図面 (/)

技術 位相差フィルム用液晶配向剤、位相差フィルム用液晶配向膜、位相差フィルム及びその製造方法

出願人 JSR株式会社
発明者 永尾隆安田博幸
出願日 2011年5月30日 (9年6ヶ月経過) 出願番号 2011-120832
公開日 2012年2月23日 (8年10ヶ月経過) 公開番号 2012-037868
状態 特許登録済
技術分野 液晶3(基板、絶縁膜及び配向部材) けい素重合体 高分子組成物 液晶4(光学部材との組合せ) 液晶3-2(配向部材) マクロモノマー系付加重合体 偏光要素
主要キーワード 間隔スペーサ 酢酸メチルアミル 感光性構造 LCD構成 プロピオン酸アミル 理論強度 感光性ポリマー層 非プロトン性化合物
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2012年2月23日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (0)

図面はありません

課題

少量の放射線照射によっても光配向が可能であって、かつ照射中及び照射後の加熱工程が不要な位相差フィルム用液晶配向膜を形成可能な液晶配向剤、この位相差フィルム用液晶配向膜を備え、液晶配向性及び熱安定性に優れる位相差フィルム及びその製造方法を提供する。

解決手段

光配向性基を有するポリオルガノシロキサンを含有する位相差フィルム用液晶配向剤である。上記光配向性基は、桂皮酸構造を有する基が好ましい。

概要

背景

液晶ディスプレイ(LCD)はテレビや各種モニタ等、広く利用されている。LCDの表示素子としては、例えばSTN(Super Twisted Nematic)型、TN(Twisted Nematic)型、IPS(In Plane Switching)型、VA(Vertically Aligned)型、PSA(Polymer sustained alignment)型等が知られている(特許文献1及び2参照)。この液晶表示素子には様々な光学材料が用いられており、中でも位相差フィルムは表示の着色を解消する目的や、見る角度によって表示色及びコントラスト比が変化するといった視野角依存性を解消する目的で用いられる(特許文献3及び4参照)。

従来、位相差フィルムはプラスチックフィルム延伸工程を利用して製造されており、より複雑な光学特性を有する位相差フィルムについては、重合性液晶硬化させて製造されている。この方法では、重合性液晶分子基板面に対して所定の方向に配向させるため、基板表面に液晶配向膜を設ける方法が一般的である。この液晶配向膜は、通常、基板表面に形成された有機膜表面をレーヨン等の布材で一方向にこするラビング法により形成される。しかし、ラビング処理を行うと、工程内ほこり静電気が発生しやすいために液晶配向膜の表面にほこりが付着し、表示不良が発生するおそれがある。また、ラビング処理では製造工程に伴う制限が大きく、任意の方向に、かつ精密に液晶配向方向を制御することが難しい。

そこで、ラビング処理とは異なる方法として、基板表面に形成したポリビニルシンナメート等の感光性薄膜偏光又は非偏光の放射線照射することにより、液晶配向能を付与する光配向法が知られている(特許文献5〜15参照)。この光配向法によれば、ほこりや静電気を発生することなく、均一な液晶配向が実現できる。またラビング処理に比べて任意方向に、かつ精密に液晶配向方向を制御できる。さらに放射線照射時フォトマスク等を使用することで、一つの基板上に液晶配向方向が異なる複数の領域を任意に形成できる。しかし、従来の技術では放射線照射時に加熱が必要とされることや、多大な積算露光量が必要という不都合がある(特許文献16参照)。

一方、近年3D映像表現する技術が盛んとなり、家庭用においても3D映像が視聴可能なディスプレイの普及が進みつつある。3D映像の表示方式として、例えば特許文献17には、右目用画像左目用画像とで偏光状態の異なった画像を形成し、これをそれぞれの偏光状態の映像のみを見ることが出来るように配置した偏光板を供える偏光眼鏡を用いる方式が紹介されている(特許文献17参照)。この方式で得られる立体画像フリッカーがなく、観察者は軽量安価な偏光眼鏡を装着することで立体画像を観察できる。

上記の右目用画像と左目用画像とで偏光状態の異なった画像を形成する従来技術としては、投影表示では2台の偏光プロジェクターを用いスクリーン上で両者の画像を重ね合わせて立体画像を形成し、また直視表示では2台の表示装置の画像をハーフミラー又は偏光ミラーで合成するか、基板面に配置する偏光フィルム偏光透過軸画素毎に異ならせて配置することで形成する。しかし、偏光軸の異なる画像2枚を常に同時に映すためには、2台の表示装置や映写装置が必要となり家庭向きには不向きである。1台の表示装置で右目用画像と左目用画像で偏光状態の異なった画像を形成する従来技術としては、偏光軸が隣接する画素間で互いに直交するモザイク状偏光層を1台の表示装置の前面に密着させ、観察者が偏光眼鏡を装着することにより立体画像を観察できる方式が知られている。

この偏光層としては、μmオーダーパターニングされたパターニング位相差フィルムが必要となる。このようなパターニング位相差フィルムの製造方法として、例えば特許文献18には、感光性ポリマー層に偏光を照射する方法等が開示されている。しかし、偏光照射に多大な照射量が必要とされ、また感光性ポリマー層の熱安定性は十分に満足できるものではない。

このような状況に鑑み、液晶配向性及び熱安定性に優れ、かつ精密に制御されたパターニング位相差フィルムを、効率よく製造できる生産性の高い位相差フィルム用液晶配向剤の開発が望まれている。

概要

少量の放射線照射によっても光配向が可能であって、かつ照射中及び照射後の加熱工程が不要な位相差フィルム用液晶配向膜を形成可能な液晶配向剤、この位相差フィルム用液晶配向膜を備え、液晶配向性及び熱安定性に優れる位相差フィルム及びその製造方法を提供する。光配向性基を有するポリオルガノシロキサンを含有する位相差フィルム用液晶配向剤である。上記光配向性基は、桂皮酸構造を有する基が好ましい。なし

目的

このような状況に鑑み、液晶配向性及び熱安定性に優れ、かつ精密に制御されたパターニング位相差フィルムを、効率よく製造できる生産性の高い位相差フィルム用液晶配向剤の開発が望まれている

効果

実績

技術文献被引用数
2件
牽制数
8件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

請求項2

上記光配向性基が、桂皮酸構造を有する基である請求項1に記載の位相差フィルム用液晶配向剤。

請求項3

上記桂皮酸構造を有する基が、下記式(1)で表される化合物由来する基及び式(2)で表される化合物に由来する基からなる群より選択される少なくとも1種である請求項2に記載の位相差フィルム用液晶配向剤。(式(1)中、R1はフェニレン基ビフェニレン基ターフェニレン基又はシクロヘキシレン基である。このフェニレン基、ビフェニレン基、ターフェニレン基又はシクロヘキシレン基の水素原子の一部又は全部は、炭素数1〜10のアルキル基フッ素原子を有していてもよい炭素数1〜10のアルコキシ基、フッ素原子又はシアノ基置換されていてもよい。R2は単結合、炭素数1〜3のアルカンジイル基酸素原子硫黄原子、−CH=CH−、−NH−、−COO−又は−OCO−である。aは0〜3の整数である。但し、aが2以上の場合、それぞれのR1及びR2は同一であっても異なっていてもよい。R3はフッ素原子又はシアノ基である。bは0〜4の整数である。式(2)中、R4はフェニレン基又はシクロヘキシレン基である。このフェニレン基又はシクロヘキシレン基の水素原子の一部又は全部は、炭素数1〜10の鎖状若しくは環状のアルキル基、炭素数1〜10の鎖状若しくは環状のアルコキシ基、フッ素原子又はシアノ基で置換されていてもよい。R5は単結合、炭素数1〜3のアルカンジイル基、酸素原子、硫黄原子又は−NH−である。cは1〜3の整数である。但し、cが2以上の場合、R4及びR5はそれぞれ同一であっても異なっていてもよい。R6はフッ素原子又はシアノ基である。dは0〜4の整数である。R7は酸素原子、−COO−*又は−OCO−*である。但し、*を付した結合手がR8と結合する。R8は2価の芳香族基、2価の脂環式基、2価の複素環式基又は2価の縮合環式基である。R9は単結合、−OCO−(CH2)f−*又は−O(CH2)g−*である。但し、*を付した結合手がカルボキシル基と結合する。f及びgはそれぞれ1〜10の整数である。eは0〜3の整数である。但し、eが2以上の場合、R7及びR8はそれぞれ同一であっても異なっていてもよい。)

請求項4

[A]光配向性基を有するポリオルガノシロキサンが、エポキシ基を有するポリオルガノシロキサン、その加水分解物及びその加水分解物の縮合物からなる群より選択される少なくとも1種と、上記式(1)で表される化合物及び上記式(2)で表される化合物からなる群より選択される少なくとも1種との反応生成物である請求項3に記載の位相差フィルム用液晶配向剤。

請求項5

[B]ポリアミック酸ポリイミドエチレン性不飽和化合物重合体及び光配向性基を有さないポリオルガノシロキサンからなる群より選択される少なくとも1種の重合体をさらに含有する請求項1から請求項4のいずれか1項に記載の位相差フィルム用液晶配向剤。

請求項6

[C]カルボン酸アセタールエステル構造、カルボン酸のケタールエステル構造、カルボン酸の1−アルキルシクロアルキルエステル構造及びカルボン酸のt−ブチルエステル構造からなる群より選択される少なくとも1種の構造を2個以上有する化合物をさらに含有する請求項1から請求項5のいずれか1項に記載の位相差フィルム用液晶配向剤。

請求項7

[D]下記式(6)で表される溶媒をさらに含有する請求項1から請求項6のいずれか1項に記載の位相差フィルム用液晶配向剤。Rd1−COO−Rd2・・・(6)(式(6)中、Rd1は、炭素数1〜6のアルキル基、炭素数3〜6のシクロアルキル基フェニル基又はベンジル基である。但し、上記アルキル基は、炭素−炭素結合間に−O−を有していてもよい。Rd2は、炭素数1〜8の1価の有機基である。)

請求項8

[E]位相差フィルム基板に対する侵食性を有する溶媒をさらに含有する請求項1から請求項7のいずれか1項に記載の位相差フィルム用液晶配向剤。

請求項9

[F]重合性炭素炭素二重結合を有する基を含む化合物をさらに含有する請求項1から請求項8のいずれか1項に記載の位相差フィルム用液晶配向剤。

請求項10

請求項1から請求項9のいずれか1項に記載の位相差フィルム用液晶配向剤により形成される位相差フィルム用液晶配向膜

請求項11

液晶配向方向が異なる領域を2種以上含む請求項10に記載の位相差フィルム用液晶配向膜。

請求項12

請求項10又は請求項11に記載の位相差フィルム用液晶配向膜を備える位相差フィルム。

請求項13

(1)基板上に請求項1から請求項9のいずれか1項に記載の位相差フィルム用液晶配向剤を塗布し塗膜を形成する工程、(2)塗膜に放射線照射液晶配向能を付与し、位相差フィルム用液晶配向膜を形成する工程、(3)位相差フィルム用液晶配向膜の少なくとも一部に重合性液晶を塗布する工程、及び(4)重合性液晶を塗布した塗膜を硬化させる工程を有する位相差フィルムの製造方法。

請求項14

上記工程(2)が、(2−1)塗膜に第一方向の放射線を照射し、第一方向の液晶配向能を付与する工程及び(2−2)塗膜の一部に第一方向とは異なる第二方向の放射線を照射し、第二方向の液晶配向能をさらに付与する工程を有する請求項13に記載の位相差フィルムの製造方法。

請求項15

上記工程(2)が、(2−1’)塗膜に第一方向の放射線を照射し、第一方向の液晶配向能を付与する工程及び(2−2’)上記塗膜の少なくとも放射線が照射されなかった部分に、第一方向とは異なる第二方向の放射線を照射し、第二方向の液晶配向能を付与する工程を有する請求項13に記載の位相差フィルムの製造方法。

技術分野

0001

本発明は、位相差フィルム用液晶配向剤位相差フィルム用液晶配向膜位相差フィルム及びその製造方法に関する。

背景技術

0002

液晶ディスプレイ(LCD)はテレビや各種モニタ等、広く利用されている。LCDの表示素子としては、例えばSTN(Super Twisted Nematic)型、TN(Twisted Nematic)型、IPS(In Plane Switching)型、VA(Vertically Aligned)型、PSA(Polymer sustained alignment)型等が知られている(特許文献1及び2参照)。この液晶表示素子には様々な光学材料が用いられており、中でも位相差フィルムは表示の着色を解消する目的や、見る角度によって表示色及びコントラスト比が変化するといった視野角依存性を解消する目的で用いられる(特許文献3及び4参照)。

0003

従来、位相差フィルムはプラスチックフィルム延伸工程を利用して製造されており、より複雑な光学特性を有する位相差フィルムについては、重合性液晶硬化させて製造されている。この方法では、重合性液晶分子基板面に対して所定の方向に配向させるため、基板表面に液晶配向膜を設ける方法が一般的である。この液晶配向膜は、通常、基板表面に形成された有機膜表面をレーヨン等の布材で一方向にこするラビング法により形成される。しかし、ラビング処理を行うと、工程内ほこり静電気が発生しやすいために液晶配向膜の表面にほこりが付着し、表示不良が発生するおそれがある。また、ラビング処理では製造工程に伴う制限が大きく、任意の方向に、かつ精密に液晶配向方向を制御することが難しい。

0004

そこで、ラビング処理とは異なる方法として、基板表面に形成したポリビニルシンナメート等の感光性薄膜偏光又は非偏光の放射線照射することにより、液晶配向能を付与する光配向法が知られている(特許文献5〜15参照)。この光配向法によれば、ほこりや静電気を発生することなく、均一な液晶配向が実現できる。またラビング処理に比べて任意方向に、かつ精密に液晶配向方向を制御できる。さらに放射線照射時フォトマスク等を使用することで、一つの基板上に液晶配向方向が異なる複数の領域を任意に形成できる。しかし、従来の技術では放射線照射時に加熱が必要とされることや、多大な積算露光量が必要という不都合がある(特許文献16参照)。

0005

一方、近年3D映像表現する技術が盛んとなり、家庭用においても3D映像が視聴可能なディスプレイの普及が進みつつある。3D映像の表示方式として、例えば特許文献17には、右目用画像左目用画像とで偏光状態の異なった画像を形成し、これをそれぞれの偏光状態の映像のみを見ることが出来るように配置した偏光板を供える偏光眼鏡を用いる方式が紹介されている(特許文献17参照)。この方式で得られる立体画像フリッカーがなく、観察者は軽量安価な偏光眼鏡を装着することで立体画像を観察できる。

0006

上記の右目用画像と左目用画像とで偏光状態の異なった画像を形成する従来技術としては、投影表示では2台の偏光プロジェクターを用いスクリーン上で両者の画像を重ね合わせて立体画像を形成し、また直視表示では2台の表示装置の画像をハーフミラー又は偏光ミラーで合成するか、基板面に配置する偏光フィルム偏光透過軸画素毎に異ならせて配置することで形成する。しかし、偏光軸の異なる画像2枚を常に同時に映すためには、2台の表示装置や映写装置が必要となり家庭向きには不向きである。1台の表示装置で右目用画像と左目用画像で偏光状態の異なった画像を形成する従来技術としては、偏光軸が隣接する画素間で互いに直交するモザイク状偏光層を1台の表示装置の前面に密着させ、観察者が偏光眼鏡を装着することにより立体画像を観察できる方式が知られている。

0007

この偏光層としては、μmオーダーパターニングされたパターニング位相差フィルムが必要となる。このようなパターニング位相差フィルムの製造方法として、例えば特許文献18には、感光性ポリマー層に偏光を照射する方法等が開示されている。しかし、偏光照射に多大な照射量が必要とされ、また感光性ポリマー層の熱安定性は十分に満足できるものではない。

0008

このような状況に鑑み、液晶配向性及び熱安定性に優れ、かつ精密に制御されたパターニング位相差フィルムを、効率よく製造できる生産性の高い位相差フィルム用液晶配向剤の開発が望まれている。

先行技術

0009

特開昭56−91277号公報
特開平1−120528号公報
特開平4−229828号公報
特開平4−258923号公報
特開平6−287453号公報
特開平10−251646号公報
特開平11−2815号公報
特開平11−152475号公報
特開2000−144136号公報
特開2000−319510号公報
特開2000−281724号公報
特開平9−297313号公報
特開2003−307736号公報
特開2004−163646号公報
特開2002−250924号公報
特開平10−278123号公報
特許第3461680号公報
特開2005−49865号公報

発明が解決しようとする課題

0010

本発明は以上のような事情に基づいてなされたものであり、その目的は、少量の放射線照射によっても光配向が可能であって、かつ照射中及び照射後の加熱工程が不要な位相差フィルム用液晶配向膜を形成可能な液晶配向剤、この位相差フィルム用液晶配向膜を備え、液晶配向性及び熱安定性に優れる位相差フィルム及びその製造方法を提供することである。

課題を解決するための手段

0011

上記課題を解決するためになされた発明は、
[A]光配向性基を有するポリオルガノシロキサン(以下、「[A]光配向性ポリオルガノシロキサン」と称することがある)を含有する位相差フィルム用液晶配向剤である。

0012

当該液晶配向剤は、[A]光配向性ポリオルガノシロキサンを含有するため、高感度光配向性により配向に必要な光照射量の低減ができる。また、当該液晶配向剤は、放射線照射中及び照射後の加熱工程が不要なため効率よく位相差フィルムを製造できる。また、主鎖としてポリオルガノシロキサンを採用しているので、当該液晶配向剤から形成される位相差フィルムは、優れた化学的定性・熱的安定性を有する。

0013

当該液晶配向剤では、上記光配向性基が桂皮酸構造を有する基であることが好ましい。光配向性基として桂皮酸又はその誘導体基本骨格とする桂皮酸構造を有する基を用いることで、導入が容易となり、かつ当該液晶配向剤から形成される位相差フィルムはより高い光配向性能を有する。

0014

当該液晶配向剤では、上記桂皮酸構造を有する基が、下記式(1)で表される化合物由来する基及び式(2)で表される化合物に由来する基からなる群より選択される少なくとも1種(以下、下記式(1)で表される化合物に由来する基及び式(2)で表される化合物を「特定桂皮酸誘導体」と称することがある)であることが好ましい。

0015

(式(1)中、R1はフェニレン基ビフェニレン基ターフェニレン基又はシクロヘキシレン基である。このフェニレン基、ビフェニレン基、ターフェニレン基又はシクロヘキシレン基の水素原子の一部又は全部は、炭素数1〜10のアルキル基フッ素原子を有していてもよい炭素数1〜10のアルコキシ基、フッ素原子又はシアノ基置換されていてもよい。R2は単結合、炭素数1〜3のアルカンジイル基酸素原子硫黄原子、−CH=CH−、−NH−、−COO−又は−OCO−である。aは0〜3の整数である。但し、aが2以上の場合、それぞれのR1及びR2は同一であっても異なっていてもよい。R3はフッ素原子又はシアノ基である。bは0〜4の整数である。
式(2)中、R4はフェニレン基又はシクロヘキシレン基である。このフェニレン基又はシクロヘキシレン基の水素原子の一部又は全部は、炭素数1〜10の鎖状若しくは環状のアルキル基、炭素数1〜10の鎖状若しくは環状のアルコキシ基、フッ素原子又はシアノ基で置換されていてもよい。R5は単結合、炭素数1〜3のアルカンジイル基、酸素原子、硫黄原子又は−NH−である。cは1〜3の整数である。但し、cが2以上の場合、R4及びR5はそれぞれ同一であっても異なっていてもよい。R6はフッ素原子又はシアノ基である。dは0〜4の整数である。R7は酸素原子、−COO−*又は−OCO−*である。但し、*を付した結合手がR8と結合する。R8は2価の芳香族基、2価の脂環式基、2価の複素環式基又は2価の縮合環式基である。R9は単結合、−OCO−(CH2)f−*又は−O(CH2)g−*である。但し、*を付した結合手がカルボキシル基と結合する。f及びgはそれぞれ1〜10の整数である。eは0〜3の整数である。但し、eが2以上の場合、R7及びR8はそれぞれ同一であっても異なっていてもよい。)

0016

上記桂皮酸構造を有する基として上記の特定桂皮酸誘導体に由来する基を用いることにより、光配向性能がさらに向上できる。

0017

当該液晶配向剤においては、[A]光配向性ポリオルガノシロキサンが、エポキシ基を有するポリオルガノシロキサン、その加水分解物及びその加水分解物の縮合物からなる群より選択される少なくとも1種と、上記式(1)で表される化合物及び上記式(2)で表される化合物からなる群より選択される少なくとも1種との反応生成物であることが好ましい。当該液晶配向剤において、エポキシ基を有するポリオルガノシロキサンと特定桂皮酸誘導体との間の反応性を利用することにより、主鎖としてのポリオルガノシロキサンに光配向性を有する特定桂皮酸誘導体に由来する側鎖基を容易に導入できる。

0018

当該液晶配向剤は、[B]ポリアミック酸ポリイミドエチレン性不飽和化合物重合体及び光配向性基を有さないポリオルガノシロキサンからなる群より選択される少なくとも1種の重合体(以下、「[B]他の重合体」と称することがある)をさらに含有することが好ましい。これら[B]他の重合体を含有する場合、当該液晶配向剤から形成される位相差フィルム用液晶配向膜においては、その表層付近にポリオルガノシロキサンが偏在することが明らかとなっている。この為、他の重合体の含有量を増やすことにより当該液晶配向剤中におけるポリオルガノシロキサンの含有量を減らしても、ポリオルガノシロキサンは配向膜表面に偏在するので、十分な液晶配向性が得られる。従って、本発明では製造コストの高いポリオルガノシロキサンの当該液晶配向剤中における含有量を減らすことが可能となり、結果として当該液晶配向剤の製造コストを低下できる。

0019

当該液晶配向剤は、[C]カルボン酸アセタールエステル構造、カルボン酸のケタールエステル構造、カルボン酸の1−アルキルシクロアルキルエステル構造及びカルボン酸のt−ブチルエステル構造からなる群より選択される少なくとも1種の構造を2個以上有する化合物(以下、「[C]エステル構造含有化合物」と称することがある)をさらに含有することが好ましい。当該液晶配向剤が[C]エステル構造含有化合物を含有することにより、焼成工程(ポストベーク)において酸が発生し、発生した酸によって[A]光配向性ポリオルガノシロキサンの架橋を促進させ、その結果、得られる位相差フィルムの耐熱性を向上できる。

0020

当該液晶配向剤は、[D]下記式(6)で表される溶媒(以下、「[D]溶媒」と称することがある)をさらに含有することが好ましい。
Rd1−COO−Rd2・・・(6)
(式(6)中、Rd1は、炭素数1〜6のアルキル基、炭素数3〜6のシクロアルキル基フェニル基又はベンジル基である。但し、上記アルキル基は、炭素−炭素結合間に−O−を有していてもよい。Rd2は、炭素数1〜8の1価の有機基である。)

0021

当該液晶配向剤がエステル基を有する特定構造の[D]溶媒を含有することにより、当該液晶配向剤と位相差フィルム用基板との密着性を向上できる。

0022

当該液晶配向剤が、[E]位相差フィルム用基板に対する侵食性を有する溶媒(以下、「[E]溶媒」と称することがある)をさらに含有することが好ましい。当該液晶配向剤が、位相差フィルム用基板に対する侵食性を有する[E]溶媒を含有することで、当該液晶配向剤と位相差フィルム用基板との密着性をより向上できる。

0023

当該液晶配向剤は、[F]重合性炭素炭素二重結合を有する基を含む化合物(以下、「[F]化合物」ともいう)をさらに含有することが好ましい。当該液晶配向剤は、[F]化合物を含有することで、位相差フィルム用基板又は液晶層との密着性をさらに向上できる。

0024

当該液晶配向剤は、光配向法により液晶配向膜、特に位相差フィルム製造のため用いられる液晶配向膜を形成するために好適に使用できる。また本発明には、液晶配向方向が異なる領域を2種以上含む位相差フィルム用液晶配向膜、かかる位相差フィルム用液晶配向膜を備える位相差フィルムも好適に含まれる。

0025

本発明に含まれる位相差フィルムの製造方法は、
(1)基板上に当該位相差フィルム用液晶配向剤を塗布する工程、
(2)塗膜に放射線を照射し液晶配向能を付与し、位相差フィルム用液晶配向膜を形成する工程、
(3)位相差フィルム用液晶配向膜の少なくとも一部に重合性液晶を塗布する工程、及び
(4)重合性液晶を塗布した塗膜を硬化させる工程
を有する。

0026

本発明の製造方法では少量の放射線照射によっても光配向が可能であって、かつ照射中及び照射後の加熱工程が不要である。従って、位相差フィルムを効率よく製造でき、生産性が高く、また製造コストの削減に資する。

0027

また、本発明には、3D映像用途等での異なる位相差の領域を含む位相差フィルムの製造方法も好適に含まれる。この製造方法は、
上記工程(2)が、
(2−1)塗膜に第一方向の放射線を照射し、第一方向の液晶配向能を付与する工程及び
(2−2)塗膜の一部に第一方向とは異なる第二方向の放射線を照射し、第二方向の液晶配向能をさらに付与する工程
を有する。

0028

また、他の製造方法としては、
上記工程(2)が、
(2−1’)塗膜に第一方向の放射線を照射し、第一方向の液晶配向能を付与する工程及び
(2−2’)上記塗膜の少なくとも放射線が照射されなかった部分に、第一方向とは異なる第二方向の放射線を照射し、第二方向の液晶配向能を付与する工程
を有する。

発明の効果

0029

本発明の位相差フィルム用液晶配向剤によれば、少量の放射線照射によっても光配向が可能であって、かつ照射中及び照射後の加熱工程が不要になる。従って、当該位相差フィルム用液晶配向剤を用いる位相差フィルム用液晶配向膜、及び位相差フィルムは、液晶配向性及び熱安定性に優れる。また、本発明の位相差フィルムの製造方法によれば、液晶配向性及び熱安定性に優れる位相差フィルムを簡易かつ確実に製造することができる。

0030

<位相差フィルム用液晶配向剤>
本発明の位相差フィルム用液晶配向剤は、[A]光配向性ポリオルガノシロキサンを含有する。[A]光配向性ポリオルガノシロキサンを含有することで、高感度の光配向性により配向に必要な光照射量の低減ができる。また、当該液晶配向剤は、放射線照射中及び照射後の加熱工程が不要なため効率よく位相差フィルムを製造できる。さらに、当該液晶配向剤から得られる位相差フィルムは、液晶配向性及び熱安定性に優れる。また、当該液晶配向剤は、[B]他の重合体、[C]エステル構造含有化合物、[D]溶媒、[E]溶媒、[F]化合物を含有することが好ましく、さらに本発明の効果を損なわない限り、その他の任意成分を含有してもよい。以下、[A]光配向性ポリオルガノシロキサン、[B]他の重合体、[C]エステル構造含有化合物、[D]溶媒、[E]溶媒、[F]化合物及び任意成分について詳述する。

0031

<[A]光配向性ポリオルガノシロキサン>
[A]光配向性ポリオルガノシロキサンは、主鎖としてのポリオルガノシロキサン、その加水分解物及びその加水分解物の縮合物からなる群より選択される少なくとも1種に由来する部分に、光配向性基が導入されている。光配向性基により、光配向の感度が良好となり、低光照射量を実現でき、また位相差フィルムの液晶配向性に優れる。また、主鎖としてポリオルガノシロキサンを採用しているので、当該液晶配向剤から形成される位相差フィルムは、優れた化学的安定性・熱的安定性を有する。

0032

光配向性基としては、光配向性を示す種々の化合物由来の基を採用でき、例えばアゾベンゼン又はその誘導体を基本骨格として含有するアゾベンゼン含有基、桂皮酸又はその誘導体を基本骨格として含有する桂皮酸構造を有する基、カルコン又はその誘導体を基本骨格として含有するカルコン含有基、ベンゾフェノン又はその誘導体を基本骨格として含有するベンゾフェノン含有基、クマリン又はその誘導体を基本骨格として有するクマリン含有基、ポリイミド又はその誘導体を基本骨格として含有するポリイミド含有構造等が挙げられる。これらの光配向性基のうち、高い配向能と導入の容易性を考慮すると、桂皮酸又はその誘導体を基本骨格として含有する桂皮酸構造を有する基が好ましい。

0033

桂皮酸構造を有する基の構造は、桂皮酸又はその誘導体を基本骨格として含有していれば特に限定されないが、上記特定桂皮酸誘導体に由来する基が好ましい。なお、R1はフェニレン基、ビフェニレン基、ターフェニレン基又はシクロヘキシレン基である。このフェニレン基、ビフェニレン基、ターフェニレン基又はシクロヘキシレン基の水素原子の一部又は全部は、炭素数1〜10のアルキル基、フッ素原子を有していてもよい炭素数1〜10のアルコキシ基、フッ素原子又はシアノ基で置換されていてもよい。R2は単結合、炭素数1〜3のアルカンジイル基、酸素原子、硫黄原子、−CH=CH−、−NH−、−COO−又は−OCO−である。aは0〜3の整数である。但し、aが2以上の場合、それぞれのR1及びR2は同一であっても異なっていてもよい。R3はフッ素原子又はシアノ基である。bは0〜4の整数である。

0034

上記式(1)で表される化合物としては例えば下記式で表される化合物が挙げられる。

0035

0036

これらのうちR1としては、無置換のフェニレン基、又はフッ素原子若しくは炭素数1〜3のアルキル基で置換されたフェニレン基が好ましい。R2は単結合、酸素原子又は−CH2=CH2−が好ましい。bは0〜1が好ましい。aが1〜3のときはbが0であることが特に好ましい。

0037

上記式(2)中、R4はフェニレン基又はシクロヘキシレン基である。このフェニレン基又はシクロヘキシレン基の水素原子の一部又は全部は、炭素数1〜10の鎖状若しくは環状のアルキル基、炭素数1〜10の鎖状若しくは環状のアルコキシ基、フッ素原子又はシアノ基で置換されていてもよい。R5は単結合、炭素数1〜3のアルカンジイル基、酸素原子、硫黄原子又は−NH−である。cは1〜3の整数である。但し、cが2以上の場合、R4及びR5はそれぞれ同一であっても異なっていてもよい。R6はフッ素原子又はシアノ基である。dは0〜4の整数である。R7は酸素原子、−COO−*又は−OCO−*である。但し、*を付した結合手がR8と結合する。R8は2価の芳香族基、2価の脂環式基、2価の複素環式基又は2価の縮合環式基である。R9は単結合、−OCO−(CH2)f−*又は−O(CH2)g−*である。但し、*を付した結合手がカルボキシル基と結合する。f及びgはそれぞれ1〜10の整数である。eは0〜3の整数である。但し、eが2以上の場合、R7及びR8はそれぞれ同一であっても異なっていてもよい。

0038

上記式(2)で表される化合物としては、例えば下記式(2−1)〜(2−2)で表される化合物が挙げられる。

0039

(式中、Qは炭素数1〜10の鎖状又は環状のアルキル基、炭素数1〜10の鎖状又は環状のアルコキシ基、フッ素原子又はシアノ基である。fは、式(2)と同義である。)

0040

特定桂皮酸誘導体の合成手順は特に限定されず、従来公知の方法を組み合わせて行うことができる。代表的な合成手順としては、例えば、(i)塩基性条件下、ハロゲン原子で置換されたベンゼン環骨格を有する化合物と、アクリル酸とを遷移金属触媒存在下で反応させて特定桂皮酸誘導体を得る方法、(ii)塩基性条件下、ベンゼン環の水素原子がハロゲン原子で置換された桂皮酸と、ハロゲン原子で置換されたベンゼン環骨格を有する化合物とを遷移金属触媒存在下で反応させて特定桂皮酸誘導体とする方法等が挙げられる。

0041

[A]光配向性ポリオルガノシロキサンに主鎖として含まれるポリオルガノシロキサン、その加水分解物及びその加水分解物の縮合物からなる群より選択される少なくとも1種に由来する部分としては、それ自体に上記光配向性基を導入し得る構造に由来した部分を有する限り特に限定されない。[A]光配向性ポリオルガノシロキサンは、このようなポリオルガノシロキサン、その加水分解物、その加水分解物の縮合物からなる群より選択される少なくとも1種に由来する部分と、上記光配向性を示す化合物に由来する基とを有する。

0042

上記光配向性基を導入し得る構造としては、例えば水酸基、エポキシ基、アミノ基、カルボキシル基、メルカプト基、エステル基、アミド基等が挙げられる。この中でも、導入及び調製の容易性を考慮すると、エポキシ基が好ましい。

0043

[A]光配向性ポリオルガノシロキサンは、エポキシ基を有するポリオルガノシロキサン、その加水分解物及びその加水分解物の縮合物からなる群より選択される少なくとも1種(以下、「エポキシ基を有するポリオルガノシロキサン」と称することがある)と、上記式(1)及び/又は(2)で表される化合物との反応生成物であることが好ましい。当該液晶配向剤において、エポキシ基を有するポリオルガノシロキサンと特定桂皮酸誘導体との間の反応性を利用することにより、主鎖としてのポリオルガノシロキサンに光配向性を有する特定桂皮酸誘導体に由来する基を容易に導入することができる。

0044

上記エポキシ基を有するポリオルガノシロキサンは、ポリオルガノシロキサンに側鎖としてエポキシ基が導入されていれば特に限定されない。上記エポキシ基を有するポリオルガノシロキサンとしては、下記式(3)で表される構造単位を有するポリオルガノシロキサン、その加水分解物及びその加水分解物の縮合物からなる群より選択される少なくとも1種であることが好ましい。

0045

(式(3)中、X1はエポキシ基を有する1価の有機基である。Y1は水酸基、炭素数1〜10のアルコキシ基、炭素数1〜20のアルキル基又は炭素数6〜20のアリール基である。)

0046

なお、上記式(3)で表される構造単位を有するポリオルガノシロキサンの加水分解縮合物は、そのポリオルガノシロキサン同士の加水分解縮合物だけでなく、上記式(3)で表される構造単位の加水分解縮合によりポリオルガノシロキサンが生成される過程において、主鎖の枝分かれや架橋等が生じて得られるポリオルガノシロキサンが上記式(3)で表される構造単位を有する場合の加水分解縮合物をも含む概念である。

0047

上記式(3)におけるX1は、エポキシ基を有する1価の有機基であれば特に限定されず、例えばグリシジル基グリシジルオキシ基エポキシシクロヘキシル基を含む基等が挙げられる。X1としては、下記式(X1−1)又は(X1−2)で表されることが好ましい。

0048

(式(X1−1)中、Aは酸素原子又は単結合である。hは1〜3の整数である。iは0〜6の整数である。但し、iが0の場合、Aは単結合である。
式(X1−2)中、jは1〜6の整数である。
式(X1−1)及び(X1−2)中、*はそれぞれ結合手であることを示す。)

0049

さらに上記式(X1−1)又は(X1−2)で表されるエポキシ基のうち、下記式(X1−1−1)又は(X1−2−1)で表される基が好ましい。

0050

(式(X1−1−1)又は式(X1−2−1)中、*は結合手であることを示す。)

0051

上記式(3)中のY1において、
炭素数1〜10のアルコキシ基としては、例えばメトキシ基エトキシ基等;
炭素数1〜20のアルキル基として、例えばメチル基エチル基、n−プロピル基n−ブチル基、n−ペンチル基n−ヘキシル基、n−ヘプチル基n−オクチル基、n−ノニル基、n−デシル基、n−ドデシル基、n−トリデシル基、n−テトラデシル基、n−ペンタデシル基、n−ヘキサデシル基、n−ヘプタデシル基、n−オクタデシル基、n−ノナデシル基、n−エイコシル基等;
炭素数6〜20のアリール基としては、例えばフェニル基等が挙げられる。

0052

エポキシ基を有するポリオルガノシロキサンのゲルパーミエーションクロマトグラフィー(GPC)により測定したポリスチレン換算重量平均分子量(Mw)としては、500〜100,000が好ましく、1,000〜10,000がより好ましく、1,000〜5,000が特に好ましい。
なお、本明細書におけるMwは、下記仕様のGPCにより測定したポリスチレン換算値である。
カラム:東ソー社製、TSKgelGRCXLII
溶媒:テトラヒドロフラン
温度:40℃
圧力:6.8MPa

0053

このようなエポキシ基を有するポリオルガノシロキサンは、好ましくはエポキシ基を有するシラン化合物、又はエポキシ基を有するシラン化合物と他のシラン化合物の混合物を、好ましくは適当な有機溶媒、水及び触媒の存在下において加水分解又は加水分解・縮合することにより合成できる。

0054

上記エポキシ基を有するシラン化合物としては、例えば3−グリシジロキシプロピルトリメトキシシラン、3−グリシジロキシプロピルトリエトキシシラン、3−グリシジロキシプロピルメチルジメトキシシラン、3−グリシジロキシプロピルメチルジエトキシシラン、3−グリシジロキシプロピルジメチルメトキシシラン、3−グリシジロキシプロピルジメチルエトキシシラン、2−(3,4−エポキシシクロヘキシルエチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン等が挙げられる。

0055

上記他のシラン化合物としては、例えばテトラクロロシランテトラメトキシシランテトラエトキシシランテトラ−n−プロポキシシラン、テトラ−i−プロポキシシラン、テトラ−n−ブトキシラン、テトラ−sec−ブトキシシラントリクロロシラントリメトキシシラントリエトキシシラントリ−n−プロポキシシラン、トリ−i−プロポキシシラン、トリ−n−ブトキシシラン、トリ−sec−ブトキシシラン、フルオロトリクロロシラン、フルオロトリメトキシシラン、フルオロトリエトキシシラン、フルオロトリ−n−プロポキシシラン、フルオロトリ−i−プロポキシシラン、フルオロトリ−n−ブトキシシラン、フルオロトリ−sec−ブトキシシラン、メチルトリクロロシランメチルトリメトキシシランメチルトリエトキシシランメチルトリ−n−プロポキシシラン、メチルトリ−i−プロポキシシラン、メチルトリ−n−ブトキシシラン、メチルトリ−sec−ブトキシシラン、2−(トリフルオロメチルエチルトリクロロシラン、2−(トリフルオロメチル)エチルトリメトキシシラン、2−(トリフルオロメチル)エチルトリエトキシシラン、2−(トリフルオロメチル)エチルトリ−n−プロポキシシラン、2−(トリフルオロメチル)エチルトリ−i−プロポキシシラン、2−(トリフルオロメチル)エチルトリ−n−ブトキシシラン、2−(トリフルオロメチル)エチルトリ−sec−ブトキシシラン、2−(パーフルオロ−n−ヘキシル)エチルトリクロロシラン、2−(パーフルオロ−n−ヘキシル)エチルトリメトキシシラン、2−(パーフルオロ−n−ヘキシル)エチルトリエトキシシラン、2−(パーフルオロ−n−ヘキシル)エチルトリ−n−プロポキシシラン、2−(パーフルオロ−n−ヘキシル)エチルトリ−i−プロポキシシラン、2−(パーフルオロ−n−ヘキシル)エチルトリ−n−ブトキシシラン、2−(パーフルオロ−n−ヘキシル)エチルトリ−sec−ブトキシシラン、2−(パーフルオロ−n−オクチル)エチルトリクロロシラン、2−(パーフルオロ−n−オクチル)エチルトリメトキシシラン、2−(パーフルオロ−n−オクチル)エチルトリエトキシシラン、2−(パーフルオロ−n−オクチル)エチルトリ−n−プロポキシシラン、2−(パーフルオロ−n−オクチル)エチルトリ−i−プロポキシシラン、2−(パーフルオロ−n−オクチル)エチルトリ−n−ブトキシシラン、2−(パーフルオロ−n−オクチル)エチルトリ−sec−ブトキシシラン、ヒドロキシメチルトリクロロシラン、ヒドロキシメチルトリメトキシシラン、ヒドロキシエチルトリメトキシシラン、ヒドロキシメチルトリ−n−プロポキシシラン、ヒドロキシメチルトリ−i−プロポキシシラン、ヒドロキシメチルトリ−n−ブトキシシラン、ヒドロキシメチルトリ−sec−ブトキシシラン、3−(メタアクリロキシプロピルトリクロロシラン、3−(メタ)アクリロキシプロピルトリメトキシシラン、3−(メタ)アクリロキシプロピルトリエトキシシラン、3−(メタ)アクリロキシプロピルトリ−n−プロポキシシラン、3−(メタ)アクリロキシプロピルトリ−i−プロポキシシラン、3−(メタ)アクリロキシプロピルトリ−n−ブトキシシラン、3−(メタ)アクリロキシプロピルトリ−sec−ブトキシシラン、3−メルカプトプロピルトリクロロシラン、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、3−メルカプトプロピルトリ−n−プロポキシシラン、3−メルカプトプロピルトリ−i−プロポキシシラン、3−メルカプトプロピルトリ−n−ブトキシシラン、3−メルカプトプロピルトリ−sec−ブトキシシラン、メルカプトメチルトリメトキシシランメルカプトメチルトリエトキシシラン、ビニルトリクロロシランビニルトリメトキシシランビニルトリエトキシシランビニルトリ−n−プロポキシシラン、ビニルトリ−i−プロポキシシラン、ビニルトリ−n−ブトキシシラン、ビニルトリ−sec−ブトキシシラン、アリルトリクロロシランアリルトリメトキシシランアリルトリエトキシシラン、アリルトリ−n−プロポキシシラン、アリルトリ−i−プロポキシシラン、アリルトリ−n−ブトキシシラン、アリルトリ−sec−ブトキシシラン、フェニルトリクロロシランフェニルトリメトキシシランフェニルトリエトキシシランフェニルトリ−n−プロポキシシラン、フェニルトリ−i−プロポキシシラン、フェニルトリ−n−ブトキシシラン、フェニルトリ−sec−ブトキシシラン、メチルジクロロシラン、メチルジメトキシシラン、メチルジエトキシシラン、メチルジ−n−プロポキシシラン、メチルジ−i−プロポキシシラン、メチルジ−n−ブトキシシラン、メチルジ−sec−ブトキシシラン、ジメチルジクロロシラン、ジメチルジメトキシシランジメチルジエトキシシラン、ジメチルジ−n−プロポキシシラン、ジメチルジ−i−プロポキシシラン、ジメチルジ−n−ブトキシシラン、ジメチルジ−sec−ブトキシシラン、(メチル)〔2−(パーフルオロ−n−オクチル)エチル〕ジクロロシラン、(メチル)〔2−(パーフルオロ−n−オクチル)エチル〕ジメトキシシラン、(メチル)〔2−(パーフルオロ−n−オクチル)エチル〕ジエメトキシシラン、(メチル)〔2−(パーフルオロ−n−オクチル)エチル〕ジ−n−プロポキシシラン、(メチル)〔2−(パーフルオロ−n−オクチル)エチル〕ジ−i−プロポキシシラン、(メチル)〔2−(パーフルオロ−n−オクチル)エチル〕ジ−n−ブトキシシラン、(メチル)〔2−(パーフルオロ−n−オクチル)エチル〕ジ−sec−ブトキシシラン、(メチル)(3−メルカプトプロピル)ジクロロシラン、(メチル)(3−メルカプトプロピル)ジメトキシシラン、(メチル)(3−メルカプトプロピル)ジエトキシシラン、(メチル)(3−メルカプトプロピル)ジ−n−プロポキシシラン、(メチル)(3−メルカプトプロピル)ジ−i−プロポキシシラン、(メチル)(3−メルカプトプロピル)ジ−n−ブトキシシラン、(メチル)(3−メルカプトプロピル)ジ−sec−ブトキシシラン、(メチル)(ビニル)ジクロロシラン、(メチル)(ビニル)ジメトキシシラン、(メチル)(ビニル)ジエトキシシラン、(メチル)(ビニル)ジ−n−プロポキシシラン、(メチル)(ビニル)ジ−i−プロポキシシラン、(メチル)(ビニル)ジ−n−ブトキシシラン、(メチル)(ビニル)ジ−sec−ブトキシシラン、ジビニルジクロロシラン、ジビニルジメトキシシラン、ジビニルジエトキシシラン、ジビニルジ−n−プロポキシシラン、ジビニルジ−i−プロポキシシラン、ジビニルジ−n−ブトキシシラン、ジビニルジ−sec−ブトキシシラン、ジフェニルジクロロシランジフェニルジメトキシシランジフェニルジエトキシシラン、ジフェニルジ−n−プロポキシシラン、ジフェニルジ−i−プロポキシシラン、ジフェニルジ−n−ブトキシシラン、ジフェニルジ−sec−ブトキシシラン、クロロジメチルシランメトキシジメチルシランエトキシジメチルシラン、クロロトリメチルシランブロモトリメチルシランヨードトリメチルシラン、メトキシトリメチルシラン、エトキシトリメチルシラン、n−プロポキシトリメチルシラン、i−プロポキシトリメチルシラン、n−ブトキシトリメチルシラン、sec−ブトキシトリメチルシラン、t−ブトキシトリメチルシラン、(クロロ)(ビニル)ジメチルシラン、(メトキシ)(ビニル)ジメチルシラン、(エトキシ)(ビニル)ジメチルシラン、(クロロ)(メチル)ジフェニルシラン、(メトキシ)(メチル)ジフェニルシラン、(エトキシ)(メチル)ジフェニルシラン等のケイ素原子を1個有するシラン化合物等が挙げられる。

0056

商品名では、例えば
KC−89、KC−89S、X−21−3153、X−21−5841、X−21−5842、X−21−5843、X−21−5844、X−21−5845、X−21−5846、X−21−5847、X−21−5848、X−22−160AS、X−22−170B、X−22−170BX、X−22−170D、X−22−170DX、X−22−176B、X−22−176D、X−22−176DX、X−22−176F、X−40−2308、X−40−2651、X−40−2655A、X−40−2671、X−40−2672、X−40−9220、X−40−9225、X−40−9227、X−40−9246、X−40−9247、X−40−9250、X−40−9323、X−41−1053、X−41−1056、X−41−1805、X−41−1810、KF6001、KF6002、KF6003、KR212、KR−213、KR−217、KR220L、KR242A、KR271、KR282、KR300、KR311、KR401N、KR500、KR510、KR5206、KR5230、KR5235、KR9218、KR9706(以上、信越化学工業社);
グラスレジン(昭和電工社);
SH804、SH805、SH806A、SH840、SR2400、SR2402、SR2405、SR2406、SR2410、SR2411、SR2416、SR2420(以上、東レ・ダウコーニング社);
FZ3711、FZ3722(以上、日本ユニカー社);
DMS−S12、DMS−S15、DMS−S21、DMS−S27、DMS−S31、DMS−S32、DMS−S33、DMS−S35、DMS−S38、DMS−S42、DMS−S45、DMS−S51、DMS−227、PSD−0332、PDS−1615、PDS−9931、XMS−5025(以上、チッソ社);
メチルシリケートMS51、メチルシリケートMS56(以上、三菱化学社);
エチルシリケート28、エチルシリケート40、エチルシリケート48(以上、コルコート社);
GR100、GR650、GR908、GR950(以上、昭和電工社)等の部分縮合物が挙げられる。

0057

これらの他のシラン化合物のうち、得られる液晶配向膜の配向性及び化学的安定性の観点から、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、3−(メタ)アクリロキシプロピルトリメトキシシラン、3−(メタ)アクリロキシプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、メルカプトメチルトリメトキシシラン、メルカプトメチルトリエトキシシラン、ジメチルジメトキシシラン又はジメチルジエトキシシランが好ましい。

0058

本発明に用いられるエポキシ基を有するポリオルガノシロキサンは、光配向性を有する側鎖を充分な量で導入しつつ、エポキシ基の導入量が過剰となることによる意図しない副反応等を抑制するためにそのエポキシ当量としては100g/モル〜10,000g/モルが好ましく、150g/モル〜1,000g/モルがより好ましい。従って、エポキシ基を有するポリオルガノシロキサンを合成するにあたっては、エポキシ基を有するシラン化合物と他のシラン化合物との使用割合を、得られるポリオルガノシロキサンのエポキシ当量が上記の範囲となるように調製することが好ましい。

0059

具体的には、このような他のシラン化合物は、エポキシ基を有するポリオルガノシロキサンと他のシラン化合物との合計に対して0質量%〜50質量%用いることが好ましく、5質量%〜30質量%用いることがより好ましい。

0060

エポキシ基を有するポリオルガノシロキサンを合成するにあたって使用することのできる有機溶媒としては、例えば炭化水素化合物ケトン化合物エステル化合物エーテル化合物アルコール化合物等が挙げられる。

0061

上記炭化水素化合物としては、例えばトルエンキシレン等;上記ケトンとしては、例えばメチルエチルケトンメチルイソブチルケトン、メチルn−アミルケトン、ジエチルケトンシクロヘキサノン等;上記エステルとしては、例えば酢酸エチル酢酸n−ブチル、酢酸i−アミルプロピレングリコールモノメチルエーテルアセテート、3−メトキシブチルアセテート乳酸エチル等;上記エーテルとしては、例えばエチレングリコールジメチルエーテルエチレングリコールジエチルエーテル、テトラヒドロフラン、ジオキサン等;上記アルコールとしては、例えば1−ヘキサノール、4−メチル−2−ペンタノールエチレングリコールモノメチルエーテルエチレングリコールモノエチルエーテル、エチレングリコールモノ−n−プロピルエーテル、エチレングリコールモノ−n−ブチルエーテル、プロピレングリコールモノメチルエーテルプロピレングリコールモノエチルエーテルプロピレングリコールモノ−n−プロピルエーテル等が挙げられる。これらのうち非水溶性のものが好ましい。これらの有機溶媒は、単独で又は2種以上を混合して使用できる。

0062

有機溶媒の使用量としては、全シラン化合物100質量部に対して、10質量部〜10,000質量部が好ましく、50質量部〜1,000質量部がより好ましい。また、エポキシ基を有するポリオルガノシロキサンを製造する際の水の使用量としては、全シラン化合物に対して、0.5倍モル〜100倍モルが好ましく、1倍モル〜30倍モルがより好ましい。

0063

上記触媒としては例えば酸、アルカリ金属化合物有機塩基チタン化合物ジルコニウム化合物等を用いることができる。

0065

上記有機塩基としては、例えば
エチルアミンジエチルアミンピペラジンピペリジンピロリジンピロール等の1〜2級有機アミン
トリエチルアミン、トリ−n−プロピルアミン、トリ−n−ブチルアミンピリジン、4−ジメチルアミノピリジンジアザビシクロウンデセン等の3級の有機アミン
テトラメチルアンモニウムヒドロキシド等の4級の有機アンモニウム塩等が挙げられる。これらの有機塩基のうち、反応が穏やかに進行する点を考慮して、トリエチルアミン、トリ−n−プロピルアミン、トリ−n−ブチルアミン、ピリジン、4−ジメチルアミノピリジン等の3級の有機アミン;テトラメチルアンモニウムヒドロキシド等の4級の有機アンモニウム塩が好ましい。

0066

エポキシ基を有するポリオルガノシロキサンを製造する際の触媒としては、アルカリ金属化合物又は有機塩基が好ましい。アルカリ金属化合物又は有機塩基を触媒として用いることにより、エポキシ基の開環等の副反応を生じることなく、高い加水分解・縮合速度で目的とするポリオルガノシロキサンを得ることができることになり、生産安定性に優れることとなって好ましい。また、触媒としてアルカリ金属化合物又は有機塩基を用いて合成されたエポキシ基を有するポリオルガノシロキサンと特定桂皮酸誘導体との反応生成物を含有する本発明の有機半導体配向用組成物は、保存安定性が極めて優れるため好都合である。

0067

その理由は、Chemical Reviews、95巻、p1409(1995年)に指摘されているように、加水分解、縮合反応において触媒としてアルカリ金属化合物又は有機塩基を用いると、ランダム構造はしご型構造又はかご型構造が形成され、シラノール基含有割合が少ないポリオルガノシロキサンが得られるためではないかと推察される。シラノール基の含有割合が少ないため、シラノール基同士の縮合反応が抑えられ、さらに、本発明の有機半導体配向用組成物が後述の他の重合体を含有するものである場合には、シラノール基と他の重合体との縮合反応が抑えられるため、保存安定性に優れる結果になるものと推察される。

0068

触媒としては、特に有機塩基が好ましい。有機塩基の使用量は、有機塩基の種類、温度等の反応条件等により異なり、適宜に設定することができる。有機塩基の具体的な使用量としては、例えば全シラン化合物に対して、好ましくは0.01倍モル〜3倍モルであり、より好ましくは0.05倍モル〜1倍モルである。

0069

エポキシ基を有するポリオルガノシロキサンを製造する際の加水分解又は加水分解・縮合反応は、エポキシ基を有するシラン化合物と必要に応じて他のシラン化合物とを有機溶媒に溶解し、この溶液を有機塩基及び水と混合して、例えば油浴等により加熱することにより実施することが好ましい。

0070

加水分解・縮合反応時には、油浴の加熱温度を好ましくは130℃以下、より好ましくは40℃〜100℃として、好ましくは0.5時間〜12時間、より好ましくは1時間〜8時間加熱するのが望ましい。加熱中は、混合液撹拌してもよいし、還流下に置いてもよい。

0071

反応終了後反応液から分取した有機溶媒層を水で洗浄することが好ましい。この洗浄に際しては、洗浄操作が容易になる点で、少量の塩を含む水、例えば0.2質量%程度の硝酸アンモニウム水溶液等で洗浄することが好ましい。洗浄は洗浄後の水層中性になるまで行い、その後有機溶媒層を、必要に応じて無水硫酸カルシウムモレキュラーシーブス等の乾燥剤で乾燥した後、溶媒を除去することにより、目的とするエポキシ基を有するポリオルガノシロキサンを得ることができる。

0072

本発明においては、エポキシ基を有するポリオルガノシロキサンとして市販されているものを用いてもよい。このような市販品としては、例えばDMS−E01、DMS−E12、DMS−E21、EMS−32(以上、チッソ社)等が挙げられる。

0073

[A]光配向性ポリオルガノシロキサン化合物は、エポキシ基を有するポリオルガノシロキサン自体が加水分解されて生じる加水分解物に由来する部分や、エポキシ基を有するポリオルガノシロキサン同士が加水分解縮合した加水分解縮合物に由来する部分を含んでいてもよい。上記部分の構成材料であるこれらの加水分解物や加水分解縮合物もエポキシ基を有するポリオルガノシロキサンの加水分解ないし縮合条件と同様に調製することができる。

0074

<[A]光配向性ポリオルガノシロキサンの合成>
本発明で使用される[A]光配向性ポリオルガノシロキサンは、例えば上記のエポキシ基を有するポリオルガノシロキサンと特定桂皮酸誘導体とを、好ましくは触媒の存在下に反応させることにより合成できる。

0075

ここで特定桂皮酸誘導体の使用量としては、ポリオルガノシロキサンの有するエポキシ基1モルに対して0.001モル〜10モルが好ましく、0.01モル〜5モルがより好ましく、0.05モル〜2モルが特に好ましい。

0076

上記触媒としては、有機塩基、又はエポキシ化合物酸無水物との反応を促進するいわゆる硬化促進剤として公知の化合物を用いることができる。上記有機塩基としては、例えば上述したものと同様のものが挙げられる。

0077

上記硬化促進剤としては、例えば
ベンジルジメチルアミン、2,4,6−トリス(ジメチルアミノメチルフェノールシクロヘキシルジメチルアミントリエタノールアミン等の3級アミン;
2−メチルイミダゾール、2−n−ヘプチルイミダゾール、2−n−ウンデシルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1,2−ジメチルイミダゾール、2−エチル−4−メチルイミダゾール、1−(2−シアノエチル)−2−メチルイミダゾール、1−(2−シアノエチル)−2−n−ウンデシルイミダゾール、1−(2−シアノエチル)−2−フェニルイミダゾール、1−(2−シアノエチル)−2−エチル−4−メチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、2−フェニル−4,5−ジ(ヒドロキシメチル)イミダゾール、1−(2−シアノエチル)−2−フェニル−4,5−ジ〔(2’−シアノエトキシ)メチル〕イミダゾール、1−(2−シアノエチル)−2−n−ウンデシルイミダゾリウムトリメリテート、1−(2−シアノエチル)−2−フェニルイミダゾリウムトリメリテート、1−(2−シアノエチル)−2−エチル−4−メチルイミダゾリウムトリメリテート、2,4−ジアミノ−6−〔2’−メチルイミダゾリル−(1’)〕エチル−s−トリアジン、2,4−ジアミノ−6−(2’−n−ウンデシルイミダゾリル)エチル−s−トリアジン、2,4−ジアミノ−6−〔2’−エチル−4’−メチルイミダゾリル−(1’)〕エチル−s−トリアジン、2−メチルイミダゾールのイソシアヌル酸付加物、2−フェニルイミダゾールのイソシアヌル酸付加物、及び2,4−ジアミノ−6−〔2’−メチルイミダゾリル−(1’)〕エチル−s−トリアジンのイソシアヌル酸付加物等のイミダゾール化合物
ジフェニルフォスフィントリフェニルフォスフィン亜リン酸トリフェニル等の有機リン化合物
ベンジルトリフェニルフォスフォニウムクライド、テトラ−n−ブチルフォスフォニウムブロマイド、メチルトリフェニルフォスフォニウムブロマイド、エチルトリフェニルフォスフォニウムブロマイド、n−ブチルトリフェニルフォスフォニウムブロマイド、テトラフェニルフォスフォニウムブロマイド、エチルトリフェニルフォスフォニウムヨーダイド、エチルトリフェニルフォスフォニウムアセテート、テトラ−n−ブチルフォスフォニウムo,o−ジエチルフォスフォロジチオネート、テトラ−n−ブチルフォスフォニウムベンゾトリアゾレート、テトラフェニルフォスフォニウムテトラフェニルボレート、テトラ−n−ブチルフォスフォニウムテトラフルオロボレート、テトラ−n−ブチルフォスフォニウムテトラフェニルボレート等の4級フォスフォニウム塩;
1,8−ジアザビシクロ[5.4.0]ウンデセン−7やその有機酸塩等のジアザビシクロアルケン
オクチル酸亜鉛オクチル酸錫アルミニウムアセチルアセトン錯体等の有機金属化合物
テトラエチルアンモニウムブロマイド、テトラ−n−ブチルアンモニウムブロマイド、テトラエチルアンモニウムクロライド、テトラ−n−ブチルアンモニウムクロライド等の4級アンモニウム塩
三フッ化ホウ素ホウ酸トリフェニル等のホウ素化合物
塩化亜鉛塩化第二錫等の金属ハロゲン化合物
ジシアンジアミドやアミンとエポキシ樹脂との付加物等のアミン付加型促進剤等の高融点分散型潜在性硬化促進剤
上記イミダゾール化合物、有機リン化合物や4級フォスフォニウム塩等の硬化促進剤の表面をポリマー被覆したマイクロカプセル型潜在性硬化促進剤;
アミン塩型潜在性硬化促進剤;
ルイス酸塩ブレンステッド酸塩等の高温解離型の熱カチオン重合型潜在性硬化促進剤等の潜在性硬化促進剤等が挙げられる。

0078

これらの触媒の中でも、テトラエチルアンモニウムブロマイド、テトラ−n−ブチルアンモニウムブロマイド、テトラエチルアンモニウムクロライド、テトラ−n−ブチルアンモニウムクロライド等の4級アンモニウム塩が好ましい。

0079

触媒の使用量としては、エポキシ基を有するポリオルガノシロキサン100質量部に対して100質量部以下が好ましく、0.01質量部〜100質量部がより好ましく、0.1質量部〜20質量部が特に好ましい。

0080

反応温度としては、0℃〜200℃が好ましく、50℃〜150℃がより好ましい。反応時間としては、0.1時間〜50時間が好ましく、0.5時間〜20時間がより好ましい。

0081

[A]光配向性ポリオルガノシロキサンは、必要に応じて有機溶媒の存在下に合成できる。かかる有機溶媒としては、例えば炭化水素化合物、エーテル化合物、エステル化合物、ケトン化合物、アミド化合物、アルコール化合物等が挙げられる。これらのうち、エーテル化合物、エステル化合物、ケトン化合物が、原料及び生成物溶解性並びに生成物の精製のし易さの観点から好ましい。溶媒は、固形分濃度反応溶液中の溶媒以外の成分の質量が溶液の全質量に占める割合)が、好ましくは0.1質量%以上70質量%以下、より好ましくは5質量%以上50質量%以下となる量で使用される。

0082

このようにして得られた[A]光配向性ポリオルガノシロキサンのMwとしては、特に限定されないが、1,000〜20,000が好ましく、3,000〜15,000がより好ましい。このような分子量範囲とすることで、液晶配向膜の良好な配向性及び安定性を確保できる。

0083

[A]光配向性ポリオルガノシロキサンは、エポキシ基を有するポリオルガノシロキサンに、特定桂皮酸誘導体のカルボキシル基のエポキシへの開環付加により特定桂皮酸誘導体に由来する構造を導入している。この製造方法は簡便であり、しかも特定桂皮酸誘導体に由来する構造の導入率を高くすることができる点で極めて好適な方法である。

0084

本発明においては、本発明の効果を損なわない範囲で上記特定桂皮酸誘導体の一部を下記式(4)で表される化合物で置き換えて使用してもよい。この場合、[A]光配向性ポリオルガノシロキサン化合物の合成は、エポキシ基を有するポリオルガノシロキサンと、特定桂皮酸誘導体及び下記式(4)で表される化合物の混合物とを反応させることにより行われる。

0085

0086

上記式(4)におけるR10としては、炭素数8〜20のアルキル基若しくはアルコキシ基、又は炭素数4〜21のフルオロアルキル基若しくはフルオロアルコキシ基であることが好ましい。R11としては、単結合、1,4−シクロヘキシレン基又は1,4−フェニレン基であることが好ましい。R12としてはカルボキシル基であることが好ましい。

0087

上記式(4)で表される化合物としては、例えば下記式(4−1)〜(4−3)で表される化合物が挙げられる。

0088

0089

上記式(4)で表される化合物は、[A]光配向性ポリオルガノシロキサンの活性部位失活させて当該液晶配向剤の安定性向上に寄与し得る。本発明において、特定桂皮酸誘導体とともに上記式(4)で表される化合物を使用する場合、特定桂皮酸誘導体及び上記式(4)で表される化合物の合計の使用割合としては、ポリオルガノシロキサンの有するエポキシ基1モルに対して0.001モル〜1.5モルが好ましく、0.01モル〜1モルがより好ましく、0.05モル〜0.9モルが特に好ましい。この場合、上記式(4)で表される化合物の使用量としては、特定桂皮酸誘導体との合計に対して50モル%以下が好ましく、25モル%以下がより好ましい。上記式(4)で表される化合物の使用割合が50モル%を超えると、液晶配向膜における配向性が低下する不具合を生じるおそれがある。

0090

<[B]他の重合体>
当該液晶配向剤は、好適成分として[B]他の重合体を含有できる。[B]他の重合体としては、ポリアミック酸、ポリイミド、エチレン性不飽和化合物重合体、光配向性基を有さないポリオルガノシロキサンからなる群より選択される少なくとも1種が挙げられる。これら[B]他の重合体を含有する場合、当該液晶配向剤から形成される位相差フィルム用液晶配向膜においては、その表層付近にポリオルガノシロキサンが偏在することが明らかとなっている。この為、他の重合体の含有量を増やすことにより当該液晶配向剤中におけるポリオルガノシロキサンの含有量を減らしても、ポリオルガノシロキサンは配向膜表面に偏在するので、十分な液晶配向性が得られる。従って、本発明では製造コストの高いポリオルガノシロキサンの当該液晶配向剤中における含有量を減らすことが可能となり、結果として当該液晶配向剤の製造コストを低下できる。

0091

[ポリアミック酸]
ポリアミック酸は、テトラカルボン酸二無水物ジアミン化合物とを反応させることにより得られる。

0092

テトラカルボン酸二無水物としては、例えば脂肪族テトラカルボン酸二無水物脂環式テトラカルボン酸二無水物芳香族テトラカルボン酸二無水物等が挙げられる。これらのテトラカルボン酸二無水物は、単独で又は2種以上を組み合わせて使用できる。

0093

脂肪族テトラカルボン酸二無水物としては、例えばブタンテトラカルボン酸二無水物等が挙げられる。

0094

脂環式テトラカルボン酸二無水物としては、例えば1,2,3,4−シクロブタンテトラカルボン酸二無水物、2,3,5−トリカルボキシシクロペンチル酢酸二無水物、1,3,3a,4,5,9b−ヘキサヒドロ−5−(テトラヒドロ−2,5−ジオキソ−3−フラニル)−ナフト[1,2−c]フラン−1,3−ジオン、1,3,3a,4,5,9b−ヘキサヒドロ−8−メチル−5−(テトラヒドロ−2,5−ジオキソ−3−フラニル)−ナフト[1,2−c]フラン−1,3−ジオン、3−オキサビシクロ[3.2.1]オクタン−2,4−ジオン−6−スピロ−3’−(テトラヒドロフラン−2’,5’−ジオン)、5−(2,5−ジオキソテトラヒドロ−3−フラニル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物、3,5,6−トリカルボキシ−2−カルボキシメチルノルボルナン−2:3,5:6−二無水物、2,4,6,8−テトラカルボキシビシクロ[3.3.0]オクタン−2:4,6:8−二無水物、4,9−ジオキサトリシクロ[5.3.1.02,6]ウンデカン−3,5,8,10−テトラオン等が挙げられる。

0095

芳香族テトラカルボン酸二無水物としては、例えばピロメリット酸二無水物等が挙げられるほか特願2010−97188号に記載のテトラカルボン酸二無水物が挙げられる。

0096

これらのテトラカルボン酸二無水物のうち、脂環式テトラカルボン酸二無水物が好ましく、2,3,5−トリカルボキシシクロペンチル酢酸二無水物又は1,2,3,4−シクロブタンテトラカルボン酸二無水物がより好ましく、2,3,5−トリカルボキシシクロペンチル酢酸二無水物が特に好ましい。

0097

2,3,5−トリカルボキシシクロペンチル酢酸二無水物又は1,2,3,4−シクロブタンテトラカルボン酸二無水物の使用量としては、全テトラカルボン酸二無水物に対して、10モル%以上が好ましく、20モル%以上がより好ましく、2,3,5−トリカルボキシシクロペンチル酢酸二無水物又は1,2,3,4−シクロブタンテトラカルボン酸二無水物のみからなることが、特に好ましい。

0098

ジアミン化合物としては、例えば脂肪族ジアミン脂環式ジアミン、ジアミノオルガノシロキサン芳香族ジアミン等が挙げられる。これらジアミン化合物は、単独で又は2種以上を組み合わせて使用できる。

0100

脂環式ジアミンとしては、例えば1,4−ジアミノシクロヘキサン、4,4’−メチレンビスシクロヘキシルアミン)、1,3−ビスアミノメチルシクロヘキサン等が挙げられる。

0101

ジアミノオルガノシロキサンとしては、例えば1,3−ビス(3−アミノプロピル)−テトラメチルジシロキサン等が挙げられるほか、特願2009−97188号に記載のジアミンが挙げられる。

0102

芳香族ジアミンとしては、例えばp−フェニレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルスルフィド、1,5−ジアミノナフタレン、2,2’−ジメチル−4,4’−ジアミノビフェニル、4,4’−ジアミノ−2,2’−ビス(トリフルオロメチル)ビフェニル、2,7−ジアミノフルオレン、4,4’−ジアミノジフェニルエーテル、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、9,9−ビス(4−アミノフェニルフルオレン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、4,4’−(p−フェニレンジイソプロピリデン)ビスアニリン、4,4’−(m−フェニレンジイソプロピリデン)ビスアニリン、1,4−ビス(4−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、2,6−ジアミノピリジン、3,4−ジアミノピリジン、2,4−ジアミノピリミジン、3,6−ジアミノアクリジン、3,6−ジアミノカルバゾール、N−メチル−3,6−ジアミノカルバゾール、N−エチル−3,6−ジアミノカルバゾール、N−フェニル−3,6−ジアミノカルバゾール、N,N’−ビス(4−アミノフェニル)−ベンジジン、N,N’−ビス(4−アミノフェニル)−N,N’−ジメチルベンジジン、1,4−ビス−(4−アミノフェニル)−ピペラジン、3,5−ジアミノ安息香酸ドデカノキシ−2,4−ジアミノベンゼン、テトラデカノキシ−2,4−ジアミノベンゼン、ペンタデカノキシ−2,4−ジアミノベンゼン、ヘキサデカノキシ−2,4−ジアミノベンゼン、オクタデカノキシ−2,4−ジアミノベンゼン、ドデカノキシ−2,5−ジアミノベンゼン、テトラデカノキシ−2,5−ジアミノベンゼン、ペンタデカノキシ−2,5−ジアミノベンゼン、ヘキサデカノキシ−2,5−ジアミノベンゼン、オクタデカノキシ−2,5−ジアミノベンゼン、コレスタニルオキシ−3,5−ジアミノベンゼン、コレステニルオキシ−3,5−ジアミノベンゼン、コレスタニルオキシ−2,4−ジアミノベンゼン、コレステニルオキシ−2,4−ジアミノベンゼン、3,5−ジアミノ安息香酸コレスタニル、3,5−ジアミノ安息香酸コレステニル、3,5−ジアミノ安息香酸ラノスタニル、3,6−ビス(4−アミノベンゾイルオキシコレスタン、3,6−ビス(4−アミノフェノキシ)コレスタン、4−(4’−トリフルオロメトキシベンゾイロキシ)シクロヘキシル−3,5−ジアミノベンゾエート、4−(4’−トリフルオロメチルベンゾイロキシ)シクロヘキシル−3,5−ジアミノベンゾエート、1,1−ビス(4−((アミノフェニル)メチル)フェニル)−4−ブチルシクロヘキサン、1,1−ビス(4−((アミノフェニル)メチル)フェニル)−4−ヘプチルシクロヘキサン、1,1−ビス(4−((アミノフェノキシ)メチル)フェニル)−4−ヘプチルシクロヘキサン、1,1−ビス(4−((アミノフェニル)メチル)フェニル)−4−(4−ヘプチルシクロヘキシル)シクロヘキサン、2,4−ジアミノーN,N—ジアリルアニリン、4−アミノベンジルアミン、3−アミノベンジルアミン及び下記式(A−1)で表されるジアミン化合物等が挙げられる。

0103

(式(A−1)中、XIは炭素数1〜3のアルキル基、*−O−、*−COO−又は*−OCO−である。但し、*を付した結合手がジアミノフェニル基と結合する。rは0又は1である。sは0〜2の整数である。tは1〜20の整数である。)

0104

ポリアミック酸の合成反応に供されるテトラカルボン酸二無水物とジアミン化合物の使用割合としては、ジアミン化合物に含まれるアミノ基1当量に対して、テトラカルボン酸二無水物の酸無水物基が0.2当量〜2当量が好ましく、0.3当量〜1.2当量がより好ましい。

0105

合成反応は、有機溶媒中において行うことが好ましい。反応温度としては、−20℃〜150℃が好ましく、0℃〜100℃がより好ましい。反応時間としては、0.5時間〜24時間が好ましく、2時間〜12時間がより好ましい。

0106

有機溶媒としては、合成されるポリアミック酸を溶解できるものであれば特に制限はなく、例えばN−メチル−2−ピロリドン(NMP)、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、N,N−ジメチルイミダゾリジノンジメチルスルホキシドγ−ブチロラクトンテトラメチル尿素ヘキサメチルホスホトリアミド等の非プロトン系極性溶媒m−クレゾールキシレノール、フェノール、ハロゲン化フェノール等のフェノール系溶媒が挙げられる。

0107

有機溶媒の使用量(a)としては、テトラカルボン酸二無水物及びジアミン化合物の総量(b)と有機溶媒の使用量(a)の合計(a+b)に対して、0.1質量%〜50質量%が好ましく、5質量%〜30質量%がより好ましい。

0108

反応後に得られるポリアミック酸溶液は、そのまま液晶配向剤の調製に供してもよく、反応溶液中に含まれるポリアミック酸を単離した上で液晶配向剤の調製に供してもよく、単離したポリアミック酸を精製した上で液晶配向剤の調製に供してもよい。ポリアミック酸の単離方法としては、例えば反応溶液を大量の貧溶媒中に注いで得られる析出物減圧下乾燥する方法、反応溶液をエバポレーターで減圧留去する方法等が挙げられる。ポリアミック酸の精製方法としては、単離したポリアミック酸を再び有機溶媒に溶解し、貧溶媒で析出させる方法、エバポレーターで有機溶媒等を減圧留去する工程を1回若しくは複数回行う方法が挙げられる。

0109

[ポリイミド]
ポリイミドは、上記ポリアミック酸の有するアミック酸構造脱水閉環してイミド化することにより製造できる。ポリイミドは、その前駆体であるポリアミック酸が有しているアミック酸構造の全てを脱水閉環した完全イミド化物であってもよく、アミック酸構造の一部のみを脱水閉環し、アミック酸構造とイミド環構造とが併存している部分イミド化物であってもよい。

0110

ポリイミドの合成方法としては、例えば(i)ポリアミック酸を加熱する方法(以下、「方法(i)」と称することがある)、(ii)ポリアミック酸を有機溶媒に溶解し、この溶液中に脱水剤及び脱水閉環触媒を添加し、必要に応じて加熱する方法(以下、「方法(ii)」と称することがある)等のポリアミック酸の脱水閉環反応による方法が挙げられる。

0111

方法(i)における反応温度としては、50℃〜200℃が好ましく、60℃〜170℃がより好ましい。反応温度が50℃未満では、脱水閉環反応が十分に進行せず、反応温度が200℃を超えると得られるポリイミドの分子量が低下することがある。反応時間としては、0.5時間〜48時間が好ましく、2時間〜20時間がより好ましい。

0112

方法(i)において得られるポリイミドはそのまま液晶配向剤の調製に供してもよく、ポリイミドを単離した上で液晶配向剤の調製に供してもよく又は単離したポリイミドを精製した上で又は得られるポリイミドを精製した上で液晶配向剤の調製に供してもよい。

0113

方法(ii)における脱水剤としては、例えば無水酢酸無水プロピオン酸無水トリフルオロ酢酸等の酸無水物が挙げられる。

0114

脱水剤の使用量としては、所望のイミド化率により適宜選択されるが、ポリアミック酸のアミック酸構造1モルに対して0.01モル〜20モルが好ましい。

0115

方法(ii)における脱水閉環触媒としては、例えばピリジン、コリジンルチジン、トリエチルアミン等が挙げられる。

0116

脱水閉環触媒の使用量としては、含有する脱水剤1モルに対して0.01モル〜10モルが好ましい。なお、イミド化率は上記脱水剤及び脱水閉環剤の含有量が多いほど高くできる。

0117

方法(ii)に用いられる有機溶媒としては、例えばポリアミック酸の合成に用いられるものとして例示した有機溶媒と同様の有機溶媒等が挙げられる。

0118

方法(ii)における反応温度としては、0℃〜180℃が好ましく、10℃〜150℃がより好ましい。反応時間としては、0.5時間〜20時間が好ましく、1時間〜8時間がより好ましい。反応条件を上記範囲とすることで、脱水閉環反応が十分に進行し、また、得られるポリイミドの分子量を適切なものとできる。

0119

方法(ii)においてはポリイミドを含有する反応溶液が得られる。この反応溶液をそのまま液晶配向剤の調製に供してもよく、反応溶液から脱水剤及び脱水閉環触媒を除いたうえで液晶配向剤の調製に供してもよく、ポリイミドを単離した上で液晶配向剤の調製に供してもよく又は単離したポリイミドを精製した上で液晶配向剤の調製に供してもよい。反応溶液から脱水剤及び脱水閉環触媒を除く方法としては、例えば溶媒置換の方法等が挙げられる。ポリイミドの単離方法及び精製方法としては、例えばポリアミック酸の単離方法及び精製方法として例示したものと同様の方法等が挙げられる。

0120

[エチレン性不飽和化合物重合体]
[B]他の重合体としてのエチレン性不飽和化合物重合体は、公知のエチレン性不飽和化合物を公知の方法で重合させることにより得られる。例えば、以下のような態様が挙げられる。[B]他の重合体としてのエチレン性不飽和化合物重合体は2種以上の重合体を併用することができる。

0121

[B]他の重合体としてのエチレン性不飽和化合物重合体は、例えば
(a)エポキシ基含有エチレン性不飽和化合物(以下、「(a)不飽和化合物」と称することがある)、
(b)カルボキシ基又は水酸基含有エチレン性不飽和化合物(以下、「(b)不飽和化合物」と称することがある)、及び
(c)(a)不飽和化合物及び(b)不飽和化合物以外の重合性不飽和化合物(以下、「(c)不飽和化合物」と称することがある)
からなる群より選択される少なくとも2種の不飽和化合物の共重合体(以下、「(A)共重合体」と称することがある)として得られる。なお、ここで、エポキシ基は、オキシラニル基及びオキセタニル基を含む。また、[B]他の重合体としてのエチレン性不飽和化合物重合体は、各不飽和化合物をそれぞれ2種以上併用することができる。

0122

(a)不飽和化合物としては、例えば
エポキシ基としてオキシラニル基を含有する不飽和化合物(以下、「(a−1)不飽和化合物」と称することがある)として、(メタ)アクリル酸グリシジル、α−エチルアクリル酸グリシジル、α−n−プロピルアクリルグリシジル、α−n−ブチルアクリル酸グリシジル、(メタ)アクリル酸3,4−エポキシブチル、α−エチルアクリル酸3,4−エポキシブチル、(メタ)アクリル酸6,7−エポキシヘプチル、α−エチルアクリル酸6,7−エポキシヘプチル等;
エポキシ基としてオキセタニル基を含有する不飽和化合物(以下、「(a−2)不飽和化合物」と称することがある)として、3−((メタ)アクリロイルオキシメチルオキセタン、3−((メタ)アクリロイルオキシメチル)−3−エチルオキセタン、3−((メタ)アクリロイルオキシメチル)−2−メチルオキセタン、3−((メタ)アクリロイルオキシメチル)−2−トリフロロメチルオキセタン、3−((メタ)アクリロイルオキシメチル)−2−ペンタフロロエチルオキセタン、3−((メタ)アクリロイルオキシメチル)−2−フェニルオキセタン、3−((メタ)アクリロイルオキシメチル)−2,2−ジフロロオキセタン、3−((メタ)アクリロイルオキシメチル)−2,2,4−トリフロロオキセタン、3−((メタ)アクリロイルオキシメチル)−2,2,4,4−テトラフロロオキセタン、3−((メタ)アクリロイルオキシエチル)オキセタン、3−((メタ)アクリロイルオキシエチル)−3−エチルオキセタン、2−エチル−3−((メタ)アクリロイルオキシエチル)オキセタン、3−((メタ)アクリロイルオキシエチル)−2−トリフロロメチルオキセタン、3−((メタ)アクリロイルオキシエチル)−2−ペンタフロロエチルオキセタン、3−((メタ)アクリロイルオキシエチル)−2−フェニルオキセタン、2,2−ジフロロ−3−((メタ)アクリロイルオキシエチル)オキセタン、3−((メタ)アクリロイルオキシエチル)−2,2,4−トリフロロオキセタン、3−((メタ)アクリロイルオキシエチル)−2,2,4,4−テトラフロロオキセタン等が挙げられる。

0123

(b)不飽和化合物としては、例えば
(メタ)アクリル酸、クロトン酸、α−エチルアクリル酸、α−n−プロピルアクリル酸、α−n−ブチルアクリル酸、マレイン酸フマル酸シトラコン酸メサコン酸イタコン酸等の不飽和カルボン酸類
無水マレイン酸無水イタコン酸無水シトラコン酸、シス−1,2,3,4−テトラヒドロフタル酸無水物等の不飽和多価カルボン酸無水物類;
(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸2−ヒドロキシプロピル、(メタ)アクリル酸3−ヒドロキシプロピル、(メタ)アクリル酸4−ヒドロキシブチルジエチレングリコールモノ(メタ)アクリレートポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、2,3−ジヒドロキシプロピル(メタ)アクリレート、2−(メタ)アクリロキシエチルグリコサイド等の水酸基を有する(メタ)アクリロイル酸エステル等が挙げられる。

0124

(c)不飽和化合物としては、例えば
(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸i−プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸i−ブチル、(メタ)アクリル酸sec−ブチル、(メタ)アクリル酸t−ブチル等の(メタ)アクリル酸アルキルエステル類
(メタ)アクリル酸シクロペンチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2−メチルシクロヘキシル、(メタ)アクリル酸トリシクロ[5.2.1.02,6]デカン−8−イル(以下、トリシクロ[5.2.1.02,6]デカン−8−イルを「ジシクロペンタニル」という。)、(メタ)アクリル酸2−ジシクロペンタニルオキシエチル、(メタ)アクリル酸イソボロニル等の(メタ)アクリル酸脂環式エステル類;
(メタ)アクリル酸フェニル、(メタ)アクリル酸トリル等の(メタ)アクリル酸アリールエステル類;
(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェニルエチル等の(メタ)アクリル酸アラルキルエステル類;
(メタ)アクリル酸テトラヒドロフルフリル、(メタ)アクリル酸テトラヒドロピラニル等の複素環式エステル類
マレイン酸ジエチルフマル酸ジエチルイタコン酸ジエチル等の不飽和ジカルボン酸ジエステル類
N−フェニルマレイミド、N−ベンジルマレイミド、N−シクロヘキシルマレイミド、N−スクシンイミジル−3−マレイミドベンゾエート、N−スクシンイミジル−4−マレイミドブチレート、N−スクシンイミジル−6−マレイミドカプロエート、N−スクシンイミジル−3−マレイミドプロピオネート、N−(9−アクリジル)マレイミド等の不飽和ジカルボニルイミド誘導体
(メタ)アクリロニトリル、α−クロロアクリニトリルシアン化ビニリデン等のシアン化ビニル化合物
(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、N−(メタ)アクリロイルモルホリン等の不飽和アミド化合物;
スチレンα−メチルスチレン、m−メチルスチレン、p−メチルスチレン、o−メチルスチレン、p−メトキシスチレン等の芳香族ビニル化合物
インデン、1−メチルインデン等のインデン誘導体類;
1,3−ブタジエンイソプレン、2,3−ジメチル−1,3−ブタジエン等の共役ジエン系化合物の他、塩化ビニル塩化ビニリデン酢酸ビニル等が挙げられる。

0125

(A)共重合体において、(a)不飽和化合物に由来する構造単位の含有率は、全構造単位に対して、10質量%〜100質量%が好ましく、20質量%〜100質量%がより好ましく、30質量%〜80質量%がさらに好ましい。(a−1)不飽和化合物に由来する構造単位の含有率としては、全構造単位に対して、5質量%〜60質量%が好ましく、10質量%〜70質量%がより好ましい。(a−2)不飽和化合物に由来する構造単位の含有率としては、全構造単位に対して、5質量%〜40質量%が好ましく、10質量%〜30質量%がより好ましい。なお、(a)不飽和化合物に由来する全構造単位に対する(a−2)不飽和化合物に由来する構造単位の含有率は、0質量%〜80質量%が好ましく、10質量%〜70質量%がより好ましく、20質量%〜60質量%がさらに好ましい。

0126

(A)共重合体において、(b)不飽和化合物に由来する構造単位の含有率としては、全構造単位に対して、0質量%〜40質量%が好ましく、5質量%〜40質量%がより好ましく、10質量%〜30質量%がさらに好ましい。

0127

(A)共重合体において、(c)不飽和化合物に由来する構造単位の含有率としては、全構造単位に対して、0質量%〜80質量%が好ましく、0質量%〜70質量%がより好ましく、20質量%〜60質量%がさらに好ましい。

0128

(A)共重合体は、各不飽和化合物を、適当な溶媒及び重合開始剤の存在下、例えばラジカル重合によって合成することができる。有機溶媒としては、例えばポリアミック酸の合成に用いられるものとして例示した有機溶媒と同様の有機溶媒等が挙げられる。

0129

重合開始剤としては、例えば
2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス−(2,4−ジメチルバレロニトリル)、2,2’−アゾビス−(4−メトキシ−2,4−ジメチルバレロニトリル)等のアゾ化合物
ベンゾイルペルオキシドラウロイルペルオキシド、t−ブチルペルオキシピバレート、1,1’−ビス−(t−ブチルペルオキシ)シクロヘキサン等の有機過酸化物
過酸化水素
これらの過酸化物還元剤とからなるレドックス型開始剤等が挙げられる。これらの重合開始剤は、単独で又は2種以上を混合して使用することができる。

0130

[光配向性基を有さないポリオルガノシロキサン]
当該液晶配向剤は、[A]光配向性ポリオルガノシロキサン以外にも[B]他の重合体としての光配向性基を有さないポリオルガノシロキサンをさらに含有していてもよい。光配向性基を有さないポリオルガノシロキサンとしては、下記式(5)で表される構造単位を有するポリオルガノシロキサン、その加水分解物及び加水分解物の縮合物よりなる群から選択される少なくとも1種が好ましい。なお、当該液晶配向剤が光配向性基を有さないポリオルガノシロキサンを含む場合、光配向性基を有さないポリオルガノシロキサンの大部分は、[A]光配向性ポリオルガノシロキサンとは独立して存在していればその一部は[A]光配向性ポリオルガノシロキサンとの縮合物として存在していても良い。

0131

0132

上記式(5)中、X2は水酸基、ハロゲン原子、炭素数1〜20のアルキル基、炭素数1〜6のアルコキシ基又は炭素数6〜20のアリール基である。Y2は水酸基又は炭素数1〜10のアルコキシ基である。

0133

炭素数1〜20のアルキル基としては、例えば直鎖状又は分岐状の、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基等が挙げられる。

0134

炭素数1〜6のアルコキシ基としては、例えばメトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、イソブトキシ基等が挙げられる。

0135

炭素数6〜20のアリール基としては、例えば、フェニル基、ナフチル基等が挙げられる。

0136

光配向性基を有さないポリオルガノシロキサンは、例えばアルコキシシラン化合物及びハロゲン化シラン化合物からなる群より選択される少なくとも1種のシラン化合物(以下、「原料シラン化合物」と称することがある)を、好ましくは適当な有機溶媒中で、水及び触媒の存在下において加水分解又は加水分解・縮合することにより合成できる。

0137

原料シラン化合物としては、例えば
テトラメトキシシラン、テトラエトキシシラン、テトラ−n−プロポキシシラン、テトラ−iso−プロポキシシラン、テトラ−n−ブトキシラン、テトラ−sec−ブトキシシラン、テトラ−tert−ブトキシシラン、テトラクロロシラン等;
メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ−n−プロポキシシラン、メチルトリ−iso−プロポキシシラン、メチルトリ−n−ブトキシシラン、メチルトリ−sec−ブトキシシラン、メチルトリ−tert−ブトキシシラン、メチルトリフェノキシシラン、メチルトリクロロシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリ−n−プロポキシシラン、エチルトリ−iso−プロポキシシラン、エチルトリ−n−ブトキシシラン、エチルトリ−sec−ブトキシシラン、エチルトリ−tert−ブトキシシラン、エチルトリクロロシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリクロロシラン等;
ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジクロロシラン等;
トリメチルメトキシシラン、トリメチルエトキシシラントリメチルクロロシラン等が挙げられる。

0138

これらのうち、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、トリメチルメトキシシラン又はトリメチルエトキシシランが好ましい。

0139

光配向性基を有さないポリオルガノシロキサンを合成する際に、任意的に使用できる有機溶媒としては、例えば、アルコール化合物、ケトン化合物、アミド化合物、エステル化合物又はその他の非プロトン性化合物が挙げられる。これらは単独で又は2種以上組合せて使用できる。

0140

光配向性基を有さないポリオルガノシロキサンの合成に際して使用する水の量としては、原料シラン化合物の有するアルコキシ基及びハロゲン原子の合計1モルに対して、0.01モル〜100モルが好ましく、0.1モル〜30モルがより好ましく、1モル〜1.5モルが特に好ましい。

0141

光配向性基を有さないポリオルガノシロキサンの合成に際して使用できる触媒としては、例えば金属キレート化合物有機酸無機酸、有機塩基、アルカリ金属化合物、アルカリ土類金属化合物アンモニア等が挙げられる。これらは単独で又は2種以上組合せて使用できる。

0142

触媒の使用量としては、原料シラン化合物100質量部に対して0.001質量部〜10質量部が好ましく、0.001質量部〜1質量部がより好ましい。

0143

光配向性基を有さないポリオルガノシロキサンの合成に際して添加される水は、原料であるシラン化合物中又はシラン化合物を有機溶媒に溶解した溶液中に、断続的又は連続的に添加できる。触媒は、原料であるシラン化合物中又はシラン化合物を有機溶媒に溶解した溶液中に予め添加しておいてもよく、添加される水中に溶解又は分散させておいてもよい。

0144

光配向性基を有さないポリオルガノシロキサンの合成の際の反応温度としては、0℃〜100℃が好ましく、15℃〜80℃がより好ましい。反応時間としては、0.5時間〜24時間が好ましく、1時間〜8時間がより好ましい。

0145

当該液晶配向剤が、[B]他の重合体を含有する場合、[B]他の重合体の含有割合としては、[B]他の重合体の種類により異なるが、[A]光配向性ポリオルガノシロキサン100質量部に対して10,000質量部以下が好ましい。

0146

<[C]エステル構造含有化合物>
当該液晶配向剤は[C]エステル構造含有化合物を含むことにより、耐熱性等に優れる位相差フィルム用液晶配向膜を形成し得る。

0147

[C]エステル構造含有化合物は、分子内にカルボン酸のアセタールエステル構造、カルボン酸のケタールエステル構造、カルボン酸の1−アルキルシクロアルキルエステル構造及びカルボン酸のt−ブチルエステル構造からなる群より選択される少なくとも1種の構造を2個以上有する化合物である。[C]エステル構造含有化合物は、これらの構造のうちの同じ種類の構造を2個以上有する化合物であってもよく、これらの構造のうちの異なる種類の構造を合わせて2個以上有する化合物であってもよい。上記カルボン酸のアセタールエステル構造を含む基としては、下記式(C−1)及び式(C−2)で表される基が挙げられる。

0148

(式(C−1)中、R13及びR14はそれぞれ独立して、炭素数1〜20のアルキル基、炭素数3〜10の脂環式基、炭素数6〜10のアリール基又は炭素数7〜10のアラルキル基である。
式(C−2)中、n1は2〜10の整数である。)

0149

上記式(C−1)におけるR13において、炭素数1〜20のアルキル基としてはメチル基が好ましく、炭素数3〜10の脂環式基としてはシクロヘキシル基が好ましく、炭素数6〜10のアリール基としてはフェニル基が好ましく、炭素数7〜10のアラルキル基としてはベンジル基が好ましい。R14の炭素数1〜20のアルキル基としては炭素数1〜6のアルキル基が好ましく、炭素数3〜10の脂環式基としては炭素数6〜10の脂環式基が好ましく、炭素数6〜10のアリール基としてはフェニル基が好ましく、炭素数7〜10のアラルキル基としてはベンジル基又は2−フェニルエチル基が好ましい。式(C−2)におけるn1としては、3又は4が好ましい。

0150

上記式(C−1)で表される基としては、例えば1−メトキシエトキシカルボニル基、1−エトキシエトキシカルボニル基、1−n−プロポキシエトキシカルボニル基、1−n−ブトキシエトキシカルボニル基、1−i−ブトキシエトキシカルボニル基、1−sec−ブトキシエトキシカルボニル基、1−t−ブトキシエトキシカルボニル基、1−シクロヘキシルオキシエトキシカルボニル基、1−ノルボルニルオキシエトキシカルボニル基、1−フェノキシエトキシカルボニル基、(シクロヘキシル)(メトキシ)メトキシカルボニル基、(シクロヘキシル)(シクロヘキシルオキシ)メトキシカルボニル基、(シクロヘキシル)(フェノキシ)メトキシカルボニル基、(シクロヘキシル)(ベンジルオキシ)メトキシカルボニル基、(フェニル)(メトキシ)メトキシカルボニル基、(フェニル)(シクロヘキシルオキシ)メトキシカルボニル基、(フェニル)(フェノキシ)メトキシカルボニル基、(フェニル)(ベンジルオキシ)メトキシカルボニル基、(ベンジル)(メトキシ)メトキシカルボニル基、(ベンジル)(シクロヘキシルオキシ)メトキシカルボニル基、(ベンジル)(フェノキシ)メトキシカルボニル基、(ベンジル)(ベンジルオキシ)メトキシカルボニル基等が挙げられる。

0151

上記式(C−2)で表される基としては、例えば2−テトラヒドロフラニルオキシカルボニル基、2−テトラヒドロピラニルオキシカルボニル基等が挙げられる。

0152

これらのうち、1−エトキシエトキシカルボニル基、1−n−プロポキシエトキシカルボニル基、1−シクロヘキシルオキシエトキシカルボニル基、2−テトラヒドロフラニルオキシカルボニル基、2−テトラヒドロピラニルオキシカルボニル基が好ましい。

0153

上記カルボン酸のケタールエステル構造を含む基としては、例えば下記式(C−3)〜(C−5)で表される基が挙げられる。

0154

(式(C−3)中、R15は炭素数1〜12のアルキル基である。R16及びR17はそれぞれ独立して、炭素数1〜12のアルキル基、炭素数3〜20の脂環式基、炭素数6〜20のアリール基又は炭素数7〜20のアラルキル基である。
式(C−4)中、R18は炭素数1〜12のアルキル基である。n2は2〜8の整数である。
式(C−5)中、R19は炭素数1〜12のアルキル基である。n3は2〜8の整数である。)

0155

上記式(C−3)におけるR15の炭素数1〜12のアルキル基としてはメチル基が好ましく、R16における炭素数1〜12のアルキル基としてはメチル基が好ましく、炭素数3〜20の脂環式基としてはシクロヘキシル基が好ましく、炭素数6〜20のアリール基としてはフェニル基が好ましく、炭素数7〜20のアラルキル基としてはベンジル基が好ましい。R17における炭素数7〜20のアルキル基としては炭素数1〜6のアルキル基が好ましい。炭素数3〜20の脂環式基としては炭素数6〜10の脂環式基が好ましい。炭素数6〜20のアリール基としてはフェニル基が好ましい。炭素数7〜20のアラルキル基としてはベンジル基又は2−フェニルエチル基が好ましい。式(C−4)におけるR18の炭素数1〜12のアルキル基としてはメチル基が好ましい。n2としては3又は4が好ましい。式(C−5)におけるR19の炭素数1〜12のアルキル基としてはメチル基が好ましい。n3としては3又は4が好ましい。

0156

上記式(C−3)で表される基としては、例えば、1−メチル−1−メトキシエトキシカルボニル基、1−メチル−1−n−プロポキシエトキシカルボニル基、1−メチル−1−n−ブトキシエトキシカルボニル基、1−メチル−1−i−ブトキシエトキシカルボニル基、1−メチル−1−sec−ブトキシエトキシカルボニル基、1−メチル−1−t−ブトキシエトキシカルボニル基、1−メチル−1−シクロヘキシルオキシエトキシカルボニル基、1−メチル−1−ノルボルニルオキシエトキシカルボニル基、1−メチル−1−フェノキシエトキシカルボニル基、1−メチル−1−ベンジルオキシエトキシカルボニル基、1−メチル−1−フェネチルオキシエトキシカルボニル基、1−シクロヘキシル−1−メトキシエトキシカルボニル基、1−シクロヘキシル−1−シクロヘキシルオキシエトキシカルボニル基、1−シクロヘキシル−1−フェノキシエトキシカルボニル基、1−フェニル−1−メトキシエトキシカルボニル基、1−フェニル−1−エトキシエトキシカルボニル基、1−フェニル−1−フェノキシエトキシカルボニル基、1−フェニル−1−ベンジルオキシエトキシカルボニル基、1−ベンジル−1−メトキシエトキシカルボニル基、1−ベンジル−1−シクロヘキシルオキシエトキシカルボニル基、1−ベンジル−1−フェノキシエトキシカルボニル基、1−ベンジル−1−ベンジルオキシエトキシカルボニル基等が挙げられる。

0157

上記式(C−4)で表される基としては、例えば2−(2−メチルテトラヒドロフラニル)オキシカルボニル基、2−(2−メチルテトラヒドロピラニル)オキシカルボニル基等が挙げられる。

0158

上記式(C−5)で表される基としては、例えば1−メトキシシクロペンチルオキシカルボニル基、1−メトキシシクロヘキシルオキシカルボニル基等が挙げられる。

0159

これらのうち、1−メチル−1−メトキシエトキシカルボニル基、1−メチル−1−シクロヘキシルオキシエトキシカルボニル基が好ましい。

0160

上記カルボン酸の1−アルキルシクロアルキルエステル構造を含む基としては、例えば下記式(C−6)で表される基が挙げられる。

0161

(式(C−6)中、R20は炭素数1〜12のアルキル基である。n4は1〜8の整数である。)

0162

上記式(C−6)におけるR20の炭素数1〜12のアルキル基としては炭素数1〜10のアルキル基が好ましい。

0163

上記式(C−6)で表される基としては、例えば1−メチルシクロプロポキシカルボニル基、1−メチルシクロブトキシカルボニル基、1−メチルシクロペントキシカルボニル基、1−メチルシクロへキシロキシカルボニル基、1−メチルシクロデシロキシカルボニル基、1−エチルシクロブトキシカルボニル基、1−エチルシクロペントキシカルボニル基、1−エチルシクロヘキシロキシカルボニル基、1−エチルシクロデシロキシカルボニル基、1−(イソ)プロピルシクロプロポキシカルボニル基、1−(イソ)プロピルシクロブトキシカルボニル基、1−(イソ)プロピルシクロデシロキシカルボニル基、1−(イソ)ブチルシクロブトキシカルボニル基、1−(イソ)ブチルシクロペントキシカルボニル基、1−(イソ)ブチルシクロヘキシロキシカルボニル基、1−(イソ)ブチルシクロヘプチロシカルボニル基、1−(イソ)ブチルシクロデシロキシカルボニル基、1−(イソ)ペンチルシクロヘプチロキシカルボニル基、1−(イソ)ペンチルシクロオクチロキシカルボニル基、1−(イソ)ヘキシルシクロプロポキシカルボニル基、1−(イソ)ヘキシルシクロブトキシカルボニル基、1−(イソ)ヘキシルシクロペントキシカルボニル基、1−(イソ)ヘキシルシクロヘキシロキシカルボニル基、1−(イソ)ヘキシルシクロノニロキシカルボニル基、1−(イソ)ヘキシルシクロデシロキシカルボニル基、1−(イソ)オクチルシクロプロポキシカルボニル基、1−(イソ)オクチルシクロブトキシカルボニル基、1−(イソ)オクチルシクロペントキシカルボニル基、1−(イソ)オクチルシクロヘキシロキシカルボニル基、1−(イソ)オクチルシクロヘプチロキシカルボニル基、1−(イソ)オクチルシクロオクチロキシカルボニル基、1−(イソ)オクチルシクロデシロキシカルボニル基等を挙げることができる。

0164

上記カルボン酸のt−ブチルエステル構造を含む基とは、t−ブトキシカルボニル基である。

0165

本発明における[C]エステル構造含有化合物としては、下記式(C)で表される化合物が好ましい。

0166

TnR (C)
(式(C)中、Tは上記式(C−1)〜(C−6)のいずれかで表される基若しくはt−ブトキシカルボニル基であり、nが2であってRが単結合であるか、又はnが2〜10の整数であってRが炭素数3〜10の複素環化合物から水素を除去して得られるn価の基若しくは炭素数1〜18のn価の炭化水素基である。)

0167

nは、2又は3が好ましい。

0168

上記式(C)におけるRとしてはnが2である場合としては単結合、炭素数1〜12のアルカンジイル基、1,2−フェニレン基、1,3−フェニレン基、1,4−フェニレン基、2,6−ナフタレニル基、5−ナトリウムスルホ−1,3−フェニレン基、5−テトラブチルホスホニウムスルホ−1,3−フェニレン基等が挙げられる。

0169

nが3である場合、上記Rとしては下記式で表される基、ベンゼン−1,3,5−トリイル基等が挙げられる。

0170

0171

上記アルカンジイル基としては、直鎖状が好ましい。

0172

上記式(C)で表される[C]エステル構造含有化合物は、有機化学の定法により、又は有機化学の定法を適宜に組み合わせることにより合成できる。

0173

例えば上記式(C)におけるTが上記式(C−1)で表される基である化合物(但し、R13がフェニル基である場合を除く)は、好ましくはリン酸触媒の存在下で化合物R−(COOH)n(但し、R及びnは、それぞれ上記式(C)と同義である)及び化合物R14−O−CH=R13’(但し、R14は上記式(C−1)と同義である。R13’は上記式(C−1)におけるR13の一位炭素から水素原子を除去して得られる基である)を付加することにより合成できる。

0174

上記式(C)におけるTが上記式(C−2)で表される基である化合物は好ましくはp−トルエンスルホン酸触媒の存在下で化合物R−(COOH)n(但し、R及びnは上記式(C)と同義である)及び下記式で表される化合物を付加することにより合成できる。

0175

(式中、n1は上記式(C−2)と同義である。)

0176

当該液晶配向剤中の[C]エステル構造含有化合物の含有量としては、要求される耐熱性等を考慮して決めれば特に限定されないが、[A]光配向性ポリオルガノシロキサン100質量部に対して[C]エステル構造含有化合物0.1質量部〜50質量部が好ましく、1質量部〜20質量部がより好ましく、2質量部〜10質量部が特に好ましい。

0177

<[D]溶媒>
当該液晶配向剤は、好適成分として[D]溶媒を含有できる。[D]溶媒は、上記式(6)で表される。当該液晶配向剤が、[D]溶媒を含有することで、当該液晶配向剤と位相差フィルム用基材との密着性を向上できる。

0178

上記式(6)中、Rd1は、炭素数1〜6のアルキル基、炭素数3〜6のシクロアルキル基、フェニル基又はベンジル基である。但し、上記アルキル基は、炭素−炭素結合間に−O−を有していてもよい。Rd2は、炭素数1〜8の1価の有機基である。

0179

上記Rd1が表す炭素数1〜6のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基等が挙げられる。これらのうち、メチル基、エチル基及びプロピル基が好ましく、メチル基がより好ましい。

0180

上記Rd1が表す炭素数3〜6のシクロアルキル基としては、例えば、シクロプロピル基シクロブチル基等が挙げられる。

0181

上記Rd2が表す炭素数1〜8の1価の有機基としては、例えば、炭素数1〜8の直鎖状又は分岐状のアルキル基等が挙げられ、これらのアルキル基の炭素−炭素結合間に−O−を有している基等も含むことができる。

0182

[D]溶媒としては、例えば、酢酸メチル、酢酸エチル、酢酸プロピル酢酸イソプロピル酢酸ブチル、酢酸第2ブチル、酢酸イソブチル酢酸アミル、酢酸第2アミル、酢酸イソアミル、メチルセロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、酢酸メチルアミルプロピオン酸メチルプロピオン酸エチルプロピオン酸プロピル、プロピオン酸ブチルプロピオン酸イソブチル酪酸メチル酪酸エチル、セロソルブアセテート、プロピレングリコールモノエチルエーテルアセテート、酢酸第2ヘキシル、酢酸2-エチルブチル、3−エトキシプロピオン酸エチル、酢酸シクロヘキシル酢酸メチルシクロヘキシルブチルセロソルブアセテート、酢酸フェニル酢酸2-エチルヘキシル酢酸ベンジル、メチルカルビトールアセテート、カルビトールアセテート、ブチルカルビトールアセテート、メトキシブチルアセテート、メトキシトリグリコールアセテート、メチル-3-メトキシプロピオネートプロピオン酸アミル、プロピレングリコールモノメチルエーテルアセテート、酪酸ブチル酪酸イソアミル安息香酸メチル安息香酸エチル安息香酸ベンジル酢酸メトキシブチル、3−メチル−3−メトキシブチルアセテート、3−メトキシ−3−メチルブチルアセテート、エチル−3−エトキシプロピオネート、ブチルソロアセテート等が挙げられる。

0183

これらのうち、[D]溶媒としては、当該液晶配向剤から液晶配向膜を形成する際に、低温揮発させることができる溶媒が好ましいという観点から、沸点が150℃以下の溶媒が好ましい。このような溶媒として、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸第2ブチル、酢酸イソブチル、酢酸アミル、酢酸第2アミル、酢酸イソアミル、メチルセロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、酢酸メチルアミル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸ブチル、プロピオン酸イソブチル、酪酸メチル及び酪酸エチルが挙げられる。

0184

なお、[D]溶媒としては、液晶配向剤を塗布する位相差フィルム用基板に変形、溶解等の影響を与えない溶媒が好ましい。例えば、トリアセチルセルロース(TAC)フィルムを上記位相差フィルム用基板として用いる場合には、上記好ましい溶媒のうち、酢酸エステル系溶媒及びプロピオン酸エステル系溶媒がより好ましく、酢酸エステル系溶媒がさらに好ましい。なかでも、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸第2ブチル及び酢酸イソブチルが特に好ましい。

0185

当該液晶配向剤が、[D]溶媒を含有する場合、[D]溶媒の含有割合としては、全溶剤に対し50重量部以上が好ましく、75重量部以上がより好ましい。なお、[D]溶媒は2種類以上を混合して用いてもよい。

0186

<[E]溶媒>
当該液晶配向剤は、好適成分として[E]溶媒を含有できる。[E]溶媒は、位相差フィルム用基板に対する侵食性を有する有機溶媒である。当該液晶配向剤が[E]溶媒を含有することで、当該液晶配向剤と位相差フィルム用基材との密着性をさらに向上できる。

0187

上記位相差フィルム用基板としては、例えばフロートガラスソーダガラス等のガラス基材、トリアセチルセルロース(TAC)、ポリエチレンテレフタレートポリブチレンテレフタレートポリエーテルスルホンポリアミド、ポリイミド、ポリメチルメタクリレートポリカーボネート等のプラスチック基材を含む透明基板等が挙げられる。これらのうち、プラスチック基材を含む透明基板が好ましく、なかでもTACがより好ましい。

0188

ここで、位相差フィルム用基板に対する侵食性を有する有機溶媒とは、上記位相差フィルム用基板に塗布した場合に、上記基板の一部又は全部を変形及び/又は溶解させる性質を有する有機溶媒のことをいう。

0189

このような[E]溶媒としては、例えば、基材にTACフィルムを用いる場合、メチルエチルケトン(MEK)、アセトン、シクロヘキサノン、シクロペンタノン、酢酸メチル、酢酸エチル、乳酸エチル、メチル−3−メトキシプロピオネート等が挙げられる。これらのうち、密着性を向上する観点からMEK及び酢酸エチルが好ましい。

0190

当該液晶配向剤が、[E]溶媒を含有する場合、[E]溶媒の含有割合としては、全溶剤100質量部に対し、0.5〜50質量部が好ましく、2〜30質量部が特に好ましい。なお、[E]溶媒は、2種類以上を混合して用いてもよい。

0191

当該液晶配向剤は、溶媒として[E]溶媒を単独で含有してもよいし、他の溶媒と併用してもよい。密着性を向上する観点から、[D]溶媒と併用することが好ましい。[D]溶媒と[E]溶媒とを併用する場合には、[D]溶媒100質量部に対して、[E]溶媒が0.5質量部以上50質量部未満であることが好ましく、1質量部以上40質量部未満であることがより好ましく、2質量部以上30質量部未満であることがさらに好ましい。なお、[D]溶媒及び[E]溶媒の要件を同時に満たす溶媒に関しては、単独で用いても、上記併用した場合と同様の効果が期待できる。

0192

液晶配向剤を塗布する基材としてTACフィルムを用いる場合の当該液晶配向剤の態様としては、例えば、[D]溶媒としての酢酸プロピル、酢酸イソプロピル、酢酸n−ブチル、酢酸sec−ブチル、酢酸tert−ブチル又は酢酸イソブチルと、[E]溶媒としてのMEK又は酢酸エチルとを含有することが好ましい。

0193

<[F]化合物>
当該液晶配向剤は、好適成分として、重合性炭素−炭素二重結合を有する基を含む[F]化合物を含有することができる。当該液晶配向剤は、[F]化合物を含有することで、位相差フィルム用基板又は液晶層との密着性をさらに向上できる。

0194

ここで、重合性炭素−炭素二重結合を有する基とは、上記二重結合を形成する炭素原子が、付加重合によって、新たな炭素−炭素結合を生じ得る基である。上記重合性炭素−炭素二重結合を有する基としては、例えば、ビニル基アリル基スチリル基アクリロイル基メタクリロイル基アクリルアミド基クロトノイル基、イソクロトノイル基、シンナモイル基等が挙げられる。

0195

[F]化合物としては、例えば(メタ)アクリレートモノマー等の単量体化合物、(メタ)アクリロイル基等を有するアクリル系、シロキサン系等の重合体等が挙げられる。これらのうち、(メタ)アクリロイル基等を有するアクリル系、シロキサン系の重合体等が好ましく、(メタ)アクリロイル基を有するアクリル系、シロキサン系の重合体等がより好ましく、(メタ)アクリロイル基を有するシロキサン系の重合体等がさらに好ましい。

0196

当該液晶配向剤中の[F]化合物の含有量としては、[A]光配向性ポリオルガノシロキサンと[B]他の重合体との合計100質量部に対して[F]化合物0.1質量部〜30質量部が好ましく、0.5質量部〜20質量部がより好ましく、1質量部〜10質量部が特に好ましい。

0197

<その他の任意成分>
当該液晶配向剤は、上記等の感放射線性高分子の他に、本発明の効果を損なわない範囲で硬化剤硬化触媒、硬化促進剤、分子内に少なくとも一つのエポキシ基を有する化合物(以下、「エポキシ化合物」と称することがある)、官能性シラン化合物界面活性剤光増感剤、[D]溶媒及び[E]溶媒以外のその他の溶媒(以下、「その他の溶媒」と称することがある)等を含有できる。以下、これらのその他の任意成分について詳述する。

0198

[硬化剤、硬化触媒及び硬化促進剤]
硬化剤及び硬化触媒は、[A]光配向性ポリオルガノシロキサンの架橋反応をより強固にする目的で当該液晶配向剤に含有できる。また、上記硬化促進剤は、硬化剤の司る硬化反応を促進する目的で当該液晶配向剤に含有できる。

0199

硬化剤としては、エポキシ基を有する硬化性化合物又はエポキシ基を有する化合物を含有する硬化性組成物硬化用として一般に用いられている硬化剤を用いることができ、例えば多価アミン多価カルボン酸無水物多価カルボン酸等が挙げられる。

0200

多価カルボン酸無水物としては、例えばシクロヘキサントリカルボン酸の無水物及びその他の多価カルボン酸無水物等が挙げられる。シクロヘキサントリカルボン酸無水物としては、例えばシクロヘキサン−1,2,4−トリカルボン酸、シクロヘキサン−1,3,5−トリカルボン酸、シクロヘキサン−1,2,3−トリカルボン酸、シクロヘキサン−1,3,4−トリカルボン酸−3,4−無水物、シクロヘキサン−1,3,5−トリカルボン酸−3,5−無水物、シクロヘキサン−1,2,3−トリカルボン酸−2,3−酸無水物等が挙げられる。

0201

その他の多価カルボン酸無水物としては、例えば4−メチルテトラヒドロフタル酸無水物、メチルナジック酸無水物、ドデセニルコハク酸無水物、無水こはく酸、無水マレイン酸、無水フタル酸無水トリメリット酸、下記式(7)で表される化合物、及びポリアミック酸の合成に一般に用いられるテトラカルボン酸二無水物のほか、α−テルピネンアロオシメン等の共役二重結合を有する脂環式化合物と無水マレイン酸とのディールスアルダー反応生成物及びこれらの水素添加物等が挙げられる。

0202

(式(7)中、pは1〜20の整数である。)

0203

硬化剤の使用割合としては、[A]光配向性ポリオルガノシロキサン100質量部に対して、100質量部以下が好ましく、50質量部以下がより好ましい。当該液晶配向剤が硬化触媒を含有する場合、その含有割合としては、上記の[A]光配向性ポリオルガノシロキサンと任意的に使用される[B]他の重合体の合計100質量部に対して、100質量部以下が好ましく、50質量部以下がより好ましい。

0204

硬化触媒としては、例えばジアゾニウム塩ヨードニウム塩スルホニウム塩アルミニウムアルコレートアルミニウムキレート等が挙げられる。市販品としては、AMERICURE(BF4)(ACC社のジアゾニウム塩)、ULTRASET(BF4,PF6)(旭電化工業社のジアゾニウム塩)、UVEシリーズ(GE社のヨードニウム塩)、Photoinitiator2074((C6F6)4B)(ローヌ・プーラン社のヨードニウム塩)、CYRACURE UVI−6974、CYRACURE UVI−6990(以上、UCC社のスルホニウム塩)、UVI−508、UVI−509(以上、GE社のスルホニウム塩)、OPTOMER SP−150、OPTOMER SP−170(旭電化工業社のスルホニウム塩)、サンエイド SI−60L、サンエイド SI−80L、サンエイド SI−100L、サンエイド SI−110L(以上、三新化学工業社のスルホニウム塩)、IRUGACURE 261(チバガイギー社のメタロセン化合物)、アルミキレートA(W)(川研ファインケミカル社)等が挙げられる。これらの硬化触媒は、単独でも2種類以上の混合物であってもよい。

0205

硬化触媒の使用割合としては、[A]光配向性ポリオルガノシロキサン100質量部に対して、20質量部以下が好ましく、10質量部以下がより好ましい。当該液晶配向剤が硬化触媒を含有する場合、その含有割合としては、上記の[A]光配向性ポリオルガノシロキサンと任意的に使用される[B]他の重合体の合計100質量部に対して、30質量部以下が好ましく、20質量部以下がより好ましい。

0206

これらの硬化触媒のうち、スルホニウム塩、アルミニウムキレートが好ましく、スルホニウム塩のうち、アニオン種として6フッ化アンチモン、6フッ化リン等を含む化合物がより好ましい。これらのスルホニウム塩としては、例えばメチルフェニルジメチルスルホニウムヘキサフルオロアンチモン塩、エチルフェニルジメチルスルホニウムのヘキサフルオロアンチモン塩、メチルフェニルジメチルスルホニウムのヘキサフルオロホスフェート塩等が挙げられる。これらのスルホニウム塩は、単独でも2種類以上の混合物であってもよい。これらのスルホニム塩の市販品としては、サンエイドSI−60L、サンエイドSI−80L、サンエイドSI−100L(以上、三新化学工業社)、UVI−6990、UVI−6992、UVI−6974(以上、ユニオンカーバイド社)、アデカオプトマーSP−150、アデカオプトマーSP−170、アデカオプトンCP−66、アデカオプトンCP−77(以上、旭電化工業社)、IRGACURE 261(チバガイギー社)等が挙げられる。

0207

硬化促進剤としては、例えば
イミダゾール化合物;
級リン化合物
級アミン化合物
1,8−ジアザビシクロ[5.4.0]ウンデセン−7やその有機酸塩の如きジアザビシクロアルケン;
オクチル酸亜鉛、オクチル酸錫、アルミニウムアセチルアセトン錯体の如き有機金属化合物;
三フッ化ホウ素、ホウ酸トリフェニルの如きホウ素化合物;塩化亜鉛、塩化第二錫の如き金属ハロゲン化合物;
ジシアンジアミド、アミンとエポキシ樹脂との付加物の如きアミン付加型促進剤等の高融点分散型潜在性硬化促進剤;
4級フォスフォニウム塩等の表面をポリマーで被覆したマイクロカプセル型潜在性硬化促進剤;
アミン塩型潜在性硬化促進剤;
ルイス酸塩、ブレンステッド酸塩の如き高温解離型の熱カチオン重合型潜在性硬化促進剤等が挙げられる。

0208

硬化促進剤の使用割合としては、[A]光配向性ポリオルガノシロキサン100質量部に対して、20質量部以下が好ましい。当該液晶配向剤が硬化促進剤を含有する場合、その含有割合としては、上記の[A]光配向性ポリオルガノシロキサンと任意的に使用される[B]他の重合体の合計100質量部に対して、30質量部以下が好ましい。

0209

[エポキシ化合物]
エポキシ化合物は、形成される液晶配向膜の基板表面に対する接着性をより向上する目的で当該液晶配向剤に含有できる。

0210

エポキシ化合物としては、例えばエチレングリコールジグリシジルエーテルポリエチレングリコールジグリシジルエーテルプロピレングリコールジグリシジルエーテルトリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテルネオペンチルグリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2−ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6−テトラグリシジル−2,4−ヘキサンジオール、N,N,N’,N’−テトラグリシジル−m−キシレンジアミン、1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルメタン、N,N−ジグリシジル−ベンジルアミン、N,N−ジグリシジル−アミノメチルシクロヘキサン等が挙げられる。

0211

エポキシ化合物の含有割合としては、[A]光配向性ポリオルガノシロキサンと任意に含有される[B]他の重合体との合計100質量部に対して、40質量部以下が好ましく、0.1質量部〜30質量部がより好ましい。なお、当該液晶配向剤がエポキシ化合物を含有する場合、架橋反応を効率良く起こす目的で、1−ベンジル−2−メチルイミダゾール等の塩基触媒を併用してもよい。

0212

[官能性シラン化合物]
上記官能性シラン化合物は、形成される液晶配向膜の基板表面に対する接着性を向上する目的で使用できる。

0213

官能性シラン化合物としては、例えば3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、2−アミノプロピルトリメトキシシラン、2−アミノプロピルトリエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン、3−ウレイドプロピルトリメトキシシラン、3−ウレイドプロピルトリエトキシシラン、N−エトキシカルボニル−3−アミノプロピルトリメトキシシラン、N−エトキシカルボニル−3−アミノプロピルトリエトキシシラン、N−トリエトキシシリルプロピルトリエチレントリアミン、N−トリメトキシシリルプロピルトリエチレントリアミン、10−トリメトキシシリル−1,4,7−トリアザデカン、10−トリエトキシシリル−1,4,7−トリアザデカン、9−トリメトキシシリル−3,6−ジアザノニルアセテート、9−トリエトキシシリル−3,6−ジアザノニルアセテート、N−ベンジル−3−アミノプロピルトリメトキシシラン、N−ベンジル−3−アミノプロピルトリエトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−フェニル−3−アミノプロピルトリエトキシシラン、N−ビス(オキシエチレン)−3−アミノプロピルトリメトキシシラン、N−ビス(オキシエチレン)−3−アミノプロピルトリエトキシシラン、3−グリシジロキシプロピルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、テトラカルボン酸二無水物とアミノ基を有するシラン化合物との反応物等のほか、特開昭63−291922号公報に記載されている、テトラカルボン酸二無水物とアミノ基を有するシラン化合物との反応物等が挙げられる。

0214

官能性シラン化合物の含有割合としては、[A]光配向性ポリオルガノシロキサンと任意に含有される[B]他の重合体との合計100質量部に対して、50質量部以下が好ましく、20質量部以下がより好ましい。

0216

界面活性剤の使用割合としては、当該液晶配向剤の全体100質量部に対して、10質量部以下が好ましく、1質量部以下がより好ましい。

0217

[光増感剤]
当該液晶配向剤に含有され得る光増感性剤は、カルボキシル基、水酸基、−SH、−NCO、−NHR(但し、Rは水素原子又は炭素数1〜6のアルキル基である)、−CH=CH2及びSO2Clからなる群より選択される少なくとも1種の基並びに光増感性構造を有する化合物である。上記エポキシ基を有するポリオルガノシロキサンと、特定桂皮酸誘導体及び光増感性剤の混合物とを反応させることにより、当該液晶配向剤に含有される[A]光配向性ポリオルガノシロキサンは、特定桂皮酸誘導体に由来する感光性構造(桂皮酸構造)と光増感性剤に由来する光増感性構造とを併有することとなる。この光増感性構造は、光の照射により励起し、この励起エネルギーを重合体内で近接する感光性構造に与える機能を有する。この励起状態一重項であってもよく、三重項であってもよいが、長寿命や効率的なエネルギー移動に鑑み、三重項であることが好ましい。上記光増感性構造が吸収する光は、波長150nm〜600nmの範囲の紫外線又は可視光線であることが好ましい。波長が上記下限より短い光は、通常の光学系で取り扱うことができないため、光配向法に好適に用いることができない。一方、上記上限より波長の長い光は、エネルギーが小さく、上記光増感性構造の励起状態を誘起し難い。

0218

かかる光増感性構造としては、例えばアセトフェノン構造、ベンゾフェノン構造アントラキノン構造ビフェニル構造カルバゾール構造ニトロアリール構造、フルオレン構造ナフタレン構造アントラセン構造、アクリジン構造、インドール構造等が挙げられ、これらを単独で又は2種以上組み合わせて用いることができる。これらの光増感性構造は、それぞれ、アセトフェノン、ベンゾフェノン、アントラキノン、ビフェニル、カルバゾール、ニトロベンゼンもしくはジニトロベンゼンナフタレン、フルオレン、アントラセン、アクリジン又はインドールから、1〜4個の水素原子を除去して得られる基からなる構造をいう。ここで、アセトフェノン構造、カルバゾール構造及びインドール構造のそれぞれは、アセトフェノン、カルバゾール又はインドールのベンゼン環が有する水素原子のうちの1〜4個を除去して得られる基からなる構造であることが好ましい。これらの光増感性構造のうち、アセトフェノン構造、ベンゾフェノン構造、アントラキノン構造、ビフェニル構造、カルバゾール構造、ニトロアリール構造及びナフタレン構造からなる群より選択される少なくとも1種であることが好ましく、アセトフェノン構造、ベンゾフェノン構造及びニトロアリール構造からなる群より選択される少なくとも1種であることが特に好ましい。

0219

光増感性剤としては、カルボキシル基及び光増感性構造を有する化合物であることが好ましく、さらに好ましい化合物として、例えば下記式(H−1)〜(H−10)で表される化合物等が挙げられる。

0220

(式中、qは1〜6の整数である。)

0221

本発明で使用される光配向性ポリオルガノシロキサン化合物は、上記のエポキシ基を有するポリオルガノシロキサン及び特定桂皮酸誘導体に加え、光増感性剤を合わせて、好ましくは触媒の存在下において、好ましくは有機溶媒中で反応させることにより合成してもよい。

0222

この場合、特定桂皮酸誘導体の使用量としては、エポキシ基を有するポリオルガノシロキサンのケイ素原子1モルに対して、0.001モル〜10モルが好ましく、0.01モル〜5モルがより好ましく、0.05モル〜2モルが特に好ましい。光増感性剤の使用量としては、エポキシ基を有するポリオルガノシロキサンのケイ素原子1モルに対して、0.0001モル〜0.5モルが好ましく、0.0005モル〜0.2モルがより好ましく、0.001モル〜0.1モルが特に好ましい。

0223

[その他の溶媒]
当該液晶配向剤は[D]溶媒及び[E]溶媒以外に、その他の溶媒を含有することができる。その他の溶媒としては、[A]光配向性ポリオルガノシロキサン及び任意に使用される他の成分を溶解し、これらと反応しないものが好ましい。当該液晶配向剤に好ましく使用できる有機溶媒としては、任意に含有される他の重合体の種類等により異なる。

0224

当該液晶配向剤が[A]光配向性ポリオルガノシロキサンと、[B]他の重合体を含有するものである場合における好ましい有機溶媒としては、ポリアミック酸の合成に用いられるものとして例示した有機溶媒に加えて、エチレングリコールモノブチルエーテル(EGMB)、及びジエチレングリコールメチルエチルエーテル(DEGME)等が挙げられる。これらのうち、NMP、EGMB、及びDEGMEが好ましい。これらの有機溶媒は、単独で又は2種以上組み合わせて使用できる。

0225

<位相差フィルム用液晶配向剤の調製>
本発明の位相差フィルム用液晶配向剤は、上述の通り、[A]光配向性ポリオルガノシロキサンを必須成分として含有し、必要に応じて好適成分、その他の任意成分を含有するものであるが、好ましくは各成分が好適成分である[D]溶媒及び/又は[E]溶媒に溶解された溶液状の組成物として調製される。当該液晶配向剤の調製に用いられる溶媒としては、上記その他の溶媒を適宜用いることもできる。

0226

当該液晶配向剤の調製に用いられる溶媒は、下記の好ましい固形分濃度において液晶配向剤に含有される各成分が析出せず、且つ液晶配向剤の表面張力が25mN/m〜40mN/mの範囲となるものである。

0227

本発明の液晶配向剤の固形分濃度、すなわち当該液晶配向剤中の溶媒以外の全成分の質量が液晶配向剤の全質量に占める割合は、粘性揮発性等を考慮して選択されるが、好ましくは1質量%〜10質量%である。固形分濃度が1質量%未満では、当該液晶配向剤から形成される液晶配向膜の膜厚が過小となって良好な液晶配向膜が得られない場合がある。一方、固形分濃度が10質量%を超えると、塗膜の膜厚が過大となって良好な液晶配向膜を得られない場合があり、また、液晶配向剤の粘性が増大して塗布特性不足する場合がある。好ましい固形分濃度の範囲は、基板に液晶配向剤を塗布する際に採用する方法によって異なる。例えばスピンナー法による場合の固形分濃度の範囲としては、1.5質量%〜4.5質量%が好ましい。印刷法による場合、固形分濃度を3質量%〜9質量%の範囲とし、それによって溶液粘度を12mPa・s〜50mPa・sの範囲とすることが好ましい。インクジェット法による場合、固形分濃度を1質量%〜5質量%の範囲とし、それによって溶液粘度を3mPa・s〜15mPa・sの範囲とすることが好ましい。

0228

本発明の液晶配向剤を調製する際の温度としては、0℃〜200℃が好ましく、0℃〜40℃がより好ましい。

0229

<位相差フィルム用液晶配向膜及びその形成方法
当該液晶配向剤は、光配向法により液晶配向膜、特に位相差フィルム製造のため用いられる液晶配向膜を形成するために好適に使用できる。

0230

位相差フィルム用液晶配向膜を形成する方法としては、例えば基板上に液晶配向膜の塗膜を形成し、次いでこの塗膜に光配向法により液晶配向能を付与する方法が挙げられる。

0231

当該液晶配向剤を使用した位相差フィルム用液晶配向膜は、例えば次の方法によって製造できる。当該液晶配向剤を、例えばロールコーター法、スピンナー法、印刷法、インクジェット法等の適宜の塗布方法により基板に塗布する。次に、該塗布面を予備加熱プレベーク)し、次いでポストベークすることにより塗膜を形成する。プレベーク条件としては、例えば40℃〜120℃において0.1分〜5分である。ポストベーク条件としては、100℃〜300℃が好ましく、110℃〜250℃がより好ましく、1分〜200分が好ましく、5分〜100分がより好ましい。ポストベーク後の塗膜の膜厚は、好ましくは0.001μm〜1μmであり、より好ましくは0.005μm〜0.5μmである。

0232

上記基板としては、例えばフロートガラス、ソーダガラス等のガラス基材、トリアセチルセルロース(TAC)、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエーテルスルホン、ポリアミド、ポリイミド、ポリメチルメタクリレート、ポリカーボネート等のプラスチック基材を含む透明基板等が挙げられる。特にTACはLCDで重要な機能を負担する偏光フィルムの保護層として一般的に使用されている。位相差フィルムは多くの場合、偏光フィルムと組み合わせて使用される。位相差フィルムは、偏光フィルムの偏光軸に対して所望の光学特性を発揮できる角度に精密に制御して貼り合わせる必要がある。従って、TACフィルム上に光配向法により任意の方向に液晶を配向させることが可能な液晶配向膜を形成し、希望の光学特性を発揮できるように重合性液晶を塗布・硬化して形成した位相差膜を作製出来れば、従来の偏光フィルムと位相差フィルムの貼り合わせ工程を省くことができ、生産性向上に寄与する。さらにLCD材料の小型・軽量化にも寄与し、フレキシブルディスプレイ等への適用も可能である。しかしながら、TACフィルムは耐用溶媒性に劣るという特徴があり、配向膜形成のために使用できる溶媒は限られ、NMPといった溶解性の高い溶媒は使用できない。加えて、TACフィルムは耐熱性が低く、配向膜の形成のために高温で処理することが出来ないという特徴がある。

0233

さらに当該液晶配向剤は、例えばカラーフィルターといったLCD構成部材上や偏光板、位相差フィルムを含む光学フィルムフィルム上に塗布して、後述する放射線照射工程を経て、液晶配向膜として用いることができる。また当該液晶配向剤を用いて製造した位相差フィルム上に、重ねて当該液晶配向剤を塗布して、同様の工程を経て液晶配向膜として用いることもできる。

0234

当該液晶配向剤の塗布に際しては、基板と塗膜との接着性をさらに良好にするために、基板上に予め官能性シラン化合物、チタネート等を塗布しておいてもよい。

0235

次いで、上記塗膜に直線偏光若しくは部分偏光された放射線又は無偏光の放射線を照射することにより、液晶配向能を付与する。放射線としては、例えば150nm〜800nmの波長の光を含む紫外線及び可視光線を用いることができるが、300nm〜400nmの波長の光を含む紫外線が好ましい。用いる放射線が直線偏光又は部分偏光している場合には、照射は基板面に垂直の方向から行っても、プレチルト角を付与するために斜め方向から行ってもよく、また、これらを組み合わせて行ってもよい。無偏光の放射線を照射する場合には、照射の方向は斜め方向である必要がある。なお、本明細書における「プレチルト角」とは、基板面と平行な方向からの液晶分子の傾きの角度をいう。

0236

使用する光源としては、例えば低圧水銀ランプ高圧水銀ランプ重水素ランプメタルハライドランプアルゴン共鳴ランプキセノンランプエキシマーレーザー水銀−キセノンランプ(Hg−Xeランプ)等が挙げられる。上記の好ましい波長領域の紫外線は、上記光源を、例えばフィルター回折格子等と併用する手段等により得られる。

0237

放射線の照射量としては、1J/m2以上10,000J/m2未満が好ましく、10J/m2〜3,000J/m2がより好ましい。なお、従来知られている液晶配向剤から形成される塗膜に光配向法により液晶配向能を付与する場合、10,000J/m2以上の放射線照射量が必要であるところ、当該液晶配向剤を用いると、光配向法の際の放射線照射量が3,000J/m2以下、さらに1,000J/m2以下であっても良好な液晶配向能を付与でき液晶表示素子の製造コストの削減に資する。

0238

<位相差フィルム及びその製造方法>
本発明には、位相差フィルム用液晶配向膜を備える位相差フィルムも好適に含まれる。当該液晶配向剤を用いて形成される位相差フィルムは、例えば以下のようにして製造できる。本発明に含まれる位相差フィルムの形成方法は、
(1)基板上に当該位相差フィルム用液晶配向剤を塗布する工程、
(2)塗膜に放射線を照射し液晶配向能を付与し、位相差フィルム用液晶配向膜を形成する工程、
(3)位相差フィルム用液晶配向膜の少なくとも一部に重合性液晶を塗布する工程、及び
(4)重合性液晶を塗布した塗膜を硬化させる工程
を有する。

0239

工程(1)及び(2)では、上述の位相差フィルム用液晶配向膜の形成方法と同様に操作して、基板に位相差フィルム用液晶配向膜を形成する。工程(3)では、形成した位相差フィルム用液晶配向膜の少なくとも一部に重合性液晶を塗布する。重合性液晶を塗布する方法としては、例えばロールコーター法、スピンナー法、印刷法、インクジェット法等の適宜の塗布方法が挙げられる。次いで、工程(4)にて、加熱及び/又は非偏向の放射線照射等により重合性液晶に含まれる溶媒を乾燥させ、重合性液晶を硬化させる。なお、この重合工程は空気下で行ってもよく、窒素等の不活性ガス雰囲気下で行ってもよく、用いる重合性液晶の重合性基開始剤によって適した条件を選択できる。このようにして得られたフィルムは、意図した配向状態で重合性液晶を固定化でき、位相差フィルムとして用いることができる。

0240

上記重合性液晶としては、加熱又は放射線照射によって重合できる化合物であれば特に限定は無い。例えば、UVキュアラブル液晶とその応用(液晶第3巻 第1号 1999年 第34頁〜第42頁参照)に記載されているようなネマティック液晶化合物でも良く、複数の化合物との混合物でも良い。また公知の光重合開始剤又は熱重合開始剤を含んでいても良い。これらの重合性液晶化合物やその混合物は適切な溶媒に溶解して使用できる。さらに、カイラル剤等を加えることで基板に垂直方向ねじれツイストネマティック配向をする液晶や、コレステリック液晶を用いても良く、ディスコティック液晶を用いても良い。

0241

重合性液晶の膜厚は所望の光学特性が得られる膜厚を選択する。例えば、波長540nmの可視光における1/2波長板を製造する場合は、形成した位相差フィルムの位相差が240nm〜300nmとなるような膜厚を選択し、例えば1/4波長板であれば位相差が120nm〜150nmとなるような膜厚を選択する。目的の位相差が得られる膜厚は用いる重合性液晶の光学特性により異なる。例えば、メルク社の重合性液晶(RMS03−013C)を使用した場合、1/4波長板を製造する為の膜厚としては0.6μm〜1.5μmの範囲で選択される。

0242

重合性液晶を加熱する場合の温度としては、良好な配向が得られる温度を選択する。例えば、メルク社製重合性液晶、RMS03−013Cを使用した場合では40℃〜80℃の範囲で選択される。

0243

放射線を照射する場合の放射線としては、例えば非偏向の紫外線等が挙げられる。放射線の照射量としては、1,000J/m2〜100,000J/m2未満が好ましく、10,000J/m2〜50,000J/m2がより好ましい。

0244

<液晶配向方向が異なる領域を2種以上含む位相差フィルムの製造方法>
また、本発明には、3D映像用途等での液晶配向方向が異なる領域を2種以上含む位相差フィルムの製造方法も好適に含まれる。当該液晶配向剤を用いて形成される3D映像用途での液晶配向方向が異なる領域を有する位相差フィルムは、例えば以下のようにして製造できる。当該位相差フィルムの製造方法は、
上記工程(2)が、
(2−1)塗膜に第一方向の放射線を照射し、第一方向の液晶配向能を付与する工程及び
(2−2)塗膜の一部に第一方向とは異なる第二方向の放射線を照射し、第二方向の液晶配向能をさらに付与する工程
を有する。

0245

また、他の製造方法としては、
上記工程(2)が、
(2−1’)塗膜に第一方向の放射線を照射し、第一方向の液晶配向能を付与する工程及び
(2−2’)上記塗膜の少なくとも放射線が照射されなかった部分に、第一方向とは異なる第二方向の放射線を照射し、第二方向の液晶配向能を付与する工程
を有する。

0246

ここで「方向」とは、放射線の入射方向又は偏光方向を意味する。工程(2−2)及び(2−2’)における第二方向としては、工程(2−1)又は(2−1’)にて、放射線照射によって液晶配向能を付与した第一方向と異なっていれば特に限定されないが、回転した偏光方向が70°〜110°が好ましく、85°〜95°がより好ましく、90°が最も好ましい。異なる方向に照射する手段としては、マスクを介して放射線を照射する方法が挙げられる。また、マスクとしては、透過部と遮光部が交互に並ぶように短冊状にパターニングしたものが好ましい。

0247

以下、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例に制限されるものではない。なお、以下の実施例において用いた原料化合物及び重合体の必要量は、下記の合成例に示す合成スケールでの原料化合物及び重合体の合成を必要に応じて繰り返すことにより確保した。

0248

<エポキシ基を有するポリオルガノシロキサンの合成>
[合成例1]
撹拌機温度計滴下漏斗及び還流冷却管を備えた反応容器に、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン(ECETS)100.0g、メチルイソブチルケトン500g及びトリエチルアミン10.0gを仕込み、室温で混合した。次いで、脱イオン水100gを滴下漏斗より30分かけて滴下した後、還流下で混合しつつ、80℃で6時間反応させた。反応終了後、有機層を取り出し、0.2質量%硝酸アンモニウム水溶液により洗浄後の水が中性になるまで洗浄したのち、減圧下で溶媒及び水を留去することにより、エポキシ基を有するポリオルガノシロキサンを粘稠な透明液体として得た。

0249

このエポキシ基を有するポリオルガノシロキサンについて、1H−NMR分析を行なったところ、化学シフト(δ)=3.2ppm付近にエポキシ基に基づくピーク理論強度どおりに得られ、反応中にエポキシ基の副反応が起こっていないことが確認された。得られたエポキシ基を有するポリオルガノシロキサンのMwは2,200であり、エポキシ当量は186g/モルであった。

0250

<特定桂皮酸誘導体の合成>
特定桂皮酸誘導体の合成反応は全て不活性雰囲気中で行った。
[合成例2]
冷却管を備えた500mLの三口フラスコに4−ブロモジフェニルエーテル20g、酢酸パラジウム0.18g、トリス(2−トリルホスフィン0.98g、トリエチルアミン32.4g、ジメチルアセトアミド135mLを混合した。次にシリンジでアクリル酸を7g混合溶液に加え撹拌した。この混合溶液を更に120℃で3時間加熱撹拌した。TLC薄層クロマトグラフィー)で反応の終了を確認した後、反応溶液を室温まで冷却した。沈殿物をろ別した後、ろ液を1N塩酸水溶液300mLに注ぎ、沈殿物を回収した。これらの沈殿物を酢酸エチルとヘキサンの1:1(質量比)溶液で再結晶することにより下記式(K−1)で表される化合物(特定桂皮酸誘導体(K−1))を8.4g得た。

0251

0252

[合成例3]
冷却管を備えた300mLの三口フラスコに4−フルオロフェニルボロン酸6.5g、4−ブロモ桂皮酸10g、テトラキストリフェニルホスフィンパラジウム2.7g、炭酸ナトリウム4g、テトラヒドロフラン80mL、純水39mLを混合した。引き続き反応溶液を80℃で8時間加熱撹拌し、反応終了をTLCで確認した。反応溶液を室温まで冷却後、1N−塩酸水溶液200mLに注ぎ、析出固体をろ別した。得られた固体を酢酸エチルに溶解させ、1N−塩酸水溶液100mL、純水100mL、飽和食塩水100mLの順で分液洗浄した。次に有機層を無水硫酸マグネシウムで乾燥し、溶媒を留去した。得られた固体を真空乾燥し、下記式(K−2)で表される化合物(特定桂皮酸誘導体(K−2))を9g得た。

0253

0254

[合成例4]
冷却管を備えた200mLの三口フラスコに、4−フルオロスチレン3.6g、4−ブロモ桂皮酸6g、酢酸パラジウム0.059g、トリス(2−トリル)ホスフィン0.32g、トリエチルアミン11g、ジメチルアセトアミド50mLを混合した。この溶液を120℃で3時間加熱撹拌し、TLCで反応の終了を確認した後、反応溶液を室温まで冷却した。沈殿物をろ別した後、ろ液を1N塩酸水溶液300mLに注ぎ、沈殿物を回収した。これらの沈殿物を酢酸エチルで再結晶することにより下記式(K−3)で表される化合物(特定桂皮酸誘導体(K−3))を4.1g得た。

0255

0256

[合成例5]
冷却管を備えた200mLの三口フラスコに4−ビニルビフェニル9.5g、4−ブロモ桂皮酸10g、酢酸パラジウム0.099g、トリス(2−トリル)ホスフィン0.54g、トリエチルアミン18g、ジメチルアセトアミド80mLを混合した。この溶液を120℃で3時間加熱撹拌し、TLCで反応の終了を確認した後、反応溶液を室温まで冷却した。沈殿物をろ別した後、ろ液を1N塩酸水溶液500mLに注ぎ、沈殿物を回収した。これらの沈殿物をジメチルアセトアミド、エタノール1:1溶液で再結晶することにより下記式(K−4)で表される化合物(特定桂皮酸誘導体(K−4))を11g得た。

0257

0258

<[A]光配向性ポリオルガノシロキサンの合成>
[合成例6]
100mLの三口フラスコに、合成例1で得たエポキシ基を有するポリオルガノシロキサン9.3g、メチルイソブチルケトン26g、合成例2で得た特定桂皮酸誘導体(K−1)3g及び4級アミン塩サンアプロ社、UCAT18X)0.10gを仕込み、80℃で12時間撹拌した。反応終了後、メタノール再沈殿を行い、沈殿物を酢酸エチルに溶解して溶液を得、この溶液を3回水洗した後、溶媒を留去することにより、[A]光配向性ポリオルガノシロキサン(S−1)を白色粉末として6.3g得た。光配向性ポリオルガノシロキサン化合物(S−1)の重量平均分子量Mwは3,500であった。

0259

[合成例7]
合成例3で得た特定桂皮酸誘導体(K−2)3gを用いたこと以外は合成例7と同様に操作して、[A]光配向性ポリオルガノシロキサン(S−2)の白色粉末を7.0g得た。光配向性ポリオルガノシロキサン化合物(S−2)の重量平均分子量Mwは4,900であった。

0260

[合成例8]
合成例4で得た特定桂皮酸誘導体(K−3)4gを用いたこと以外は合成例7と同様に操作して、[A]光配向性ポリオルガノシロキサン(S−3)の白色粉末を10g得た。光配向性ポリオルガノシロキサン化合物(S−3)の重量平均分子量Mwは5,000であった。

0261

[合成例9]
合成例5で得た特定桂皮酸誘導体(K−4)4.1gを用いたこと以外は合成例7と同様に操作して、光配向性ポリオルガノシロキサン化合物(S−4)の白色粉末を10g得た。光配向性ポリオルガノシロキサン化合物(S−4)の重量平均分子量Mwは4,200であった。

0262

<[B]他の重合体の合成>
[合成例10]
シクロブタンテトラカルボン酸二無水物19.61g(0.1モル)と4,4’−ジアミノ−2,2’−ジメチルビフェニル21.23g(0.1モル)とをNMP367.6gに溶解し、室温で6時間反応させた。次いで、反応混合物を大過剰のメタノール中に注ぎ、反応生成物を沈澱させた。沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥することにより、ポリアミック酸(PA−1)を35g得た。

0263

[合成例11]
2,3,5−トリカルボキシシクロペンチル酢酸二無水物22.4g(0.1モル)とシクロヘキサンビスメチルアミン)14.23g(0.1モル)とをNMP329.3gに溶解し、60℃で6時間反応させた。次いで、反応混合物を大過剰のメタノール中に注ぎ、反応生成物を沈澱させた。沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥することにより、ポリアミック酸(PA−2)を32g得た。

0264

[合成例12]
合成例11で得た(PA−2)を17.5gとり、これにNMP232.5g、ピリジン3.8g及び無水酢酸4.9gを添加し、120℃において4時間反応させてイミド化を行った。次いで、反応混合液を大過剰のメタノール中に注ぎ、反応生成物を沈澱させた。沈殿物をメタノールで洗浄し、減圧下で15時間乾燥することにより、ポリイミド(PI−1)を15g得た。

0265

[合成例13]
冷却管と攪拌機を備えたフラスコに、2,2’−アゾビス(2,4−ジメチルバレロニトリル)5質量部とジエチレングリコールメチルエチルエーテル(DEGME)200質量部を仕込んだ。引き続きメタクリル酸グリシジル40質量部、スチレン10質量部、メタクリル酸30質量部及びシクロヘキシルマレイミド20質量部を仕込み窒素置換した後ゆるやかに攪拌を始めた。溶液温度を70℃に上昇させ、この温度を5時間保持ポリ(メタ)アクリレートの共重合体(MA−1)を含む重合体溶液を得た。得られた重合体溶液の固形分濃度は33.1質量%であった。得られた重合体の数平均分子量は7,000であった。

0266

<[C]エステル構造含有化合物の合成>
下記スキームに従って、エステル構造含有化合物(C−1−1)を合成した。

0267

0268

[合成例14]
還流管、温度計及び窒素導入管を備えた500mLの三口フラスコにトリメシン酸21g、n−ブチルビニルエーテル60g及びリン酸0.09gを仕込み、50℃で30時間撹拌下に反応を行った。反応終了後、反応混合物にヘキサン500mLを加えて得た有機層につき、1M水酸化ナトリウム水溶液で2回及び水で3回、順次に分液洗浄した。その後、有機層から溶媒を留去することにより、エステル構造含有化合物(C−1−1)を無色透明の液体として50g得た。

0269

<位相差フィルム用液晶配向剤の調製>
[実施例1]
[B]他の重合体として合成例11で得たポリアミック酸(PA−1)を含有する溶液を、これに含有されるポリアミック酸(PA−1)に換算して1,000質量部に相当する量をとり、ここに合成例7で得た[A]光配向性ポリオルガノシロキサン(S−1)100質量部を加え、さらにNMP及びエチレングリコールモノブチルエーテル(EGMB)を混合し、溶媒組成がNMP:EGMB=50:50(質量比)、固形分濃度が4.0質量%の溶液とした。この溶液を孔径1μmのフィルターで濾過することにより、位相差フィルム用液晶配向剤(A−1)を調製した。

0270

[実施例2〜6]
下記表1に示す種類及び量の[A]光配向性ポリオルガノシロキサン、[B]他の重合体、[C]エステル構造含有化合物及び溶媒を加え、実施例1と同様に操作して、位相差フィルム用液晶配向剤(A−2)〜(A−6)(それぞれ固形分濃度は4.0質量%)を調製した。

0271

[実施例7]
[B]他の重合体として合成例14で得たポリ(メタ)アクリレートの共重合体(MA−1)を含有する溶液を、これに含有されるポリ(メタ)アクリレートの共重合体(MA−1)に換算して1,000質量部に相当する量をとり、ここに合成例8で得た[A]光配向性ポリオルガノシロキサン(S−2)100質量部を加え、さらに硬化触媒としてスルホニウム塩(サンエイドSI−60L、三新化学工業社)を50質量部加え、酢酸ブチル及びジエチレングリコールメチルエチルエーテル(DEGME)を混合し、溶媒組成が酢酸ブチル:DEGME=90:10(質量比)、固形分濃度が4.0質量%の溶液とした。この溶液を孔径1μmのフィルターで濾過することにより、位相差フィルム用液晶配向剤(A−7)を調製した。

0272

[実施例8〜10]
下記表1に示す種類及び量の[A]光配向性ポリオルガノシロキサン及び溶媒を加え、ここに硬化触媒としてアルミニウムトリス(アセチルアセトネート)(アルミキレートA(W)、川研ファインケミカル社)を50質量部加えたこと以外は実施例7と同様に操作して、位相差フィルム用液晶配向剤(A−8)〜(A−10)(それぞれ固形分濃度は4.0質量%)を調製した。

0273

[実施例11]
[A]光配向性ポリオルガノシロキサン(S−2)1,000質量部、[F]化合物としてアクリロイル基を有するシルセスキオキサン(ACSQ;AC−SQ TA−100、東亜合成社製)50質量部、さらに硬化触媒としてスルホニウム塩(三新化学工業社、サンエイドSI−60L)を50質量部加え、溶媒としてEGMB及びDEGMEを混合し、溶媒組成がEGMB:DEGME=90:10(質量比)、固形分濃度が4.0質量%の溶液とした。この溶液を孔径1μmのフィルターで濾過することにより、位相差フィルム用液晶配向剤(A−11)を調製した。

0274

0275

[参考例1]
ポリ(2−ヒドロキシエチルメタクリレート)13.1gをNMP50mLに加熱溶解し、室温まで冷やした後、ピリジン10mLを添加した。これに塩化シンナモイル17.0gを加え、8時間攪拌した。反応混合物をNMPで希釈した後メタノールに加え、沈殿を十分に水洗し乾燥することで重合体25gを得た。これにNMP及びエチレングリコールモノブチルエーテルを加えて、溶媒組成がNMP:EGMB=50:50(質量比)、固形分濃度が4.0質量%の溶液とした。この溶液を孔径1μmのフィルターで濾過することにより、組成物(CA−1)を調製した。

0276

[参考例2]
4−(2−メタクリロイルオキシエトキシ)アゾベンゼン1.00gと2、2’−アゾビス(イソブチロニトリル)0.01gと乾燥したベンゼン2.00gとをアンプルに入れて脱気した後、封管し、これをメタノール中に注ぎ高分子化合物の沈殿物を得た。これを濾過した後、再度、沈殿物をベンゼンに溶解しメタノールで再沈殿して濾過する操作を2回繰り返した後、乾燥させた。これにNMP及びEGMBを加えて、溶媒組成がNMP:EGMB=50:50(質量比)、固形分濃度が4.0質量%の溶液とした。この溶液を孔径1μmのフィルターで濾過することにより、組成物(CA−2)を調製した。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • AGC株式会社の「 湿潤ゲル、キセロゲルの製造方法」が 公開されました。( 2020/10/29)

    【課題・解決手段】型の水平度を高度に制御しなくてもゲルの厚さのばらつきが少なく、また、ゲル化の際及び型から取り出す際にゲルが割れにくい湿潤ゲル及びキセロゲルの製造方法の提供。第1の液状物からなる第1の... 詳細

  • 日産化学株式会社の「 延伸性耐擦傷性コーティング用硬化性組成物」が 公開されました。( 2020/10/29)

    【課題】延伸性及び優れた耐擦傷性を有し、かつ透明な外観を呈するハードコート層の形成材料を提供すること。【解決手段】(a)活性エネルギー線硬化性ラクトン変性多官能モノマー100質量部、(b)ポリ(オキシ... 詳細

  • 国立大学法人京都大学の「 低密度ゲル体とその製造方法」が 公開されました。( 2020/10/29)

    【課題・解決手段】本開示の低密度ゲル体は、ポリシロキサン鎖および有機重合鎖を含む骨格を有し、前記骨格においてポリシロキサン鎖と有機重合鎖とが、ポリシロキサン鎖のケイ素原子を結合点として、双方の前記鎖上... 詳細

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ