ11には、冷却材循環パイプ110が接続されている。これらにより、サセプタ11が所望の一定温度に加熱保持され、或いは所望の一定温度以下に冷却維持される。また、サセプタ11には、サセプタ11にバイアス用の高周波電力を印加するための高周波電源17(バイアス出力電源)がインピーダンス整合器マッチングネットワーク)16を介して接続されている。真空チャンバ13の上壁を成す高周波導入窓14は、誘電体からなり、真空チャンバ13外に設置された誘導コイル15(高周波誘導コイル)により発生した高周波電磁場を真空チャンバ13内へと透過させる。誘導コイル15には、誘導コイル15に高周波電力を印加するための高周波電源19(ICP出力用電源)がインピーダンス整合器18を介して接続されている。高周波電源17,19は、それぞれ所定の同電位接地されている。

0044

また、ガス導入系Gの各MFC、及び高周波電源17,19には、制御系100(制御部)が接続されている。制御系100は、各MFCの流量調整弁開度、及び高周波電源17,19の出力を独立に制御するためのものであり、それぞれの運転条件が予め入力又は記憶されており、又は入力手段(図示せず)によって適宜入力される。

0045

エッチング対象試料12をエッチングする際には、サセプタ11に自己バイアス電圧(サセプタ11側がマイナス)を印加すると共に誘導コイル15にICP電圧を印加した状態で、真空チャンバ13内にエッチングガスの成分となるガス(例えば、CF4ガス及びO2ガス)を供給する。エッチングガスは、誘導コイル15の作用によりプラズマ化してICPとなる。このように生成したICP内のイオンは、自己バイアス電圧に応じて真空チャンバ13内に生成された直流バイアス電界によって加速され、エッチング対象試料12に衝突する。また、ICP内のラジカルは、拡散によって広がり、エッチング対象試料12に到達する。このようなイオン及びラジカルによって、エッチング対象試料12はエッチングされる。

0046

本実施形態では、このようなエッチング装置10を用いて第2の樹脂層28のエッチバックを行う。なお、エッチバック工程では、第2の樹脂層28の全面を平坦にエッチングするので、従来の考え方によれば、自己バイアス電圧を低くする(すなわち、等方性エッチングに近づける)のが通常である。しかしながら、本実施形態では、後述する作用によって第2の樹脂層28のエッチング後の表面を平坦にするために、自己バイアス電圧の絶対値を通常より大きい所定値(例えば130V)以上とする。

0047

また、このエッチバック工程において、CF4ガスの流量FLCF4とO2ガスの流量FLO2との比(FLCF4/FLO2)を5以上10以下とすることが好ましい。この比(FLCF4/FLO2)が5以上であることによって、第2の樹脂層28に含まれるSiの酸化を抑え、第2の樹脂層28の表面の荒れを抑制することができる。また、この比(FLCF4/FLO2)が10以下であることによって、第1の樹脂層27に形成されるエッチング溝の底面にSiF4が過剰に堆積することを十分に抑制することができるので、このようなSiF4によって第1の樹脂層27のエッチングが阻害されることを十分に抑制することができる。

0048

続いて、図5(d)に示されるように、第1の樹脂層27を選択的にエッチングして絶縁膜25を露出させる(ブレイクスルーエッチング工程)。具体的には、第2の樹脂層28をマスクとして第1の樹脂層27をエッチングすることにより、絶縁膜25の表面の一部を露出させる。本実施形態では、第2の樹脂層28がSiを含んでおり、第1の樹脂層27がSiを含んでいないので、エッチングガスとしてO2ガスを用いることにより、第1の樹脂層27を選択的にエッチングすることができる。なお、本実施形態では第1の樹脂層27と絶縁膜25との間に密着層26が存在するので、第1の樹脂層27と共に密着層26もエッチングされる。これにより、第1の樹脂層27は、回折格子6aの周期構造に対応した周期構造パターンを有するようにパターニングされる。

0049

以上の工程ののち、第1の樹脂層27及び第2の樹脂層28をマスクとして絶縁膜25のエッチングを行うことにより、回折格子6aのパターンを絶縁膜25に形成する(パターン形成工程)。なお、このエッチングは、例えば反応性イオンエッチング法によって行われる。この際、CF4ガス及びO2ガスを含むエッチングガスが好適に用いられる。また、絶縁膜25のエッチングの後、第2の樹脂層28は残存していてもよいし、全てエッチングされてもよい。

0050

以上の工程を経て、図2(a)に示されたようなエッチングマスク24が好適に形成される。

0051

本実施形態によるDFBレーザ素子1Aの製造方法および無機化合物膜のエッチング方法によって得られる作用効果について、従来の方法における課題とともに説明する。図6図8は、従来の反転NIL技術の課題を説明するための図である。

0052

反転NIL技術のエッチバック工程においては、例えばCF4ガス及びO2ガスを含むエッチングガスを用いて、シリコン含有樹脂のエッチングが行われる。この場合、シリコン含有樹脂の炭素成分は、C+O2→CO2という反応によって炭酸ガスとして揮発し除去される。また、シリコン成分は、Si+O2→SiO2という反応によって一旦酸化し、その後、SiO2+CF4→SiF4+CO2という反応によって揮発し、除去される。しかし、本発明者の知見によれば、例えば非特許文献1に記載されたような従来の反転NIL技術においては、シリコン含有樹脂のSi成分の一部が酸化されずに残存してしまう。そして、残存したSi生成物が核となってエッチングを阻害することにより、エッチバック後のシリコン含有樹脂層の表面高さが不均一となってしまう。

0053

図6は、このような従来の方法におけるエッチバック工程の様子を示す断面図である。図6(a)は工程の途中の状態を示しており、図6(b)は工程が終了した状態を示している。図6には、半導体基板生産物100(本実施形態の基板生産物30に相当)、絶縁膜101(絶縁膜25に相当)、密着層102(密着層26に相当)、シリコン非含有樹脂層103(第1の樹脂層27に相当)、及びシリコン含有樹脂層104(第2の樹脂層28に相当)が示されている。

0054

図6(a)に示されるように、シリコン含有樹脂層104のエッチバックが進行するに従って、酸化されずに残存したSi生成物による核105がシリコン含有樹脂層104の表面に多数生成される。この核105がシリコン含有樹脂層104のエッチングを阻害するので、図6(b)に示されるように、エッチバック工程後におけるシリコン含有樹脂層104の幅W1にばらつきが生じることとなる。その結果、エッチバック工程の後に行われるブレイクスルーエッチング工程において、図7に示されるように、シリコン非含有樹脂層103および密着層102の幅W2にばらつきが生じ、回折格子のための周期構造パターンを正確に形成することが困難となる。なお、図中の破線は、回折格子のための本来の周期構造パターンを示している。

0055

また、図8は、図7に示されたシリコン非含有樹脂層103および密着層102の平面形状の一例を概略的に示す図である。図8に示されるように、シリコン非含有樹脂層103および密着層102の幅にばらつきが生じると、周期構造パターンのラインエッジラフネスが悪化し、その平面形状において変動幅が数十ナノメートルとなる凹凸が生じてしまう。例えば、DFBレーザ素子のために設けられる回折格子の周期は、200nm〜240nm程度である。この回折格子に周期は、DFBレーザ素子の発振波長を決定するものであるから、非常に高い精度で均一に形成する必要がある。具体的には、回折格子の周期の変動ばらつきとしては、回折格子の周期の1%以下(数ナノメートル)にする必要がある。回折格子に周期にばらつきが生じると、DFBレーザ素子の発振波長にばらつきが生じたり、或いは、単一波長での発振が困難となり複数の波長での発振が生じるといった不具合が生じるからである。仮にパターンの幅が数マイクロメートルであれば、数十ナノメートルの凹凸があっても線幅の変動が小さいので問題にはならないが、このように、回折格子パターンのような数ナノメートルの精度で線幅を実現する必要がある場合には、数十ナノメートルの線幅の変動は問題となる。

0056

なお、このような問題が生じるRIE条件を例示すると、以下の通りである。なお、単位sccmは標準状態での立法センチメートル毎分を意味し、1sccm=1.69×10−4Pa・m3・sec−1で換算される。
ICPパワー:150W
バイアスパワー:10W
CF4ガス流量:50sccm
O2ガス流量:5sccm
プロセス圧力:4Pa

0057

そこで、本発明者は、このような問題点を解決するために研究を重ねた結果、エッチバック工程におけるRIEの自己バイアス電圧と、周期構造パターンのラインエッジラフネスとの間に相関があることを見出した。図9は、エッチバック工程における自己バイアス電圧と、エッチングレート及びアンダーカットとの関係を示すグラフである。図中において、グラフG1はエッチングレートと自己バイアス電圧との関係を示しており、グラフG2はアンダーカットと自己バイアス電圧との関係を示している。

0058

図9に示されるように、自己バイアス電圧の絶対値が100Vより小さい範囲では、シリコン含有樹脂のエッチングレートは毎分5nm程度と遅く、自己バイアス電圧にも依存していない。これは、上述したように、エッチング中にSi生成物による核105がシリコン含有樹脂中に生じ、シリコン含有樹脂のエッチングを阻害することに因ると考えられる。また、このような阻害作用によって、アンダーカットは最大で50nm程度とかなり大きくなっている。

0059

これに対し、自己バイアス電圧の絶対値が100V以上になると、この自己バイアス電圧により発生する大きな電界によって、半導体基板にイオンが引き込まれる。これにより、シリコン含有樹脂に対する物理的なエッチング(異方性エッチング若しくはスパッタリング)の作用が強くなる。そして、Si生成物による核105は、イオンとの衝突によって除去されることができる。その結果、自己バイアス電圧の絶対値が130V以上となる範囲では、化学的なエッチング(等方性エッチング)の作用と物理的なエッチング(異方性エッチング)の作用とが共に生じ、自己バイアス電圧が大きいほど物理的なエッチングの作用が強くなるので、エッチングレートが自己バイアス電圧に依存することとなる(図9のグラフG1を参照)。また、エッチング中にSi生成物による核105がシリコン含有樹脂に残らないので、エッチバック工程後におけるシリコン含有樹脂の表面は平坦となる。したがって、アンダーカットは0nmに近づく。なお、自己バイアス電圧の絶対値が200Vを超える範囲では、物理的なエッチング作用によってシリコン含有樹脂がダメージを受けるので、エッチングされにくい変質層が形成され、エッチングレートは飽和する。

0060

図10(a)は、本実施形態におけるエッチバック工程後の第1及び第2の樹脂層27,28の状態を示している。また、図10(b)は、本実施形態におけるブレイクスルーエッチング工程後の第1及び第2の樹脂層27,28の状態を示している。本実施形態では、エッチバック工程のRIEにおける自己バイアス電圧の絶対値を130V以上としているので、第2の樹脂層28のエッチング中に上述したようなSi生成物による核はほとんど生じない。したがって、図10(a)に示されるように、エッチバック工程後の第2の樹脂層28の表面はきわめて平坦となり、その表面粗さの最大高さRmaxを、例えば6nm以下とすることができる(従来は60nm程度)。また、これにより、第2の樹脂層28の幅W3が均一になる。

0061

続くブレイクスルーエッチング工程において、このように平坦で均一な幅の第2の樹脂層28をマスクとして第1の樹脂層27をエッチングすることにより、図10(b)に示されるように、第1の樹脂層27および密着層26の幅W4が均一となり、回折格子6aのための周期構造パターンを精度良く形成することができる。図11は、図10(b)に示された第2の樹脂層28、第1の樹脂層27および密着層26の平面形状を示す図である。図11に示されるように、第2の樹脂層28、第1の樹脂層27および密着層26の幅が均一なので、周期構造パターンのラインエッジラフネスが改善される。本実施形態によれば、ブレイクスルーエッチング工程後の第1の樹脂層27のラインエッジラフネスを、例えば10nm以下とすることができる。

0062

なお、自己バイアス電圧の絶対値を130V以上とする為には、ICPパワーを0〜10Wとすることが好ましい。ICPパワーを10W以上に上げると、自己バイアス電圧が低下するからである。また、自己バイアス電圧の絶対値を130V以上とする為には、バイアスパワーを30W以上とすることが好ましい。但し、バイアスパワーを上げ過ぎると半導体結晶にダメージが生じるおそれがあるので、バイアスパワーの上限を50Wとすることが望ましい。プロセス圧力は、第2の樹脂層28に引き込まれるイオンの量を増やす為に、4Pa以上であることが望ましい。但し、第2の樹脂層28に引き込まれるイオンが増え過ぎると半導体結晶にダメージが生じるので、プロセス圧力は10Pa未満であることが望ましい。

0063

また、エッチバック工程において使用されるエッチングガスは、本実施形態のように、CF4ガス及びO2ガスを含むことが好ましい。CF4ガスのみでは第2の樹脂層28内の樹脂成分が除去されにくいので、O2ガスを更に含むことによって、第2の樹脂層28の表面の荒れを抑制することができる。また、本実施形態のように、CF4ガスの流量FLCF4と酸素ガスの流量FLO2との比(FLCF4/FLO2)が5以上10以下であることによって、エッチバック工程後における第2の樹脂層28の表面粗さの最大高さRmaxを更に小さくすることができる。

0064

本発明による無機化合物膜のエッチング方法および半導体光素子の製造方法は、上述した実施形態に限られるものではなく、他に様々な変形が可能である。例えば、上記実施形態では本発明による方法をDFBレーザ素子の回折格子パターン形成に適用した例について示したが、本発明が適用される対象はこれに限られるものではなく、反転NIL技術を用いてパターンが形成される種々の電子デバイスの製造に適用できる。

0065

また、上記実施形態ではエッチバック工程においてICP−RIE法を用いる場合について例示したが、本発明ではエッチバック工程において他のRIE法を用いてもよい。

0066

また、上記実施形態ではエッチバック工程における自己バイアス電圧の絶対値を130V以上としたが、エッチングにより生じるSi生成物を除去できる電圧であれば、自己バイアス電圧を130Vより小さい電圧としてもよい。

0067

1A…レーザ素子、2…半導体基板、3…下部クラッド層、4…層、5…活性層、6…回折格子層、6a…回折格子、7a…埋込領域、7b…埋込領域、8…上部クラッド層、8a…半導体層、9…コンタクト層、10…エッチング装置、11…サセプタ、12…エッチング対象試料、13…真空チャンバ、14…高周波導入窓、15…誘導コイル、17,19…高周波電源、18…インピーダンス整合器、20…メサストライプ構造、20a,20b…側面、21…アノード電極、22…カソード電極、23…半導体層、24…エッチングマスク、25…絶縁膜、26…密着層、27…第1の樹脂層、27a…シリコン非含有樹脂、28…第2の樹脂層、30…基板生産物、M…モールド、UV…紫外光。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

該当するデータがありません

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

該当するデータがありません

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ