図面 (/)

技術 溶鋼中の燐濃度を精度よく推定する方法

出願人 日新製鋼株式会社
発明者 馬江唯一
出願日 2010年3月26日 (10年9ヶ月経過) 出願番号 2010-072542
公開日 2011年10月13日 (9年2ヶ月経過) 公開番号 2011-202252
状態 特許登録済
技術分野 炭素鋼又は鋳鋼の製造
主要キーワード 中間測定 スタティック制御 バラ付き 操業情報 モデル数 温度モデル 酸素使用量 軌道修正
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2011年10月13日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (9)

課題

吹錬時の中間測定結果情報に基づいてO2使用量と冷却材使用量を決定し、吹止後溶鋼温度と、C及びP濃度を目標値に制御する転炉吹錬において、吹止後の溶鋼中のP濃度を精度よく推定する方法であって、脱Pを転炉のみで行って工程数を少なくし、熱裕度を向上させる。

解決手段

溶銑予備処理にて脱Pを行っていない溶銑を用いて転炉吹錬を行い、吹錬時の中間測定時にサブランス取付け酸素センサーによってスラグ中酸素ポテンシャルPO2を測定し、吹止後、溶鋼の凝固温度から鋼中C濃度を推定すると共に、この溶鋼中のC濃度の推定値より溶鋼中の酸素ポテンシャルPO2を推定し、その後スラブ中の酸素ポテンシャルPO2の測定値と溶鋼中の酸素ポテンシャルPO2の測定値から吹止後の溶鋼中のP濃度を推定する。

概要

背景

転炉吹錬では従来、吹錬開始時点での操業情報を用いて吹止後溶鋼濃度と、溶鋼中の炭素(以下、元素記号のCという)濃度を目標値に制御するスタティック制御と、これらの情報にサブランスを用いて測定した中間測定結果情報を加えて吹止後の溶鋼温度と溶鋼中のC濃度及びP濃度を目標値に制御するダイナミック制御が行われている。

図1は、上述する転炉吹錬でのフローを示すもので、スタティック制御では溶銑性状主原料配合、その他の吹錬条件などの吹錬開始時点での操業情報と、吹止後の溶鋼温度及びC濃度、二次精錬処理前のP濃度との関係を示すモデル式構築し、これらのモデル式に基づいて溶鋼温度、溶鋼中のC及びP濃度が目標値に一致するように酸素使用量冷却材使用量を決定して操業を行い、ダイナミック制御では吹錬中、サブランスにより測定した溶鋼温度TSと溶鋼の凝固温度を中間測定し、測定したこの溶鋼温度TS及び凝固温度より推定した溶鋼中のC濃度CSと、前記中間測定後の酸素使用量ΔO2、冷却材投入量ΔSOREと、吹止後の溶鋼温度TE及びC濃度CE、RH処理前のP濃度PEとの関係を示す以下の酸素モデル数1式、温度モデル数2式、Pモデル数3式を構築し、これら各数1〜3式に以下の表1に示す実績値のWCH、O2、TCaO、SORE、ΔCaCO3、CaF2、HMR、CMR、HMSi及びHMP、中間測定値のTS、溶鋼の凝固温度からの推定値CS、目標値のTE、CE、PE、出鋼済みチャージ実績から重回帰分析により求めた係数ci、各モデル式の学習項ΔCを代入し、数1式と数3式を連立して求めたΔO2とΔSORE及び数2式と数3式を連立して求めたΔO2とΔSOREのうち、ΔO2値が大きい方のΔO2とΔSOREを決定し、スタティック制御での軌道修正を行っている。

前述のダイナミック制御を行ったのちの吹止後の溶鋼中のP濃度は、吹止後に測定した溶鋼の凝固温度から溶鋼中のC濃度を推定し、該C濃度を重回帰分析の説明変数として溶鋼中PO2及びスラグ中PO2を推定し、これより吹止後の溶鋼中のP濃度を推定していた(図2)。

図3は、吹止後の溶鋼中のC濃度と、溶鋼中及びスラブ中の酸素ポテンシャルPO2の関係を示すものであるが、図示するようにスラグ中酸素ポテンシャルlogPO2のバラつきが特に大きくなっており、このため吹止後のP濃度の推定精度を損ねている、と考えられる。

これに対し特許文献1には、吹錬時にスラグ中酸素ポテンシャルPO2を固体電解質を利用した酸素センサーを用いて直接測定し、これより吹止後のP濃度を推定する方法が開示されている。

概要

吹錬時の中間測定結果情報に基づいてO2使用量と冷却材使用量を決定し、吹止後の溶鋼温度と、C及びP濃度を目標値に制御する転炉吹錬において、吹止後の溶鋼中のP濃度を精度よく推定する方法であって、脱Pを転炉のみで行って工程数を少なくし、熱裕度を向上させる。溶銑予備処理にて脱Pを行っていない溶銑を用いて転炉吹錬を行い、吹錬時の中間測定時にサブランスに取付けた酸素センサーによってスラグ中の酸素ポテンシャルPO2を測定し、吹止後、溶鋼の凝固温度から鋼中C濃度を推定すると共に、この溶鋼中のC濃度の推定値より溶鋼中の酸素ポテンシャルPO2を推定し、その後スラブ中の酸素ポテンシャルPO2の測定値と溶鋼中の酸素ポテンシャルPO2の測定値から吹止後の溶鋼中のP濃度を推定する。なし

目的

本発明は、溶鋼中のP濃度を精度よく推定する方法において、脱Pを転炉のみで行って工程数を少なくし、熱裕度を向上させることを目的とする

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

溶銑予備処理にて脱Pを行っていない溶銑を用いて転炉吹錬を行い、吹錬時にサブランス取付け酸素センサーによりスラグ中酸素ポテンシャルPO2を測定し、吹止後溶鋼凝固温度から溶鋼中Cの濃度を推定すると共に、この溶鋼中のC濃度の推定値より溶鋼中の酸素ポテンシャルPO2を推定し、その後、前記スラグ中の酸素ポテンシャルPO2の測定値と溶鋼中の酸素ポテンシャルPO2の推定値から吹止後の溶鋼中の燐濃度を推定することを特徴とする燐濃度推定方法

請求項2

溶銑予備処理にて脱Pを行っていない溶銑を用いて転炉吹錬を行い、吹錬時にサブランスに取付けた酸素センサーによって溶鋼中及びスラグ中の酸素ポテンシャルPO2を測定したのち、スラグ中の酸素ポテンシャルPO2と溶鋼中の酸素ポテンシャルPO2の上記各測定値から溶鋼中のP濃度を推定することを特徴とする燐濃度推定方法。

技術分野

0001

本発明は、転炉吹錬での脱燐方法において、吹止後における溶鋼中の燐(以下、元素記号のPという)濃度を精度よく推定する方法に関する。

背景技術

0002

転炉吹錬では従来、吹錬開始時点での操業情報を用いて吹止後の溶鋼濃度と、溶鋼中の炭素(以下、元素記号のCという)濃度を目標値に制御するスタティック制御と、これらの情報にサブランスを用いて測定した中間測定結果情報を加えて吹止後の溶鋼温度と溶鋼中のC濃度及びP濃度を目標値に制御するダイナミック制御が行われている。

0003

図1は、上述する転炉吹錬でのフローを示すもので、スタティック制御では溶銑性状主原料配合、その他の吹錬条件などの吹錬開始時点での操業情報と、吹止後の溶鋼温度及びC濃度、二次精錬処理前のP濃度との関係を示すモデル式構築し、これらのモデル式に基づいて溶鋼温度、溶鋼中のC及びP濃度が目標値に一致するように酸素使用量冷却材使用量を決定して操業を行い、ダイナミック制御では吹錬中、サブランスにより測定した溶鋼温度TSと溶鋼の凝固温度を中間測定し、測定したこの溶鋼温度TS及び凝固温度より推定した溶鋼中のC濃度CSと、前記中間測定後の酸素使用量ΔO2、冷却材投入量ΔSOREと、吹止後の溶鋼温度TE及びC濃度CE、RH処理前のP濃度PEとの関係を示す以下の酸素モデル数1式、温度モデル数2式、Pモデル数3式を構築し、これら各数1〜3式に以下の表1に示す実績値のWCH、O2、TCaO、SORE、ΔCaCO3、CaF2、HMR、CMR、HMSi及びHMP、中間測定値のTS、溶鋼の凝固温度からの推定値CS、目標値のTE、CE、PE、出鋼済みチャージ実績から重回帰分析により求めた係数ci、各モデル式の学習項ΔCを代入し、数1式と数3式を連立して求めたΔO2とΔSORE及び数2式と数3式を連立して求めたΔO2とΔSOREのうち、ΔO2値が大きい方のΔO2とΔSOREを決定し、スタティック制御での軌道修正を行っている。

0004

0005

0006

0007

0008

前述のダイナミック制御を行ったのちの吹止後の溶鋼中のP濃度は、吹止後に測定した溶鋼の凝固温度から溶鋼中のC濃度を推定し、該C濃度を重回帰分析の説明変数として溶鋼中PO2及びスラグ中PO2を推定し、これより吹止後の溶鋼中のP濃度を推定していた(図2)。

0009

図3は、吹止後の溶鋼中のC濃度と、溶鋼中及びスラブ中の酸素ポテンシャルPO2の関係を示すものであるが、図示するようにスラグ中酸素ポテンシャルlogPO2のバラつきが特に大きくなっており、このため吹止後のP濃度の推定精度を損ねている、と考えられる。

0010

これに対し特許文献1には、吹錬時にスラグ中酸素ポテンシャルPO2を固体電解質を利用した酸素センサーを用いて直接測定し、これより吹止後のP濃度を推定する方法が開示されている。

先行技術

0011

特開2008−223047号

発明が解決しようとする課題

0012

特許文献1に開示されるように、スラグ中の酸素ポテンシャルPO2を直接測定すると、溶鋼中のC濃度から推定するのに比べ、吹止後のP濃度の推定精度が格段に向上するが、特許文献記載の1記載の方法では、転炉吹錬での脱Pに溶銑予備処理にて脱Pを行った溶銑が用いられ、脱Pが溶銑予備処理と転炉吹錬において二度にわたって行われている。

0013

本発明は、溶鋼中のP濃度を精度よく推定する方法において、脱Pを転炉のみで行って工程数を少なくし、熱裕度を向上させることを目的とする。

課題を解決するための手段

0014

請求項1に係わる発明は、溶銑予備処理にて脱Pを行っていない溶銑を用いて転炉吹錬を行い、吹錬時にサブランスに取付けた酸素センサーによりスラグ中の酸素ポテンシャルPO2を測定し、吹止後、溶鋼の凝固温度から溶鋼中のC濃度を推定すると共に、この溶鋼中のC濃度の推定値より溶鋼中の酸素ポテンシャルPO2を推定し、その後、前記スラブ中の酸素ポテンシャルPO2の測定値と溶鋼中の酸素ポテンシャルPO2の測定値から吹止後の溶鋼中のP濃度を推定することを特徴とし、
請求項2に係わる発明は、溶銑予備処理にて脱Pを行っていない溶銑を用いて転炉吹錬を行い、吹錬時にサブランスに取付けた酸素センサーによって溶鋼中及びスラグ中の酸素ポテンシャルPO2を測定したのち、スラグ中の酸素ポテンシャルPO2と溶鋼中の酸素ポテンシャルPO2の上記各測定値から溶鋼中のP濃度を推定することを特徴とする。

発明の効果

0015

本発明によると、吹止後の溶鋼中のP濃度は、溶鋼中の酸素ポテンシャルPO2とスラグ中の酸素ポテンシャルPO2から推定されるが、スラグ中の酸素ポテンシャルPO2には酸素センサーによって測定された測定値が用いられるため、溶鋼中のC濃度を重回帰分析の説明変数として用いて推定していたのと比べ、P濃度を精度よく推定することができ、これにより転炉吹錬の安定化、成分不的中の削減による歩留向上を図ることができること、脱Pは転炉のみで行われ、溶銑予備処理を転炉で行われるのと比べ、工程数が少なくなり、熱裕度が向上すること等の効果を有する。

図面の簡単な説明

0016

従来法による転炉吹錬でのフローを示す図。
同従来法による溶鋼中のP濃度の推定方法を示す図。
溶鋼中のC濃度と酸素ポテンシャルPO2の関係を示す図。
本発明法における転炉吹錬でのフローを示す図。
本発明法における溶鋼中のP濃度の推定方法を示す図。
二次精錬処理前P濃度の計算値と実績値の関係を示す図。
P濃度の実績値と推定値のバラ付きを示すグラフ
従来法での二次精錬処理前P濃度の計算値と実績値の関係を示す図。
従来法でのP濃度の実績値と推定値のバラ付きを示すグラフ。

実施例

0017

以下、本発明の好適な実施形態について説明する。
図4は、前述の図1と同様、転炉吹錬でのフローを示すもので、スタティック制御においては、前述したように吹錬開始時点での操業情報を用いて転炉の次工程である二次精錬処理前温度及び二次精錬処理前成分(C及びP濃度)が目標値となるように酸素使用量と冷却材投入量を算出し、ダイナミック制御においては、吹止の数分前、例えば2分前にサブランスにより溶鋼温度TSと溶鋼の凝固温度とスラグ中の酸素ポテンシャルPO2を測定した。

0018

サブランスによるスラグ中の酸素ポテンシャルPO2の測定は、例えばサブランスに取付けられ、ヘレウスエレクトロイト社によって開発された、ジルコニア固体電解質を介した酸素濃淡電池への原理により測定した起電力からPO2に変換する装置によって行われ(この種の酸素センサーが特許文献1及び特開2000−214127号にも開示されている)、上記測定のタイミングは吹錬終了時が最も溶鋼中のP濃度の推定精度がよいが、吹錬中であってもサブランス測定から吹止までの酸素使用量が少ない場合は、溶鋼中のP濃度を良好に推定することができる。

0019

次に前述の溶鋼PO2と、中間測定後の酸素使用量ΔO2、冷却材投入量ΔSORE、吹止後の目標とする溶鋼温度TE及びC濃度CE、二次精錬処理前のP濃度PEとの関係を示す前述の酸素モデル数1式、温度モデル数2式及び以下のPモデル数4式を構築し、これら各数1、2及び4式に実測値のWCH、O2、TCaO、SORE、ΔCaCO3、CaF2、HMR、CMR、HMSi及びHMP、中間測定のTS及びPO2、溶鋼中の推定C濃度、目標値のTE、CE、PE、出鋼済みチャージ実績から重回帰分析により求めた以下の表2に示す係数ci、各モデル式の学習項Δcを代入し、数1式と数4式を連立して求めたΔO2とΔSORE及び数2式と数4式を連立して求めたΔO2とΔSOREのうち、ΔO2値が大きい方のΔO2とΔSOREを決定した。

0020

0021

そして吹止後の鋼中P濃度を吹止後に測定した溶鋼の凝固温度から求めた鋼中C濃度から推定した鋼中ΔO2と中間測定して求めたスラグ中PO2の差を重回帰分析の説明変数として求めた(図5

0022

また表2に示す係数の妥当性を検証するため、二次精錬処理前の鋼中P濃度について計算値と実績値を比較した。図6は本方法による結果を示すもので、寄与率R2=0.4643であった。

0023

0024

図7チャージ数N=123での(実績P濃度−計算P濃度)とチャージ数のグラフを示すもので、平均値xは−0.03、標準偏差σは1.58であった。

0025

比較のため従来法により求めた式1、2及び4の係数σiに表2に示す係数を用いた以外は前記実施形態と同様にしてΔO2とΔSOREを求めてダイナミック制御を行い、吹止後の鋼中P濃度を前記と同様にして求めた。図8は、二次精錬処理前における鋼中P濃度の計算値と実績値の比較を示す図で、寄与率R2=0.2474であった。図9は、チャージ数N=123での(実績P濃度−計算P濃度)とチャージ数のグラフを示すもので、平均値xは−0.07、標準偏差σは2.28であった。

0026

以上のように、中間測定でスラグ中の酸素ポテンシャルPO2を求めてダイナミック制御を行い、二次精錬処理前の溶鋼中のP濃度を求めた場合、図6図8の対比で見られるように、寄与率R2は従来法では0.2474であったのが、0.4643と大幅に向上し、また誤差のバラつきに関しては、図7図9の対比で見られるように、標準偏差で2.28×10−3%から1.58×10−3%に改善することができた。

0027

前記実施形態では、スラグ中の酸素ポテンシャルPO2の計測がサブランスに取付けた酸素センサーによって行われ、溶鋼中の酸素ポテンシャルPO2は溶鋼の凝固温度から求めた溶鋼中のC濃度から測定しているが、別の実施形態では、酸素センサーによってスラグ中の酸素ポテンシャルPO2と共に、(成功率は高くないが)溶鋼中の酸素ポテンシャルPO2が測定される。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

該当するデータがありません

関連する公募課題

該当するデータがありません

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 黒崎播磨株式会社の「 出鋼口スリーブ」が 公開されました。( 2020/10/29)

    【課題】内層に低黒鉛材質を配置した出鋼口スリーブにおいて耐用性を向上する。【解決手段】内層2とこの内層2の外側の本体層3とを備え、これら内層2及び本体層3は、それぞれマグネシアと黒鉛とを主体とする内層... 詳細

  • JFEスチール株式会社の「 ガス吹込みノズルを備えた高温溶融物の精錬容器」が 公開されました。( 2020/10/29)

    【課題】ガス吹込みノズルが高い耐用性を有する精錬容器を提供する。【解決手段】ガス吹込みノズルを構成するガス吹込みノズル用耐火物が、金属細管が埋設された中心部耐火物aとその外側の外周部耐火物bとからなり... 詳細

  • 日本製鉄株式会社の「 上底吹き転炉型精錬容器」が 公開されました。( 2020/10/22)

    【課題・解決手段】炉体中心軸の方向視における炉口の形状において、前記炉口の輪郭が円弧と線分とからなり、前記線分がトラニオン軸と平行であり、かつ出鋼孔とは前記トラニオン軸を挟んで反対側に存在し、前記トラ... 詳細

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

該当するデータがありません

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ