図面 (/)

技術 生物学的に活性なインプラント

出願人 シュミドマイヤー,ゲルハルドラシュケ,ミッシェルステムバーガー,アクセル
発明者 シュミドマイヤー,ゲルハルドラシュケ,ミッシェルステムバーガー,アクセル
出願日 2011年8月5日 (10年2ヶ月経過) 出願番号 2011-171961
公開日 2011年11月24日 (9年10ヶ月経過) 公開番号 2011-235175
状態 特許登録済
技術分野 医療用材料 補綴
主要キーワード 物理化学的状態 機械的強化 化学的溶液 ねじり荷重 層流条件 コロイド粒子径 カラーマーカー 分子分解
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2011年11月24日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (9)

課題

本発明は、背柱および/または運動器官系における病的変化補償するインプラントに関する。

解決手段

本発明によると、インプラントには、厚さ100μmまでの、ポリラクチドのような生物分解性ポリマーからなるエナメル質コーティングが施される。このコーティングは骨誘導効果を有し、骨折治癒を促進する。増殖因子などの追加の骨誘導物質をコーティング中に組み入れることも可能である。本発明はまた、有機溶媒中の生物分解性ポリマーの分散液を調製すること、コーティングすべき表面に該分散液を塗布すること、該溶媒蒸発させること、を含んでなる、上記インプラントの作製方法に関する。

概要

背景

例えば、WO-A 9819699には、骨接合を促進して骨折治癒過程加速するように作用する薬剤またはホルモン全身投与が開示されている。適当な手段の例として、IGF-Iのような増殖因子が挙げられている。しかしながら、そのような全身投与は望ましくない副作用をもたらすことがある。

WO-A 9320859には、増殖因子を含有するポリ乳酸ポリグリコール酸コポリマーからなる薄いフォイルまたはフィルムの作製が開示されている。その意図は、その種のフォイルを例えば骨折固定器具のまわりに巻き付け、その後でそれらを使用することにある。これは骨折部位において局所的に増殖因子を放出するように支持される。しかし、実際には、この方法はうまく機能しない。なぜなら、例えば、この種のフォイルで巻いた(nail)は、釘をゆるく覆っているにすぎないフォイルが実際に意図した治癒作用部位に達するようなやり方で、髄質の中に挿入することができないからである。

概要

本発明は、背柱および/または運動器官系における病的変化補償するインプラントに関する。 本発明によると、インプラントには、厚さ100μmまでの、ポリラクチドのような生物分解性ポリマーからなるエナメル質コーティングが施される。このコーティングは骨誘導効果を有し、骨折の治癒を促進する。増殖因子などの追加の骨誘導物質をコーティング中に組み入れることも可能である。本発明はまた、有機溶媒中の生物分解性ポリマーの分散液を調製すること、コーティングすべき表面に該分散液を塗布すること、該溶媒蒸発させること、を含んでなる、上記インプラントの作製方法に関する。なし

目的

それらは、例えば、骨折を機械的に安定化することによって治癒過程を促進すること、また、内部補てつインプラント(endoprosthetic implant)の場合には骨に永久的に接合させることを目的とした

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

整形外科用インプラントであって、以下:(i)表面、(ii)本体、及び(iii)バーニッシュ様耐摩耗性コーティングであって、100 kDa以下の平均分子量を有し、ガラス転移温度が37℃より高い生物分解性ポリマーを備え、厚さが100μm以下であり、インプラント移植されるときに機械的摩擦コーティング摩耗又は損傷しないように本体の表面への接着を形成し、且つ移植されるときに骨と接触するように適合している、前記コーティング、を備える、前記整形外科用インプラント。

技術分野

0001

本発明は、背柱および/または運動器官系(locomotor system)における病的変化補償するように設計されたインプラントに関する。本発明はまた、そのようなインプラントの製造方法を包含する。上記タイプのインプラントは従来技術の一部となっている。それらは、例えば、骨折機械的に安定化することによって治癒過程を促進すること、また、内部補てつインプラント(endoprosthetic implant)の場合には骨に永久的に接合させることを目的としたものである。

背景技術

0002

例えば、WO-A 9819699には、骨接合を促進して骨折の治癒過程を加速するように作用する薬剤またはホルモン全身投与が開示されている。適当な手段の例として、IGF-Iのような増殖因子が挙げられている。しかしながら、そのような全身投与は望ましくない副作用をもたらすことがある。

0003

WO-A 9320859には、増殖因子を含有するポリ乳酸ポリグリコール酸コポリマーからなる薄いフォイルまたはフィルムの作製が開示されている。その意図は、その種のフォイルを例えば骨折固定器具のまわりに巻き付け、その後でそれらを使用することにある。これは骨折部位において局所的に増殖因子を放出するように支持される。しかし、実際には、この方法はうまく機能しない。なぜなら、例えば、この種のフォイルで巻いた(nail)は、釘をゆるく覆っているにすぎないフォイルが実際に意図した治癒作用部位に達するようなやり方で、髄質の中に挿入することができないからである。

先行技術

0004

国際公開第98/19699号パンフレット
国際公開第93/20859号パンフレット

発明が解決しようとする課題

0005

したがって、本発明の目的は、特に骨接合を促進させ、それゆえに骨折の治癒またはインプラントの統合(integration)を加速することによって、背柱および運動器官系における病的変化の治癒過程を促進する、冒頭で述べたタイプのインプラントを提供することである。

課題を解決するための手段

0006

本発明によると、この目的は、厚さが100μmまでの、生物分解性ポリマーからなるバーニッシュ様コーティング(varnish-like coating)を施すことにより、このタイプのインプラントにより達成される。

実施例

0007

しかし、まず初めに、本発明を説明するうえで使用する用語をいくつか定義しておく必要がある。「インプラント」なる用語は、外科手術過程体内に少なくとも部分的に導入される器具を意味する。そのタイプのインプラントは、病的に変化した背柱および/または運動器官系を、特に機械的強化を付与することによって、支持するのに役立つ。上記の病的変化とは、関節と骨の、さらに膨張したまたは引き裂かれた靱帯などの病的変化からなる骨折の形でありうる。新規インプラントの共通した特徴は、それらの適用が、背柱または運動器官系(靱帯や腱など)の他の部分または要素の骨との直接接触、該骨への付着、または該骨への挿入を伴う、ということにある。

0008

「骨折固定器具」なる用語は、折れた骨を固定し、修正し、かつ/また機械的に安定化するのに役立つ器具を意味する。その例としては、背柱および運動器官系のための板、ネジ、釘、ピンワイヤ縫合糸またはケージが挙げられる。一般に、このタイプの骨折固定器具は骨折が治った後に取り除かれるが、特定の状況下においては、骨の内部または上部に永久に残っていてもよく、また、生物によって再吸収されてもよい。

0009

内部補てつインプラントは、体内に永久に残存して、通常は関節、骨部分、歯などの生来身体部分支持体として機能するように設計される。

0010

「インプラント」なる用語は、その最も広い意味で理解されるべきである。というのは、この用語が、例えば、延長または縮小骨切除術開頭術のために、靱帯の治癒および回復のために、腫瘍およびスポーツによる損傷に関連した手術のために、歯科において、さらには口腔上顎および顔面脱臼の場合に使用されるインプラントを含むからである。

0011

インプラントはバーニッシュ様コーティングとは化学的および/または物理的に異なる基材から作製される。多くの場合に、基材は生物分解性ではないだろう。このことは、それが、用いられる身体位置の周囲の条件下で、かつ体内に保持される時間にわたって、崩壊したり、腐食したり、他のどのような方法でもその物理化学的状態を変えたりしてはならず、たとえ変えるにしても、その所望の効果を無視できる程度にしか低下させないことを意味する。本発明によるインプラントは大抵の場合、金属または合金、例えばステンレス鋼チタンなどから構成されるだろう。あるいはまた、インプラントはそれ自体が生物分解性または生物再吸収性である基材から構成されてもよいが、本発明によりバーニッシュ様コーティングを施さないかぎり下記の有益な性質を付与しないだろう。

0012

本発明によれば、インプラントにバーニッシュ様コーティングが施される。「バーニッシュ様」なる用語は、インプラントを適用するとき、機械的摩擦がコーティングを摩滅したり、または他のやり方で損傷したりしない、あるいは少なくとも、以下で詳細に説明するその物理的効果を危うくする程度には損傷しないほどの十分な接着力でコーティングが基材の表面に結合していることを意味する。例えば、バーニッシュ様コーティングを施した釘は、バーニッシュ様コーティングの有意な摩滅なしに、骨の内部に適切に打ち込むことが可能であるにちがいない。

0013

該コーティングは100μmまでの厚さとする。言い換えると、該コーティングの平均の厚さは100μm以下である。本発明では、コーティング方法における変動(fluctuation)により生じた100μmを超える厚さの斑点スポット)があっても許容される。

0014

該コーティングは生物分解性のポリマーからなる。このことは、インプラントが配置される部位の周囲の生理的条件にさらされるために、好ましくは数週間または数カ月間にわたって、それが分子的分解により次第に劣化していくことを意味する。こうした分子分解産物および他のあらゆる代謝産物は、毒性を全く示さないか、最悪の場合でも、無視できるほどの毒性しか示さないことが好ましく、また、それらの全部または大部分が生体によって代謝されるか、排泄されるべきである。毒性の代謝産物をもたらさずかつ完全に生物分解されて排出されるポリマーは、「生物再吸収性」ともいう。本発明で用いるポリマーは生物再吸収性のタイプのものが好適である。

0015

本発明は、増殖因子のような他の薬理活性物質を添加しなくとも、本発明によるバーニッシュ様コーティングが、骨接合性の、それゆえに骨折治癒性の、さらには感染を防止する、それゆえに合併症を回避する効果を奏する、という驚くべき発見に基づくものである。

0016

バーニッシュ様コーティングの厚さは、好ましくは50μm以下、より好ましくは約30μm以下、最も好ましくは約20μm以下とする。多くの場合に、好適な厚さは10〜30μmであり、10〜20μmが最も好ましいものである。

0017

用いるポリマーは、体内でその所望の強度を保持するように、ガラス転移温度が37℃(98.6°F)以上であるものが好ましい。本発明の範囲内においては、平均分子量が100kDaまたはそれ以下のポリマーが好適である。

0018

ポリマーは好ましくは、ポリα-ヒドロキシ酸ポリグリコールポリチロシンカーボネートデンプンゼラチンセルロース、ならびにこれらの成分を含有するブレンドおよびインターポリマーからなる群より選択される。ポリα-ヒドロキシ酸の中で特に好ましいものは、ポリラクチド、ポリグリコール酸およびそれらのインターポリマーである。適当なポリラクチドの一例は、R 203の商標名でBoehringer-Ingelheim社から市販されているものである。それはラセミ体のポリ-D,L-ラクチドである。このラセミ化合物はインプラントの表面上に無定形でバーニッシュ様の層を形成する。好ましくは、コーティング中での結晶質ポリマー構造の形成は回避すべきであり、その理由のため通常はエナンチオマーとして純粋なラクチドを使用しない。適当なポリチロシンカーボネートとしては、例えば、p(DTE-co-5% PEG 1000カーボネート)およびp(DTE-co-26% PEG 20000カーボネート)がある。これらは一定量のポリエチレングリコールを含むインターポリマーである。

0019

本発明の範囲内において、コーティングは追加の薬理活性物質、例えば、骨誘導物質殺生物物質または抗感染物質を含むことができる。適当な骨誘導物質としては例えば増殖因子があり、コーティングの全重量に対するその比率は好ましくは0.1〜10重量%、より好ましくは0.5〜8重量%、最も好ましくは1〜5重量%である。この重量%は、どのような製薬上の担体物質も含まない、活性物質正味の量に関係するものである。

0020

増殖因子は、IGF(インスリン様増殖因子)、TGF(トランスフォーミング増殖因子)、FGF(線維芽細胞増殖因子)、EGF(表皮増殖因子)、BMP(骨形態発生タンパク質)およびPDGF(血小板由来増殖因子)からなる群より選択することができる。これらの増殖因子は当業者に公知であり、市販品として入手可能である。

0021

バーニッシュ様コーティングは、IGF-IまたはTGF-β増殖因子を含むことが好ましく、これら2種類の増殖因子の組合せを含むことが特に好適である。

0022

本発明はまた、上記したタイプのインプラントの作製方法に関し、該方法は次のステップ
有機溶媒中の生物分解性ポリマーの分散液を調製すること、
−コーティングすべき表面に該分散液を塗布すること、
− 該溶媒蒸発させること、
を含んでなる。

0023

「分散液」なる用語は、有機溶媒中での該ポリマーのあらゆる分布をさす。これは化学的溶液、純粋に物理的な分散体または任意の中間段階(特に、コロイド溶液を含む)であり得る。

0024

分散液を塗布することおよび溶媒を蒸発させることは、好ましくは0〜30℃(32〜86°F)の温度、より好ましくは22℃(72°F)くらいの室温で行なう。このいわゆる常温コーティングにより、ある種の増殖因子のような温度感受性成分を、ポリマーと共にインプラント上に施すことが可能となる。コーティングを施すには、インプラントを分散液中に浸漬することが好ましい。その他のコーティング方法、例えば、はけ塗り、吹き付けなども可能である。もちろん、ポリマーのほかに、該分散液は上記の薬理活性物質、例えば骨誘導物質や殺生物物質を含んでいてもよい。

0025

最も好ましくは、該溶媒は実質的に溶媒蒸気飽和されている気体雰囲気下で蒸発させる。その目的のために、該分散液中に浸漬したインプラントを、溶媒で高度に飽和された雰囲気密閉された空間で取り扱うことが望ましい。このことによってその溶媒の非常に遅い蒸発がもたらされ、その結果均一で十分に付着したバーニッシュ様のコーティングが得られることとなる。好ましい蒸発時間は1分から1時間の間であり、5分から30分の間がさらに良く、最も望ましいのは約10分である。

0026

また、コーティングを漸増的にいくつかの薄層となるように施すことも好ましく、そのような目的のためには、分散液の塗布および溶媒蒸発プロセスを2度またはおそらくは数回繰り返す。

0027

本発明の範囲内で特に好ましいのは、溶媒中でポリマーがコロイド溶液の形になっている分散液の使用である。このコロイド溶液は、好ましくは、1〜1000nmの大きさのコロイドポリマー粒子を含有し、より好ましくはその大きさが400〜500nmより小さい。例えば、このタイプのコロイド溶液はポリマーと溶媒を混合し、次いで1分から24時間の間、好ましくは2時間から24時間、より好ましくは3時間から12時間、さらに好ましくは8時間まで、最も望ましくは約6時間放置することによって調製することができる。最も好ましい期間である約6時間の間に、ポリマーコロイド粒子は約500nmより小さい望ましい大きさの範囲となる。

0028

残存しているより大きなポリマー粒子を分離するために、そのコロイド溶液をインプラント上に適用する前に、好ましくは孔サイズがコロイド粒子の所望の最大粒子径に対応する微小孔(micropore)フィルターを用いて濾過することができる。微小孔フィルターは孔サイズが例えば0.45または0.2μmの市販のものである。

0029

用いる溶媒は好ましくは一般的な非極性もしくはわずかに極性を有する有機溶媒である。本発明の範囲内で特に好ましいのは酢酸エチルまたはクロロホルムである。

0030

インプラント上に分散液を適用する前には、該分散液は溶媒1mlあたり好ましくは20〜300mg、より好ましくは50〜150mgのポリマー(おそらくは他の成分、例えば骨誘導性もしくは殺生物性物質も含む)を含有している。
下記は本発明を図面を参照しながら実施例によって説明するものである。

図面の簡単な説明

0031

インプラント上に施した本発明のポリラクチドコーティングの、in vivoおよびin vitroにおける時間の関数としての生分解性を示す。
ポリラクチドコーティング中に含まれる増殖因子の放出を時間の関数として示す。
本発明のコーティングを施したインプラントと未処理(コーティング処理なし)のインプラントの、ラットの骨折治癒における効果をX線写真で比較したものを示す。
インプラントの生体力学的な比較を示した図である。
インプラントの組織形態測定的な比較を示した図である。
組織形態測定試験を示した図である。
ユカタンブタ(Yucatan pig)におけるコーティングを施したインプラントとコーティングを施していないインプラントのX線写真による比較を示す。
図7の対応するインプラントの生体力学的な比較を示す。
別のラット脛骨骨折実験における最大ねじり荷重およびねじり剛性を示す。

0032

実施例1:本発明に従うインプラントの作製
400mgのPDLLA(ポリ(D,L)ラクチド, Resomer R203, Boehringer-Ingelheim製)を室温で6mLのクロロホルム中に分散する。コーティングに他の骨誘導性もしくは殺生物性物質を含有させる場合には、それらもこの分散液に添加し、そのような場合にはPDLLAと添加物との合計重量を400mgとする。
その分散液をコロイド溶液が形成されるまで6時間放置させ、次いで0.45μmの孔サイズの無菌ミクロフィルターを通過させて滅菌容器中に入れる。
次いで、チタンおよび鋼製キルシュナー(Kirschner)ワイヤ(直径1.6mm, 長さ3.5cm)、ならびにチタン製の骨用釘(bone nail)を濾過済の溶液中に浸漬し、その後溶媒をクロロホルムの雰囲気中で10分間蒸発させる。このプロセス(コーティングと蒸発)を再度繰り返す。
得られたインプラントは、約10〜20μmの厚さの薄いバーニッシュ様のポリマー層でコーティングされている。

0033

実施例2:コーティングの微生物学的性質
それぞれ6週間および12週間のインキュベーション時間の後、本発明によるPDLLA層をコーティングしたチタン製キルシュナーワイヤ微生物学的試験を行ったところ、微生物の増殖は認められなかった。
さらに、本発明によるPDLLAをコーティングした10個のインプラントおよびコーティングしていない10個のインプラントをブドウ球菌(KD 105)で汚染させた。コーティングしたインプラントではこの微生物の付着率は著しく低かった。

0034

実施例3:コーティングの機械的強度
チタン製および鋼製のキルシュナーワイヤ各20個の重量を測定し、次いで実施例1と同様に、カラーマーカーとして1%のメチルバイオレットを含有するPDLLAでコーティングした。
そのワイヤをラットの脛骨に移植した。体外移植後、コーティングの機械的摩滅を重量測定および光度測定分析によって測定した。摩滅率の最大値はチタン製では2.9%、鋼製では4.6%であった。ラスター(Raster)電子顕微鏡写真から、調べたインプラントのうちで金属表面にまでコーティングが摩滅していたものはないことが示された。

0035

実施例4:
この実施例は、コーティングの機械的強度についてコロイド溶液の利点を示そうとするものである。
酢酸エチル各6mLの2バッチにそれぞれ800mgのPDLLA R203を添加した。その結果得られた分散液を室温でそれぞれ6時間および24時間放置し、次いで実施例1に記載の方法で濾過した。このようにして得られた分散液もしくは溶液を、実施例1の手順で、いわゆるステントをコーティングするために用いた。ここで、ステントは本発明がその範囲に含めようとしているタイプのインプラントではないことを述べておくべきである。これらのステントを用いたのは、それらが伸長試験を行ってバーニッシュ様コーティングの機械的強度を分析するために良く適しているからである。
コーティングの量はコーティングを施す前と後のステントの重量を測定して求めた。
当業者であれば熟知している方法によって、PTCAバルーンを用いてそのステントを8bar(116psi)の圧力で伸長させた。剥がれ落ちた、またはその他の形で失われたコーティング材料の量を測定するために、伸長されたステントの重量を再度測定した。
濾過前に6時間放置させた分散液をコーティングしたステントはそのコーティングが平均0.8%失われたのに対し、他方のステント(24時間放置)では重量で6.0%が失われた。このことは、コーティングの機械的強度については溶媒中で完全な化学的ポリマー溶液が作られない方が良く、むしろ、コロイド粒子径が0.45μm以下のコロイド溶液がよいことを示している。

0036

実施例5:コーティング中に含有させた活性物質の安定性
コーティング中に含ませた増殖因子(WF)の安定性を調べるために、チタン製キルシュナーワイヤを増殖因子であるIGF-I(5重量%)およびTGF-β1(1重量%)を含有するPDLLAで実施例1のとおりコーティングした。増殖因子の安定性(貯蔵寿命)を6週間後、6か月後、および1年後に分析した。6週間後では効力喪失は3%未満であった。6か月後には、コーティング中に含まれる増殖因子は依然として95.5%より良い効力を示し、1年後には93%より良い値であった。このことは、本発明によって提供されたコーティング中に取り込まれた活性物質は、たとえそのコーティングされたインプラントが使用前に長期間保存されていても、その生物学的安定性および有効性を保持することを立証するものである。

0037

実施例6:PDLLAコーティングの生物分解性
実施例1の方法によりPDLLAでコーティングされたチタン製キルシュナーワイヤをin vitro溶出試験(elutriation test)にかけた。in vivoの状況をシミュレートするために、溶出は空気の層流条件下で37℃(98.6°F)で生理食塩液(0.9% NaCl溶液)を通過させて行なった。
9週間以内に約10%のPDLLAコーティングが漸増的に分解した。
PDLLAコーティングのin vivoでの生物分解特性を調べるために、定められたコーティング量のPDLLAでコーティングされたキルシュナーワイヤ10個をSprague Dawleyラットに埋め込んだ。6週間後、そのインプラントを取り出し、PDLLAコーティングのin vivoでの分解を、移植前と移植後の、重量ならびに固有粘度、および完全に分離したコーティングの分子量の差異を測定することによって求め、in vitroのデータと比較した。
結果を図1に示す。9週間以内に、PDLLAコーティングの約10%が生物分解されていた。匹敵するin vivo測定では、その時点でin vitroとin vivoの結果がほぼ同一であった。

0038

実施例7:コーティング中に取り込ませた活性物質の放出の検討
実施例1に記載の方法で、チタン製キルシュナーワイヤにPDLLAをコーティングし、それにはさらに5重量%のIGF-Iまたは1重量%のTGF-β1または5重量%のIGF-Iと1重量%のTGF-β1の組合せのいずれかを含有させた。
コーティング中に取り込ませた増殖因子の放出パターンをin vitro溶出試験によって分析した。結果を図2に示す。48時間以内にコーティングからの増殖因子の最初の放出が48〜54%の比率で起こった。その後は、放出は漸増的に6週間に至るまで続き、取り込ませた増殖因子の合計71〜78%が放出された。
PDLLAおよび上述の増殖因子でコーティングされたチタン製キルシュナーワイヤ10個を、用いたSprague Dawleyラットの各々の脛骨に移植した。42日後、インプラントを取り出し、取り込ませた増殖因子の残存濃度ELISAを用いて測定した。図2に示すとおり、in vivoでの結果はin vitro溶出試験の結果と一致していた。

0039

実施例8:本発明のインプラントの骨誘導効果
動物実験としては60匹(5月齢の雌のSprague Dawleyラット)の動物で試験を行った。
供試動物は全て右脛骨を標準化された方法で骨折させた。異なるコーティングを施したチタン製ワイヤ(直径1.0mm)を元の位置にもどした脛骨中に内の支持体として移植した。
手術後、42日目まで連日、群分けの指定(下記参照)に従って、ラット特異的組換え成長ホルモン(r-rGH)2mg/kgまたはプラシーボをそれぞれ皮下に注射した。0日目、4日目、7日目、14日目、21日目、28日目、35日目、および42日目に、吸入麻酔剤投与後、2平面でX線写真を撮影し、眼球後法(retrobulbar method)(−80℃(−112°F)で急速凍結)によって各動物から1.25ml採血し、各動物の体重と体温を測定した。42日目に骨折した脛骨と骨折していない脛骨を骨膜と共に別々に調製して生体力学的試験(ねじり荷重−ねじり剛性)にかけた。

0040

群分けの指定
第I群 右脛骨骨折−コーティングなしのインプラント−プラシーボの全身適用(対照群)
II群右脛骨骨折−ポリ-D,L-ラクチド(登録商標) 203でコーティングしたインプラント−プラシーボの全身適用
III群右脛骨骨折−ポリ-D,L-ラクチドでコーティングしたインプラント−(r-rGH)の全身適用
第IV群右脛骨骨折−ポリ-D,L-ラクチドならびに増殖因子IGF-I(5%)およびTGF-β(1%)でコーティングしたインプラント−プラシーボの全身適用第V群 右脛骨骨折−ポリ-D,L-ラクチドならびに増殖因子IGF-I(5%)およびTGF-β(1%)でコーティングしたインプラント−(r-rGH)の全身適用コーティングされたインプラントは実施例1に示す方法で作製した。

0041

結果:
骨折
用いた骨折モデルでは、軟組織に大きなダメージを与えることなく右脛骨を標準的に横骨折させることができた。60匹中2匹において、脛骨骨折は複雑骨折であった;1匹ではらせん型で、試験途上での中止を必要とした。1匹の動物が手術後観察での麻酔下で死亡した(32日目)。
体重と体温
(r-rGH)での全身治療を受けた動物(第III群および第V群)では、試験期間中にプラシーボを受けた動物(第I、II、およびIV群)と比べて体温の上昇は認められなかったが、体重は13%までの有意の増加を示した(p<0.05)。第I、II、およびIV群(プラシーボ)の群間、または第IIIおよびV群(GH)の群間では大きな相異は認められなかった。

0042

生体力学的試験
得られたデータは絶対値で(ねじり荷重)、および百分率で(ねじり剛性)、骨折させなかった反対側との比較で示した。

0043

この試験の結果から、第III群ならびに第IVおよびV群において、全身適用と比較して最大ねじり荷重の有意な増加が認められた(p<0.05)。増殖因子の局所適用(第IV群)は、対照群と比べて顕著に高い最大ねじり荷重が得られるのみならず、r-rGHの全身適用の結果と比べても平均して同様である(有意差なし)ように見受けられた。r-rGHの投与とIGF-IおよびTGF-βの局所適用とを同時に行っても最大ねじり荷重のそれ以上の増加は見られなかった。ポリ−D,L−ラクチドで処理した群での最大ねじり荷重は対照群と比べて有意に増加した。
ねじり剛性については、反対側の脛骨と比べたとき、同様な所見が得られた。この場合にも、増殖因子の局所適用を行った群では最も好ましい結果が得られた。

0044

図9はこれらの結果を要約したものである。

0045

実施例9:
5月齢の雌のSprague Dawleyラット(n=144)の右脛骨を、骨折作成機を用いて標準的に閉鎖骨折させ、チタン製キルシュナーワイヤのコーティングしていないものとコーティングしたものを髄内安定器具として脛骨に移植した。下記の各群について比較した:
第I群: コーティングしていないインプラント(対照群)
第II群: PDLLA(登録商標)203でコーティングしたインプラント
第III群: PDLLA+r-IGF-I(5%)でコーティングしたインプラント
第IV群: PDLLA+r-IGF-I(5%)+TGF-β1(1%)でコーティングしたインプラント
コーティングされたインプラントは実施例1の方法で作製した。
経時的にX線写真を2平面(a.-p.および側面)でとった。0日目、4日目、7日目、14日目、21日目、28日目に、血清を測定し、r-IGF-Iおよびr-TGF-β1の全身濃度ならびに体重および体温も測定した。4週間後、インプラントを取り出し、骨折させた脛骨を非処置の反対側の脛骨と比較して生体力学的に試験した。仮骨の組織形態測定的検討を行ない(O.Safranin/v.Kossa)、分析用イメージングシステム(Zeiss KS 400)で定量した。

0046

X線写真法での評価では、非処置の第I群では依然として骨折部分の分離が認められた。第IIおよびIII群ではコーティングしていない第I群に比べて良好な仮骨形成が認められた。第IV群の動物では、骨折はほぼ完全に癒合していた(図3)。

0047

非処置の反対側の脛骨と比べ、また、その他の群全てと比べ、第IV群は生体力学的試験で有意に高い最大ねじり荷重および最大ねじり剛性を示した。r-IGF-Iおよびr-TGF-β1の併用適用では、IGF-I単独での処置を受けた群よりも実質的に高い最大ねじり荷重および最大ねじり剛性が得られた。
ポリラクチドで処置した群は非処置の第I群に比べ有意に高い最大ねじり荷重および最大ねじり剛性を示した(図4)。

0048

組織形態測定的検討結果はX線写真法および生体力学的試験の結果を実証するものである。処置群に比べて実質的に大きい結合組織細胞の領域が第I群で見られた。PDLLAで処置した群では良好な仮骨形成および進行した仮骨再構築パターンが認められたが、結合組織細胞の比率は最小限であった。第IV群はほぼ完全な骨折の回復が認められ仮骨中の骨密度最高値であった。ポリラクチドのみで処置した群では対照群と比較して仮骨領域に有意に高い骨密度が認められた(図5および6)。
処置群と非処置群の間には、血清パラメーター、体重、または体温に関して明らかな変化は認められなかった。

0049

実施例10:
12月齢のユカタンコビトブタ(Yucatan dwarf pig)(n=30)に、標準的な骨切除術(1mmギャップ)を右脛骨に施し、次いでコーティングした、およびコーティングしていないチタン製脛骨髄内釘でそれぞれ髄内安定化させ、静止状態ロックした。下記の群の比較を行った:
第I群: コーティングしていないインプラント(対照群)
第II群: PDLLA(登録商標)203でコーティングしたインプラント
第III群: PDLLA+r-IGF-I(5%)+TGF-β1(1%)でコーティングしたインプラント
コーティングされたインプラントは実施例1の方法で作製した。

0050

経時的X線写真法の検討と血清の試験を行った。4週間後、2つの脛骨を取り出し、生体力学的に試験した。仮骨の直径を測定し仮骨量をアルキメデス原理で測定した。

0051

結果:
4週間後、対照群動物は全て骨切除術ギャップの癒合が完全ではないことを示した。ポリラクチドで処置した群では良好な仮骨形成が認められた。第III群では十分に進行した仮骨形成を示した(図7)。
ポリラクチドで処置した第II群、およびさらに増殖因子で処置した第III群では仮骨量と仮骨直径は対照群よりも有意に大きい値であった。
反対側の脛骨と比べ、また対照群と比べてポリラクチドで処置した群ではかなり高い最大ねじり荷重および最大ねじり剛性を示した。
ポリラクチドコーティング中に増殖因子を含ませることによって、最大ねじり荷重および最大ねじり剛性の顕著な増加がもたらされた。

0052

髄内支持体の強度
電気摘出機(power extractor)を用いたチタン製ワイヤの脛骨からの標準的な摘出では、IGF-IおよびTGF-βでコーティングしたワイヤの摘出には対照群のワイヤーの摘出よりも有意に大きな摘出力が必要であった。
実施例8および10から、本発明に従ってコーティングしたインプラントの使用によって、骨接合を有意に加速し、それゆえに骨折の治癒過程を有意に加速することができることは明かである。この加速した過程は、他の骨誘導剤の添加が無くともポリマーでコーティングしたインプラントで実証されている。増殖因子をコーティング中に取り込ませると骨折治癒過程はさらに加速され、IGF-IおよびTGF-βを組み合わせて適用すると特に効果的である。
これらの実施例は本発明の方法を用いてバーニッシュ様コーティングを作ることができ、その物理的構造および機械的強度により、従来技術から明確に区別しうるものである。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ