図面 (/)

技術 リボ核酸を検出するための組成物、方法およびキット

出願人 アプライドバイオシステムズリミテッドライアビリティーカンパニー
発明者 キュエルスティン,アール.スコット
出願日 2009年1月13日 (11年1ヶ月経過) 出願番号 2010-542413
公開日 2011年3月31日 (8年10ヶ月経過) 公開番号 2011-509660
状態 不明
技術分野
  • -
主要キーワード マイクロシリンダー オーバーハング長 データ記録デバイス 方向バー 記録コンポーネント 波括弧 金属性ナノ粒子 可変項目
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2011年3月31日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (19)

課題・解決手段

1つ以上の種のRNA分子を検出するための組成物、方法およびキットが、開示される。1つの実施形態において、第1アダプターおよび第2アダプターは、二本鎖特異的RNAリガーゼ活性を含むポリペプチドを用いて、介在する精製工程を行うことなく、RNA分子に連結される。その連結産物は、逆転写され、次いで、その逆転写産物中のリボヌクレオシドのうちの少なくとも一部が、除去される。プライマーが加えられ、そして増幅産物が生成される。ある特定の実施形態では、少なくとも1種の増幅産物の少なくとも一部の配列が決定され、そして対応するRNA分子の少なくとも一部が、決定される。いくつかの実施形態において、増幅産物種のうちの少なくとも一部が、直接または間接的に検出されることにより、目的のRNA分子の存在および/または量の測定が可能になる。

概要

背景

(緒言)
ゲノム発現パターン解析は、様々な疾患状態を含むがこれに限定されない多岐にわたる生物学的プロセスにおける差次的発現役割貴重な見識を提供する。そのような解析は、mRNAベース遺伝子発現解析であるか、低分子非コードRNAベースの発現解析であるかに関わらず、生物科学の多くの学問分野における調査の急速に拡大している手段になっている。低分子非コードRNAの発見は、科学的および医学的な大きな関心領域でもある。ゲノムのどの部分が、いつおよびなぜ転写されるのかを知ることによって、多くの複雑かつ相互に関係する生物学的プロセスがよりよく理解され得ると考えられている。

低分子非コードRNAは、進化の範囲に及ぶ多数の生物における遺伝子制御の重大なエフェクターとして急速に台頭してきた。動物、植物および真菌は、いくつかの異なるクラスの低分子RNAを含む;そのような低分子RNAとしては、miRNA、siRNA、piRNAおよびrasiRNAが挙げられるが、これらに限定されない。これらの小さな遺伝子発現調節因子(modulators)は、典型的には、約18〜40nt長のサイズ範囲内に入るが、しかしながら、細胞性プロセスに対するそれらの作用は、甚大である。それらは、発生上のタイミングおよび細胞運命機序腫瘍進行神経発生トランスポゾンサイレンシングウイルス防御および多くのものにおいて決定的な役割を果たすと示されている。それらは、標的に結合し、そしてヘテロクロマチンの修飾、翻訳阻害、mRNAの崩壊および発生期ペプチド代謝回転機序さえも含む種々の機序によって負の遺伝子発現をもたらすことによって、遺伝子制御において機能する。ゆえに、所与サンプル中の低分子RNAの同定は、遺伝子発現の解析を大きく促進し得る。

一部の低分子RNAは、ゲノム内の確定した位置から生成される。マイクロRNAは、そのようなクラスである;それらは、典型的には、ポリシストロニック遺伝子クラスターからRNAポリメラーゼIIによって転写されるか、またはプレmRNAイントロンからも生成され得る。これまでに、数千の独特のmiRNA配列が知られている。piRNAまたは内在性siRNAなどの他のクラスの低分子RNAは、典型的には、ゲノム内の確定した遺伝子座から転写されない。代わりに、それらは、ウイルス感染またはレトロトランスポゾン発現などの事象応答して生成され、そして別途細胞に対して重大な損害をもたらし得るこれらの「外来」配列をサイレンシングするように働く。ncRNAに関する説明は、とりわけ、非特許文献1;非特許文献2;非特許文献3に見られる。サンプル中の低分子RNAの集団全体配列決定することにより、これらのRNAのすべてのクラスを一度に同定し、プロファイルまでする直接的な方法がもたらされる。

概要

1つ以上の種のRNA分子を検出するための組成物、方法およびキットが、開示される。1つの実施形態において、第1アダプターおよび第2アダプターは、二本鎖特異的RNAリガーゼ活性を含むポリペプチドを用いて、介在する精製工程を行うことなく、RNA分子に連結される。その連結産物は、逆転写され、次いで、その逆転写産物中のリボヌクレオシドのうちの少なくとも一部が、除去される。プライマーが加えられ、そして増幅産物が生成される。ある特定の実施形態では、少なくとも1種の増幅産物の少なくとも一部の配列が決定され、そして対応するRNA分子の少なくとも一部が、決定される。いくつかの実施形態において、増幅産物種のうちの少なくとも一部が、直接または間接的に検出されることにより、目的のRNA分子の存在および/または量の測定が可能になる。

目的

(緒言)
ゲノムの発現パターンの解析は、様々な疾患状態を含むがこれに限定されない多岐にわたる生物学的プロセスにおける差次的発現の役割に貴重な見識を提供する

効果

実績

技術文献被引用数
- 件
牽制数
- 件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

該当するデータがありません

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

サンプル中のRNA分子を検出するための方法であって、該方法は:該サンプルを、少なくとも1つの第1アダプター、少なくとも1つの第2アダプター、および二本鎖特異的RNAリガーゼ活性を含むポリペプチドと合わせ、ライゲーション反応組成物を形成する工程であって、ここで、該少なくとも1つの第1アダプターおよび該少なくとも1つの第2アダプターは、該サンプルの該RNA分子に連結されて、同じライゲーション反応組成物中において連結産物を形成し、ここで、該少なくとも1つの第1アダプターは:10から60ヌクレオチドの長さを有し、かつ3’末端上に少なくとも2つのリボヌクレオシドを含む、第1オリゴヌクレオチド、および該第1オリゴヌクレオチドに実質的に相補的ヌクレオチド配列を含み、かつ該第1オリゴヌクレオチドと第2オリゴヌクレオチドとが二重鎖形成するときに1から8ヌクレオチドの一本鎖5’部分をさらに含む、第2オリゴヌクレオチドを含み、ここで、該少なくとも1つの第2アダプターは:10から60ヌクレオチドの長さを有し、かつ5’ホスフェート基を含む、第3オリゴヌクレオチド、および該第3オリゴヌクレオチドに実質的に相補的なヌクレオチド配列を含み、かつ該第3オリゴヌクレオチドと第4オリゴヌクレオチドとが二重鎖形成するときに1から8ヌクレオチドの一本鎖3’部分をさらに含む、第4オリゴヌクレオチドを含み、ここで、該一本鎖部分は、独立して、縮重ヌクレオチド配列または該RNA分子の一部に相補的な配列を有し、ここで、該第1オリゴヌクレオチドと該第3オリゴヌクレオチドとは、異なるヌクレオチド配列を有し;ここで、該RNA分子は、該少なくとも1つの第1アダプターの該一本鎖部分および該少なくとも1つの第2アダプターの該一本鎖部分とハイブリダイズする、工程;ならびに該連結産物の該RNA分子またはその代用物を検出する工程、を包含する、方法。

請求項2

前記RNA分子またはその代用物を検出する工程が:前記連結産物を、i)RNA指向性DNAポリメラーゼ、ii)DNA依存性DNAポリメラーゼ活性およびRNA依存性DNAポリメラーゼ活性を含むDNAポリメラーゼ、またはiii)RNA指向性DNAポリメラーゼおよびDNA指向性DNAポリメラーゼと合わせる工程、該連結産物を逆転写することにより、逆転写産物を形成する工程、リボヌクレアーゼHを用いて、該逆転写産物から前記リボヌクレオシドのうちの少なくとも一部を消化することにより、増幅鋳型を形成する工程、該増幅鋳型を、少なくとも1つの順方向プライマー、少なくとも1つの逆方向プライマー、および該連結産物がi)におけるように合わせられるときはDNA指向性DNAポリメラーゼと合わせることにより、増幅反応組成物を形成する工程、該増幅反応組成物をサイクル反応に供することにより、少なくとも1つの増幅産物を形成する工程、および該増幅産物の少なくとも一部の配列を決定することによって該RNA分子を検出する工程を包含する、請求項1に記載の方法。

請求項3

二本鎖特異的RNAリガーゼ活性を含む前記ポリペプチドが、Rnl2ファミリーリガーゼを含む、請求項1に記載の方法。

請求項4

二本鎖特異的RNAリガーゼ活性を含む前記ポリペプチドが、バクテリオファージT4RNAリガーゼ2(Rnl2)を含む、請求項3に記載の方法。

請求項5

前記第1アダプターの前記一本鎖部分、前記第2アダプターの前記一本鎖部分、または該第1アダプターの該一本鎖部分および該第2アダプターの該一本鎖部分が、縮重配列を含む、請求項1に記載の方法。

請求項6

前記第1オリゴヌクレオチドが、少なくとも15リボヌクレオシドを含む、請求項1に記載の方法。

請求項7

前記第2アダプターが、少なくとも1つのレポーター基を含む、請求項1に記載の方法。

請求項8

前記少なくとも1つの増幅産物が、識別配列を含む、請求項2に記載の方法。

請求項9

前記少なくとも1つの順方向プライマーのうちの少なくとも1つ、前記少なくとも1つの逆方向プライマーのうちの少なくとも1つ、またはその両方が、識別配列を含む、請求項8に記載の方法。

請求項10

少なくとも1つの第1アダプター、少なくとも1つの第2アダプターまたは少なくとも1つの第1アダプターおよび少なくとも1つの第2アダプターが、識別配列を含む、請求項8に記載の方法。

請求項11

前記RNA分子が、低分子非コードRNAである、請求項1に記載の方法。

請求項12

前記サンプルが、複数のRNAフラグメントを含み、そして前記検出工程が、発現プロファイルを測定する工程を含む、請求項1に記載の方法。

請求項13

少なくとも1種のRNA分子の濃度が、前記連結産物を形成する前に枯渇されている、請求項12に記載の方法。

請求項14

前記サンプルが、複数のメッセンジャーRNAmRNAフラグメントを含み、そして前記検出工程が、発現プロファイルを測定する工程を含む、請求項12に記載の方法。

請求項15

前記検出工程が、増幅産物の少なくとも一部を配列決定する工程を含み、ここで、該配列決定工程は、大規模平行シグネチャー配列決定反応(massiveparallelsignaturesequencingreaction)、少なくとも1つの増幅産物をマイクロアレイにハイブリダイズさせる工程、または少なくとも1つの増幅産物を配列決定ベクタークローニングする工程を含む、請求項1に記載の方法。

請求項16

前記第1アダプターの前記一本鎖部分、前記第2アダプターの前記一本鎖部分、または該第1アダプターの該一本鎖部分および該第2アダプターの該一本鎖部分が、対応するRNA分子と選択的にハイブリダイズする配列特異的領域を含む、請求項1に記載の方法。

請求項17

RNA分子を検出するための方法であって、該方法は:該RNA分子を、少なくとも1つの第1アダプター、少なくとも1つの第2アダプターおよび二本鎖特異的リガーゼと合わせることにより、ライゲーション反応組成物を形成する工程であって、ここで、該少なくとも1つの第1アダプターは、3’末端上に少なくとも2つのリボヌクレオシドを含む第1オリゴヌクレオチド、および該第1オリゴヌクレオチドと第2オリゴヌクレオチドとが共にハイブリダイズするときに一本鎖部分を含む第2オリゴヌクレオチドを含み、ここで、該少なくとも1つの第2アダプターは、5’ホスフェート基を含む第3オリゴヌクレオチド、および該第3オリゴヌクレオチドと第4オリゴヌクレオチドとが共にハイブリダイズするときに一本鎖部分を含む第4オリゴヌクレオチドを含む、工程、該少なくとも1つの第1アダプターおよび該少なくとも1つの第2アダプターを、該RNA分子に連結することにより、連結産物を形成する工程であって、ここで、該第1アダプターおよび該第2アダプターは、同じライゲーション反応組成物中の該RNA分子に連結される、工程、該連結産物をRNA指向性DNAポリメラーゼと合わせる工程、該連結産物を逆転写することにより、逆転写産物を形成する工程、リボヌクレアーゼH(RNaseH)を用いて該逆転写産物から該リボヌクレオシドのうちの少なくとも一部を消化することにより、増幅鋳型を形成する工程、該増幅鋳型を、少なくとも1つの順方向プライマー、少なくとも1つの逆方向プライマーおよびDNA指向性DNAポリメラーゼと合わせることにより、増幅反応組成物を形成する工程、該増幅反応組成物をサイクル反応に供することにより、増幅産物を形成する工程、ならびに該増幅産物の少なくとも一部の配列を決定することによって該RNA分子を検出する工程を包含する、方法。

請求項18

前記第1アダプターの前記一本鎖部分、前記第2アダプターの前記一本鎖部分、または該第1アダプターの該一本鎖部分および該第2アダプターの該一本鎖部分が、縮重配列を含む、請求項17に記載の方法。

請求項19

前記第1オリゴヌクレオチドの少なくとも2つのリボヌクレオシドが、少なくとも15リボヌクレオシドを含む、請求項17に記載の方法。

請求項20

前記第2アダプターが、少なくとも1つのレポーター基を含む、請求項17に記載の方法。

請求項21

前記増幅産物の少なくとも1つが、識別配列を含む、請求項17に記載の方法。

請求項22

前記少なくとも1つの順方向プライマーの少なくとも1つ、前記少なくとも1つの逆方向プライマーの少なくとも1つ、またはその両方が、識別配列を含む、請求項21に記載の方法。

請求項23

少なくとも1つの第1アダプター、少なくとも1つの第2アダプター、または少なくとも1つの第1アダプターおよび少なくとも1つの第2アダプターが、識別配列を含む、請求項21に記載の方法。

請求項24

前記RNA分子が、低分子非コードRNAである、請求項17に記載の方法。

請求項25

前記RNA分子が、複数のメッセンジャーRNA(mRNA)フラグメントを含み、そして前記検出工程が、発現プロファイルを測定する工程を含む、請求項17に記載の方法。

請求項26

少なくとも1種のRNA分子の濃度が、前記連結産物を形成する前に枯渇されている、請求項25に記載の方法。

請求項27

前記測定工程が、前記増幅産物の少なくとも一部を配列決定する工程を含み、ここで、該配列決定工程が、大規模平行シグネチャー配列決定反応、少なくとも1つの増幅産物をマイクロアレイにハイブリダイズさせる工程、または少なくとも1つの増幅産物を配列決定ベクターにクローニングする工程を含む、請求項17に記載の方法。

請求項28

前記二本鎖特異的リガーゼが、Rnl2ファミリーリガーゼを含む、請求項17に記載の方法。

請求項29

二本鎖特異的リガーゼが、バクテリオファージT4RNAリガーゼ2(Rnl2)を含む、請求項28に記載の方法。

請求項30

前記第1アダプターの前記一本鎖部分、前記第2アダプターの前記一本鎖部分、または該第1アダプターの該一本鎖部分および該第2アダプターの該一本鎖部分が、対応するRNA分子と選択的にハイブリダイズする配列特異的領域を含む、請求項17に記載の方法。

請求項31

RNA分子を検出するための方法であって、該方法は:該RNA分子を、少なくとも1つの第1アダプター、少なくとも1つの第2アダプターおよび二本鎖特異的RNAリガーゼと合わせることにより、ライゲーション反応組成物を形成する工程であって、ここで、該少なくとも1つの第1アダプターは、3’末端上に少なくとも2つのリボヌクレオシドを含む第1オリゴヌクレオチド、および該第1オリゴヌクレオチドと第2オリゴヌクレオチドとが共にハイブリダイズするときに一本鎖部分を含む第2オリゴヌクレオチドを含み、ここで、該少なくとも1つの第2アダプターは、5’ホスフェート基を含む第3オリゴヌクレオチド、および該第3オリゴヌクレオチドと第4オリゴヌクレオチドとが共にハイブリダイズするときに一本鎖部分を含む第4オリゴヌクレオチドを含む、工程、該少なくとも1つの第1アダプターおよび該少なくとも1つの第2アダプターを該RNA分子に連結することにより、連結産物を形成する工程であって、ここで、該第1アダプターおよび該第2アダプターが、同じライゲーション反応組成物中の該RNA分子に連結される、工程、該連結産物をRNA指向性DNAポリメラーゼと合わせる工程、該連結産物を逆転写することにより、逆転写産物を形成する工程、リボヌクレアーゼH(RNaseH)を用いて該逆転写産物から該リボヌクレオシドのうちの少なくとも一部を消化することにより、増幅鋳型を形成する工程、該増幅鋳型を、少なくとも1つの順方向プライマー、少なくとも1つの逆方向プライマーおよびDNA指向性DNAポリメラーゼと合わせることにより、増幅反応組成物を形成する工程、該増幅反応組成物をサイクル反応に供することにより、増幅産物を形成する工程であって、ここで、該増幅反応組成物は、レポータープローブ核酸色素またはレポータープローブおよび核酸色素をさらに含む、工程、ならびに該増幅産物を検出することによって、該RNA分子を検出する工程を包含する、方法。

請求項32

RNAライブラリーを生成するための方法であって、該方法は、多数の異なるRNA分子を、多数の第1アダプター種、多数の第2アダプター種および二本鎖特異的RNAリガーゼと合わせることにより、ライゲーション反応組成物を形成する工程であって、ここで、該少なくとも1つの第1アダプターは、3’末端上に少なくとも2つのリボヌクレオシドを含む第1オリゴヌクレオチド、および該第1オリゴヌクレオチドと第2オリゴヌクレオチドとが共にハイブリダイズするときに一本鎖部分を含む第2オリゴヌクレオチドを含み、ここで、該少なくとも1つの第2アダプターは、5’ホスフェート基を含む第3オリゴヌクレオチド、および該第3オリゴヌクレオチドと第4オリゴヌクレオチドとが共にハイブリダイズするときに一本鎖部分を含む第4オリゴヌクレオチドを含む、工程、該少なくとも1つの第1アダプターおよび該少なくとも1つの第2アダプターを該RNA分子に連結することにより、多数の異なる連結産物種を形成する工程であって、ここで、該第1アダプターおよび該第2アダプターは、同じライゲーション反応組成物中の該RNA分子に連結される、工程、該多数の連結産物種をRNA指向性DNAポリメラーゼと合わせる工程、該多数の連結産物種のうちの少なくとも一部を逆転写することにより、多数の逆転写産物種を形成する工程、リボヌクレアーゼH(RNaseH)を用いて該多数の逆転写産物のうちの少なくとも一部から該リボヌクレオシドのうちの少なくとも一部を消化することにより、多数の増幅鋳型種を形成する工程、該多数の増幅鋳型種を、少なくとも1つの順方向プライマー、少なくとも1つの逆方向プライマーおよびDNA指向性DNAポリメラーゼと合わせることにより、増幅反応組成物を形成する工程、該増幅反応組成物をサイクル反応に供することにより、多数の増幅産物種を含むライブラリーを形成する工程であって、ここで、該増幅産物種のうちの少なくとも一部は、該ライブラリー中の他の増幅産物種のうちの少なくとも一部と共通の識別配列を含む、工程を包含する、方法。

請求項33

前記順方向プライマーのうちの少なくとも一部、前記逆方向プライマーのうちの少なくとも一部、または該順方向プライマーのうちの少なくとも一部および該逆方向プライマーのうちの少なくとも一部が、識別配列または識別配列の相補物を含む、請求項32に記載の方法。

請求項34

複数の第1アダプター種、複数の第2アダプター種、Rnl2ファミリーのリガーゼ、RNA指向性DNAポリメラーゼ、複数の異なる第1プライマー種、DNA指向性DNAポリメラーゼおよびRNaseH(EC3.1.26.4)を備えるキットであって、ここで、各第1アダプター種は異なる縮重配列を含み、各第2アダプター種は異なる縮重配列を含む、キット。

請求項35

タバコ酸性ピロホスファターゼをさらに備える、請求項34に記載のキット。

請求項36

複数の第1アダプター種、複数の第2アダプター種、二本鎖特異的RNAリガーゼ活性を含むポリペプチド、DNAポリメラーゼ、少なくとも1つのプライマー種およびリボヌクレアーゼHを備えるキットであって、ここで、該第1アダプター種のうちの少なくとも一部は縮重配列を含み、該第2アダプター種のうちの少なくとも一部は縮重配列を含む、キット。

請求項37

前記DNAポリメラーゼが、RNA依存性DNAポリメラーゼおよびDNA依存性DNAポリメラーゼを含む、請求項37に記載のキット。

請求項38

タバコ酸性ピロホスファターゼをさらに備える、請求項37に記載のキット。

技術分野

0001

(分野)
本教示は、概して、コードRNAおよび非コードRNA(ncRNA)を含むがこれらに限定されないリボ核酸(RNA)を検出、増幅および定量するための方法、試薬およびキットに関する。

背景技術

0002

(緒言)
ゲノム発現パターン解析は、様々な疾患状態を含むがこれに限定されない多岐にわたる生物学的プロセスにおける差次的発現役割貴重な見識を提供する。そのような解析は、mRNAベース遺伝子発現解析であるか、低分子非コードRNAベースの発現解析であるかに関わらず、生物科学の多くの学問分野における調査の急速に拡大している手段になっている。低分子非コードRNAの発見は、科学的および医学的な大きな関心領域でもある。ゲノムのどの部分が、いつおよびなぜ転写されるのかを知ることによって、多くの複雑かつ相互に関係する生物学的プロセスがよりよく理解され得ると考えられている。

0003

低分子非コードRNAは、進化の範囲に及ぶ多数の生物における遺伝子制御の重大なエフェクターとして急速に台頭してきた。動物、植物および真菌は、いくつかの異なるクラスの低分子RNAを含む;そのような低分子RNAとしては、miRNA、siRNA、piRNAおよびrasiRNAが挙げられるが、これらに限定されない。これらの小さな遺伝子発現調節因子(modulators)は、典型的には、約18〜40nt長のサイズ範囲内に入るが、しかしながら、細胞性プロセスに対するそれらの作用は、甚大である。それらは、発生上のタイミングおよび細胞運命機序腫瘍進行神経発生トランスポゾンサイレンシングウイルス防御および多くのものにおいて決定的な役割を果たすと示されている。それらは、標的に結合し、そしてヘテロクロマチンの修飾、翻訳阻害、mRNAの崩壊および発生期ペプチド代謝回転機序さえも含む種々の機序によって負の遺伝子発現をもたらすことによって、遺伝子制御において機能する。ゆえに、所与サンプル中の低分子RNAの同定は、遺伝子発現の解析を大きく促進し得る。

0004

一部の低分子RNAは、ゲノム内の確定した位置から生成される。マイクロRNAは、そのようなクラスである;それらは、典型的には、ポリシストロニック遺伝子クラスターからRNAポリメラーゼIIによって転写されるか、またはプレmRNAイントロンからも生成され得る。これまでに、数千の独特のmiRNA配列が知られている。piRNAまたは内在性siRNAなどの他のクラスの低分子RNAは、典型的には、ゲノム内の確定した遺伝子座から転写されない。代わりに、それらは、ウイルス感染またはレトロトランスポゾン発現などの事象応答して生成され、そして別途細胞に対して重大な損害をもたらし得るこれらの「外来」配列をサイレンシングするように働く。ncRNAに関する説明は、とりわけ、非特許文献1;非特許文献2;非特許文献3に見られる。サンプル中の低分子RNAの集団全体配列決定することにより、これらのRNAのすべてのクラスを一度に同定し、プロファイルまでする直接的な方法がもたらされる。

先行技術

0005

Eddy,Nat.Rev.Genet.,2001,2:919−29
Mattick and Makunin,Human Mol.Genet.,2006,15:R17−29
Hannonら,Cold Springs Harbor Sympos.Quant.Biol.,2006,LXXI:551−64

課題を解決するための手段

0006

(要旨)
本教示は、(i)機能性非翻訳RNA、非コードRNA(ncRNA)および低分子非メッセンジャーRNA(snmRNA)とも称される低分子RNA分子;および(ii)当該分野で公知の方法によって断片化および/または細分されていてもよいし、されていなくてもよい、コードRNAを検出および定量するための方法、試薬およびキットに関する。

0007

ある特定の開示される方法によると、検出される少なくとも1つのRNA分子、少なくとも1つの第1アダプター、少なくとも1つの第2アダプターおよび二本鎖特異的RNAリガーゼを含むライゲーション反応組成物が形成される。第1アダプターは、3’末端上に少なくとも2つのリボヌクレオシドを含む第1オリゴヌクレオチド、および第1オリゴヌクレオチドと第2オリゴヌクレオチドとが共にハイブリダイズするときに一本鎖部分を含む第2オリゴヌクレオチドを含む。第2アダプターは、5’ホスフェート基を含む第3オリゴヌクレオチド、および第3オリゴヌクレオチドと第4オリゴヌクレオチドとが共にハイブリダイズするときに一本鎖部分を含む第4オリゴヌクレオチドを含む。第1アダプターおよび第2アダプターは、二本鎖特異的RNAリガーゼによってライゲーション反応組成物中のRNA分子に連結されて、連結産物が形成される。第1アダプターおよび第2アダプターは、それらの構造に起因して指向的な様式でRNA分子とアニールし、各アダプターは、それがアニールしたRNA分子に、連続的(例えば、第2アダプターおよびRNA分子が、リガーゼと混合され、第2アダプターが、そのRNA分子の3’末端に連結されるときに、続いて第1アダプターが、その連結されたRNA分子−第2アダプターと混合され、次いで、第1アダプターが、そのRNA分子−第2アダプターの5’末端に連結される(第2アダプターをRNA分子に連結する工程と、第1アダプターをRNA分子に連結する工程との間に精製工程が介在する)、例えば、Elbashirら、Genes and Development 15:188−200,2001;Berezikovら、Nat.Genet.Supp.38:S2−S7,2006を参照のこと)ではなく同時またはほぼ同時に連結される。成分がライゲーション反応組成物に加えられる順序は限定されないこと、および任意の順序で成分を加えてもよいことが認識されるだろう。成分を加えるプロセス中に、反応組成物の成分のすべてが加えられる前に、アダプターが、リガーゼの存在下において対応するRNA分子と連結され得る(例えば、限定されないが、第1アダプターが加えられる前に、第2アダプターが、リガーゼの存在下において対応するRNA分子と連結され得る)ならば、および一方のアダプターがRNA分子に連結される時点と他方のアダプターがRNA分子に連結される時点との間に精製手順が存在しないならば、そのような反応も、本教示の意図される範囲内であることが認識されるだろう。RNA指向性DNAポリメラーゼ時折RNA依存性DNAポリメラーゼと称される)が、連結産物と混合されることにより、反応混合物が形成され、それは、逆転写産物に適した条件下でインキュベートされる。その逆転写産物は、リボヌクレアーゼ、典型的には、リボヌクレアーゼH(RNaseH)と混合され、リボヌクレオシドのうちの少なくとも一部が、その逆転写産物から消化されることにより、増幅鋳型を形成する。

0008

その増幅鋳型は、少なくとも1つの順方向プライマー、少なくとも1つの逆方向プライマーおよびDNA指向性DNAポリメラーゼ(時折、DNA依存性DNAポリメラーゼと称される)と混合されることにより、増幅反応組成物を形成する。その増幅反応組成物は、増幅産物の生成を可能にするのに適した条件下で熱サイクル反応に供される。いくつかの実施形態において、増幅産物の少なくとも1種が、検出される。いくつかの実施形態において、レポータープローブおよび/または核酸色素を使用することにより、サンプル中のRNA種の少なくとも1つの存在が間接的に検出される。ある特定の実施形態において、増幅反応組成物は、レポータープローブ(例えば、限定されないが、TaqMan(登録商標プローブ分子ビーコン、ScorpionTMプライマーなど)または核酸色素(例えば、限定されないが、SYBR(登録商標)Greenもしくは他の核酸結合色素または核酸インターカレート色素)をさらに含む。本教示のある特定の実施形態において、検出は、定量的PCRを含むがこれに限定されない、リアルタイム検出技術またはエンドポイント検出技術を含む。いくつかの実施形態において、増幅産物の少なくとも一部の配列が決定され、それにより、対応するRNA分子の同定が可能になる。いくつかの実施形態において、ライブラリー特異的ヌクレオチド配列を含む増幅産物のライブラリーは、出発物質中のRNA分子から生成され、ここで、増幅産物種のうちの少なくとも一部は、ライブラリー特異的識別子、例えば、限定されないが、ライブラリー特異的ヌクレオチド配列(バーコード配列またはハイブリダイゼーションタグあるいは共通のマーカーもしくは親和性タグを含むがこれらに限定されない)を共有する。いくつかの実施形態において、2つ以上のライブラリーが、組み合わされ、解析され、次いで、結果が、ライブラリー特異的識別子に基づいてデコンボリュートされる(deconvoluted)。

0009

ある特定の開示される方法によると、DNA指向性DNAポリメラーゼ活性とRNA指向性DNAポリメラーゼ活性の両方を含むDNAポリメラーゼであるただ1つのポリメラーゼを、逆転写反応組成物において使用し、さらなるポリメラーゼを使用しない。他の方法の実施形態において、RNA指向性DNAポリメラーゼとDNA指向性DNAポリメラーゼの両方が、逆転写反応組成物に加えられ、さらなるポリメラーゼは、増幅反応組成物に加えられない。

0010

いくつかの実施形態において、サンプル中のRNA分子を検出するための方法は、そのサンプルを少なくとも1つの第1アダプター、少なくとも1つの第2アダプター、および二本鎖特異的RNAリガーゼ活性を含むポリペプチドと合わせ、ライゲーション反応組成物を形成する工程(ここで、少なくとも1つの第1アダプターおよび少なくとも1つの第2アダプターは、そのサンプルのRNA分子に連結されて、同じライゲーション反応組成物において連結産物を形成する)およびその連結産物のRNA分子またはその代用物を検出する工程を包含する。いくつかの実施形態において、少なくとも1つの第1アダプターは、10〜60ヌクレオチドの長さを有し、かつ3’末端上に少なくとも2つのリボヌクレオシドを含む、第1オリゴヌクレオチド、および第1オリゴヌクレオチドに実質的に相補的ヌクレオチド配列を含み、かつ第1オリゴヌクレオチドと第2オリゴヌクレオチドとが二重鎖形成するときに1〜8ヌクレオチドの一本鎖5’部分をさらに含む、第2オリゴヌクレオチドを含む。いくつかの実施形態において、少なくとも1つの第2アダプターは、10〜60ヌクレオチドの長さを有し、かつ5’ホスフェート基を含む第3オリゴヌクレオチド、および第3オリゴヌクレオチドに実質的に相補的なヌクレオチド配列を含み、かつ第3オリゴヌクレオチドと第4オリゴヌクレオチドとが二重鎖形成するときに1〜8ヌクレオチドの一本鎖3’部分をさらに含む、第4オリゴヌクレオチドを含む。いくつかの実施形態において、その一本鎖部分は、独立して、縮重ヌクレオチド配列、またはRNA分子の一部に相補的な配列を有する。いくつかの実施形態において、第1オリゴヌクレオチドと第3オリゴヌクレオチドとは、異なるヌクレオチド配列を有する。連結反応組成物において、検出されるRNA分子は、少なくとも1つの第1アダプターの一本鎖部分および少なくとも1つの第2アダプターの一本鎖部分とハイブリダイズする。

0011

いくつかの実施形態において、RNA分子またはその代用物を検出する工程は、連結産物を、i)RNA指向性DNAポリメラーゼ、ii)DNA依存性DNAポリメラーゼ活性およびRNA依存性DNAポリメラーゼ活性を含むDNAポリメラーゼ、またはiii)RNA指向性DNAポリメラーゼおよびDNA指向性DNAポリメラーゼと合わせる工程;その連結産物を逆転写することにより、逆転写産物を形成する工程;リボヌクレアーゼHを用いて逆転写産物からリボヌクレオシドのうちの少なくとも一部を消化することにより、増幅鋳型を形成する工程;その増幅鋳型を、少なくとも1つの順方向プライマー、少なくとも1つの逆方向プライマー、および連結産物がi)におけるように混合されるときはDNA指向性DNAポリメラーゼと合わせることにより、増幅反応組成物を形成する工程;その増幅反応組成物をサイクル反応に供する(cycling)ことにより、少なくとも1つの増幅産物を形成する工程、およびその増幅産物の少なくとも一部の配列を決定することによって、RNA分子を検出する工程を包含する。

0012

いくつかの実施形態において、RNAライブラリーを生成するための方法は、多数の異なるRNA分子を、多数の第1アダプター種、多数の第2アダプター種および二本鎖特異的RNAリガーゼと合わせることにより、ライゲーション反応組成物を形成する工程(ここで、その少なくとも1つの第1アダプターは、3’末端上に少なくとも2つのリボヌクレオシドを含む第1オリゴヌクレオチド、および第1オリゴヌクレオチドと第2オリゴヌクレオチドとが共にハイブリダイズするときに一本鎖部分を含む第2オリゴヌクレオチドを含み、その少なくとも1つの第2アダプターは、5’ホスフェート基を含む第3オリゴヌクレオチド、および第3オリゴヌクレオチドと第4オリゴヌクレオチドとが共にハイブリダイズするときに一本鎖部分を含む第4オリゴヌクレオチドを含む)、および少なくとも1つの第1アダプターおよび少なくとも1つの第2アダプターをRNA分子に連結することにより、多数の異なる連結産物種を形成する工程(ここで、第1アダプターおよび第2アダプターは、同じライゲーション反応組成物中のRNA分子に連結される)を包含する。その方法は、多数の連結産物種をRNA指向性DNAポリメラーゼと合わせる工程、多数の連結産物種のうちの少なくとも一部を逆転写することにより、多数の逆転写産物種を形成する工程、リボヌクレアーゼH(RNaseH)を用いて多数の逆転写産物のうちの少なくとも一部からリボヌクレオシドのうちの少なくとも一部を消化することにより、多数の増幅鋳型種を形成する工程、その多数の増幅鋳型種を、少なくとも1つの順方向プライマー、少なくとも1つの逆方向プライマーおよびDNA指向性DNAポリメラーゼと合わせることにより、増幅反応組成物を形成する工程、およびその増幅反応組成物をサイクル反応に供することにより、多数の増幅産物種を含むライブラリーを形成する工程(ここで、その増幅産物種のうちの少なくとも一部は、そのライブラリー中の他の増幅産物種のうちの少なくとも一部と共通の識別配列を含む)をさらに含む。

0013

ある特定の本方法を行うためのキットもまた開示される。本教示のこれらの特徴および他の特徴は、本明細書中で示される。

0014

(図面)
以下で説明される図面は、説明するためだけの目的であることを当業者は理解するだろう。これらの図は、本教示の範囲を決して限定しないと意図される。

図面の簡単な説明

0015

図1は、本教示の様々な例示的な方法の実施形態の概要の全体像を提供している。
図2A図2B図2Aは、例示的な第1アダプター21および例示的な第2アダプター22を模式的に示しており;図2Bは、例示的なRNA分子23に指向的にアニールされた図1Aに示される例示的な第1および第2アダプターを模式的に示している。第1アダプター21とRNA分子23の5’末端とに対するライゲーション接合点が、矢印24によって示されており、第2アダプター22とRNA分子23の3’末端とに対するライゲーション接合点が、矢印25によって示されている。白長方形は、21Aおよび23などに対するRNA配列を示している。水平の実線は、21Bおよび22Aなどに対するDNA配列を示している。
図3は、本教示の例示的な実施形態の概要の全体像を提供している。低分子RNA分子33の集団を、第1アダプター31および第2アダプター32ならびにRnl2リガーゼと合わせることにより、連結産物34が形成される。アニールしていないアダプターおよび/またはアニールされた望まれない副産物分子35もまた、その連結反応組成物中に存在し得る。その反応組成物を、RNA指向性DNAポリメラーゼと合わせることにより、逆転写産物36が生成され、次いで、その組成物をリボヌクレアーゼHと合わせることにより、増幅鋳型38が生成される。その増幅鋳型38を、DNA指向性DNAポリメラーゼ、順方向プライマー310および逆方向プライマー311と合わせることにより、増幅反応組成物が形成される。この例証となる実施形態において、逆方向プライマーは、時折「バーコード」配列と称される識別配列312をさらに含む。
図4は、本教示の例示的な実施形態の概要の全体像を提供している。この例証となる実施形態において、増幅産物は、ゲル精製され(ゲル精製)、そしてインサート配列(図4において波括弧によって示されている)、第1プライマー領域図4においてP1として示されている)、およびバーコードまたは識別配列(図4においてbcとして示されている)を含む第2プライマー領域(図4においてP2として示されている)を含む。
図5は、実施例1に記載されるように生成された例示的な増幅産物の電気泳動図を示す。レーン1:10bpDNAラダー(100ng;Invitrogen P/N10821−015,Carlsbad,CA);レーン2:出発物質は100ngの全RNAであり、リガーゼ非含有コントロールである;レーン3:出発物質は100ngの全RNAであり、RT非含有コントロールである;レーン4:出発物質は、100fmolのmirVanaTMReference Panel v.9.1(Applied Biosystems P/N 4388891,FosterCity,CA)だった;レーン5:出発物質は、100ngの全RNAだった;そしてレーン6:出発物質は、5μgの全RNAからflashPAGETMFractionator Systemで精製されたRNAだった。
図6は、様々な二本鎖依存性リガーゼを、実施例2に記載されるように単独または組み合わせて用いて生成された例示的な増幅産物の電気泳動図を示している。レーン1:100ngの10bpDNAラダー(Invitrogen);レーン2:10単位のバクテリオファージT4RNAリガーゼ2、200Uの逆転写酵素(RT);レーン3:10単位のバクテリオファージT4RNAリガーゼ2、RTなし;レーン4:10単位のバクテリオファージT4RNAリガーゼI、200UのRT;レーン5:10単位のバクテリオファージT4RNAリガーゼ1、RTなし;レーン6:10単位のバクテリオファージT4DNAリガーゼ、200UのRT;レーン7:10単位のバクテリオファージT4DNAリガーゼ、RTなし;レーン8:各々5単位のバクテリオファージT4RNAリガーゼIおよびバクテリオファージT4DNAリガーゼ、200UのRT;レーン9:各々5単位のバクテリオファージT4RNAリガーゼIおよびバクテリオファージT4DNAリガーゼ、RTなし;およびレーン10:リガーゼなし、200UのRT。
図7Aは、実施例4に記載されるように、ほぼ等モル濃度の約500個の異なる種の合成miRNA分子を含む多数の異なるmiRNA分子、およびバクテリオファージT4のRNAリガーゼ2とともに、様々な第1アダプター、様々な第2アダプター、または様々な第1アダプターと様々な第2アダプターとの組み合わせを含むライゲーション反応組成物において生成された例示的な連結産物(二重ライゲーションの注釈が付けられた矢印によって示されている)の電気泳動図を示している。図7Aの上における数字4、6および8は、反応組成物中の各第1アダプターの第2オリゴヌクレオチドおよび各第2アダプターの第4オリゴヌクレオチドにおける縮重ヌクレオチド配列の数に対応する(図7BにおいてNとして示されている)。X軸:T3−4は、対応するライゲーション産物が、構造T3:27N(図7Bを参照のこと)(この場合、Nは、4個の縮重ヌクレオチドに等しい)を含む第1アダプターだけを含むライゲーション組成物中で生成されたことを示している;T3−6は、対応するライゲーション産物が、構造T3:27N(この場合のNは、6個の縮重ヌクレオチドに等しい)を含む第1アダプターだけを含むライゲーション組成物中で生成されたことを示している;T3−8は、対応するライゲーション産物が、構造T3:27N(この場合のNは、8個の縮重ヌクレオチドに等しい)を含む第1アダプターだけを含むライゲーション反応物中で生成されたことを示している;T7−4は、対応するライゲーション産物が、構造T7:N28(図7Bを参照のこと)(この場合のNは、4個の縮重ヌクレオチドに等しい)を含む第2アダプターだけを含むライゲーション反応物中で生成されたことを示している;T7−6は、対応するライゲーション産物が、構造T7:N28(図7Bを参照のこと)(この場合のNは、6個の縮重ヌクレオチドに等しい)を含む第2アダプターだけを含むライゲーション反応物中で生成されたことを示している;T7−8は、対応するライゲーション産物が、構造T7:N28(この場合のNは、8個の縮重ヌクレオチドに等しい)を含む第2アダプターだけを含むライゲーション反応物中で生成されたことを示している;T3−4+T7−4は、対応するライゲーション産物が、構造T3:27Nを含む第1アダプターおよび構造T7:N28を含む第2アダプター(この場合のNは、両方のアダプターのすべての種において4個の縮重ヌクレオチドに等しい)を含むライゲーション反応物中で生成されたことを示している;T3−6+T7−6は、対応するライゲーション産物が、構造T3:27Nを含む第1アダプターおよび構造T7:N28を含む第2アダプター(この場合のNは、両方のアダプターのすべての種において6個の縮重ヌクレオチドに等しい)を含むライゲーション反応物中で生成されたことを示している;T3−8+T7−8は、対応するライゲーション産物が、構造T3:27Nを含む第1アダプターおよび構造T7:N28を含む第2アダプター(この場合のNは、両方のアダプターのすべての種において8個の縮重ヌクレオチドに等しい)を含むライゲーション反応物中で生成されたことを示している;数字の27は、第1アダプターの第1オリゴヌクレオチドの長さを指し、そして数字の28は、第2アダプターの第3ヌクレオチドの長さを指している。図7Bは、本教示の例示的な第1および第2アダプターを模式的に示しており、ここで、Nは、例示的な第1アダプターまたは第2アダプターの下側の鎖、すなわち、それぞれ第2オリゴヌクレオチドまたは第4オリゴヌクレオチドにおける連なった縮重ヌクレオシドを表している。
図8A:実施例5に記載され、図8Bに示されているように、様々な第1アダプター、様々な第2アダプター、または様々な第1アダプターと様々な第2アダプターとの組み合わせを用いて生成された例示的な連結産物(矢印で示されている)の電気泳動図を示している。X軸:T3r2−6は、対応するライゲーション産物が、T3r2:27 6N(図8Bを参照のこと)(6Nは、6個の縮重ヌクレオチドに等しく、r2は、2つの3’リボヌクレオチドを示している)を含む第1アダプターだけを含むライゲーション反応物中で生成されたことを示している;T7−6は、対応するライゲーション産物が、T7:6N 28(図8Bを参照のこと)(6Nは、6個の縮重ヌクレオチドに等しい)を含む第2アダプターだけを含むライゲーション反応物中で生成されたことを示している;T3r2−6+T7−6は、対応するライゲーション産物が、T3r2:27 6Nを含む第1アダプターおよびT7:6N 28を含む第2アダプター(r2は、2つの3’リボヌクレオチドを示しており、6Nは、両方のアダプターのすべての種において6つの縮重ヌクレオチドに等しい)を含むライゲーション反応物中で生成されたことを示している;rT3−6は、対応するライゲーション産物が、rT3:27 6N(6Nは、6つの縮重ヌクレオチドに等しく、rT3は、すべてがリボヌクレオチドであることを示している)を含む第1アダプターだけを含むライゲーション反応物中で生成されたことを示している。rT7−6は、対応するライゲーション産物が、rT7:6N 28(rT7は、すべてがリボヌクレオチドであることを示しており、6Nは、6つの縮重ヌクレオチドに等しい)を含む第2アダプターだけを含むライゲーション反応物中で生成されたことを示している;そしてrT3−6+rT7−6は、対応するライゲーション産物が、rT3:27 6Nを含む第1アダプターおよびrT7:6N 28を含む第2アダプター(rT3およびrT7は、すべてがリボヌクレオチドであることを示しており、6Nは、両方のアダプターのすべての種において6つの縮重ヌクレオチドに等しい)を含むライゲーション反応物中で生成されたことを示している。図8Bは、本教示の第1および第2アダプターの2つの例示的なセットを模式的に示している(この2セットは、(i)rT3:27 6N(上の第1アダプター)およびrT7:6N 28(上の第2アダプター)、ならびに(ii)T3r2:27 6N(下の第1アダプター)およびT7:6N 28(下の第2アダプター)を含み、ここで、6Nは、例示的な第1アダプターの下側の鎖および例示的な第2アダプターの下側の鎖における連なった6つの縮重ヌクレオシドを表している。
図9A〜図9C。図9Aおよび図9Bは、実施例6に記載されるように本教示のある特定の実施形態に従って生成された例示的な連結産物の電気泳動図を示している。第1アダプターと第2アダプターとの3つの異なる組み合わせを、二重ライゲーション効率について試験した。これらの組み合わせは、第1オリゴヌクレオチドの3’末端上の2つのリボヌクレオシドを除いて上側の鎖(すなわち、第1および第3オリゴヌクレオチド)が両方ともDNAであるか、上側の鎖(すなわち、第1および第3オリゴヌクレオチド)が両方ともRNAであるか、または5’(第1)アダプターにおける上側の鎖(すなわち、第1オリゴヌクレオチド)がRNAかつ3’(第2)アダプターにおける上側の鎖(すなわち、第3オリゴヌクレオチド)がDNAである、第1アダプターおよび第2アダプターを含んでいた。図9Cは、例示的な第1アダプター(rT3:27 6N)および第2アダプター(T7:6N 28)を有する後者のアダプター構造の実施形態の模式図を提供している(図8Bにも個別に記載されている)。
図10Aおよび図10Bは、一連のライゲーション反応組成物を用いて、本教示のある特定の実施形態に従って生成された例示的なライゲーション産物を示している2つの電気泳動図を示しており、そのライゲーション反応組成物の各々は、(1)Rnl2リガーゼ、(ii)2および0.2ピコモル(pmol)という濃度での合成miRNA分子のプール(mirVana miRNA Reference Panel v 9.1,P/N 4388891(Ambion,Austin,TX;本明細書中で記載される)、および(iii)実施例6に示され、記載されるような、10/50、5/25、1/5、1/50、5/50、10/50、25/50、5/100または5/500(上側の鎖/下側の鎖)という上側の鎖と下側の鎖の比での本明細書中に開示されるような第1および第2アダプターを含む。
図11は、核酸の様々な部分集合がサンプルから除去および/または精製されている本教示のある特定の実施形態を模式的に示している。この方法の実施形態は、低分子RNAの検出および単離ならびにホールトランスクリプトーム配列決定に使用され得る。
図12は、実施例7によって提供されるように、同じ例証となる増幅産物のアリコートとともにSOLiDTMSequencing Systemを使用し、例示的な配列決定検出技術を用いて測定されたLog2(FC)(Log2(FC SOLiDTM)としてx軸に示されている)に対する、本教示の1つの方法に従って生成された例証となる増幅産物の例示的なTaqMan(登録商標)ベースの検出を用いて測定された−ΔΔCTのlog2倍率変化(FC)(Log2(FC)TaqMan(−ddCt)としてy軸に示されている)のグラフを示している。
図13Aおよび図13Bは、実施例7に記載されるようにSYBR(登録商標)Gold染色を用いて可視化された、本教示のある特定の実施形態によって生成された例示的な増幅産物を含む電気泳動図を示している。
図14は、リアルタイムPCR反応における検出用であるインターカレート色素のSYBR(登録商標)Green(例えば、実施例8)または電気泳動的に分離された増幅産物のSYBR(登録商標)Gold染色(「SYBR(登録商標)アッセイ」)を用いて、本教示に従って生成された例示的な増幅産物を定量することによって目的のRNA分子を検出する工程を含む本教示の様々な実施形態を模式的に示している。LEGenD:リガーゼ高感度遺伝子検出(Ligase Enhanced Gene Detection)とは、本明細書中に提供されるようなアッセイのための二本鎖依存性リガーゼの使用のことを指す。
図15は、実施例8に記載されるような本教示の増幅産物を模式的に示している。P1とは、順方向PCRプライマーの一部のことを指す。P2とは、逆方向PCRプライマーの一部のことを指す。
図16Aおよび図16Bは、実施例8に記載されるように、例示的なサンプル(図16A)またはサンプル中に存在する2つのncRNA分子(内在性miRNAのmiR−16(図16B、菱形記号が付された上の曲線)およびmiR−21(図16B、四角の記号が付された下の曲線)に加えられる、リアルタイムPCRにおいて検出されたRNA分子の例証となるプロットを示している。図16Aに対する傾きおよびy切片は:SIC34(丸、上の線):y=−3.2568x+32.916、R2=0.9918;SIC8(三角):y=−3.4116x+29.444、R2=0.9886;SIC37(四角):y=−2.8517x+23.685、R2=0.9935;およびSIC36(菱形、下の線):y=−3.0381x+19.587、R2=0.999である。
図17は、実施例11に提供されるような低分子RNAライブラリーを生成するためのSOLiDTMSmall RNA Expression Kitの手順の全体像を提供している。サイズ選択された増幅低分子RNAは、「鋳型ビーズ調製」ステージにおけるSOLiDTMエマルジョンPCR手順に入る。

0016

(例示的な実施形態の説明)
前述の全般的な説明と以下の詳細な説明の両方が、単に例示的かつ説明的であり、本教示の範囲を限定すると意図されないことが理解されるべきである。本願において、特に具体的に述べられない限り、単数形の使用は、複数形を含む。例えば、「順方向プライマー(forward primer)」は、2つ以上の順方向プライマー;例えば、特定の順方向プライマー種の1つ以上のコピーならびに1つ以上の異なる順方向プライマー種が、存在し得ることを意味する。また、「含む(comprise)」、「含む(contain)」および「含む(include)」またはそれらの基語の改変物(例えば、限定されないが、「含む(comprises)」、「含まれる(contained)」および「含む(including)」)の使用は、限定すると意図されない。用語「および/または」は、その用語の前後のことが、共にまたは別々にとられ得ることを意味する。限定としてではなく例示する目的で、「Xおよび/またはY」は、「X」もしくは「Y」または「XおよびY」を意味し得る。

0017

本明細書中で使用される節の表題は、単に構成上の目的のためであって、記載される主題を限定すると決して解釈されるべきでない。特許、特許出願、論文書籍および専門書を含む、本願において引用される文献および同様のもののすべてが、任意の目的のためにそれらの全体が明確に参考として援用される。援用される文献および同様のものの1つ以上が、本明細書における用語の定義と矛盾するように用語を定義しているか、または使用している場合、本明細書が支配する。本教示は、様々な実施形態とともに記載されるが、本教示がそのような実施形態に限定されると意図されない。それどころか、本教示は、当業者が理解するように、様々な代替物、改変物および等価物を包含する。

0018

用語「またはそれらの組み合わせ」とは、本明細書中で使用されるとき、その用語の前に列挙された項目順列および組み合わせのすべてのことを指す。例えば、「A、B、Cまたはそれらの組み合わせ」は、以下のもの:A、B、C、AB、AC、BCまたはABCのうちの少なくとも1つ、および特定の文脈において順序が重要である場合は、BA、CA、CB、ACB、CBA、BCA、BACまたはCABのうちの少なくとも1つも含むと意図される。この例に続いて、1つ以上の項目または用語の繰り返し(例えば、BB、AAA、AAB、BBC、AAABCCCC、CBBAAA、CABABBなど)を含む組み合わせが明確に含まれる。特に文脈から明らかでない限り、典型的には任意の組み合わせにおける項目または用語の数について制限がないことを当業者は理解するだろう。

0019

ある特定の開示される方法(例えば、限定されないが、図1に示される例示的な実施形態)によると、検出される少なくとも1つのRNA分子、少なくとも1つの第1アダプター、少なくとも1つの第2アダプターおよび二本鎖特異的RNAリガーゼを含むライゲーション反応組成物が形成される(RNA分子への第1および第2アダプターのハイブリダイゼーションとして示される)。典型的には、出発物質は、多数のRNA種ならびに多数の異なる第1アダプターおよび異なる第2アダプターを含む。

0020

図2Aおよび図2Bに示されるように、少なくとも1つの第1アダプター21は、3’末端上に少なくとも2つのリボヌクレオシドを含む第1オリゴヌクレオチド21A、および第1オリゴヌクレオチド21Aと第2オリゴヌクレオチド21Bとが共にハイブリダイズするときに一本鎖5’部分21Cを含む第2オリゴヌクレオチド21Bを含み(図2A)、ここで、少なくとも1つの第2アダプター22は、5’ホスフェート基(図2Bにおいて「P」として示される)を含む第3オリゴヌクレオチド22A、および第3オリゴヌクレオチド22Aと第4オリゴヌクレオチド22Bとが共にハイブリダイズするときに一本鎖3’部分22Cを含む第4オリゴヌクレオチド22Bを含む(図2A)。この例証となる実施形態において、第1オリゴヌクレオチド内のヌクレオシドのすべてが、リボヌクレオシドであるが、他の実施形態では、第1オリゴヌクレオチドのヌクレオシドのすべておよび2つだけが、リボヌクレオシドであり得るが、但し、第1オリゴヌクレオチド21Aの最も3’側の2つのヌクレオシドは、リボヌクレオシドであり;残り部分の第1オリゴヌクレオチドは、リボヌクレオシド、デオキシリボヌクレオシドまたは両方の組み合わせを含み得ることが認識されるべきである。

0021

図2Aの例証となる第2および第4オリゴヌクレオチドの一本鎖部分(それぞれ、21Bの21Cおよび22Bの22C)は、縮重六量体配列として示されている(NNNNNNとして示されている)。しかしながら、配列特異的一本鎖部分ならびにそれよりも長い一本鎖部分およびそれよりも短い一本鎖部分を有する第1および/または第2アダプターを使用することは、本教示の範囲内である。いくつかの実施形態において、縮重配列は、デオキシリボヌクレオチドである。いくつかの実施形態において、縮重配列の長さは、4、6または8ヌクレオチドである。いくつかの実施形態において、第1オリゴヌクレオチドは、リボヌクレオシドを含み、第2、第3および第4オリゴヌクレオチドは、デオキシリボヌクレオチドを含む。

0022

一本鎖部分21Cを除いて、第1オリゴヌクレオチドと第2オリゴヌクレオチドは、実質的に相補的であるように設計される。その実質的に相補的な部分は、10〜60ヌクレオチドの長さを有し得る。第1オリゴヌクレオチドと第2オリゴヌクレオチドとが、アニールまたは二重鎖形成することにより第1アダプターが形成されるとき、それらは、1つの平滑末端を有し得るか(図2Aおよび図2Bにおけるように)、または一本鎖部分を有する末端と反対の末端に1、2もしくは3ヌクレオチドのオーバーハングを有し得る。そのオーバーハングは、第1オリゴヌクレオチド上に存在してもよいし、第2オリゴヌクレオチド上に存在してもよい。

0023

一本鎖部分22Cを除いて、第3オリゴヌクレオチドと第4オリゴヌクレオチドは、実質的に相補的であるように設計される。その実質的に相補的な部分は、10〜60ヌクレオチドの長さを有し得る。第3オリゴヌクレオチドと第4オリゴヌクレオチドとが、アニールまたは二重鎖形成することにより第2アダプターが形成されるとき、それらは、1つの平滑末端を有し得るか(図2Aおよび図2Bにおけるように)、または一本鎖部分を有する末端と反対の末端に1、2もしくは3ヌクレオチドのオーバーハングを有し得る。そのオーバーハングは、第1オリゴヌクレオチド上に存在してもよいし、第2オリゴヌクレオチド上に存在してもよい。

0024

図1に戻って、ライゲーション反応組成物は、第1アダプターおよび第2アダプターがRNA分子とアニールするのに適した条件下でインキュベートされる。第1および第3オリゴヌクレオチド(「上の鎖」)は、第2および第4オリゴヌクレオチド(「下の鎖」)に対して1:1〜1:10のモル比で存在し得る。いくつかの実施形態において、「上の鎖」と「下の鎖」とのモル比は、1:5または1:2である。二本鎖特異的RNAリガーゼ活性を含むポリペプチドを使用することにより、アニールされた第1アダプター−RNA分子−第2アダプター複合体が連結され、それにより連結産物が形成される(図1における「ライゲーション」として示される)。第1アダプターおよび第2アダプターは、2つの別個の連続的なライゲーション反応(その2つのアダプターをRNA分子に連結する間に1つ以上の分離工程または精製工程が介在する)としてではなく、同じ反応組成物中においてRNA分子に連結される。ライゲーション反応組成物の成分を加える順序および2つのアダプターがRNA分子に連結される順番は、典型的には、提供される本教示の限りではないことが理解されるだろう。

0025

図2Bに示されるように、ある特定の実施形態において、第1および第2アダプターが、RNA分子にハイブリダイズされて、(i)第1アダプターの第1オリゴヌクレオチドの3’末端とRNA分子の5’末端とが、隣接してアニールすることにより、第1ライゲーション接合点(例えば、図2Bにおける24)が形成され(RNA分子と第1アダプターの一本鎖部分との間の相補性に起因して)、そして(ii)第2アダプターの第3オリゴヌクレオチドの5’末端と同じRNA分子の3’末端とが、隣接してアニールすることにより、第2ライゲーション接合点(例えば、図2Bにおける25)が形成され(RNA分子と第2アダプターの一本鎖部分との間の相補性に起因して)、ここで、その第1および第2ライゲーション接合点の両方が、二本鎖特異的RNAリガーゼ活性を含むポリペプチドを使用するライゲーションに適している。いくつかの実施形態において、二本鎖特異的RNAリガーゼ活性を含むポリペプチドは、Rnl2ファミリーリガーゼ(Rnl2リガーゼを含むがこれに限定されない)を含む。

0026

RNA指向性DNAポリメラーゼが、適当なヌクレオチド三リン酸および適切な塩を含む緩衝溶液をとともに、上記連結産物と混合される。この反応混合物は、その連結産物を鋳型として使用して逆転写産物が生成されるのに適した条件下でインキュベートされる(図1において「逆転写」として示されている)。第4オリゴヌクレオチドがRTプライマーとして働くので、別個の逆転写プライマーは必要ない。

0027

いくつかの実施形態において、その逆転写産物は、アレイ上に置かれ、当業者に公知の標準的な方法を用いて検出される。いくつかの実施形態において、その逆転写産物は、ビオチンで標識され、検出は、それに結合するストレプトアビジンを用いることによる。いくつかの実施形態において、その逆転写産物は、ガラス繊維フィルター、ビーズを用いて精製されるか、またはゲル精製される。いくつかの実施形態において、その逆転写産物を、リボヌクレアーゼ活性を含むペプチドと混合されることにより、消化反応組成物を形成し、そしてその逆転写産物からリボヌクレオシドのうちの少なくとも一部を消化するのに適した条件下でインキュベートすることにより、増幅鋳型を形成する。いくつかの実施形態において、リボヌクレアーゼ活性を含むそのペプチドは、リボヌクレアーゼH(RNaseH)活性を含む(図1において「RNaseH消化」と示されている)。

0028

その増幅鋳型を、少なくとも1つの順方向プライマー、少なくとも1つの逆方向プライマー、およびDNA指向性DNAポリメラーゼ活性を含むペプチドと合わせることにより、増幅反応組成物を形成する。RNA指向性ポリメラーゼ活性とDNA指向性ポリメラーゼ活性の両方を有するDNAポリメラーゼが、上記の逆転写反応において使用されるときは、DNA指向性DNAポリメラーゼを含むさらなるペプチドが、加えられる必要はない。その増幅反応組成物を、増幅産物の生成を可能にするのに適した条件下で熱サイクル反応に供する(図1において「増幅」と示されている)。その増幅産物の少なくとも一部の配列が決定され、それにより、対応するRNA分子の検出が可能になる(図1において「配列決定」として示されている)。

0029

図3に模式的に示される1つの例示的な実施形態によると、低分子RNA分子33の集団を、RNA(白四角で示されている)を含む第1オリゴヌクレオチドを含む第1アダプター31および第2アダプター32ならびにRnl2リガーゼと合わせることにより、ライゲーション反応組成物が形成される。そのライゲーション反応組成物を、アニールが生じるのに適した条件下でインキュベートし、そして第1アダプターおよび第2アダプターが、低分子RNA分子とアニールすることにより、RNA分子の5’末端にアニールされた第1アダプターおよび低分子RNA分子の3’末端にアニールされた第2アダプターを含むライゲーション鋳型が形成される。そのリガーゼは、第1アダプターをRNA分子の5’末端に、および第2アダプターをRNA分子の3’末端に、ライゲーション接合点(図3において黒点として示され、矢印によって示されている)において連結することによって、連結産物34を生成する。ライゲーション反応組成物中のアダプターおよびRNA分子の濃度に応じて、いくつかのアニールしていない第1アダプター31および/または第2アダプター32もまた、そのライゲーション反応組成物中に存在し得る。さらに、特に、第1および/または第2アダプターが、縮重配列を含むとき、アニールした望まれない副産物分子35も形成され得る。

0030

連結産物を含む反応組成物は、RNA指向性DNAポリメラーゼと混合され、適当な条件下で逆転写産物36が生成される。逆転写産物36を含む反応組成物は、リボヌクレアーゼHと混合され、そして連結産物のリボヌクレオシドのうちの少なくとも一部が消化され、増幅鋳型38が生成される。この点において、その増幅鋳型が、第2アダプターの第3オリゴヌクレオチドとアニールした逆転写産物のcDNA鎖を本質的に含むことを当業者は認識するだろう。増幅鋳型38は、DNA指向性DNAポリメラーゼ、順方向プライマー310および逆方向プライマー311と混合されることにより、増幅反応組成物が形成される。この例証となる実施形態において、逆方向プライマーは、時折「バーコード」配列と称される識別配列312をさらに含む。所与の増幅反応組成物中の逆方向プライマーのすべてが、同じ識別配列を含み、その配列がその後のアンプリコンに組み込まれる場合、同じ増幅反応組成物から生成されるアンプリコンのすべては、その反応組成物から生じたと同定され得る。

0031

その増幅反応組成物は、温度サイクル反応に供されることにより、ポリメラーゼ連鎖反応の発生が可能になり、複数の増幅産物が生成される。この例証となる実施形態において、その増幅産物は、ポリアクリルアミドゲル電気泳動(PAGE)および/または高速液体クロマトグラフィHPLC;時折、高圧液体クロマトグラフィと称される)を用いて精製される。その精製された増幅産物は、当該分野で公知の任意の技術を用いて配列決定され、そしてその配列に対応するRNA分子が同定される。開示される方法が、種々の解析(発現プロファイリング、1つ以上の対応するサンプル中の1つ以上の特異的RNA分子の定量(例えば、薬物処置有りおよび無し;悪性組織腫瘍組織および対応する正常組織サンプル;対応する新生児青年期および/または成体の組織を用いる発生的研究)および低分子RNA発見を含むがこれらに限定されない)にとって有用であり得ることを当業者は認識するだろう。

0032

増幅産物の複数のライブラリーが生成される場合、各増幅産物ライブラリーは、そのライブラリーに対する独特の識別配列またはバーコードによって同定され得ることが認識されるだろう。いくつかの実施形態において、所与の増幅産物ライブラリーに対するPCRプライマー混合物は、順方向プライマー(説明の目的で、図3における順方向プライマー310を参照のこと)および独特の識別配列またはバーコードを含む逆方向プライマー(説明の目的で、図3における識別子配列312を含む逆方向プライマー311を参照のこと)を含む。そのようなプライマー対を含む増幅反応組成物がサイクル反応に供されるとき、バーコードは、そのライブラリーの増幅産物に組み込まれる。したがって、例示的な第1プライマーが、増幅反応組成物中のこれらの例示的な逆方向プライマーのいずれかとマッチし得ることにより、逆方向プライマーのバーコードまたはその相補物(complement)を含む増幅産物のライブラリーが生成される。

0033

限定としてではなく説明の目的で、例示的な順方向プライマーおよび例示的な逆方向プライマーBC1(実施例11を参照のこと)を含むPCRプライマー混合物を用いて生成される第1ライブラリー中の各増幅産物は、バーコード配列AAGCCCおよび/またはその相補物を含み;例示的な順方向プライマーおよび例示的な逆方向プライマーBC2を含むPCRプライマー混合物を用いて生成される第2ライブラリー中の各増幅産物は、バーコード配列CACACCおよび/またはその相補物を含む;など。したがって、増幅産物の複数のライブラリーが、配列決定の前にプールされ得、各ライブラリーに対応する出発物質中のRNA分子は、標的(RNA分子)配列、またはそのライブラリーに対するバーコードまたは識別配列と組み合わされる配列の少なくとも一部を用いて同定され得る。様々な識別配列が、所与の増幅反応組成物において生成される増幅産物を独自に標識するために使用され得ることを当業者は認識するだろう。

0034

図4は、本教示の別の例示的な実施形態を模式的に示している。この実施形態によると、第1および第2アダプターは、RNA分子とハイブリダイズし(図4においてアダプターハイブリダイゼーションとして示されている)、適当な条件下かつ適切なリガーゼの存在下において、連結産物が生成される(図4においてライゲーションとして示されている)。その連結産物に逆転写酵素が加えられ、適当な条件下で逆転写産物が生成される(図4において逆転写として示されている)。その逆転写産物は、リボヌクレアーゼHで消化され、そして増幅鋳型が形成される(図4においてRNaseHとして示されている)。増幅鋳型、順方向プライマー、逆方向プライマーおよびDNA指向性DNAポリメラーゼを含む増幅反応組成物が形成される。その増幅反応組成物を、線形の増幅の範囲内に留まる数サイクルの熱サイクル反応(一般に、約12〜15サイクルまたは1つの例示的な実施形態によると12〜18サイクル)に供することにより、ポリメラーゼ連鎖反応が生じ、そして増幅産物が生成される(図4においてPCRとして示されている)。この例証となる実施形態において、増幅産物は、ゲル精製される(図4においてゲル精製として示されている)ことにより、精製された増幅産物がもたらされる。適切にサイズ分画されるかまたは断片化されたRNA分子を使用するという条件で、増幅産物は、挿入配列図4において波括弧によって示されている;ある特定の実施形態において、インサートサイズは、約15塩基対〜約100塩基対である)、第1プライマー領域(図4においてP1として示されている)、およびバーコードまたは識別配列(図4においてbcとして示されている)を含む第2プライマー領域(図4においてP2として示されている)を含む。

0035

本明細書中で使用されるとき、用語「ポリヌクレオチド」、「オリゴヌクレオチド」および「核酸」は、交換可能に使用され、ヌクレオチド間ホスホジエステル結合によって連結された2’−デオキシリボヌクレオシド(DNA)およびリボヌクレオシド(RNA)、またはヌクレオチド間アナログおよび関連する対イオン、例えば、H+、NH4+、トリアルキルアンモニウム、Mg2+、Na+などを含む、ヌクレオシドモノマーの一本鎖および二本鎖のポリマーのことを指す。ポリヌクレオチドは、全体的にデオキシリボヌクレオシド、全体的にリボヌクレオシド、またはそれらのキメラ混合物から構成され得る。以下でさらに説明されるように、例えば、第1アダプターは、3’末端上に少なくとも2つのリボヌクレオシドを有する第1オリゴヌクレオチドを含む。第1オリゴヌクレオチドは、2、3、4、5、6、7、8、9、10、11、12、13、14、15、20、25またはそれ以上のリボヌクレオシドを有し得、いくつかの実施形態では、それらのリボヌクレオシドは、連続している。いくつかの実施形態において、第2、第3または第4オリゴヌクレオチドは、デオキシリボヌクレオチドを含む。そのヌクレオチドモノマー単位は、本明細書中に記載されるヌクレオチドのいずれかを含み得、それらとしては、ヌクレオチドおよびヌクレオチドアナログが挙げられるがこれらに限定されない。ポリヌクレオチドは、時折、当該分野においてオリゴヌクレオチドと称されるとき、典型的には、数モノマー単位から(例えば、5〜40または5〜60)数千モノマーヌクレオチド単位までのサイズの範囲である。特に示されない限り、ポリヌクレオチド配列が示されるときはいつでも、ヌクレオチドが、左から右に向かって5’から3’への順であることが理解されるだろう。

0036

検出されるRNA分子:いくつかの実施形態において、本教示のRNA分子は、全RNA、全RNAのサブセットもしくは画分またはその両方を含む。いくつかの実施形態において、検出されるRNA分子を含むサンプルは、特定のサンプルまたはサンプルのプールから得られるRNAのすべてを含む。他の実施形態において、全RNAは、サブセットに細分され、そして検出されるRNA分子は、その細分されたサブセットの1つ以上に存在する。典型的には、RNA分子は、サンプル中の全RNAまたはRNA分子のサブセットをもたらす当該分野で公知の任意の技術を用いてサンプルから抽出される。

0037

いくつかの実施形態において、検出されるRNA分子は、典型的には、ライゲーション反応組成物を形成する前に断片化される。いくつかの実施形態において、全RNAは、断片化され得るか、または細分されたRNAは、本明細書中に提供される方法を用いて断片化され得、そして解析され得る。いくつかの実施形態において、検出されるRNA分子は、複数の異なるRNA種を含み、それらとしては、ライゲーション産物を生成する前に断片化されてもよいし、されなくてもよい、複数の異なるmRNA種が挙げられるがこれらに限定されない。いくつかの実施形態において、そのRNAは、当該分野で周知の方法を用いて、化学的に、酵素的に、機械的に、加熱によって、またはそれらの組み合わせによって断片化される。断片化されたRNAは、本明細書中に提供される方法を用いて解析される。したがって、コードRNA(例えば、発現解析の場合)または非コードRNAを含む、DNAから転写される配列が解析される、ホールトランスクリプトーム解析が行われ得る。

0038

いくつかの実施形態において、ある特定のサイズ範囲の低分子RNA分子および/または断片化RNAが、例えば、サイズ分画手順を用いてサンプルから得られる。いくつかの実施形態では、全RNAが断片化され、そして第1および第2アダプターを連結する前にサイズ分画され得るが;他の実施形態では、全RNAが、ライゲーション反応組成物において使用される。限定としてではなく説明の目的で、ある特定の分画技術が図11に示されている。

0039

いくつかの実施形態において、ポリ選択プロセスを行うことにより、ポリAを欠くRNA分子(ポリAマイナスRNA分子)からメッセンジャーRNA(mRNA)が分離される。いくつかの実施形態において、例えば、限定されないが、当該分野で公知のポリA選択技術オリゴ−dTクロマトグラフィを含むがこれに限定されない)を用いて全RNAからmRNAのうちの少なくとも一部を分離することによって、全RNAが、サブセットに細分される。そのような実施形態において、ポリA+画分またはポリA枯渇画分のいずれかを本教示において使用することにより、その画分中に存在するRNA分子のうちの少なくとも一部が検出され得る。いくつかの実施形態において、両方の画分を別々に使用することにより、各画分中に存在するRNA分子のうちの少なくとも一部が検出され得る。いくつかの実施形態において、目的のRNA分子は、ポリAマイナスRNA分子(例えば、限定されないが、大きい非コードRNA)を含む。

0040

ある特定の実施形態において、mRNA分子の集団またはポリAマイナスRNA分子の集団は、その集団中の豊富なRNA分子(例えば、限定されないが、リボソームRNA)またはハウスキーピング遺伝子もしくは高度に発現される遺伝子からのmRNA(アクチンmRNAおよびグロビンmRNAを含むがこれらに限定されない)の少なくとも1種が枯渇されている。例えば、ある特定のmRNAまたはRNAのクラス(例えば、限定されないが、高コピー数mRNA(例えば、アクチン、GAPDH、グロビンおよび他の「ハウスキーピング」mRNA));およびRNAのクラス(例えば、限定されないが、18S RNAおよび28S RNA)が、全RNAから枯渇されている(例えば、RiboMinus(Invitrogen,Carlsbad,CA)またはGLOBINclearTM(Ambion,Austin,TX)キット(米国特許出願公報US2006/0257902,Methodsand Compositions for Depleting Abundant RNA Transcriptsもまた参照のこと)などの市販のキットを用いて)。

0041

化学的断片化という用語は、本明細書中で広い意味において使用され、RNAを含むサンプルを、金属イオン(例えば、限定されないが、亜鉛(Zn2+)、マグネシウム(Mg2+)およびマンガン(Mn2+))および熱に曝露することを含むが、これらに限定されない。

0042

酵素的断片化という用語は、広い意味において使用され、ヌクレアーゼ活性を含むペプチド(例えば、エンドリボヌクレアーゼまたはエキソリボヌクレアーゼ)が、RNA分子のうちの少なくとも一部を切断または消化するのに適した条件下で、そのRNAを含むサンプルを、そのペプチドと混合することを含む。例示的なヌクレアーゼとしては、リボヌクレアーゼ(RNases)(例えば、RNaseA、RNaseT1、RNaseT2、RNaseU2、RNasePhyM、RNaseIII、RNasePH、リボヌクレアーゼV1、オリゴリボヌクレアーゼ(例えば、EC3.1.13.3)、エキソリボヌクレアーゼI(例えば、EC3.1.11.1)およびエキソリボヌクレアーゼII(例えば、EC3.1.13.1))が挙げられるが、これらに限定されないが、しかしながら、1つ以上のより小さい構成成分へのRNA分子の加水分解触媒する任意のペプチドが、本教示の企図の範囲内である。核酸(例えば、限定されないが、リボザイム)によるRNA分子の断片化もまた、本教示の範囲内である。

0043

機械的断片化という用語は、広い意味において使用され、機械的な力(超音波処理衝突または物理的衝撃および剪断力を含むがこれらに限定されない)に曝露されるときに核酸が断片化される任意の方法を含む。

0044

いくつかの実施形態において、RNAの非常に小さいフラグメントは、「精製」工程(例えば、限定されないが、本教示に従って残存しているより大きなRNA分子を用いる前の、ゲル電気泳動、ガラス繊維フィルターまたは磁気ビーズを用いる精製)を用いて除去される。

0045

ある特定の実施形態において、本教示の方法は、物理的分離方法を用いて細分されたRNA分子を使用し、その物理的分離方法としては、サイズ分離方法(例えば、遠心分離カラムクロマトグラフィ/ゲルふるい分けおよび電気泳動的分離)が挙げられるが、これらに限定されない。いくつかの実施形態において、目的のRNA分子の電気泳動的分離は、flashPAGETMFractionator System(Ambion,Austin,TX)、または当該分野で公知の方法に従ってアガロースもしくはポリアクリルアミドゲルからバンド切り出すことによるサイズ分離を含む。いくつかの実施形態において、ある特定の開示される方法において使用されるRNA分子は、mirVanaTMmiRNA Isolation Kit(Ambion)を含むがこれに限定されない種々のサンプル調製キットおよび試薬のいずれかを用いてサンプル中のRNA分子のサブセットを抽出することによって得られ得る。いくつかの実施形態において、RNAは、免疫沈降され得る。

0046

非コードRNAまたはncRNAという用語は、サイズに関係なく、タンパク質に翻訳されない任意のRNA分子のことを指す。例示的なncRNAとしては、転移RNAtRNA)、リボソームRNA(rRNA)、マイクロRNA(miRNA)、核内低分子RNA(snRNA)、核小体低分子RNA(snoRNA)、ガイドRNA(gRNA)、エフレンス(efference)RNA(eRNA)、Piwi相互作用RNA(piRNA)、反復配列関連siRNA(rasiRNA)、シグナル認識粒子RNA、プロモーターRNA(pRNA)、低分子干渉RNA(siRNA)および転移メッセンジャーRNA(tmRNA)が挙げられる。

0047

RNA分子を再構築するために、より長い分子が、細分および/または断片化され得、そして画分および/またはフラグメントが、検出され得るので、検出されるRNA分子の長さが、本教示の限りではないことを当業者は認識するだろう。いくつかの実施形態において、検出されるRNA分子の長さは、12〜500ヌクレオチド、15〜110ヌクレオチド、15〜100ヌクレオチド、18〜110ヌクレオチド、20〜80ヌクレオチド、25〜約60ヌクレオチド、20〜約45ヌクレオチド、20〜約41ヌクレオチド、20〜約40ヌクレオチド、21、22、23、24もしくは25〜約36、37、38、39、40もしくは41ヌクレオチド、またはそれらの間の任意の整数の範囲である。いくつかの実施形態において、検出されるRNA分子は、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40または41ヌクレオチドの長さを有する。

0048

RNAを細分または断片化するために使用される技術が、本教示の限りでないこと、および典型的には、様々な細分または断片化の技術が、RNA分子の画分またはフラグメントが検出されるかに応じて使用され得ることを当業者は認識するだろう。

0049

ある特定の実施形態において、出発物質は、少なくとも1つの合成RNA分子(例えば、とりわけ、較正または標準化のために使用され得るスパイクインコントロール(spike−in control))を含む。いくつかの実施形態において、少なくとも1つの合成RNA分子種が、天然に存在するRNA分子を含むサンプルに加えられ、そして少なくとも1つの合成RNA種および少なくとも1つの天然に存在するRNA種の存在が、開示される方法に従って検出される。

0050

いくつかの実施形態において、検出されるRNA分子は、効率的なライゲーションのために5’−モノホスフェートおよび3’−ヒドロキシルを有する。例えば、いくつかの低分子RNAの生合成は、トリホスフェートを含む5’末端を有するRNA分子をもたらす。本教示のある特定の実施形態によると、そのようなRNA分子は、アダプターライゲーションおよび増幅に適さない。したがって、5’キャップ構造を有するインタクトなmRNA分子および5’トリホスフェートを有するRNA分子(C.elegans由来の内在性siRNA(Pak 2007)などの低分子RNAを含む)は、まずキャップ除去酵素(例えば、限定されないが、タバコ酸性ピロホスファターゼ(TAP)、ヌクレアーゼP1、Dcp1pキャップ除去酵素、Dcp2キャップ除去酵素またはDcpSキャップ除去酵素)で処理されることにより、RNA分子の5’末端を5’モノホスフェートに変換されない限り、反応組成物中のハイブリダイズされたアダプターに効率的に連結できない。目的のRNA分子が、5’−トリホスフェートを含む場合、本教示のある特定の実施形態は、タバコ酸性ピロホスファターゼを使用することにより、RNA分子の5’末端を5’モノホスフェートに変換して、ライゲーションに適するものにする。

0051

いくつかの実施形態において、ある特定の断片化技術によって生成されたフラグメントは、はじめは、酵素的ライゲーションに適した末端を有しない;いくつかの実施形態において、そのようなフラグメントは、キナーゼ(例えば、限定されないが、バクテリオファージT4ポリヌクレオチドキナーゼ)で処理されることにより、5’末端または3’末端を本教示に従う連結に適するものにする。

0052

検出されるRNAは、少なくとも1つの第1アダプター、少なくとも1つの第2アダプターと混合され、そしてアニールされて、二本鎖特異的RNAリガーゼを含むポリペプチドが、連結産物を形成し得るので、検出されるRNAは、一本鎖であっても二本鎖であってもよい。

0053

本教示によると、目的のRNA分子は、合成のものであってもよいし、天然に存在するものであってもよい。RNA分子は、当該分野で周知のオリゴヌクレオチド合成法を用いて合成され得る。RNA分子はまた、当該分野で公知の方法に従って、インビボまたはインビトロにおいて生化学的に合成され得、その方法としては、例えば、米国特許第5,958,688号;同第5,723,290号;同第5,514,545号;同第5,021,335号;同第5,168,038号;同第5,545,522号;同第5,716,785号;同第5,891,636号;および同第6,291,170号を含むがこれらに限定されないインビトロ転写技術であるがこれらに限定されない。そのような技術に関する詳細な説明は、とりわけ、Current Protocols in Nucleic Acid Chemistry,Beaucageら、eds.,John Wiley & Sons,New York,New York(2005年5月までの改訂を含む)(本明細書中以後「Beaucageら」);およびBlackburn and Gaitに見られる。RNA分子、アダプターおよびプライマーの合成に有用な自動核酸合成装置は、数多くの供給源(例えば、Applied Biosystems(FosterCity,CA)が挙げられる)から市販されている。RNA分子、アダプターおよびプライマーは、当該分野で周知のインビボでの方法および/またはインビトロでの方法を用いて生合成的にも生成され得る。そのような科学技術に関する説明は、とりわけ、SambrookらおよびAusubelらに見られる。第4オリゴヌクレオチドが開始可能な(primeable)基質である限り、ヌクレオシドアナログ(例えば、2’−OMe−、LNA−、ハロ−またはアラビノ誘導体)またはユニバーサル核酸塩基を、アダプターに組み込むことができる。精製されたRNAまたは部分的に精製されたRNAは、数多くの供給源から市販されており、それらとしては、FirstChoice(登録商標)Total RNA、FirstChoice(登録商標)Poly(A)、FirstChoice(登録商標)Tumor RNAおよびmirVanaTMmiRNA Reference Panel(Ambion,Austin,TX);Reference Total RNA,Human and Mouse,and Universal Reference RNAs(Stratagene,La Jolla,CA);ならびにAmerican Type Culture Collection(ATCC),Manassas,VAが挙げられる。

0054

いくつかの実施形態において、検出されるRNA分子は、サンプル中に存在する。用語「サンプル」は、本明細書中で広い意味において使用され、広範囲生物学的材料、ならびにRNAを含むかまたは含むと疑われるそのような生物学的材料に由来するかまたはそれらから抽出される組成物を含むと意図される。例示的なサンプルとしては、全血赤血球白血球バフィーコート;毛;爪およびクチクラ材料;頬側スワブ咽頭スワブ、スワブ、尿道スワブ、子宮頸部スワブ、直腸スワブ、病変スワブ、膿瘍スワブ、鼻咽頭スワブなどを含むスワブ;尿;唾液精液リンパ液羊水脳脊髄液腹膜滲出液胸水嚢胞からの体液滑液硝子体液房水;包液(bursa fluid);眼洗浄液;眼吸引液血漿肺洗浄液吸引液;および肝臓脾臓腎臓、肺、腸、脳、心臓筋肉膵臓バイオプシー材料などを含む組織が挙げられる。上記の例示的な生物学的サンプルのいずれかから得られた溶解産物抽出物または材料もまた、本教示の範囲内であることを当業者は認識するだろう。外植される材料、初代細胞二次細胞株などを含む組織培養細胞ならびに任意の細胞から得られた溶解産物、抽出物または材料もまた、本明細書中で使用されるとき、生物学的サンプルという用語の意図される意味の範囲内である。法医学的農学的および/または環境的な環境から得られる少なくとも1つのRNA分子を含むかまたは含むと疑われる材料もまた、サンプルという用語の意味の範囲内である。ある特定の実施形態において、サンプルは、合成核酸配列を含む。いくつかの実施形態において、サンプルは、完全に合成であり、例えば、少なくとも1つの合成核酸配列を含む緩衝溶液を含むコントロールサンプルであるがこれらに限定されない。ある特定の実施形態において、サンプルは、環境的サンプル(例えば、土壌、水または大気サンプル)である。

0055

植物のmiRNAは、3’末端に2’−O−メチル基を有し得、そして本明細書中で言及されるようなライゲーション反応において連結され得る。しかしながら、そのようなライゲーションの効率は、3’末端に2’−OHを有するRNA種と比べて低い。

0056

第1アダプターおよび第2アダプター:上で述べたように、少なくとも1つの第1アダプターは、3’末端上に少なくとも2つのリボヌクレオシドを含む第1オリゴヌクレオチド、および図2Aに示されているように第1オリゴヌクレオチドと第2オリゴヌクレオチドとが共にハイブリダイズするとき、一本鎖5’部分を含む第2オリゴヌクレオチドを含む。第1および第2オリゴヌクレオチドは、以下でさらに説明される一本鎖部分を除いて、実質的に相補的であるように設計される。その実質的に相補的な部分は、10〜60ヌクレオチドの長さを有し得る。いくつかの実施形態において、その実質的に相補的な部分は、10〜40ヌクレオチド、12もしくは15〜30ヌクレオチド、20、21、22もしくは23〜25、27もしくは29ヌクレオチド、またはこれらの範囲のいずれかの間の任意の整数の範囲の長さを有し得る。第1オリゴヌクレオチドと第2オリゴヌクレオチドとが、アニールまたは二重鎖形成することにより第1アダプターが形成されるとき、それらは、1つの平滑末端を有し得るか(図2Aおよび図2Bにおけるように)、または一本鎖部分を有する末端と反対の末端に1、2もしくは3ヌクレオチドのオーバーハングを有し得る。そのオーバーハングは、第1オリゴヌクレオチド上に存在してもよいし、第2オリゴヌクレオチド上に存在してもよい。

0057

また、上で述べたように、少なくとも1つの第2アダプターは、5’ホスフェート基を含む第3オリゴヌクレオチド、および図2Aに示されているように第3オリゴヌクレオチドと第4オリゴヌクレオチドとが共にハイブリダイズするときに一本鎖3’部分を含む第4オリゴヌクレオチドを含む。第3および第4オリゴヌクレオチドは、以下でさらに説明される一本鎖部分を除いて、実質的に相補的であるように設計される。その実質的に相補的な部分は、10〜60ヌクレオチドの長さを有し得る。第3オリゴヌクレオチドと第4オリゴヌクレオチドとが、アニールまたは二重鎖形成することにより第2アダプターが形成されるとき、それらは、1つの平滑末端を有し得るか(図2Aおよび図2Bにおけるように)、または一本鎖部分を有する末端と反対の末端に1、2もしくは3ヌクレオチドのオーバーハングを有し得る。そのオーバーハングは、第1オリゴヌクレオチド上に存在してもよいし、第2オリゴヌクレオチド上に存在してもよい。

0058

いくつかの実施形態において、第1オリゴヌクレオチドが、3’末端上に少なくとも2つのリボヌクレオシドを含むことを除いて、第1、第2、第3および第4オリゴヌクレオチドは、独立して、デオキシリボヌクレオシド、リボヌクレオチドまたはデオキシリボヌクレオチドとリボヌクレオチドの両方を含む。図2Aの例証となる実施形態において、第1オリゴヌクレオチドにおけるヌクレオシドのすべては、リボヌクレオシドであるが、他の実施形態では、第1オリゴヌクレオチドのヌクレオシドのうちのすべておよび2つだけが、リボヌクレオシドであり得るが、但し、第1オリゴヌクレオチドの最も3’側の2つのヌクレオシドは、リボヌクレオシドであり;残りの第1オリゴヌクレオチドは、リボヌクレオシド、デオキシリボヌクレオシドまたは両方の組み合わせを含み得ることが認識されるべきである。いくつかの実施形態において、第2、第3および第4オリゴヌクレオチドは、デオキシリボヌクレオシドを含み、そして第1オリゴヌクレオチドのすべてが、リボヌクレオシドを含む。いくつかの実施形態において、第1オリゴヌクレオチドは、リボヌクレオシドを含み、そして第2、第3および第4オリゴヌクレオチドは、デオキシリボヌクレオチドを含む。第1および第2アダプターのオリゴヌクレオチドの長さは、互いに独立している。

0059

第1、第2、第3および第4オリゴヌクレオチドの配列は、上に記載されたようにアダプターの二重鎖形成される部分において実質的な相補性が達成されるようなものである。いくつかの実施形態において、第1オリゴヌクレオチドの配列と第3オリゴヌクレオチドの配列とは、異なる。アダプターの二重鎖形成された部分のヌクレオチドの特定の配列は、本明細書中の方法に限定されるものではない。いくつかの実施形態において、アダプター配列の一部は、「プロモーター配列」を含み、それには、適当なポリメラーゼ(例えば、限定されないが、T3RNAポリメラーゼ、T7RNAポリメラーゼまたはSP6RNAポリメラーゼ)を使用した転写の開始に適した配列が含まれるが、これらに限定されない。いくつかの実施形態において、第1アダプターは、第1プロモーターに対する「プロモーター配列」を含み、そして第2アダプターは、第2プロモーターに対する「プロモーター配列」を含む。

0060

第1オリゴヌクレオチドの3’末端および第3オリゴヌクレオチドの5’末端は、検出されるRNA分子に対するライゲーションに適するものであり、そのRNA分子もまた、ライゲーションに適するものである。「ライゲーションに適した」オリゴヌクレオチドとは、少なくとも1つの検出されるRNA分子、ならびに少なくとも1つの第1アダプターおよび/または少なくとも1つの第2アダプターのことを指し、それらの各々は、適切な反応基を含む。例示的な反応基としては、第1アダプターの第1オリゴヌクレオチドの3’末端上の遊離ヒドロキシル基および検出されるRNA分子の5’末端上の遊離ホスフェート基、検出されるRNA分子の3’末端上の遊離ヒドロキシル基および第2アダプターの第3オリゴヌクレオチドの5’末端上の遊離ホスフェート基が挙げられるが、これらに限定されない。

0061

アダプターの一本鎖部分:例証となる第2および第4オリゴヌクレオチドの一本鎖部分は、縮重六量体配列として図2Aに示されている(NNNNNNとして示されている)。しかしながら、配列特異的一本鎖部分ならびにより長いおよびより短い一本鎖部分を有する第1および/または第2アダプターの使用は、本教示の範囲内である。

0062

いくつかの実施形態において、一本鎖部分は、独立して、デオキシリボヌクレオシド、リボヌクレオシドまたはデオキシリボヌクレオシドとリボヌクレオシドとの組み合わせを含む。いくつかの実施形態において、一本鎖部分は、デオキシリボヌクレオシドを含む。

0063

アダプターの一本鎖部分のいくつかの実施形態において、その一本鎖部分の長さは、1ヌクレオチドもの短さであり、8ヌクレオチドもの長さである。いくつかの実施形態において、一本鎖部分の長さは、2、4、6または8ヌクレオチドである。いくつかの実施形態において、一本鎖部分の長さは、4または6ヌクレオチドである。第2オリゴヌクレオチドの一本鎖部分の長さは、第4オリゴヌクレオチドの一本鎖部分の長さと独立している。

0064

いくつかの実施形態において、一本鎖部分のヌクレオシド配列は、検出される特定のRNA分子の5’配列または3’配列に対して相補的であるように設計される。いくつかの実施形態において、その検出される特定のRNA分子は、少なくとも1つの第1アダプターの一本鎖部分および少なくとも1つの第2アダプターの一本鎖部分とハイブリダイズし、ライゲーション反応が生じ得る。特定の配列にハイブリダイズするために、いくつかの実施形態において、一本鎖部分の長さは、独立して、4〜6ヌクレオチド長である。そのような方法において、RNA分子は、本明細書中の方法によって指向的に検出される。当業者は、検出されるRNA分子の5’配列または3’配列に対応する一本鎖部分を設計することができ、そして本明細書中に提供される検出方法を用いて、そのRNA分子に対応するセンス配列またはアンチセンス配列を検出することができる。

0065

いくつかの実施形態において、一本鎖部分の配列は、縮重配列に対して相補性を有するサンプルのすべてのRNA分子がアダプターの一本鎖部分にアニールすることを可能にする縮重配列であるように設計される。いくつかの実施形態において、縮重一本鎖部分は、1〜8ヌクレオチドの長さを有する。いくつかの実施形態において、縮重一本鎖部分は、4、6または8ヌクレオチドの長さを有する。いくつかの実施形態において、縮重ヌクレオシド配列は、デオキシリボヌクレオチドである。

0066

いくつかの実施形態において、第2または第4オリゴヌクレオチドの一本鎖部分の配列は、縮重配列であり、その第2または第4オリゴヌクレオチドの他の配列は、検出されるRNA分子に対応する配列である。

0067

アニールまたはハイブリダイズ:用語「アニールする」および「ハイブリダイズする」(基語のハイブリダイズするおよびアニールするの変化形を含むがこれらに限定さない)は、交換可能に使用され、二重鎖、三重鎖または他のより高度に整列された構造の形成をもたらす、1つの核酸と別の核酸とのヌクレオチド塩基対形成相互作用を意味する。主要な相互作用は、典型的には、ヌクレオチド塩基特異的であり、例えば、ワトソンクリックおよびフーグスティーンタイプの水素結合によるA:T、A:UおよびG:Cである。ある特定の実施形態において、塩基スタッキングおよび疎水性相互作用もまた、二重鎖の安定性に寄与し得る。例えば、プライマーが相補的または実質的に相補的な配列にアニールする条件は、例えば、Nucleic Acid Hybridization,A Practical Approach,Hames and Higgins,eds.,IRL Press,Washington,D.C.(1985)およびWetmur and Davidson,Mol.Biol.31:349,1968に記載されているように、当該分野で周知である。通常、アニールが起きるか否かは、とりわけ、核酸の相補的な部分の長さ、pH、温度、一価および二価陽イオンの存在、ハイブリダイズ領域におけるGおよびCヌクレオチドの割合、媒質の粘度、ならびに変性剤の存在によって影響される。そのような可変項目は、ハイブリダイゼーションに必要な時間に影響する。核酸の相補的な部分におけるある特定のヌクレオチドアナログまたは副溝結合剤の存在もまた、ハイブリダイゼーション条件に影響し得る。したがって、好ましいアニール条件は、特定の適用方法に依存し得る。しかしながら、そのような条件は、過度実験を行うことなく、当業者によって通例のとおり決定され得る。典型的には、アニール条件は、核酸が、相補的または実質的に相補的な配列と選択的にハイブリダイズするが、反応物中の他の配列に任意の有意な程度でハイブリダイズしないことを可能にするように選択される。

0068

用語「選択的にハイブリダイズする」およびその変化形は、適当な条件下において、所与の配列が、相補的または実質的に相補的な一連のヌクレオチドを含む第2配列とアニールするが、望まれない配列にアニールしないことを意味する。この適用において、1つの配列が、別の配列と選択的にハイブリダイズするかまたはアニールするという記載は、それらの配列の両方の全体が、互いにハイブリダイズする状況およびその配列の一方または両方の一部だけが、他方の配列の全体または他方の配列の一部にハイブリダイズする状況を包含する。この定義の目的で、用語「配列」は、核酸配列、ポリヌクレオチド、オリゴヌクレオチド、プライマー、標的特異的部分、増幅産物特異的部分、プライマー結合部位、ハイブリダイゼーションタグおよびハイブリダイゼーションタグ相補物を含む。

0069

用語「対応する」とは、本明細書中で使用されるとき、その用語が関係するエレメント間の少なくとも1つの特異的な関係性のことを指す。例えば、第1アダプターの一本鎖5’部分は、その一本鎖部分にハイブリダイズする末端のヌクレオチド配列を有するRNA分子に対応する。第2アダプターの一本鎖3’部分は、その一本鎖部分にハイブリダイズする末端のヌクレオチド配列を有するRNA分子に対応する。さらなる例としては、プライマーが、対応する相補的または実質的に相補的な核酸のプライマー結合部分に結合する場合、特定の親和性タグが、対応する親和性タグに結合する場合(例えば、ストレプトアビジンに対するビオチンの結合であるがこれに限定されない)、および特定のハイブリダイゼーションタグが、その対応するハイブリダイゼーションタグ相補物とアニールする場合;などが挙げられる。

0070

この適用において、1つの配列が、別の配列と、同じである、実質的に同じである、相補的である、または実質的に相補的であるという記載は、その両方の配列が、互いに完全に同じであるか、実質的に同じであるか、または相補的であるか、もしくは実質的に相補的である状況、およびそれらの配列の一方の一部分だけが、他方の配列の一部またはその全体と同じであるか、実質的に同じであるか、相補的であるか、または実質的に相補的である状況を包含する。この定義の目的で、用語「配列」は、RNA、DNA、ポリヌクレオチド、オリゴヌクレオチド、プライマー、連結産物、逆転写産物、増幅鋳型、増幅産物、プライマー結合部位、ハイブリダイゼーションタグおよびハイブリダイゼーションタグ相補物を含む。

0071

用語「変性する」または「変性」とは、本明細書中で使用されるとき、二本鎖増幅産物または二本鎖DNAまたはDNA:RNA二重鎖を含む二本鎖ポリヌクレオチドが、2つの一本鎖ポリヌクレオチドに変換される任意のプロセスのことを指す。二本鎖ポリヌクレオチドの変性としては、二重鎖を変性させることによって、その2つの一本鎖成分を放出させるための種々の熱的または化学的な技術が挙げられるが、これらに限定されない。使用される変性技術が、その後の増幅工程および/または検出工程を阻害しないか、またはかなり妨害しない限り、一般に限定されないことを当業者は認識するだろう。

0072

ライゲーション:用語「連結する」またはその形態は、二本鎖特異的RNAリガーゼ活性を含むポリペプチドを使用する酵素的ライゲーションプロセスのことを指すために本明細書中で使用され、ここで、鋳型に隣接してハイブリダイズされるオリゴヌクレオチドの直接隣接した末端間に、ヌクレオチド間結合が形成される。その結合の形成は、二重鎖依存的および二重鎖特異的または鋳型依存的および鋳型特異的とも呼ばれる、二本鎖に依存的および特異的である。そのヌクレオチド間結合としては、3’−リボヌクレオシドと5’−リボヌクレオチドとの間または3’−リボヌクレオシドと5’−デオキシリボヌクレオシドとの間のホスホジエステル結合の形成が挙げられ得るが、これらに限定されない。用語「二本鎖特異的RNAリガーゼ」とは、本明細書中で使用されるとき、特に、オリゴヌクレオチドが鋳型分子に直接隣接してハイブリダイズされるときに、3’末端のリボヌクレオチドを有するオリゴヌクレオチドと5’ホスフェート基を有するオリゴヌクレオチドとの間のニックを優先的に塞ぐかまたは連結するRNAリガーゼ活性を含むポリペプチドのことを指す。例えば、限定されないが、第1アダプターの第1オリゴヌクレオチドの3’末端と第1アダプターがアニールされるRNA分子との間のニックは、図2Bにおいてライゲーション接合点24として模式的に示されている。

0073

ある特定の実施形態において、二本鎖特異的RNAリガーゼ活性を含むポリペプチドは、バクテリオファージT4RNAリガーゼ2(T4Rnl2)(Rnl2の酵素的に活性な変異体またはバリアントを含むがこれらに限定されない)によって例証されるRnl2ファミリーリガーゼである。T4Rnl2は、異なるヌクレオチジルトランスフェラーゼモチーフに起因して、リガーゼのRnl1ファミリーとは異なるRNAリガーゼファミリーに対するプロトタイプリガーゼである(例えば、Ho and Shuman,Proc.Natl.Acad.Sci.99(20):12709−14(2002);およびYinら、J.Biol.Chem.278:17601−08(2003)を参照のこと)。T4Rnl2ファミリーは、とりわけ、ビブリオファージKVP40Rnl2、Trypanosoma brucei(TbREL1およびTbREL2)およびLeishmania tarentolae(LtREL1およびLtREL2)のRNA編集リガーゼ(RELs)、ポックスウイルスAmEPVエントモポックスウイルス)リガーゼ、バキュロウイルスAcNPVリガーゼ、ならびにバキュロウイルスXcGVリガーゼを含む。いくつかの実施形態において、RELリガーゼを用いるとき、第2および第4オリゴヌクレオチドは、リボヌクレオチドを含み得、そしてある特定の実施形態において、第2および第4オリゴヌクレオチドの一本鎖部分は、リボヌクレオチドを含み得る。

0074

T4Rnl2リガーゼは、NEW ENGLAND BIOLABS(登録商標)(Ipswich,MA)から市販されているか、またはそのリガーゼは、Nandakumarら、JBC 280(25):23484−23489,2005;Nandakumarら、JBC 279(30):31337−31347,2004;およびNandakumarら、Molecular Cell16:211−221,2004に記載されているように単離され得る。T4Rnl2酵素は、ファージT4の遺伝子gp24.1によってコードされる。ある特定の実施形態において、リガーゼ活性を含むポリペプチドは、T4Rnl2もしくはRnl2ファミリーのリガーゼの別のメンバー、またはその酵素的に活性な変異体またはバリアントを含む。

0075

ある特定の実施形態において、二本鎖特異的RNAリガーゼ活性を含むポリペプチドは、Deinococcus radiodurans RNAリガーゼ(DraRnl)(Raymondら、Nucl AcidsRes 35(3):839−849,2007)、またはDraRnlタイプのリガーゼ(真菌のMagnaporthe grisea由来のGenBankアクセッション番号XP_367846、Neurospora crassa由来のGenBankアクセッション番号CAE76396、Gibberella zeae由来のアクセッション番号XP_380758またはアメーバであるDictyostelium discoideum由来のアクセッション番号EAL61744を有するリガーゼを含むがこれらに限定されない)である。いくつかの実施形態において、リガーゼは、上で言及したリガーゼ、またはその酵素的に活性な変異体もしくはバリアントのいずれかの組み合わせを含み得る。

0076

ある特定の実施形態において、二本鎖特異的RNAリガーゼ活性を含むポリペプチドが、プレアデニル化(preadenylated)され得るか、第3オリゴヌクレオチドの5’末端のヌクレオチドが、プレアデニル化され得るか、または検出されるRNA分子の5’末端のヌクレオチドが、プレアデニル化され得るか、またはそれらの組み合わせである。Hoら(Structure 12:327−339)は、T4Rnl2のC末端ドメインが、3’−OHと5’−PのRNA末端を塞ぐ際に機能するT4Rnl2に対する機序を示している。Rnl2タンパク質のN末端セグメント(1〜249)は、自律的なアデニリルトランスフェラーゼ/App−RNAリガーゼドメインとして機能すると報告されている。一般に、RNAリガーゼは、活性化された共有結合性中間体関与する一続きの3つのヌクレオチジル移行工程を介して、3’−OHと5’−PO4のRNAの末端を連結する。RNAリガーゼは、ATPと反応することにより、ピロホスフェートに加えて共有結合性のリガーゼ−AMP中間体を形成する。次いで、AMPは、リガーゼ−アデニレートから5’−PO4RNA末端に移行されることにより、RNA−アデニレート中間体(AppRNA)を形成する。次いで、リガーゼは、RNA−アデニレート上のRNA 3’−OHによる攻撃を触媒することにより、ホスホジエステル結合を介してその2つの末端を塞ぎ、そしてAMPを放出する。RNAライゲーションに対する機序は、Nandakumarら(同書2005,2004a,2004b)、Yinら(JBC 278:20,17601−17608;Virology 319:141−151,2004)、Hoら[同書;PNAS,99:20,12709−12714,2002)、Gumportら(Gene Amplification and Analysis,Vol 2,Chirikjian,J.G.およびPapas,T.S.編、1981,313−345)およびRaymondら(Nucleic AcidsRes.35:3,839−849,2007)によってさらに考察されている。プレアデニル化された物質(例えば、リガーゼ−アデニレート、RNA−アデニレートまたはキメラDNA/RNA−アデニレート)は、本教示のいくつかの実施形態における使用について企図されている。

0077

ある特定の実施形態によると、第1アダプターの少なくとも1種、第2アダプターの少なくとも1種、RNA分子の少なくとも1種、および二本鎖特異的RNAリガーゼ活性を含むポリペプチドは、ライゲーション反応組成物中で混合される。1つのアダプターが、1つの反応において目的のRNA分子の一方の末端に連結され、次いで、別のアダプターが、第2の反応において同じ目的のRNA分子の反対側に連結されるかまたは組み込まれる(ここで、ゲル精製、リン酸化または逆転写の工程が介在することが多い)他の技術とは対照的に、本教示のアダプターの各々は、同じインキュベート期間中に、すなわち、同時またはほぼ同時に、同じ反応組成物において、対応するRNA分子と連結されることが認識されるべきである(例えば、Elbashirら、Genes and Development 15:188−200,2001;Ambros and Lee,Methodsin Mol.Biol.265:131−58,2004;Berezikovら、Nature Genet.Supp.38:S2−S7,2006;Takadaら、Nucl.Acids Res.34(17):e115,2006;Michael,Methods in Mol.Biol.342:189−207,2006;およびTakada and Mano,Nature Protocols 2(12):3136−45,2007を参照のこと)。本教示に関して、ライゲーション反応組成物に成分を加える順序は、通常、重大ではなく、特に明確に述べられない限り、用語「ライゲーション反応組成物を形成する」または本明細書中で使用される類似の用語の範囲内に包含されると意図されることが理解されるべきである。したがって、一方のアダプター(例えば、第1アダプター)を、RNA分子およびリガーゼを含む反応組成物に加えた後、続いて他方のアダプター(この例では、第2アダプター)をその反応組成物に連続的に加えることは、一方のアダプターの添加と他方のアダプターの添加の間にインキュベート工程が存在するか否かに関係なく、本教示の意図される範囲内である。

0078

逆転写:いくつかの実施形態において、RNA分子の検出は、連結産物を逆転写することにより、逆転写産物を形成することを含む。用語「逆転写する」および「逆転写」ならびにその形態は、本明細書中で使用されるとき、RNA指向性DNAポリメラーゼ転写活性を有するポリペプチドを用いて、鋳型依存的様式で二本鎖RNADNAハイブリッド分子にデオキシリボヌクレオチドまたはデオキシリボヌクレオチドのアナログを連続的に触媒的に付加することに基づいて、連結産物から出発してそのハイブリッド分子を生成するプロセスのことを指す。本教示によると、第2アダプターの第4オリゴヌクレオチドは、ライゲーション産物を逆転写するためのプライマーとして働き得ることにより、逆転写産物を生成する。ゆえに、逆転写のための別個のプライマーの付加は、必要はない。

0079

いくつかの実施形態において、RNA指向性DNAポリメラーゼ転写活性を有するポリペプチドは、MMLV逆転写酵素(その酵素的に活性な変異体またはバリアントを含む)、例えば、限定されないが、ArrayScriptTM逆転写酵素(Ambion)、SuperScriptTM逆転写酵素(Invitrogen);または逆転写活性を含むが、対応する野生型の逆転写酵素と比べてRNAseH活性が低いポリペプチド(例えば、限定されないが、RNaseH−マイナスHIV−1逆転写酵素(Wuら、J.Virol.73(6):4794−4805,1999)などの「RNaseHマイナス」変異体)を含む。

0080

いくつかの実施形態において、RNA指向性DNAポリメラーゼ転写活性は、ある特定の反応条件下において、RNA指向性DNAポリメラーゼ活性を有するDNA指向性DNAポリメラーゼ(例えば、限定されないが、Tth DNAポリメラーゼおよびCarboxydothermus hydrogenoformans由来のDNAポリメラーゼI)によって行われ得る。

0081

リボヌクレアーゼH消化:いくつかの実施形態において、逆転写産物は、リボヌクレアーゼHによって消化されることにより、リボヌクレオシドのうちの少なくとも一部が除去され、それにより増幅鋳型が形成される。用語「消化する」とは、特にリボヌクレアーゼに対する言及において、より小さい成分へのRNAの触媒(例えば、限定されないが、本教示の増幅鋳型として働き得る一本鎖または実質的に一本鎖のcDNA分子を生成するための、RNaseHによる逆転写産物のRNA鎖の切断)のことを指す。

0082

増幅:用語「増幅する」および「増幅」は、広い意味において使用され、典型的には鋳型依存的様式で、増幅鋳型の少なくとも一部、増幅産物の少なくとも一部、またはその両方が、再生成されるかまたは複製される、任意の技術(相補的なコピーの合成を含む)のことを指し、これには、線形または指数関数的に核酸配列を増幅するための広範な技術が含まれるがこれらに限定されない。増幅技術のいくつかの非限定的な例としては、ポリメラーゼ連鎖反応(PCR)(逆転写PCR(RT−PCR)、非同調性プライマーPCR、エマルジョンPCR(ePCR)、定量的PCR(qPCR)および非対称性PCRを含むがこれらに限定されない)、プライマー伸長、鎖置換増幅(SDA)、多置換増幅(MDA)、核酸鎖ベースの増幅(NASBA)、ローリングサークル増幅RCA)、転写媒介性増幅(TMA)、転写など(それらの複合バージョンまたは組み合わせを含む)が挙げられる。そのような技術に関する説明は、とりわけ、Sambrook and Russell,同書;Sambrookら;Ausubelら;PCR Primer:A Laboratory Manual,Diffenbach,Ed.,Cold Spring Harbor Press(1995);The Electronic Protocol Book,Chang Bioscience(2002);Msuihら、J.Clin.Micro.34:501−07(1996);McPherson and Moller,PCR The Basics,Bios Scientific Publishers,Oxford,U.K.,2000(「McPherson」);Rapley,The Nucleic Acid Protocols Handbook(2000),Humana Press,Totowa,New Jersey(「Rapley」);米国特許第6,027,998号および同第6,511,810号;PCT公開番号WO97/31256およびWO01/92579;Ehrlichら、Science 252:1643−50(1991);Innisら、PCR Protocols:A Guide to Methodsand Applications,Academic Press(1990);Favisら、Nature Biotechnology 18:561−64(2000);Williamsら、Nature Methods 3(7):545−50(2006);およびRabenauら、Infection 28:97−102(2000)に見られる。

0083

増幅は、熱サイクル反応工程(時折、サイクル反応工程または熱的サイクル反応工程と称される)を含み得るか、または等温的に行われ得る。ある特定の実施形態において、増幅工程は:プライマーを、増幅鋳型、増幅産物、またはそれらの相補物の相補的または実質的に相補的な配列とハイブリダイズさせる工程;ポリメラーゼを用いて鋳型依存的様式でヌクレオチドの鎖を合成する工程;および新たに形成された核酸二重鎖を変性することにより、鎖を分離する工程の連続的な工程の少なくとも1つのサイクル、典型的には、複数のサイクルを含む。そのサイクルは、要望どおりに繰り返されてもよいし、繰り返されなくてもよい。いくつかの実施形態において、増幅工程は、サーマルサイクラー(例えば、限定されないが、GeneAmp(登録商標)PCRSystem 9700、9600、2700または2400サーマルサイクラー(すべてApplied Biosystems製))において増幅反応組成物をサイクル反応に供する工程を包含する。ある特定の実施形態において、新たに形成された核酸二重鎖は、最初に変性されずに、その後の1つ以上の工程において二本鎖の形態で使用され、いずれかの鎖または両方の鎖が、目的の対応するRNA分子に対する代用物として働き得るが、そうである必要はない。ある特定の実施形態において、一本鎖アンプリコンが生成される(例えば、限定されないが、非対称性PCR、非同調性PCRまたは転写)。

0084

プライマー伸長は、ポリメラーゼなどの伸長酵素を用いて、鋳型にアニールされたプライマーを5’=>3’方向で延長することにより、伸長産物を形成する工程(例えば、限定されないが、連結産物を逆転写する工程または増幅鋳型もしくは増幅産物を増幅する工程)を含む増幅技術である。ある特定の実施形態によると、適切な緩衝液、塩、pH、温度およびヌクレオチド三リン酸を用いるとき、ポリメラーゼは、アニールされたプライマーの3’末端から出発して、鋳型鎖に相補的なヌクレオチドを組み込むことにより、相補鎖を生成する。ある特定の実施形態において、プライマー伸長に使用されるポリメラーゼは、5’−エキソヌクレアーゼ活性を欠いているか、または実質的に欠いている。

0085

いくつかの実施形態において、増幅鋳型を、少なくとも1つの順方向プライマー、少なくとも1つの逆方向プライマー、およびDNA指向性DNAポリメラーゼ活性を有するポリペプチドと合わせ、増幅反応組成物が形成される。

0086

用語「DNAポリメラーゼ」は、本明細書中で広い意味において使用され、鋳型依存的様式でデオキシリボヌクレオチドまたはデオキシリボヌクレオチドのアナログを核酸ポリマーに付加すること(例えば、限定されないが、プライマー伸長反応中の、核酸鋳型にアニールされたプライマーの3’末端へのデオキシリボヌクレオチドの連続的な付加)を触媒することができる任意のポリペプチドのことを指す。典型的には、DNAポリメラーゼは、DNA指向性DNAポリメラーゼ、および逆転写酵素を含むRNA指向性DNAポリメラーゼを含む。いくつかの逆転写酵素は、ある特定の反応条件下においてDNA指向性DNAポリメラーゼ活性を有し、それらとしては、AMV逆転写酵素およびMMLV逆転写酵素が挙げられる。いくつかのDNA指向性DNAポリメラーゼは、ある特定の反応条件下において逆転写酵素を有し、例えば、Thermus thermophilus(Tth)DNAポリメラーゼであるがこれに限定されない。DNAポリメラーゼに関する説明は、とりわけ、Lehninger Principles of Biochemistry,3d ed.,Nelson and Cox,Worth Publishing,New York,NY,2000,特にChapter26および29;Twyman,Advanced Molecular Biology:A Concise Reference,Bios Scientific Publishers,New York,NY,1999;Ausubelら、Current Protocols in Molecular Biology,John Wiley & Sons,Inc.,2005年5月までの増補を含む(本明細書中以後「Ausubelら」);Lin and Jaysena,J.Mol.Biol.271:100−11,1997;Pavlovら、Trendsin Biotechnol.22:253−60,2004;およびEnzymatic Resource Guide:Polymerases,1998,Promega,Madison,WIに見られる。明確に、DNA指向性DNAポリメラーゼおよびRNA指向性DNAポリメラーゼという用語の意図される範囲内であるのは、様々な温度感受性特性を付与するように改変された酵素を含むその酵素的に活性な変異体またはバリアントである(例えば、米国特許第5,773,258号;同第5,677,152号;および同第6,183,998号;ならびにDNA Amplification:Current Techniques and Applications,Demidov and Broude,eds.,Horizon Bioscience,2004,特にChapter1.1を参照のこと)。

0087

酵素の酵素的に活性な変異体またはバリアント:本教示の目的で、特定の酵素または酵素活性を含むポリペプチドが、記載されるかまたは特許請求されるとき、その酵素/ポリペプチドの酵素的に活性な変異体またはバリアントは、特に明確に述べられない限り、含められると意図される。限定としてではなく説明の目的で、用語「Rnl2」または「Rnl2リガーゼ」が、本明細書または添付の請求項において使用されるとき、天然に存在するかまたは野生型のRnl2リガーゼ、ならびにRnl2リガーゼのすべての酵素的に活性な変異体またはバリアントが、特に具体的に述べられない限り、含められると意図される。同様に、RNA指向性DNAポリメラーゼ、リボヌクレアーゼまたはDNA指向性DNAポリメラーゼは、その酵素的に活性な変異体またはバリアントに対する等価物であると考えられる。用語「その酵素的に活性な変異体またはバリアント」とは、所望の酵素活性(例えば、連結、逆転写、消化、増幅またはそれらに見合ったもの)のうちの少なくとも一部を保持する対応する酵素から得られる1つ以上のポリペプチドのことを指す。この用語の範囲内であるのは、特に限定されないが、以下のものである:切断産物(例えば、限定されないが、Klenowフラグメント、Stoffelフラグメントまたは対応する酵素よりも小さいサイズの組換え的に発現されたフラグメントおよび/もしくはポリペプチド)を含むがこれらに限定されない酵素的に活性なフラグメント;対応する酵素の変異型(天然に存在する変異体(例えば、「野生型」またはコンセンサスアミノ酸配列と異なるもの)、物理的および/または化学的な突然変異原を用いて生成された変異体、ならびに遺伝的に操作された変異体(例えば、限定されないが、ランダム突然変異誘発および部位特異的突然変異誘発の技術)を含むがこれらに限定されない);アミノ酸の挿入および欠失切断型、ならびに核酸ナンセンス変異ミスセンス変異およびフレームシフト変異に起因する変化(例えば、Sriskanda and Shuman,Nucl.AcidsRes.26(2):525−31,1998;Odellら、Nucl.Acids Res.31(17):5090−5100,2003を参照のこと);可逆的に改変されたヌクレアーゼ、リガーゼおよびポリメラーゼ(例えば、限定されないが、米国特許第5,773,258号に記載されているもの);遺伝子シャフリング技術から得られる生物学的に活性なポリペプチド(例えば、米国特許第6,319,714号および同第6,159,688号を参照のこと)、スプライスバリアント、天然に存在するものと遺伝的に操作されたもの両方(但し、それらは1つ以上の対応する酵素に少なくとも部分的に由来する);天然配列の1つ以上のアミノ酸への改変を含む1つ以上のそのような酵素に少なくとも部分的に対応するポリペプチド(そのような改変されたポリペプチドが、所望の触媒活性のうちの少なくとも一部を保持するという条件で、付加、除去またはグリコシル化の変更、ジスルフィド結合、ヒドロキシル側鎖およびホスフェート側鎖または架橋を含むがこれらに限定されない);など。特定の酵素に対する言及において使用されるとき、明確に、用語「その酵素的に活性な変異体またはバリアント」の意味の範囲内であるのは、その酵素の酵素的に活性な変異体、その酵素の酵素的に活性なバリアント、またはその酵素の酵素的に活性な変異体およびその酵素の酵素的に活性なバリアントである。

0088

当業者は、当該分野で公知の適切なアッセイを用いて酵素活性を容易に測定することができる。したがって、ポリメラーゼの触媒活性についての適切なアッセイは、例えば、バリアントが適切な条件下において、鋳型依存的様式でrNTPまたはdNTPを発生中のポリヌクレオチド鎖に組み込む能力を測定することを含み得る。同様に、リガーゼ触媒活性についての適切なアッセイは、例えば、本明細書中で開示される反応基などの適切な反応基を含む隣接してハイブリダイズされたオリゴヌクレオチドを連結する能力を含み得る。そのようなアッセイに対するプロトコルは、とりわけ、Sambrookら、Molecular Cloning,A Laboratory Manual,Cold Spring Harbor Press(1989)(本明細書中以後「Sambrookら」)、Sambrook and Russell,editors,Molecular Cloning,Vol 3,3rd edition,Cold Spring Harbor Press(2001),Ausubelら、およびHousby and Southern,Nucl.AcidsRes.26:4259−66,1998)ならびにRnl2リガーゼのファミリーについて以下で引用される参考文献に見られる。

0089

増幅プライマー:用語「プライマー」とは、増幅鋳型、増幅産物またはその両方の、対応するプライマー結合部位に選択的にハイブリダイズし;そしてその対応するポリヌクレオチド鋳型に相補的な配列の合成をその3’末端から可能にする、ポリヌクレオチドのことを指す。「プライマー対」は、増幅産物の一方の鎖またはその相補物にアニールする順方向プライマーおよび逆方向プライマーを含む。プライマー対は、ポリメラーゼ連鎖反応などのある特定の指数関数的な増幅技術において特に有用である。ある特定の実施形態において、プライマー対の順方向プライマーおよび対応する逆方向プライマーは、非同調性プライマーPCRを可能にするために異なる融解温度(Tm)を有する。

0090

本明細書中で使用されるとき、「順方向」および「逆方向」は、増幅鋳型または増幅産物などのポリヌクレオチド配列に対するプライマーの相対的な方向を示すために使用される。限定としてではなく説明の目的で、一本鎖ポリヌクレオチドは、その5’末端が左側で、水平の左から右の方向で描かれると考える。「逆方向」プライマーは、この例証となるポリヌクレオチドの「3’末端」またはその付近の下流のプライマー結合部位と、5’から3’方向に、すなわち右から左にアニールするように設計される。対応する「順方向」プライマーは、そのポリヌクレオチドの「5’末端」またはその付近の上流のプライマー結合部位の相補物と、5’から3’の「順方向」の方向に、すなわち左から右にアニールするように設計される。したがって、逆方向プライマーは、ポリヌクレオチドの「逆方向」または下流のプライマー結合部位に相補的な配列を含み、順方向プライマーは、順方向または上流のプライマー結合部位と同じ配列を含む。この段落において使用されるような用語「3末端」および「5’末端」は、単に例証であり、そのようなプライマー結合部位は、内部に位置し得るので、必ずしもそのポリヌクレオチドのそれぞれの末端のことを文字どおり指さないことが理解されるべきである。むしろ、この例示的なプライマー対の逆方向プライマーが、下流である逆方向プライマー結合部位または対応する順方向プライマーと同じ配列を含む順方向プライマー結合部位の右側とアニールすることは、単なる限定である。当業者によって認識されるように、これらの用語は、限定と意図されず、むしろ、所与の実施形態において例証となる方向を提供する。

0091

プライマーは、アダプターオリゴヌクレオチドのヌクレオチド配列またはアダプターオリゴヌクレオチドに対応するヌクレオチド配列を含み得る。例えば、配列番号5を有する順方向プライマーは、配列番号1を有する第1オリゴヌクレオチドの配列を含む(Uの代わりにTが用いられている)。プライマーとアダプター配列との関係性についてのいくつかの実施形態は、矢印が、順方向および逆方向PCRプライマーまたは順方向および逆方向SYBRプライマーを様々に示している図15の模式図によって理解され得る。P1およびP2は、プライマー部分のことを指す。

0092

本明細書中で使用されるとき、用語「プライマー結合部位」とは、プライマーが、当該分野で公知の種々のプライマーヌクレオチド伸長反応のいずれか(例えば、PCR)のためにアニールし得る鋳型として、直接またはその相補物によって働き得るポリヌクレオチド配列の領域のことを指す。2つのプライマー結合部位が、単一のポリヌクレオチド(例えば、限定されないが、第1伸長産物または第2伸長産物)上に存在するとき、通常、その2つのプライマー結合部位の方向は異なることが、当業者によって認識されるだろう。例えば、プライマー対の1つのプライマーが、第1プライマー結合部位に相補的であり、かつそれにハイブリダイズすることができつつ、そのプライマー対の対応するプライマーは、第2プライマー結合部位の相補物とハイブリダイズするように設計される。別の言い方をすれば、いくつかの実施形態において、第1プライマー結合部位は、センス方向であり得、そして第2プライマー結合部位は、アンチセンス方向であり得る。さらに、「ユニバーサル」プライマーおよびプライマー結合部位は、本明細書中で使用されるとき、通常、特定のアッセイおよび宿主ゲノムにおいてアッセイの特異性保証するためにできるだけ独特であるように選択される。

0093

いくつかの実施形態において、プライマーおよび/または増幅産物は、「プロモーター配列」を含み、その配列としては、適当なポリメラーゼ(例えば、限定されないが、T3RNAポリメラーゼ、T7RNAポリメラーゼまたはSP6RNAポリメラーゼ)を用いた転写の開始に適した配列が挙げられるが、これらに限定されない。本教示のいくつかの実施形態は、増幅産物にプロモーター配列を組み込む方法において「プロモーター−プライマー」を使用する。いくつかの実施形態において、プロモーター配列は、RNAポリメラーゼの結合に適した非常に多数の様々な配列を含み、その配列は、例えば、第1RNAポリメラーゼの結合に適した第1配列および第2RNAポリメラーゼの結合に適した第2配列であるが、これらに限定されない。プロモーター配列を含む増幅産物がある特定の増幅方法によって増幅されるとき、そのプロモーター配列の相補物は、相補的なアンプリコンにおいて合成され得ることを当業者は理解する。したがって、プロモーター配列の相補物は、本明細書中で使用されるとき、プロモーター配列という用語の意図される意味の範囲内に明確に含められることが理解されるべきである。開示される方法およびキットのいくつかの実施形態は、所望のプロモーター配列を増幅産物に組み込む方法において「プロモーター−プライマー」を使用する。

0094

増幅産物が、ある特定の増幅方法によって増幅されるとき、プライマー結合部位の相補物は、相補的なアンプリコンにおいて合成されることを当業者は理解する。したがって、プライマー結合部位の相補物は、本明細書中で使用されるとき、プライマー結合部位という用語の意図される意味の範囲内に明確に含められることが理解されるべきである。

0095

いくつかの実施形態において、本教示の増幅方法は、Q−PCR反応を含む。用語「定量的PCR」、「リアルタイムPCR」または「Q−PCR」とは、特定の核酸配列に対するポリメラーゼ連鎖反応の結果を定量するために使用される種々の方法のことを指す。そのような方法は、通常、閾値サイクル(CT)の決定などの増幅因子を決定するかまたは比較する動力学ベースの系として、または通常、標的および標準的な鋳型の同時の増幅から生成される産物の量を比較する同時増幅方法として、典型的には分類される。多くのQ−PCR技術は、レポータープローブ、インターカレート剤またはその両方を含む。例えば、限定されないが、TaqMan(登録商標)プローブ(Applied Biosystems)、i−プローブ、分子ビーコン、Eclipseプローブ、スコーピオン(scorpion)プライマー、LuxTMプライマー、FRETプライマーエチジウムブロマイド、SYBR(登録商標)Green I(Molecular Probes)およびPicoGreen(登録商標)(Molecular Probes)。いくつかの実施形態において、検出は、リアルタイム検出装置を含む。例示的なリアルタイム装置としては、ABIRISM(登録商標)7000 Sequence Detection System、ABI PRISM(登録商標)7700 Sequence Detection System、Applied Biosystems 7300 Real−Time PCR System、Applied Biosystems 7500 Real−Time PCR System、Applied Biosystems 7900HTFast Real−Time PCR System(すべてApplied Biosystems製);LightCyclerTMSystem(Roche Molecular);Mx3000PTMReal−Time PCR System、Mx3005PTMReal−Time PCR SystemおよびMx4000(登録商標)Multiplex Quantitative PCR System(Stratagene,La Jolla,CA);ならびにSmart Cycler System(Cepheid,Fisher Scientific配給)が挙げられる。リアルタイム装置に関する説明は、とりわけ、それぞれの製造者ユーザーマニュアル;McPherson;DNA Amplification:Current Technologies and Applications,Demidov and Broude,eds.,Horizon Bioscience,2004;および米国特許第6,814,934号に見られる。

0096

ある特定の実施形態において、増幅反応は、多数の増幅を含み、ここで、多数の異なる増幅鋳型、多数の異なる増幅産物種またはその両方が、多数の異なるプライマー対を用いて同時に増幅される(例えば、Henegariuら、BioTechniques 23:504−11,1997;およびRapley、特にChapter79を参照のこと)。開示される方法のある特定の実施形態は、シングルプレックス(single−plex)増幅反応を含み、それには、平行して行われる多数のシングルプレックス増幅を含む増幅反応(例えば、限定されないが、ある特定のTaqMan(登録商標)Array配置(ここで、約100ヌクレアーゼアッセイが、平行して行われることにより、特異的な増幅産物が存在するか否か、およびその量が決定される))が含まれるがこれに限定されない。

0097

ある特定の実施形態において、増幅反応は、非対称性PCRを含む。ある特定の実施形態によると、非対称性PCRは、(i)プライマー対の対応するプライマーに対して、1つのプライマーが過剰(例えば、限定されないが、5倍、10倍または20倍過剰)である少なくとも1つのプライマー対;(ii)順方向プライマーのみまたは逆方向プライマーのみを含む少なくとも1つのプライマー対;(iii)所与の増幅条件において、1つの鎖の増幅をもたらすプライマーおよび無能にされる対応するプライマーを含む少なくとも1つのプライマー対;または(iv)上記の(i)と(iii)の両方の説明を満たす少なくとも1つのプライマー対を含む増幅組成物を含む。その結果として、増幅鋳型または増幅産物が増幅されるとき、その後の増幅産物の過剰な(その相補物に対して)1つの鎖が生成される。非対称性PCRに関する説明は、とりわけ、McPherson、特にChapter 5;およびRapley、特にChapter64に見られる。

0098

ある特定の実施形態において、一方のプライマーの融解温度(Tm50)が、他方のプライマーのTm50よりも高い、少なくとも1つのプライマー対が使用され得る(時折、非同調性プライマーPCRと称される(A−PCR、例えば、米国特許第6,887,664号を参照のこと))。ある特定の実施形態において、順方向プライマーのTm50は、対応する逆方向プライマーのTm50と少なくとも4〜15℃異なる。ある特定の実施形態において、順方向プライマーのTm50は、対応する逆方向プライマーのTm50と少なくとも8〜15℃異なる。ある特定の実施形態において、順方向プライマーのTm50は、対応する逆方向プライマーのTm50と少なくとも10〜15℃異なる。ある特定の実施形態において、順方向プライマーのTm50は、対応する逆方向プライマーのTm50と少なくとも10〜12℃異なる。ある特定の実施形態において、少なくとも1つのプライマー対において、順方向プライマーのTm50は、対応する逆方向プライマーのTm50と、少なくとも約4℃、少なくとも約8℃、少なくとも約10℃または少なくとも約12℃異なる。

0099

ある特定の増幅の実施形態において、あるプライマー対のプライマーのTm50の相違に加えて、そのプライマー対における他方のプライマーに対して一方のプライマーが過剰でもある。ある特定の実施形態において、そのプライマー対における他方のプライマーに対して一方のプライマーが5〜20倍過剰である。A−PCRのある特定の実施形態において、プライマー濃度は、少なくとも50nMである。

0100

ある特定の実施形態に従うA−PCRにおいて、増幅の第1サイクルにおいて従来のPCRが使用され得、両方のプライマーがアニールし、そして二本鎖のアンプリコンの両方の鎖が増幅される。しかしながら、同じ増幅反応のその後のサイクルにおいて温度を上げることによって、より低いTmを有するプライマーが無能にされ得、一方の鎖だけが増幅される。したがって、より低いTmを有するプライマーが無能にされるA−PCRのその後のサイクルによって、非対称性増幅がもたらされる。その結果として、標的領域または増幅産物が増幅されるとき、その後の増幅産物の一方の鎖が過剰に(その相補物に対して)生成される。

0101

A−PCRのある特定の実施形態によると、増幅のレベルは、従来のPCRサイクル反応の第1相におけるサイクルの回数を変更することによって制御され得る。そのような実施形態において、最初の従来のサイクルの回数を変更することにより、その後のより高い温度でのPCRのサイクル(ここで、より低いTmを有するプライマーは無能になる)に供される二本鎖増幅産物の量が変動し得る。

0102

ある特定の実施形態において、増幅は、インビトロ転写を含む。いくつかの実施形態において、第1アダプター、第2アダプター、第1プライマー、第2プライマーまたはそれらの組み合わせは、プロモーター配列またはその相補物、例えば、限定されないが、プロモーター−プライマーを含む。いくつかの実施形態において、プロモーターを含む逆転写産物またはプロモーターを含む増幅産物は、リボヌクレオチド三リン酸、適切な緩衝液系および適当なRNAポリメラーゼ、例えば、限定されないが、SP6、T3またはT7RNAポリメラーゼと混合され、そして増幅されたRNA(aRNA)が、公知の方法に従って生成される。そのaRNAは、マイクロアレイまたはビーズアレイ解析などのアレイ解析のために使用され得、ここで、そのaRNA種の配列および量が、決定され得る。したがって、ある特定の実施形態において、そのようなaRNAは、対応するRNA分子に対する代用物として働く。

0103

増幅反応を最適化するある特定の方法は、当業者に公知である。例えば、PCRは、アニール、重合および変性に対する時間および温度を変更すること、ならびに反応組成物中の緩衝液、塩および他の試薬を変えることによって、最適化され得ることが知られている。最適化は、使用されるプライマーの設計によっても影響され得る。例えば、プライマーの長さ、ならびにG−C:A−T比は、プライマーのアニールの効率を変化させ得、したがって、増幅反応が変化し得る。増幅の最適化に関する説明は、とりわけ、James G.Wetmur,“Nucleic Acid Hybrids,Formation and Structure”,Molecular Biology and Biotechnology,pp.605−8,(Robert A.Meyers ed.,1995);McPherson,特に、Chapter 4;Rapley;およびProtocols & Applications Guide,rev.9/04,Promega Corp.,Madison,WIに見られる。

0104

本教示に従った増幅産物の精製は、増幅の少なくとも1回のサイクル後の、少なくとも一部の連結されていないアダプター、連結されていないRNA分子、副産物、プライマー、酵素、またはライゲーション反応組成物、増幅反応組成物もしくはその両方の他の成分を除去する任意のプロセスを含む。そのようなプロセスとしては、分子量/サイズ排除プロセス、例えば、ゲル濾過クロマトグラフィまたは透析、配列特異的ハイブリダイゼーションベースの取り出し方法、親和性捕捉技術、沈殿吸着、ゲル電気泳動、従来のクローニングコンカテマー化(concatamerization)を用いる従来のクローニング、または他の核酸精製技術が挙げられるが、これらに限定されない。いくつかの実施形態において、増幅産物の精製は、ゲル電気泳動(ポリアクリルアミドゲル電気泳動(PAGE)および/またはアガロースゲル電気泳動を含むがこれらに限定されない)を含む。ある特定の実施形態において、増幅産物は、高速液体クロマトグラフィ(HPLC;時折、高圧液体クロマトグラフィとも称される)を用いて精製される。

0105

検出:目的のRNA分子は、連結産物またはその代用物を検出することによって検出される。いくつかの実施形態において、連結産物は、上に記載されたように逆転写され、そして、その逆転写産物は、アレイ上に置かれ、当業者に公知の標準的な方法を用いて検出される。いくつかの実施形態において、逆転写産物は、ビオチンで標識され、検出は、それに対するストレプトアビジン結合を用いることによる。いくつかの実施形態において、逆転写産物は、ガラス繊維フィルター、ビーズを用いて精製されるか、またはゲル精製される。いくつかの実施形態において、逆転写産物は、リボヌクレアーゼ活性を含むペプチドと混合されることにより、消化反応組成物が形成され、そしてその逆転写産物からリボヌクレオシドのうちの少なくとも一部を消化するのに適した条件下でインキュベートされることにより、増幅鋳型が形成される。

0106

用語「検出する」および「検出」は、本明細書中で広い意味において使用され、特定のRNA分子、すなわち、目的のRNA分子がサンプル中に存在するか否かを判定することができる任意の技術を包含する。いくつかの実施形態において、代用物の存在が、直接または間接的に検出され、それにより、対応するRNA分子の存在または非存在の判定が可能になる。例えば、代用物の存在が、増幅産物または連結産物を鋳型として用いて得られた、標識されたシークエンシング産物のファミリーを検出すること;または増幅産物にアニールされたヌクレアーゼレポータープローブがポリメラーゼによって切断されるときに発生される蛍光を検出することによって検出される(ここで、検出可能なシグナルまたは検出可能なシグナルの変化は、対応する増幅産物および/または連結産物が増幅されていること、例えば、対応するRNA分子がそのサンプル中に存在することを示す)。いくつかの実施形態において、検出は、検出可能なシグナルの定量(定量的PCR(「Q−PCR」)などのリアルタイム検出方法を含むが、これらに限定されない)を含む。いくつかの実施形態において、検出は、鋳型として増幅産物を用いて生成されるシークエンシング産物またはシークエンシング産物のファミリーの配列の決定を含み;いくつかの実施形態において、そのような検出は、シークエンシング産物のファミリーの配列を得ることを含む。いくつかの実施形態において、RNA分子の検出は、例えば、限定されないが、Q−PCR反応組成物中の、核酸色素を含む。連結産物、逆転写産物、増幅鋳型および増幅された配列の各々が、直接または間接的に生成されたRNA分子に対する代用物として働くこと、およびこれらの産物のいずれかを検出することによって、対応するRNA分子が直接または間接的に検出されることを当業者は理解するだろう。

0107

用語「レポータープローブ」とは、対応するアンプリコン(例えば、限定されないが、PCR産物)と特異的にアニールし、そして、放出される波長の強度の変化またはその波長の変化(を含むがこれらに限定されない)が検出されるとき、対応するアンプリコン、例えば、対応するRNA分子の同定、検出および/または定量に使用される、ヌクレオチド、ヌクレオチドアナログ、またはヌクレオチドおよびヌクレオチドアナログの配列のことを指す。したがって、そのアンプリコンを間接的に検出することによって、対応するRNA分子がサンプル中に存在することが判定され得る。ほとんどのレポータープローブが、その作用様式に基づいて分類され得、例えば、限定されないが:TaqMan(登録商標)プローブを含むがこれに限定されないヌクレアーゼプローブ;スコーピオンプライマー、LuxTMプライマー、Amplifluorsなどを含むがこれらに限定されない伸長プローブ;および、分子ビーコン、Eclipse(登録商標)プローブ、ライトアッププローブ、別々に標識されたレポータープローブの対、ハイブリダイゼーションプローブ対などを含むがこれらに限定されないハイブリダイゼーションプローブである。ある特定の実施形態において、レポータープローブは、アミド結合ロックト核酸(LNA)、ユニバーサル塩基またはそれらの組み合わせを含み、そしてステムループおよびステムレスレポータープローブ構造を含み得る。ある特定のレポータープローブは、別々に標識されるが、他のレポータープローブは、二重標識される。隣接してハイブリダイズされるプローブ間のFRETを含む二重プローブシステムは、レポータープローブという用語の意図される範囲内である。ある特定の実施形態において、レポータープローブは、蛍光レポーター基およびクエンチャーダーククエンチャーおよび蛍光クエンチャーを含むがこれらに限定されない)を含む。レポータープローブのいくつかの非限定的な例としては、TaqMan(登録商標)プローブ;Scorpionプローブ(スコーピオンプライマーとも称される);LuxTMプライマー;FRETプライマー;Eclipse(登録商標)プローブ;FRETベースの分子ビーコン、多色分子ビーコン、アプタマービーコン、PNAビーコンおよび抗体ビーコンを含むがこれらに限定されない分子ビーコン;標識されたPNAクランプ、標識されたPNAオープナー、標識されたLNAプローブ、ならびにナノ結晶金属性ナノ粒子および同様のハイブリッドプローブを含むプローブ(例えば、Dubertretら、Nature Biotech.19:365−70,2001;Zelphatiら、BioTechniques 28:304−15,2000を参照のこと)が挙げられる。ある特定の実施形態において、レポータープローブは、TaqMan(登録商標)MGBプローブおよびTaqMan(登録商標)MGB−NFQプローブ(両方ともApplied Biosystems製)を含むがこれらに限定されない副溝結合剤をさらに含む。ある特定の実施形態において、レポータープローブ検出は、蛍光偏光検出を含む(例えば、Simeonov and Nikiforov,Nucl.AcidsRes.30:e91,2002を参照のこと)。

0108

用語「レポーター基」は、本明細書中で広い意味において使用され、任意の識別可能なタグ、標識または部分のことを指す。レポーター基の多くの異なる種が、個別に、または1つ以上の異なるレポーター基と組み合わせて、本教示において使用され得ることを当業者は認識するだろう。ある特定の実施形態において、レポーター基は、蛍光、化学発光生物発光リン光、または電気化学発光シグナル放射する。レポーター基のいくつかの非限定的な例としては、フルオロフォア放射性同位体色素原、酵素、エピトープタグを含むがこれに限定されない抗原量子ドットなどの半導体ナノ結晶重金属、色素、リン光基、化学発光基電気化学的検出部分、結合タンパク質リン光体希土類キレート遷移金属キレート近赤外色素、電気化学発光標識および質量分析計適合性のレポーター基(例えば、質量タグ電荷タグおよび同位体)(例えば、Haff and Smirnov,Nucl.AcidsRes.25:3749−50,1997;Xuら、Anal.Chem.69:3595−3602,1997;Sauerら、Nucl.Acids Res.31:e63,2003を参照のこと)が挙げられる。

0109

レポーター基という用語は、マルチエレメントレポーターシステム(ビオチン:アビジン、抗体:抗原などの親和性タグなどを含むが、これらに限定されない)のエレメントも包含し、ここで、検出可能なシグナルに対する可能性をもたらすために、1つのエレメントが、そのシステムの1つ以上の他のエレメントと相互作用する。マルチエレメントレポーターシステムのいくつかの非限定的な例としては、ビオチンレポーター基を含むオリゴヌクレオチドおよびストレプトアビジン結合体化フルオロフォアまたはその逆;DNPレポーター基を含むオリゴヌクレオチドおよびフルオロフォア標識された抗DNP抗体;などが挙げられる。レポーター基を核酸に付着させるための詳細なプロトコルは、とりわけ、Hermanson,Bioconjugate Techniques,Academic Press,San Diego,1996;Current Protocols in Nucleic Acid Chemistry,Beaucageら、eds.,John Wiley & Sons,New York,NY(2000),2005年4月までの増補を含む;およびHaugland,Handbook of Fluorescent Probes and Research Products,9th ed.,Molecular Probes,2002に見られる。

0110

マルチエレメント相互作用レポーター基(例えば、蛍光クエンチャーおよびダーククエンチャー(非蛍光クエンチャーとしても知られる)を含むがこれに限定されないフルオロフォア−クエンチャー対)もまた、レポーター基という用語の意図される範囲内である。蛍光クエンチャーは、フルオロフォアから放射される蛍光シグナルを吸収し得、そして十分な蛍光エネルギーを吸収した後、その蛍光クエンチャーは、特徴的な波長において蛍光を放射し得る(例えば、蛍光共鳴エネルギー転移(FRET))。例えば、限定されないが、FAMTM−TAMRATM色素対は、FAMTM色素に対する励起ピークである492nmにおいて照射され得、TAMRATM色素に対する放射ピークである580nmにおいて蛍光を放射し得る。蛍光レポーター基と適切に対形成されたダーククエンチャーは、フルオロフォアからの蛍光エネルギーを吸収するが、それ自体の蛍光を吸収しない。むしろ、ダーククエンチャーは、吸収されたエネルギーを、典型的には、熱として散逸する。ダーククエンチャーまたは非蛍光クエンチャーのいくつかの非限定的な例としては、Dabcyl、Black Hole Quenchers、Iowa Black、QSY−7、AbsoluteQuencher、Eclipse(登録商標)非蛍光クエンチャー、金属クラスター(例えば、金ナノ粒子)などが挙げられる。フルオロフォア−クエンチャー対を含むある特定の二重標識されたプローブは、その対のメンバーが物理的に分離されるときに蛍光を放射し得、それらは、例えば、限定されないが、TaqMan(登録商標)プローブなどのヌクレアーゼプローブである。フルオロフォア−クエンチャー対を含む他の二重標識されたプローブは、その対のメンバーが空間的に分離されるとき、蛍光を放射し得、それらは、例えば、限定されないが、分子ビーコンなどのハイブリダイゼーションプローブまたはScorpionTMプライマーなどの伸長プローブである。フルオロフォア−クエンチャー対は、当該分野で周知であり、種々のレポータープローブに対して広く使用される(例えば、Yeungら、BioTechniques 36:266−75,2004;Dubertretら、Nat.Biotech.19:365−70,2001;およびTyagiら、Nat.Biotech.18:1191−96,2000を参照のこと)。

0111

用語「核酸色素」とは、本明細書中で使用されるとき、二本鎖ポリヌクレオチドに特異的であるか、または一本鎖ポリヌクレオチドよりも二本鎖ポリヌクレオチドと会合されたときに実質的に強い蛍光シグナルを放射する蛍光性分子のことを指す。典型的には、核酸色素分子は、二本鎖セグメント主溝もしくは副溝またはその両方において結合することによって、二本鎖セグメントの塩基対の間にインターカレートすることによって、ポリヌクレオチドの二本鎖セグメントと会合する。核酸色素の非限定的な例としては、エチジウムブロマイド、DAPI、Hoechst誘導体(Hoechst33258およびHoechst33342を含むがこれらに限定されない)、ランタニドキレートを含むインターカレーター(例えば、限定されないが、2つの蛍光性四座配位子型β−ジケトン−Eu3+キレートを有するナフタレンジイミド誘導体(NDI−(BHHCT−Eu3+)2)、例えば、Nojimaら、Nucl.AcidsRes.Supplement No.1,105−06(2001)を参照のこと)、エチジウムブロマイド、およびある特定の非対称性のシアニン色素(例えば、SYBR(登録商標)Green、SYBR(登録商標)Gold、PicoGreen(登録商標)およびBOXTO)が挙げられる。

0112

ある特定の実施形態において、検出は、装置、すなわち、コンピュータアルゴリズムを備え得るが備える必要はない、自動化または半自動化された検出デバイスを用いることを含む。ある特定の実施形態において、検出装置は、グラフ、モニター電子スクリーン磁気媒体スキャナープリントアウトまたは他の2次元もしくは3次元的ディスプレイ上に伸長産物もしくはその代用物の観察もしくは測定されたパラメータの強度を図画的に表示するため、および/または観察もしくは測定されたパラメータを記録するための、デバイスを備えるか、またはそのデバイスに連結されている。ある特定の実施形態において、検出工程は、少なくとも1つの分離工程と組み合わされるか、または少なくとも1つの分離工程の続きであり、例えば、限定されないが、少なくとも1つの蛍光スキャナー、および図示するか、記録するか、または読み出す、少なくとも1つのコンポーネントを備えたキャピラリー電気泳動装置吸光度モニターまたは蛍光スキャナーおよびグラフレコーダーと連結されたクロマトグラフィカラム記録コンポーネントおよび/もしくは検出コンポーネントを備えた質量分析計と連結されたクロマトグラフィカラム;またはスキャナーもしくはCCDカメラなどのデータ記録デバイスを有するマイクロアレイである。ある特定の実施形態において、検出工程は、増幅工程、例えば、限定されないが、Q−PCRなどのリアルタイム解析と組み合わされる。検出工程を行うための例示的なシステムとしては、ABIPRISM(登録商標)Genetic Analyzer装置シリーズ、ABI PRISM(登録商標)DNA Analyzer装置シリーズ、ABI PRISM(登録商標)Sequence Detection Systems装置シリーズおよびApplied Biosystems Real−TimePCR装置シリーズ(すべてApplied Biosystems製);ならびにマイクロアレイおよび関連ソフトウェア(例えば、Applied BiosystemsマイクロアレイおよびApplied Biosystems1700 Chemiluminescent Microarray Analyzer、ならびに、とりわけ、Affymetrix、Agilentから入手可能な、他の市販のマイクロアレイおよび解析システム(Gerryら、J.Mol.Biol.292:251−62,1999;De Bellisら、Minerva Biotec 14:247−52,2002;およびStearsら、Nat.Med.9:140−45(増補を含む),2003もまた参照のこと)またはビーズアレイプラットフォーム(Illumina,San Diego,CA))が挙げられる。例示的なソフトウェアとしては、GeneMapperTMSoftware、GeneScan(登録商標)Analysis SoftwareおよびGenotyper(登録商標)ソフトウェア(すべてApplied Biosystems製)が挙げられる。

0113

ある特定の実施形態において、RNA分子は、増幅産物および/または連結産物の少なくとも一部の質量電荷比(m/z)に基づいて検出および定量され得る。例えば、いくつかの実施形態において、プライマーまたはアダプターは、質量分析適合性のレポーター基(増幅産物に組み込まれ、そして質量分析計での検出に使用され得る、質量タグ、電荷タグ、切断可能な部分または同位体が挙げられるが、これらに限定されない)(例えば、Haff and Smirnov,Nucl.AcidsRes.25:3749−50,1997;およびSauerら、Nucl.Acids Res.31:e63,2003を参照のこと)を含む。増幅産物は、対応するRNA分子の存在または非存在の判定を可能にする質量分析によって検出され得る。いくつかの実施形態において、プライマーまたはアダプターは、制限酵素部位、切断可能な部分などを含むことにより、検出のための、増幅産物の一部の放出が容易になる。ある特定の実施形態において、多数の増幅産物は、液体クロマトグラフィまたはキャピラリー電気泳動によって分離され、ESIまたはMALDIに供され、そして質量分析によって検出される。質量分析に関する説明は、とりわけ、The Expanding Role of Mass Spectrometry in Biotechnology,Gary Siuzdak,MCC Press,2003に見られる。

0114

ある特定の実施形態において、レポータープローブまたはレポータープローブの切断された一部などの代用物は、直接または間接的に検出される。例えば、限定されないが、クエンチャー(ステムループビーコンおよびステムフリーのビーコン、TaqMan(登録商標)プローブもしくは他のヌクレアーゼプローブを含む分子ビーコン、LightSpeedTMPNAプローブまたはマイクロアレイ捕捉プローブを含むが、これらに限定されない)を含むレポータープローブへの増幅産物のハイブリダイズ。ある特定の実施形態において、ハイブリダイゼーションは、分子ビーコンおよび増幅産物が、溶液中に存在しないときに生じ、そして検出可能なシグナルまたは異なって検出可能なシグナルが放射される。他の実施形態において、増幅産物は、マイクロアレイなどの固体表面にハイブリダイズするか、または結合され、そして検出可能なシグナルまたは異なって検出可能なシグナルが、放射される(例えば、EviArraysTMおよびEviProbesTM,Evident Technologiesを参照のこと)。

0115

ある特定の実施形態において、検出は、レポーター基の検出可能なシグナルまたはレポーター基の検出可能なシグナルの変化(典型的には、増幅産物の存在に起因する)の測定または定量を含む。限定としてではなく説明の目的で、ハイブリダイズしていないレポータープローブは、低レベルで放出し得るが、増幅産物にハイブリダイズするとき、定量的に増加する検出可能なシグナルを放射し得、そのレポータープローブとしては、ある特定の分子ビーコン、LNAプローブ、PNAプローブおよびライトアッププローブが挙げられるが、これらに限定されない(例えば、Svanikら、Analyt.Biochem.281:26−35,2000;Nikiforov and Jeong,Analyt.Biochem.275:248−53,1999;およびSimeonov and Nikiforov,Nucl.AcidsRes.30:e91,2002を参照のこと)。ある特定の実施形態において、検出は、蛍光偏光の測定を含む。

0116

いくつかの実施形態において、特定のRNA分子がサンプル中に存在するか否かの判定は、内標準もしくはコントロール配列(例えば、対応する標的領域のための検量線)、内部サイズ標準またはそれらの組み合わせの評価を含む。いくつかの実施形態において、レーン間キャピラリー間および/またはアッセイ間のばらつきを説明するために、コントロール配列または内部参照色素が使用される。ある特定の実施形態において、増幅反応または検出技術を検証するために、内部コントロール配列は、平行して増幅される無関係の核酸を含む。

0117

用いられる検出技術が通常は限定されないことを当業者は理解するだろう。むしろ、サンプル中のRNA分子の存在または非存在の判定を可能にするという条件で、多岐にわたる検出方法が、開示される方法およびキットの範囲内である。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

該当するデータがありません

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

該当するデータがありません

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

この 技術と関連性が強い技術

該当するデータがありません

この 技術と関連性が強い法人

該当するデータがありません

この 技術と関連性が強い人物

該当するデータがありません

この 技術と関連する社会課題

該当するデータがありません

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ